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ABSTRACT

Verbatim memorization in large language models remains a persistent and un-
solved challenge, raising critical concerns for privacy, copyright, and responsible
deployment. Existing research suggests that effective unlearning requires target-
ing the specific neurons responsible for memorization, as broad model updates fail
to erase content reliably. However, we show that even these approaches rest on a
flawed premise. Through controlled experiments, we demonstrate that memorized
sequences are not naturally isolated to specific neurons during training, except in
cases where the sequences are highly atypical. In this work, we put forward a
new training paradigm that attempts to isolate memorization to specific neurons
by design. The core challenge is that gradients from the repeated sequences en-
tangle both “generalizing” features that improve general capability, in addition to
sequence-specific memorization. We show that a simple change to standard train-
ing can implicitly disentangle these by leveraging metadata that identifies repeated
sequences. We verify the efficacy of our method (SeqgTD) in a proof-of-concept
natural language setting and unveil the mechanism by which this disentanglement
is possible through the training dynamics of memorization. We conclude by dis-
cussing the practical considerations of the deployment of SegTD and highlight
potential avenues for incorporating it into large-scale settings.

1 INTRODUCTION

Large language models are known to memorize sequences that they observe frequently during pre-
training (Carlini et al.| [2023; |[Nasr et al.| [2023). As a result, it remains possible to extract private
information, copyrighted content, and infer the membership of sequences in the training dataset.
Due to the legal and ethical risks of these possibilities, significant research has investigated tech-
niques for identifying and removing such memorized sequences (Maini et al. 2024} [Patil et al.,
2023; Barbulescu & Triantafillou, [2024). Extensive prior research has aimed to identify the parts
of a model responsible for memorization and selectively remove them (Chang et al.l [2024bj Chen
et al.||2024; Bayazit et al., 2024} |Guo et al.,|2024). These methods rest on a critical assumption: that
memorization is confined to specific neurons that play little role in broader language modeling. But
does standard training actually produce such neatly isolated memorization neurons? Surprisingly,
this fundamental question remains largely unexplored.

In Section |3} we perform a controlled study and find that existing localization methods struggle
when memorized sequences are typical (linguistically similar to the broader training distribution).
Many undesirable cases of memorization fall in this class: copyrighted books and articles generally
include broadly applicable linguistic patterns. Our findings challenge the underlying premise of
post-hoc localization—in many cases, cleanly isolated memorization neurons may not exist.

If standard pretraining techniques do not induce isolation, are there alternative strategies that pro-
mote it? A potentially “obvious” approach is to route repeated sequences to their own set of neurons,
essentially creating memorization neurons by design. In Section 4] we show a critical flaw of this
approach: it inhibits learning general linguistic patterns across sequences, undermining the fun-
damental goal of pretraining. Thus, it appears some neurons must be “shared” (allowed to learn
from all sequences) to maximally pick up generalizing patterns. This presents a dilemma: if we
allow shared neurons, they could implement memorization—leading us back to the failure mode
of standard training. Could we somehow decompose what a model learns into “generalizing” and
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Figure 1: Conceptual Intution of SeqTD. We conceptually partition the learning signal from
each example to into “generalization” and “memorization” components. On the left, we show that
standard training can store memorization signal in any neurons. In SegTD, we provide a set of
memorization neurons which are shielded from forgetting induced by other examples. As aresult, (a)
memorization accumulates in these neurons and (b) once these neurons fit the memorized sequence
well, memorization is no longer reinforced in shared neurons.

“memorizing” components and direct them to different neurons? This is a daunting task; it is diffi-
cult to even precisely delineate these components. However, we show that it is indeed possible, by
carefully leveraging the training dynamics of memorization.

We introduce Sequence-Tied Dropout (SeqTD) which splits hidden-layer neurons in MLP layers
of transformers into two groups: a pool of “shared” neurons that all examples can update, and a
set of “memorization” neurons that each repeated sequence consistently activates (Section [5). By
ensuring each repeated sequence drops out all but a fixed subset of the memorization neurons, we
let memorization accumulate in that subset while shielding shared neurons from repeatedly hav-
ing memorization reinforced. This design is inspired from Maini et al.| (2023), and leverages the
learning-and-forgetting cycles of memorization (Toneva et al., 2018): repeated text is systematically
“forgotten” in the shared parameters due to interference from other examples, while memorization
neurons that only see a small subset of data become stable long-term storage. Crucially, this allows
partial parameter sharing so that repeated text can contribute general linguistic signals to the model.

On a modified TinyStories pretraining setup, we show that SeqTD isolates memorization signifi-
cantly better than post-hoc localization. After training, simply zeroing out the memorization neu-
rons suffices to “unlearn” repeated sequences without noticeably harming the model’s performance
on other data (Section [5.I). We then investigate the two main practical requirements for applying
SeqTD: the accuracy of sequence metadata and model size (Section[5.2). We find SeqTD is capable
of withstanding some amount of noise in sequence metadata (up to 10%) and can isolate memoriza-
tion across a wide range of model sizes. Finally, we investigate the mechanism by which SeqTD
isolates memorization and provide experimental evidence of the role of learning-forgetting dynam-
ics in its success (Appendix [F). Ultimately, we present a principled approach for the intricate, yet
crucial puzzle of disentangling memorization from the general capabilities of LLMs.

2 RELATED WORKS

Research on unlearning memorized information in neural models includes exact methods like
SISA (Bourtoule et al., |2021) and approximate post-hoc approaches (Triantafillou et all [2023).
With increasing concerns about memorization in large language models (Carlini et al., 2023} |[Nasr
et al., 2023), recent methods either adjust model parameters (Thudi et al., [2022} [Liu et al., 2022;
Zhang et al |2024; Yao et al.l 2024) or identify and remove responsible components (Chang et al.|
2024b; (Chen et al.| 2024 |Stoehr et al., 2024} Bayazit et al., |2024; (Guo et al.| [2024). However,
these methods often degrade overall model performance (Maini et al., 2023;|Zhang et al., 2024). We
propose a pretraining technique to remove memorized content while preserving model capabilities.

3 PITFALLS OF POST-HOC LOCALIZATION

Prior works attempt to measure the contribution of each neuron to memorization and subsequently
remove the top scoring ones. This assumes sequence memorization is implemented by some subset
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Figure 2: Study of Localization (a) Loss curve when training on TS-Repet it ion. Memorization
decreases alongside the validation loss. (b) We plot the unlearning-model degradation tradeoff of
pruning by varying the number of dropped out neurons and demonstrate the method struggles to
unlearn sequences of both kinds (c) Integrated gradients mitigates model degradation in both cases
but struggles with removing typical sequences.

of neurons and that these neurons must also don’t contribute to the model’s general capabilities. In
this section, we study whether standard training naturally satisfies these requirements by examining
the performance of localization methods in a controlled setup. We defer additional details of the two
methods we study (pruning and integrated gradients) to Appendix [C|

3.1 EXPERIMENTAL SETTING

We train models on two controlled settings designed to induce different types of memorization:
highly atypical canaries and typical sequences that resemble normal text.

Datasets.. We conduct experiments using a subset of TinyStories (Eldan & Li, |2023)) to simulate
real-world memorization. In the TS-Repetition setting, 100 stories are repeated 128 times,
making memorized sequences typical. In TS-Canary, random token sequences (Canaries) are
appended to 100 stories and repeated 128 times, creating more atypical sequences. Both setups
include 20,000 un-repeated TinyStories sequences.

Evaluation Metrics. We measure sequence forgetting as the difference in loss on repeated se-
quences before and after localization and dropout (higher is better). We measure the model degra-
dation as the difference between the validation loss before and after removal (higher is better).

3.2 EMPIRICAL OBSERVATIONS

We show the results of our analysis in Figure[2] Both post-hoc methods achieve limited success and
struggle particularly to remove typical memorized sequences from TS—-Repetition.

Memorization and Generalization Occur Simultaneously. In Figure we plot the valida-
tion and memorization of a model trained on TS—-Repetition. We see that the loss on repeated
sequences and the validation set descend simultaneously. Our observations are supported by prior
works, such as|Tirumala et al.| (2022), that observe memorization of sequences occurs prior to over-
fitting. The simultaneous learning of memorization and generalization illustrates the challenge of
avoiding memorization: simply removing repeated sequences can harm model capability.

Localization Methods Achieve Partial Success. In Figure[2(b)we show the trade-off in sequence
forgetting and model degradation of pruning. In both settings dropping out the identified neurons
leads to an increase in the memorized sequence’s loss, suggesting some success in localization.
There are similar trends in Figure for integrated gradients, although we observe it generally
produces less model degradation than pruning. We see that integrated gradients is less effective in
removing memorization in TS-Repetition, while being effective in TS-Canary.

Typical Sequence are Difficult to Remove Post-hoc. Across both methods, we find that applying
post hoc methods to TS-Repetition results in greater model degradation than TS—-Canary.
This difference is particularly pronounced for integrated gradients. Recall that the memorized se-
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quences in TS—-Repetition are “typical”’- similar to the non-repeated training data and the vali-
dation set. Our results suggest the memorization of typical sequences may not be isolated in neurons.

In summary, our controlled study suggests that while highly afypical memorized sequences appear
to be isolated by standard training, the same is not true for more typical sequences. Our findings
challenge the feasibility of simply removing memorization post-hoc and suggest the need to explic-
itly promotes isolation during pre-training.

4 INSUFFICIENCY OF ENFORCING LOCALIZATION

Previously, we saw removing memorization neurons post-training is challenging. A more direct
approach is to enforce their creation during pretraining. This can be done by restricting repeated
sequences to update a separate, known set of neurons (Gradient Masking)—seemingly ensuring the
existence of known memorization neurons by design. We describe full details of our implementation
in Appendix D]

However, we find that this rigid approach both (a) hinders learning general features across sequences
and (b) fails to truly isolate memorization. This reveals that simply “forcing” localization can do
more harm than good: memorization can continue to become entangled with general capability,
while desirable cross-sequence learning is inhibited.

Gradient Masking Hinders Cross-Sequence 1 .
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removed (Figure [3). This observation ren- B ‘\
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icantly worsens the model’s general capabili- >4 Tl
ties. This finding suggests that it is essential 3
for some “shared” neurons to be updated by all 0 5 10 15 20 25
sequences to aggregate general features. Training Step

Gradient Masking Does Not Fully Isolate
Memorization. In Figure [3} we see remov-
ing memorization neurons further degrades val-
idation performance. This indicates that gra-
dient masking also fails to fully isolate memo-
rization from general capabilities. Even though
the dropped out neurons only received “memo-
rization” gradients, the forward pass leaks acti-
vations between memorization neurons and the
rest of the model. As a result, general capabil-
ities become sensitive to the removal of memo-
rization neurons during training.

Figure 3: Impact of Gradient-Masked Train-
ing. We compare the validation loss of gradient-
masked training with (Gradient Mask-Dropout)
and without (Gradient Mask-Keepall) memoriza-
tion neurons removed to a standard training run
(Standard). Gradient-masked training achieves a
significantly worse validation loss and dropping
out memorization neurons further degrades vali-
dation performance as training progresses.

In summary, shared neurons are necessary to facilitate the learning of general linguistic capabilities
across all sequences. Moreover, isolation must go beyond simply forcing memorization to separate
neurons. Can we simultaneously resolve both challenges? Next, we show how carefully leveraging
the dynamics of memorization can cause isolation to naturally arise, even with shared neurons.

5 SEQUENCE-TIED DROPOUT (SEQTD)

To address the challenge of isolating memorization and generalization signal in LLMs, we propose
a novel pretraining strategy for transformers called Sequence-Tied Dropout (SeqTD), to simultane-
ously achieve two goals: (1) Preserve cross-sequence learning and (2) Enforce effective isolation.

In standard training, memorized sequences undergo learning and forgetting cycles, reinforcing mem-
orization throughout the model. To counter this, we propose Sequence-Tied Dropout (SeqTD),
which assigns each sequence a fixed subset of memorization neurons. By limiting their updates
to fewer sequences, these neurons retain memorization while preventing reinforcement elsewhere
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Figure 4: Performance of SeqTD (a) We find that SegTD achieves a comparable validation loss to
a normally trained model on TS-Repetition, outperforming a model trained without repeated
sequences. (b) We show the loss of SeqTD on the repeated sequences, showing that it memorizes
significantly less than a normally trained model. (c) We compare the sequence forgetting-model
degradation tradeoff of SeqTD, relative to the post-hoc methods tested in Section 3] finding SeqTD
outperforms both. We compute the model degradation for SegTD and Standard: No Rep as the
difference in the validation loss relative to a standard trained model on TS—-Repetition.

in the model. This ensures memorization accumulates in designated neurons while generalization
remains unaffected. We provide full implementation details in Appendix

SeqTD extends prior work on localizing memorization (Maini et all 2023) in three key ways.
Firstly, we position the localization of memorization in the realistic scenario of fypical sequence
memorization (like copyrighted books), as opposed to atypical examples. Secondly, we make cru-
cial design decisions to implement localization in the transformer architecture for language mod-
eling task (as opposed to past work in image classification). This includes implementing SeqTD
in synergy with key-value memory stores in the MLP layers of transformers as found by |[Nanda
et al.[(2023)); |Geva et al.|(2021). Lastly, we explain the mechanism of isolation of memorization by
dropout-based regularizers in Appendix [F] which was an open question in prior work.

5.1 EMPIRICAL RESULTS

Sequence-Tied Dropout Enables Learning Across Sequences. In Figure f(a)l we compare
the validation loss of sequence-tied dropout with standard training with and without repeated doc-
uments. Firstly, note that standard training with repeated sequences outperforms filtering them
out. This indicates that the model does learn general capabilities from observing documents re-
peated multiple times in our setting. Next, we compare the standard trained models with Sequence-
Tied Dropout. We observe that when evaluating without the memorization neurons, sequence-tied
dropout achieves comparable validation loss to standard training with repetition.

Dropping Out Memorization Neurons Forgets Memorized Examples. In Figure4(b)| we show
the loss on the repeated TinyStories documents. A standard trained model memorizes these se-
quences during training, achieving close to 0 loss on them. Dropping out the memorization neurons
in SeqTD significantly increases the loss on these sequences, increasing the loss to roughly 66% of
a standard trained model that does not memorize. Interestingly, the loss of sequence-tied dropout on
memorized sequences increases later in training. We further examine this finding in Appendix [

Sequence-Tied Dropout Enables Superior Sequence Forgetting-Model Degradation Tradeoff.
In Figure we compare SeqTD’s tradeoff between sequence forgetting and model degrada-
tion, compared to the post-hoc methods from Section [3] We show that SeqTD achieves the best
tradeoff relative to post-hoc methods, achieving a higher loss on memorized sequences with signifi-
cantly lower impact on validation performance. In particular, SegqTD achieves the closest sequence
forgetting to a model trained without repeated sequences (Standard: No Rep), while significantly
outperforming that model in validation loss.
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Figure 5: Practicality of SeqTD (a) We study the impact sequence ID noise d, where a fraction
of repeated documents have an inconsistent ID. SeqTD withstands small amounts of noise (up to
10%) (b) We examine the performance of SeqTD across model sizes, where we measure the model
degradation as the change in validation loss relative to a standard model and the sequence forgetting
as the loss on repeated sequences (c) We study the impact of the fraction of memorization neurons
activated (p) on any given sequence.

5.2 PRACTICALITY OF SEQTD

There are two crucical requirements in deploying SeqTD: (a) accurate metadata that identifies re-
peated sequences and (b) the presence of memorization neurons which activate only on a subset of
sequences. In this section, we study the sensitivity of SegTD to these requirements.

Noisy Metadata. SeqTD relies on consistent sequence IDs to activate the same memorization neu-
rons across repetitions, requiring accurate metadata. However, large-scale pretraining corpora often
contain noisy or incomplete metadata. To test robustness, we introduce random ID perturbations
with probability d. Our results show SeqTD remains effective with up to 10% noise but struggles
at 50% noise, confirming that ID consistency is crucial for isolating memorization.

Impact of Model Size. In Figure we test the performance of SeqTD on a range of model
sizes and find that it is capable of isolating memorization across model scales—as indicated by the
comparably high losses on repeated sequences (relative to a normally trained model which attains
nearly 0 loss). We find that model degradation (the increase in validation loss compared to a standard
trained model of the same size) does grow as the model architecture becomes smaller. However,
even on smaller models SeqTD outperforms post-hoc methods as shown in Figure [(c)} Thus, while
model size plays a role in the success of SeqTD, the method has benefits in small models as well.

6 DISCUSSION

Contribution. Our work addresses a significant open problem: Can memorization be disentangled
from general model capabilities? In a controlled setting, we demonstrate that standard training
can fail to do this—particularly in the practically impactful setting of typical sequences. However,
we present a way to naturally promote disentanglement in pre-training by carefully leveraging the
learning dynamics of memorization (SeqgTD). In a small-scale setting, we verify that our method
induces the isolation of memorization without compromising the learning of general capabilities.
Moreover, we unveil the underlying mechanisms of SeqTD, which can inspire future techniques to
promote isolation and modularity in LLM pretraining.

Practical Considerations. There are practical considerations on the way to deploying SeqTD in
real-world settings. Firstly, SeqTD can increase the size of model required for learning. Future
work can examine memory efficient ways to implement the memorization neuron pool, for example
finding ways to offload the bulk of their parameters to inactive memory by taking advantage of their
sparsity. Secondly, SeqTD relies crucially on correct metadata to ensure that repeated sequences
get routed to the right memorization neurons. Future work can examine efficient techniques for
generating and correcting meta-data annotations based off of the semantic contents of sequences.
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A PRIOR WORK ON UNDERSTANDING MEMORIZATION

There has also been significant interest in understanding the dynamics and mechanisms of sequence
memorization. |Tirumala et al.| (2022)); (Carlini et al.| (2019) showed that sequence memorization
in LLMs often occurs before overfitting. |Leybzon & Kervadec| (2024); [Chang et al.| (2024al);
Toneva et al.|(2018) demonstrate that memorization often occurs in cycles of learning and forgetting
throughout training. (Geva et al.| (2021); |Dai et al.| (2022) study the mechanistic implementation of
memorization, finding MLP layers function as key-value memories. [Huang et al.|(2024)) demonstrate
that the decoding of memorized sequences may not be causally driven by a single memorization trig-
ger, rather depending partially on certain likely next-token predictions. As a result, they argue that
memorization can be highly “entangled” with general capabilities. In Section |3} we extend this
finding, showing even when memorization significantly changes the models output (i.e. memorized
sequences incur much lower loss than the validation set), identifying the neurons responsible for
memorization can be infeasible.

B IMPLEMENTATION DETAILS OF TINYSTORIES TRAINING

Implementation and Architecture. We use the nanoGPT library to perform standard pretraining
of the models. We train a GPT-2-Medium like architecture with embedding dimension 1024 and a
4 times expansion in the MLP layer. We used 24 layers, the resulting model had approximately 344
M parameters.

Table 1: Hyperparameter Tuning for Standard Training

Parameter Values
Max Learning Rate  {6e-5,6e-4,6e-3}
Weight Decay {le-5,1e-3,1e-1}

Min Learning Rate ~ Max Leaming Rate

10
LR Decay Steps Total Training Steps

Hyperparameter Tuning. We set the hyperparameters for our training as shown in Table[I] For
parameters denoted in sets, we tuned over choices of these parameters relative to the validation loss.
We also performed early stopping on the validation loss, but generally found that overfitting did not
occur.

C IMPLEMENTATION DETAILS OF POST-HOC LOCALIZATION TECHNIQUES

We generally follow the methodology used in |(Chang et al.|(2024b)) and directly used their code as
released online. We restrict our attention to their Hard-Concrete and Integrated Gradients methods
presented in the papers.

Hyperparameters: Hard Concrete. We tuned J, the ¢; loss coefficient used in training the pruning
mask M over the values {100, 500, 1000} on a tuning set of 5 sequences. Additionally, we tuned the
number of pruning iterations in the range {1000, 2000,4000}. The remainder of hyperparameters
were set to the optimal values reported by (Chang et al.| (2024a). We tuned relative to the lowest
validation loss achieved after dropping out the identified neurons.

Hyperparameters: Integrated Gradients. For Integrated Gradients, the only hyperparameter was
the number of IG steps. As a result, we set this to the value reported in the paper, 16.

Dropout Procedure. Following the computation of mask scores by either Hard Concrete or attri-
bution scores by Integrated Gradients, we sorted the neurons in each layer by these scores. Given a
dropout parameter r, we dropped out an r proportion of the neurons in each layer, as was performed
in|Chang et al.| (2024a)).
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Table 2: Hyperparameter Tuning for Sequence-Tied Dropout

Parameter Values
Max Learning Rate  {6e-5,6e-4,6e-3}
Weight Decay {le-5,1e-3,1e-1}

Min Learning Rate ~ Max Leaming Rate

10
LR Decay Steps Total Training Steps
g {0.7,0.9,0.95}

D IMPLEMENTATION OF GRADIENT MASKING

We generally follow the implementation outlined in |Cloud et al.| (2024). We partition each MLP
layer into memorization and generalization neurons. We tune this delineation of memorization and
generalization neurons by the proportion of generalization neurons g. We additionally partition
our dataset into examples seen once and the repeated examples. During training, we mask the
gradients in each MLP layer such that the gradients from the repeated examples update only a the
memorization block, whereas gradients of all other examples are routed to the generalization block.

Hyperparameter Tuning. We show the hyperparameters tuned for this method in Table[2| Hyper-
parameter denoted in sets are tuned relative to the validation loss before dropping out memorization
neurons.

E IMPLEMENTATION OF SEQTD

Table 3: Hyperparameter Tuning for Sequence-Tied Dropout

Parameter Values
Max Learning Rate  {6e-5,6e-4,6e-3}
Weight Decay {le-5,1e-3,1e-1}

Min Learning Rate ~ Max Leaming Rate

10
LR Decay Steps Total Training Steps
g {0.1,0.3,0.5,0.7}
P {0.1,0.3,0.5,0.7}

Implementation. We partition the MLP neurons in each layer into shared neurons which are
activated across all sequences, and memorization neurons of which only a fraction are activated
on any given example (where the fraction is controlled by the memorization neuron dropout ratio
p). We assign each sequence in pre-training data a sequence ID and use this as a seed to generate
memorization neuron dropout masks. This enables us to ensure the consistency of dropout masks
across repetitions of a sequence without precomputing and storing them in advance. We further
emphasize that sequence IDs can be arbitrarily assigned (as long as repetitions of a sequence have
the same ID). Thus, sequence ID can be generated “on the fly” for example by hashing the sequence.

Experimental Details. We train a GPT Medium model (same as all previous experiments), where
70% of MLP neurons are shared and the remaining 30% are allocated to the pool of memorization
neurons. We emphasize that there are far less memorization neurons than total sequences. Thus,
we do not assume each sequence can be allocated its own memorization neurons. We set the mem-
orization neuron dropout ratio p = 0.3, but explore other choices in Section [} We train on the
TS—-Repetition dataset from Section 3

Model Architecture and Hyperparameterz. We used the same model architecture as reported in
Appendix [B] We set the first g fraction of neurons in each MLP as the “shared neurons” and left the
remaining 1 — g fraction as the memorization neuron pool. We applied the dropout layer after the
GeLU activation function, prior to the downprojection layer.

10
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Assignment of Sequence IDs. We sequentially numbered the sequences in the TinyStories training
set and use these indices as the sequence IDs.

Hyperparameter Tuning. In Table[3] we show the hyperparameter ranges tuned over for SeqTD.
Hyperparameters denoted in sets were tuned over using the validation loss when the memorization
is dropped out.

F How DOES SEQTD ISOLATE MEMORIZATION?

In this section, we investigate the mechanisms

behind SeqTD’s ability to isolate memoriza- w14
tion. Recall our hypothesis: having a set of 81, Standard: With Rep
. . ) Seq Tied Dropout
neurons that (a) activate consistently across 210! 1
repetitions of a sequence and (b) activate on o8l |
only a subset of other sequences would allow L 06l Lol
sequence-specific memorization to accumulate Noa | A PN
in these neurons and prevent it from being rein- 202 W |
forced in shared neurons. Is this actually how 2 00 ‘
SeqTD works? 650 700 750 800 850 900 9501000

Training Step

Testing the Role of Memorization Neurons.

We empirically test the hypothesis that memo-  Figure 6: Learning and Forgetting Dynamics of
rization neurons in SeqTD are shielded from geqTD. We study a controlled setting where a
forgetting. For simplicity, we reran TinySto- gpecific TinyStories example is inserted every 10
ries pretraining setup with a single repeated se-  gradient steps and compare the training loss on
quence that is observed every 40 gradient steps.  this sequence for standard training and SeqTD.
We track the training loss on this sequence for We observe that SeqTD experiences lower loss
standard training and SeqTD (Figure[6). Recall and less forgetting spikes than standard train-
that in SeqTD, the training loss on a sequence ing, This suggests that memorization neurons

uses a forward pass with share.d neurons and may provide insulated, long-term storage for re-
the sequence’s assigned memorization neurons  peated sequences.

activated. Later in training, standard training
continues to experience high-amplitude learn-
ing/forgetting cycles. SeqTD, on the other hand experiences less such fluctuations, maintaining a
lower train loss on the repeated sequence. This provides evidence that memorization neurons have
a shielding effect from the forgetting dynamics.

Why Can Memorization Neurons Tolerate Overlap? We hypothesized that SeqTD insulates
memorization neurons from interference and forgetting. However, this insulation is not perfect: as
the number of neurons is much smaller than the number of sequences, there must be overlap between
the memorization neurons assigned to different sequences. In Figure|S(c), we observe that when p is
set high (increasing the amount of overlap across sequences), the isolation effects of SeqTD do break
down. For more moderate values of p, SeqTD is fairly robust. We note that it is not necessary to
perfectly isolate memorization neurons from interference. Rather we must simply ensure that these
neurons experience relatively less interference than shared neurons. In Theorem [3] we formalize
this argument in a simplified setting, showing that different values of p control the accumulation of
memorization in shared versus memorization neurons.

Unlearning in Shared Neurons. In Sections[5.1]and[5.2] the loss on repeated sequences increases
later in training. This suggests that some amount of memorization initially takes place in the shared
neurons and is progressively “forgotten” later in training. We hypothesize that once the memoriza-
tion neurons sufficiently“fit” the repeated sequences, additional observations no longer reinforce
memorization in the shared neurons. Meanwhile, updates from other sequences remove memoriza-
tion in the shared neurons, due to standard forgetting dynamics. This contrasts with standard training
where any forgetting that occurs between observations of a sequence is reinforced throughout the
entire model on subsequent encounters.

11
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G ANALYSIS OF SEQ-TIED DROPOUT

G.1 FORMALIZATION OF TRAINING PROCESS

Architecture. For simplicity, we study the training dynamics of an MLP layer f(x) = Wi WieX,
where W € R X demr W € R%m<dh - Here, dep, refers to the embedding size of the model
and dj, refers to the number of hidden neurons in the MLP. Given a sequence s, we consider that f
takes in the final position embedding of s, which we denote ¢(s) and directly outputs the logits of
the next token (i.e. softmax(f(¢(s))) is a probability distribution over the next token in sequence s.

For convenience, we will denote the hidden activations of sequence s as z(s). In our analysis, we will
assume that the activation space of z(s) can be split into two subspaces z(s) = [2(S)shared  Z(S)mem]-
These components will correspond to our choice of shared and memorization neurons. We will
additionally consider Wy, frozen throughout training and mainly study the training dynamics of
W ,,oj- Thus for convenience, we will also decompose W, into two column-blocks (corresponding

to the shared and memorization neurons, respectively): W ,; = [W;}r‘ged Wg}gﬂ

Data Setup. We will treat our data as (embedding, next token) pairs. We consider we have a
repeated sequence s™™ with corresponding next token e™™. Next, we will assume we have a large
dataset of sequences seen only once during training Dopee = {(s, M), ..., (s™, e(N)})}. For sim-

plicity, we will consider the case where Vi el # €M™, Since we treat W, as frozen, we will also

define eghared = minz(s™™) L 7(5) )gharea and likewise that epem = min; z(s™™). 2 (s() pem.

Intuitively, these quantities lower bound how similar the activations in the shared and memorization
neurons are between the repeated example and any other example. For simplicity we will assume

that the ||z|| = 1 for all z() and that the parameter || W |2 < Cg“’j remains bounded through-

out training. Finally we assume that the ouput embeddings e are mutually orthogonal.

Training Process. In standard training, we study the training trajectory (with learning rate ) of
minimizing the cross entropy loss with respect to the parameter W,;. We consider training with
batch size 1.

G.2 FORGETTING UNDER NORMAL TRAINING DYNAMICS

To begin, we introduce a result on the softmax with bounded inputs

Theorem 1 (Softmax on /., bounded vectors). Consider x € R% and suppose xoo < C. Then
2 -2
max;(o(z)); < de—_kl and min; (o (x)); > © dk

_ exp(x;) exp(C) _ exp(2C) exp(20) . .
PI’OOf: 0(%)1 - ZeI:(p(tJ) < exp(C’)—&-(dp—l)exp(—C) - exp(2£)+(d—1) < (li),—l - Likewise
jEd
exp(—C) _ exp(—2C) exp(—2C)
0(@)i 2 GO (0] = w2 2 A =

Given our assumption that ||z(")|| = 1 and the bounded parameter norm assumption ||W ;|| <

Gt follows that [|W iz ||o < 2. By Theorem we have that the entries of %ﬁ"“‘j) <
o(f(z) < %, element wise. In the remainder of the theory, we denote ¢yi;, = w
and Craz = 78’21‘;5?_“:“').

We will first show that the memorization of the repeated sequence sy is forgotten when we take in-
tervening steps on non-repeated sequences xs(¥, ..., s("*™) Formally, we have the following propo-
sition. Formally, suppose that at after step i, we have just seen s"¢"*). Then we will show that the
logit (™™ decreases during subsequent training steps i through i + n. For this analysis, we will
focus on the dynamics the shared neurons.

Theorem 2 (Forgetting in Standard Training). Suppose we take a gradient step on s at gradient

step i and subsequently make gradient updates on non-repeated sequences s .. st After the
m gradient steps, we have that (€"¢") T f(i+m) (gmem) < (emem)T £(0) (zm) — ymec,im.

12
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Proof. Only the parameter W p,; changes throughout training, so we can restrict our attention to its
dynamics. We have that the gradient of W ,,; on the sequence-next token pair (z, e)

0L
OW proj

=(e—o(f(z))z"

Now let mej(i) denote the parameter value of W, after the i-th observation. We have that
i+m i S i i)/ (ivy (1) T
mej(l-i- ) — mej( ) 4 ,YZ(e(J) _ O'(f(]'H) (2 ))Z( ) 1)
j=1

where we will denote f (I+1) a5 the model with parameter W ;. Then, we have that the logit on the
correct next token for memorized example z™™ is

m

( mem) f(z+m ( mem) _ (emem)Tf(i) (Zmem)_F(emem)T,YZ(e(j)_(Zmem)o,(f(j+i)(z(i))z(

j=1

HT

(Zmem)

Now, since we have that the token embeddings are orthogonal, we can rewrite this as
. m . _l_
(emem)Tf(z+m)(Zmem) _ ( mem) f( )( mem _ mem T,YZO. f(j+7 (i )Z(l) (Zmem)
j=1

Note that by the assumption of bounded norm for W,,;. we have that (e™™) o (fU+)(z()) >
Cmin (defined earlier). Note also the assumption that z(i)T(zmem) > € Vi. This implies that

(emem)Tf(ier) (Zmem) < (emem) f( 1) mem ,}/Z €Conin (2)
This immediately yields our desired claim. O

Next, we will show that the seqTD accumulates memorization in the memorization neurons, as
formalized in the following theorem. This theorem also crystalizes some key quantities relating
to gradient interference. First of all, we see that the forgetting depends on the number of further
gradient steps taken after seeing s™*™. Secondly, we observe that the impact of forgetting dynamics
is influcned by how similar the activation of neurons are amongst different examples: controlled by
€. The first observation immediately suggests that if some neurons were activated less often, then
those neurons would be effectively “store” more memorization.

G.3 ANALYSIS OF SEQTD

Theorem 3 (SeqTD Accumulates Memorization in Memorization Neurons). Consider training
SeqTD, where the memorization neurons are activated on a p fraction of non-repeated examples.
We will assume that the model is trained from 0 initialization. Denote the MLP fem-droppea @S the
model with memorization neurons dropped out and feen-droppea as the model with the generalization

neurons dropped out. Suppose that the model is trained for N total steps and the repeated sequence
s is observed k times. Then we have at the end of training

L ( mem) fgen only (¢( mem)) < ’Yk( Cmin) - ’V(N - k)esharedcmin

2. (e mem) fmem onl)( (s™M)) = V(1 = cmaz) — V(N — k) pememCmax

where Cpipn and Cpqq are constants depending on an upper bound of the parameter norm of W ;.

13
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Proof. Our argument resembles the proof of Theorem [2] and we will rely on the intuition therein.
For reference, we will write the gradients for the components of W ,,; below.

oL
awshayed = (e - U(f(z))zglrmred
proj
and likewise
oL -

W = (e - U(f(z))zmem

We will first examine (e™™)" ;Z)l_only

per and lower bound the value ¢, < (€?)To(f(2™™)) < Cpas. As such, observe that
(e Ta(f(z™™)) received k updates upper bounded by (1 — ¢,nin) (from the k obervations of
z™™ and (N — k) updates upper bounded by 7egharedCmin (from the remaining (N — k) observations
of the z"). This yields the desired claim for (1).

(z™™). At any point in training, recall that we can up-

Now, for claim (2) observe that the component (e™™) " fy(r? e)m_(mly (z™™) receives k updates lower

bounded by (1 — ¢4z ) (again, from the & observations of z™™, but only p(N — k) updates from
other observations, which can likewise be lower bounded by YémemCma, This immediately implies
the desired claim in (2) O

This theorem formalizes the notion that memorization “accumulates” in the memorization neurons
when they are shielded from the interference of other sequences sufficiently. In our theory, the extent
to which this occurs is dependent on two quantities (1) the fraction of non-repeated sequences for
which the memorization neurons are active and (2) the similarity of activations of the repeated
example and non-repeated example in the memorization neurons. Relative to algorithm design,
however, we will generally only have control over p and so we will consider €gpared = €mem OUL
of convenience. Our analysis demonstrates that when p is set appropriately low. Some calculation
demonstrates that when p < g— — ﬁ(cmar — Cmin), then we will have a seperation in the

max

logits of s™*™ where the memorization neurons primarily contain the memorized example.

14
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