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Abstract
Iterative retrieval-augmented generation(iRAG)001
models offer an effective approach for multi-002
hop question answering (QA). However, their003
retrieval process faces two key challenges: (1)004
it can be disrupted by irrelevant documents or005
factually inaccurate chain-of-thoughts; (2) their006
retrievers are not designed to dynamically adapt007
to the evolving information needs in multi-step008
reasoning, making it difficult to identify and009
retrieve the missing information required at010
each iterative step. Therefore, we propose Ki-011
RAG1, which uses a knowledge-driven itera-012
tive retriever model to enhance the retrieval013
process of iRAG. Specifically, KiRAG decom-014
poses documents into knowledge triples and015
performs iterative retrieval with these triples016
to enable a factually reliable retrieval process.017
Moreover, KiRAG integrates reasoning into the018
retrieval process to dynamically identify and re-019
trieve knowledge that bridges information gaps,020
effectively adapting to the evolving informa-021
tion needs. Empirical results show that KiRAG022
significantly outperforms existing iRAG mod-023
els, with an average improvement of 9.40% in024
R@3 and 5.14% in F1 on multi-hop QA.025

1 Introduction026

Retrieval-augmented generation (RAG) models027

have demonstrated superior performance in ques-028

tion answering (QA) tasks (Lewis et al., 2020; Ram029

et al., 2023; Lin et al., 2024). While standard RAG030

models excel at single-hop questions, they often031

struggle with multi-hop questions (Trivedi et al.,032

2023), which require reasoning over multiple inter-033

connected pieces of information to derive correct034

answers. The key limitation is that their single-035

step retrieval process often fails to retrieve all the036

relevant information needed to answer multi-hop037

questions (Shao et al., 2023), leading to knowledge038

gaps in the reasoning process. To address this lim-039

itation, iterative RAG (iRAG) models have been040

1Code: https://anonymous.4open.science/r/kirag

Question According to the 2001 census, what was the population
of the city in which Kirton End is located?

KiRAG (Ours)

Step 1: Kirton End is a hamlet in the civil parish of
Kirton in the Boston district of Lincolnshire, England. ...
Step 2: Boston is a town and small port in Lincolnshire,
on the east coast of England... while the town itself had a
population of 35,124 at the 2001 census.

IRCoT

Step 1: Kirton End is a hamlet in the civil parish of
Kirton in the Boston district of Lincolnshire, England. ...
Step 2: Kirton is a village in Nottinghamshire, England...
According to the United Kingdom Census 2001 it had a
population of 273 , reducing to 261 at the 2011 census.

IRDoc

Step 1: Kirton End is a hamlet in the civil parish of
Kirton in the Boston district of Lincolnshire, England. ...
Step 2: Ollerton is a small town in Nottinghamshire...
The population of this parish at the 2011 census was 9,840 .

HotPotQA 2Wiki
64
72
80
88

R@
3 

(%
)

Document Retrieval

HotPotQA 2Wiki
30
40
50
60
70

F1
 (%

)

Multi-Hop QA
IRDoc IRCoT KiRAG

Figure 1: (top) Example of top-ranked documents at
each step, with relevant content marked in blue and
distracting content in orange . We compare KiRAG
with IRCoT (Trivedi et al., 2023) and its variant IRDoc,
where we replace generated thoughts with top-ranked
documents. (Bottom) The corresponding retrieval and
QA performance on HotPotQA and 2Wiki datasets.

proposed (Trivedi et al., 2023; Asai et al., 2024; 041

Su et al., 2024; Yao et al., 2024). These models 042

employ multiple steps of retrieval and reasoning 043

to iteratively gather the necessary information for 044

addressing multi-hop questions. 045

Despite the effectiveness of existing iRAG mod- 046

els, their retrieval process faces two key challenges: 047

(1) These models perform iterative retrieval by it- 048

eratively augmenting the query with either previ- 049

ously retrieved documents (Zhao et al., 2021) or 050

generated chain-of-thoughts (Trivedi et al., 2023). 051

However, retrieved documents often include noise 052

or irrelevant information (Yoran et al., 2024), while 053

generated chain-of-thoughts can contain factually 054

inaccurate content (Wang et al., 2023; Luo et al., 055

2024). The propagation of these distracting con- 056

texts can degrade retrieval quality and ultimately 057
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hinder overall RAG performance. (2) Answering a058

multi-hop question requires multi-step reasoning,059

where the information needed to derive the correct060

answer evolves with each iteration. For example,061

to answer the question in Figure 1, the first iterative062

step requires retrieving the location of Kirton End063

(Boston). Once this information is obtained, the064

next step shifts to retrieving Boston’s population in065

2001, demonstrating how the information needed066

to answer a multi-hop question evolves with each067

iteration. However, existing iRAG models often068

rely on off-the-shelf retrieval models that retrieve069

information based on semantic similarity. These070

retrievers are not designed to dynamically adapt to071

the evolving information needs in multi-step rea-072

soning, making it difficult to identify and retrieve073

the missing pieces of information needed at each074

iteration, thereby hindering the overall retrieval ef-075

fectiveness. Figure 1 illustrates these two key chal-076

lenges, highlighting the necessity of developing a077

retrieval approach that can mitigate the impact of078

irrelevant documents or inaccurate thoughts, and079

dynamically adapt to evolving information needs.080

To this end, we propose KiRAG, which lever-081

ages a Knowledge-driven iterative retriever model082

to enhance the retrieval process of iRAG models.083

Specifically, to address the challenge of irrelevant084

documents and inaccurate thoughts, inspired by085

prior works (Fang et al., 2024a,b) that use knowl-086

edge triples for enhanced reasoning, KiRAG de-087

composes documents into knowledge triples, for-088

matted as ⟨head entity, relation, tail entity⟩, and per-089

forms iterative retrieval with these triples. By lever-090

aging knowledge triples, which are compact and091

grounded in documents, KiRAG enables a more092

focused and factually reliable retrieval process.093

Moreover, to address the challenge of evolving094

information needs, KiRAG employs a knowledge-095

driven iterative retrieval framework to retrieve rele-096

vant knowledge triples from the corpus systemat-097

ically. This framework integrates reasoning into098

retrieval process, enabling the system to identify099

and retrieve knowledge that bridges information100

gaps dynamically. Specifically, the iterative re-101

trieval process incrementally builds a knowledge102

triple-based reasoning chain, such as “⟨Kirton End;103

location; Boston⟩,⟨Boston; population in 2001 cen-104

sus; 35,124⟩”, by retrieving triples step-by-step.105

At each iteration, given the current step reasoning106

chain, e.g., “⟨Kirton End; location; Boston⟩”, Ki-107

RAG dynamically identifies and retrieves the miss-108

ing knowledge triples needed to coherently extend109

the chain towards answering the question. This tar- 110

geted approach can effectively guide the retrieval 111

process in acquiring multiple interconnected pieces 112

of information needed for addressing a question. 113

We evaluate KiRAG on five multi-hop and one 114

single-hop QA datasets. KiRAG outperforms ex- 115

isting iRAG models, achieving average improve- 116

ments of 9.40% in R@3 and 7.59% in R@5 on 117

multi-hop QA, which lead to an improvement of 118

5.14% in F1. Despite that KiRAG is designed for 119

multi-hop QA, it achieves comparable retrieval and 120

QA performance with state-of-the-art baseline on 121

the single-hop QA dataset, demonstrating its effec- 122

tiveness across different types of questions. 123

Our contributions can be summarised as follows: 124

(1) We propose KiRAG, which performs iterative 125

retrieval with knowledge triples to enhance the re- 126

trieval process of iRAG models; (2) KiRAG uses 127

a knowledge-driven iterative retrieval framework 128

to dynamically adapt the retrieval process to the 129

evolving information needs in multi-step reasoning; 130

(3) Empirical results show that KiRAG achieves 131

superior performance on multi-hop QA. 132

2 Problem Formulation 133

Our approach builds on the iRAG process. Given a 134

question q and its answer a, iRAG is formalised as: 135

pθ,ϕ(a|q, C) ∼ pϕ(a|q,Dq)pθ(Dq|q, C), (1) 136

pθ(Dq|q, C) ∼
∏L

i=1 pθ(Di
q|q,D<i

q ), (2) 137

where pθ denotes the retriever model that iteratively 138

retrieves documents Dq={Di
q}Li=1 from a corpus C 139

and pϕ is the reader model. At the i-th iteration, the 140

retriever model retrieves documents Di
q based on 141

question q and previously retrieved documents D<i
q . 142

In this paper, we primarily focus on enhancing the 143

retriever model, pθ, to effectively retrieve relevant 144

documents from the corpus. To evaluate the effec- 145

tiveness of our approach, we focus on multi-hop 146

QA, a standard type of benchmark for assessing 147

iRAG systems (Gao et al., 2023). 148

3 KiRAG 149

This section begins with an overview of KiRAG 150

in §3.1. Next, we present a detailed explanation 151

of each component from §3.2 to §3.3. Finally, the 152

training strategy is introduced in §3.4. 153

3.1 Overview 154

Figure 2 provides an overview of our approach. Ki- 155

RAG uses a knowledge-driven iterative retrieval 156
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Figure 2: (left) Overview of KiRAG. Given a question, it employs a knowledge-driven iterative retrieval process
(Step 1) to retrieve relevant knowledge triples, including three iterative steps: knowledge decomposition, candidate
knowledge identification and reasoning chain construction. The retrieved triples are used to rank documents (Step
2), which are passed to the reader for answer generation (Step 3). (right) Training strategy for the Reasoning Chain
Aligner, designed to optimise the identification of relevant knowledge triples at each step of the retrieval process.

framework to systematically retrieve a comprehen-157

sive set of relevant knowledge triples Tq (see §3.2).158

Next, it leverages the retrieved knowledge triples159

Tq to identify and rank documents based on their160

relevance to the question (see §3.3). Therefore, the161

retriever model of KiRAG can be formulated as:162

pθ(Dq|q, C) ∼ pθ(Dq|q, Tq)
∏L

i=1 pθ(T i
q |q, T <i

q , C), (3)163

where T i
q is the set of knowledge triples retrieved164

at the i-th iteration, T <i
q represents all previously165

retrieved triples and L is the maximum number of166

iterations. Once we obtain the retrieved documents167

Dq, KiRAG employs an LLM-based reader model168

qϕ to generate the answer to the question.169

3.2 Knowledge-Driven Iterative Retrieval170

KiRAG retrieves relevant knowledge triples from171

the corpus by progressively building a knowledge172

triple-based reasoning chain, i.e., a sequence of173

logically connected knowledge triples that support174

answering a given question. For instance, the chain175

⟨Kirton End; location; Boston⟩,⟨Boston; popula-176

tion in 2001 census; 35,124⟩ provides relevant177

knowledge for answering the question in Figure 2.178

The reasoning chain is built iteratively by select-179

ing triples step-by-step. At the i-th iteration, given180

the i-th step reasoning chain, which is a sequence181

of triples obtained up to the i-th iteration, such182

as ⟨Kirton End; location; Boston⟩, the framework183

retrieves and selects the next triple to extend the184

reasoning chain through the following three steps:185

Knowledge Decomposition. To enable a factually186

reliable retrieval process, KiRAG decomposes doc-187

uments into knowledge triples. At the i-th iteration, 188

the query qi is formed by concatenating the ques- 189

tion with the i-th step reasoning chain in the format 190

“{question}. knowledge triples: {triple1}...”. Ki- 191

RAG employs an off-the-shelf Retriever model to 192

retrieve K0
2 documents from the corpus, providing 193

an initial pool of information for extracting relevant 194

knowledge (see Step 1.1 in Figure 2). 195

Building on recent advancements in extracting 196

knowledge triples using LLMs (Edge et al., 2024; 197

Fang et al., 2024b), we employ in-context learning 198

to prompt an LLM to extract knowledge triples for 199

each retrieved document independently. Since the 200

extraction process is query-independent, triples can 201

be precomputed offline for all documents in the cor- 202

pus3. This enables the construction of a knowledge 203

graph (KG) corpus, effectively improving retrieval 204

efficiency4. The prompt used for extracting knowl- 205

edge triples is provided in Appendix A.1, where the 206

LLM is instructed to extract all knowledge triples 207

contained within a document in a single pass. We 208

denote the set of knowledge triples extracted from 209

all the retrieved documents at step i as T̃ i. 210

Candidate Knowledge Identification. To adapt 211

the retrieval process to evolving information needs, 212

KiRAG retrieves a subset of candidate knowledge 213

triples, i.e., T i
q , from all the extracted triples that 214

are most likely to address the information gaps 215

in the i-th step reasoning chain. These candidate 216

2We provide analysis of the effect of K0 in Appendix C.6.
3The knowledge triples for retrieved documents can be

obtained using the document IDs during the retrieval process.
4Efficiency analysis of KiRAG is in Appendix C.8.
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triples are selected based on their relevance to the217

question and their potential to form a coherent rea-218

soning process with the i-th step reasoning chain.219

To achieve this, we propose a Reasoning Chain220

Aligner, which is designed to identify candidate221

triples that advance the reasoning process (see Step222

1.2 in Figure 2). We instantiate the Aligner as a223

bi-encoder model. At the i-th iteration, the Aligner224

encodes the query qi, comprising the question and225

the i-th step reasoning chain, and each triple t in226

T̃ i independently into a shared space. The score227

of each triple for addressing the information gaps228

in the i-th step reasoning chain is computed by229

taking the inner-product of the query and triple230

embeddings: sθ(qi, t) = fθ(qi)
⊤fθ(t), ∀t ∈ T̃ i,231

where fθ(·) denotes the embedding function param-232

eterised by θ. The top-N5 triples with the highest233

scores are selected as candidate triples to extend234

the i-th step reasoning chain, i.e., T i
q . The reason-235

ing chain Aligner is trained to retrieve triples that236

contribute to building a coherent reasoning chain.237

Details of the training process are provided in §3.4.238

Reasoning Chain Construction. Given the can-239

didate triples T i
q from the Aligner at the i-th iter-240

ation, KiRAG employs an LLM-based Reasoning241

Chain Constructor to select a single triple from242

the candidates to extend the i-th step reasoning243

chain (see Step 1.3 in Figure 2). Our approach244

is inspired by IRCoT (Trivedi et al., 2023), which245

iteratively generates individual sentences in a chain-246

of-thought (CoT). However, instead of relying on247

potentially inaccurate CoTs, we instruct the LLM248

to generate a chain-of-knowledge (CoK) (Wang249

et al., 2024a), where free-form thoughts are re-250

placed with document-grounded knowledge triples251

to ensure factual reliability.252

The prompt used by the Constructor is provided253

in Appendix A.2. The inputs include the question,254

the i-step reasoning chain and candidate triples T i
q .255

The Constructor selects triples from T i
q to complete256

the i-th step reasoning chain. The first triple in257

the generated result is appended to the i-th step258

reasoning chain, forming a new chain that serves259

as input for subsequent iterations. Note that the260

Constructor aims to complete the whole chain, but261

we only take the first triple. Asking the Constructor262

to complete the whole chain reduces hallucination,263

and avoids a sub-optimal greedy approach.264

The iterative process terminates when the Con-265

structor generates a reasoning chain containing266

5We provide analysis of the effect of N in Appendix C.7.

“the answer is” or reaches the maximum number 267

of iterative steps L. The candidate knowledge 268

triples collected during the iterative process, i.e., 269

Tq = {T i
q }Li=1, along with their associated scores, 270

are output for document retrieval and ranking. 271

3.3 Document Ranking 272

Since the retrieved knowledge triples Tq may lack 273

certain contextual information, we use these triples 274

to identify and rank their source documents, i.e., 275

p(Dq|q, Tq) in Eq. 3, to provide a more comprehen- 276

sive and precise context. Specifically, the retrieved 277

documents Dq are collected by aggregating all the 278

documents from which the triples in Tq are derived. 279

To rank these documents, we assign each document 280

the score of its associated triple(s) sθ(qi, t) from 281

the iterative process. For a document associated 282

with multiple triples, its score is determined by tak- 283

ing the highest one. These documents are ranked 284

in descending order of their scores, with top-K 285

documents returned as the final retrieval results. 286

Given the question q and the ranked documents 287

Dq, KiRAG leverages an LLM-based reader model 288

to directly generate the answer. The prompt used 289

for answer generation is provided in Appendix A.3, 290

which instructs the model to leverage the context 291

provided by the documents to answer the question. 292

3.4 Training Strategy 293

In KiRAG, the Reasoning Chain Aligner is the key 294

component that requires training to effectively iden- 295

tify candidate triples for extending reasoning chain, 296

while the other components, i.e., Retriever and Con- 297

structor, remain frozen. This section outlines the 298

training strategy for the Aligner. Due to the lack of 299

existing datasets specifically designed for this task, 300

we construct a silver training dataset by adapting 301

data from existing multi-hop QA datasets. Specifi- 302

cally, given a question and its ground-truth relevant 303

documents, we construct a knowledge triple-based 304

reasoning chain that supports answering the ques- 305

tion. The reasoning chain and the question will 306

serve as the labeled data for training the Aligner. 307

To train the Aligner, we decompose the complete 308

reasoning chain into multiple incomplete reasoning 309

chains and the corresponding next triples (see the 310

right part of Figure 2). For each incomplete reason- 311

ing chain, the correct next triple is treated as the 312

positive sample, while the other triples from the 313

candidate set T̃ i are treated as negative samples. 314

The aligner is trained with contrastive learning loss: 315

316
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L = −
∑

(q,r,t+)∈P

log
gθ(qr, t

+)

gθ(qr, t+) +
∑

t−∈T̃ |r|
gθ(qr, t−)

, (4)317

where P is the training set. Each data-point in-318

cludes a question q, an incomplete reasoning chain319

r and a positive triple t+. The query qr is the con-320

catenation of q and r, and the function gθ(qr, t) =321

exp(sθ(qr, t))/τ computes the logits, with τ being322

the temperature. Further details on the training data323

and training process are provided in Appendix B.3.324

4 Experiments325

4.1 Experimental Setup326

Datasets. We conduct experiments on five multi-327

hop QA datasets: HotPotQA (Yang et al., 2018),328

2WikiMultiHopQA (2Wiki) (Ho et al., 2020),329

MuSiQue (Trivedi et al., 2022), Bamboogle (Press330

et al., 2023) and WebQuestions (WebQA) (Be-331

rant et al., 2013). We also use a single-hop QA332

dataset: Natural Questions (NQ) (Kwiatkowski333

et al., 2019). We report the performance on the full334

test sets of these datasets. For datasets with non-335

pulic test sets (HotPotQA, 2Wiki and MuSiQue),336

we use their development sets as test sets and re-337

port corresponding results. Detailed statistics and338

corpus information are provided in Appendix B.1.339

Baselines. Since KiRAG aims to improve the re-340

trieval performance of iRAG models, we primarily341

compare it with iRAG models. We compare Ki-342

RAG with models from the following categories:343

(1) Standard RAG model; (2) iRAG models, such344

as IRCoT (Trivedi et al., 2023), FLARE (Jiang345

et al., 2023b), and DRAGIN (Su et al., 2024); (3)346

Enhanced retrieval models, which improve the re-347

trieval performance by using feedback from earlier348

retrieval steps, such as BeamDR (Zhao et al., 2021)349

and Vector-PRF (Li et al., 2023). Moreover, to eval-350

uate the effectiveness of using knowledge triples351

for iterative retrieval, we introduce two variants:352

KiRAG-Doc and KiRAG-Sent, where the triples are353

replaced with documents and sentences, respec-354

tively. Both variants follow the same procedure as355

KiRAG to retrieve documents. More details about356

the baselines can be found in Appendix B.2.357

Evaluation. To evaluate the retrieval performance,358

we follow previous works (Trivedi et al., 2023;359

Gutiérrez et al., 2024) and use R@{3, 5} as the360

metrics. To evaluate the QA performance, we use361

Exact Match (EM) and F1 as evaluation metrics,362

which are the standard metrics for these datasets.363

Model HotPotQA 2Wiki MuSiQue

R@3 R@5 R@3 R@5 R@3 R@5

RAG 65.47∗ 70.78∗ 60.87∗ 65.20∗ 41.29∗ 46.53∗

Vector-PRF 65.37∗ 70.06∗ 60.60∗ 64.85∗ 40.93∗ 45.46∗

BeamDR 67.07∗ 71.89∗ 36.07∗ 42.08∗ 24.17∗ 28.18∗

FLARE 54.79∗ 59.72∗ 60.84∗ 70.04∗ 39.79∗ 45.81∗

DRAGIN 69.95∗ 75.85∗ 61.30∗ 70.43∗ 48.67∗ 54.67∗

IRCoT 71.44∗ 77.57 ∗ 64.30∗ 75.56∗ 45.61∗ 52.21∗

KiRAG-Doc 67.80∗ 72.20∗ 45.85∗ 63.07∗ 25.86∗ 39.49∗

KiRAG-Sent 54.43∗ 69.26∗ 43.53∗ 59.33∗ 31.08∗ 43.69∗

KiRAG 80.32† 84.08† 77.76† 85.32† 54.53† 61.16†

Table 1: Retrieval performance (%) on multi-hop QA
datasets, with the best and second-best results marked
in bold and underlined, respectively, and † denotes p-
value<0.05 compared with best-performing baseline.

Model HotPotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1

RAG 34.54∗ 47.35∗ 14.78∗ 30.48∗ 09.10∗ 16.98∗

Vector-PRF 34.40∗ 47.31∗ 14.96∗ 30.37∗ 09.23∗ 16.98∗

BeamDR 38.34∗ 51.64∗ 14.42∗ 27.25∗ 07.08∗ 14.42∗

FLARE 35.58∗ 47.74∗ 26.36∗ 41.82∗ 13.07∗ 21.94∗

DRAGIN 41.74∗ 55.69∗ 25.58∗ 40.83∗ 16.87∗ 26.71∗

IRCoT 42.38∗ 56.38∗ 25.12∗ 41.36∗ 15.76∗ 24.94∗

KiRAG-Doc 33.87∗ 46.43∗ 14.37∗ 27.54∗ 07.49∗ 15.34∗

KiRAG-Sent 34.14∗ 46.63∗ 14.22∗ 27.50∗ 10.51∗ 18.21∗

KiRAG 45.09† 59.76† 30.72† 50.57† 19.16† 30.00†

Table 2: QA performance (%) on multi-hop QA datasets,
with the best and second-best results marked in bold
and underlined, respectively. † denotes p-value<0.05
compared with best-performing baseline.

Training and Implementation Details. To train 364

the Aligner, we use TRACE (Fang et al., 2024b), 365

which constructs knowledge triple-based reasoning 366

chains from a fixed set of documents, to gener- 367

ate ground-truth reasoning chains. The reasoning 368

chain that leads to the correct answer is used for 369

training. Training data is generated from the train- 370

ing sets of three multi-hop QA datasets: HotPotQA, 371

2Wiki and MuSiQue. The combined data is used 372

to train the Aligner. The Aligner is initialised with 373

E5 (Wang et al., 2022) and finetuned with the con- 374

structed training data. 375

KiRAG uses Llama3 (Dubey et al., 2024) to ex- 376

tract triples and serve as the Constructor to build 377

reasoning chains. It uses frozen E5 or BGE (Xiao 378

et al., 2024) as the Retriever. We use different read- 379

ers, including Llama3, Qwen2.5 (Yang et al., 2024), 380

Flan-T5 (Chung et al., 2024) and TRACE (Fang 381

et al., 2024b) to generate answers. We mainly re- 382

port results using E5 as the retriever and Llama3 383

as the reader, with additional results from other re- 384

trievers and readers provided in Appendix C.1. For 385

fair comparison, RAG baselines employ the same 386

retriever and reader as KiRAG. More training and 387

implementation details are in Appendix B.3. 388
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Model Bamboogle WebQA NQ

R@3 R@5 R@3 R@5 R@3 R@5

RAG 20.80∗ 25.60∗ 64.91∗ 70.32∗ 73.07∗ 78.56∗

Vector-PRF 20.60∗ 24.80∗ 64.86∗ 69.54∗ 72.82∗ 78.03∗

BeamDR 12.00∗ 15.20∗ 41.63∗ 50.25∗ 33.88∗ 42.16∗

FLARE 32.80∗ 37.60∗ 55.91∗ 60.97∗ 68.98∗ 73.43∗

DRAGIN 36.80∗ 40.40∗ 65.11∗ 70.03∗ 68.98∗ 73.43∗

IRCoT 28.00∗ 32.80∗ 65.50∗ 70.42∗ 73.38∗ 78.59∗

KiRAG-Doc 20.80∗ 27.20∗ 62.40∗ 68.60∗ 68.59∗ 74.99∗

KiRAG-Sent 26.40∗ 32.00∗ 62.16∗ 68.06∗ 67.48∗ 74.13∗

KiRAG 45.60† 49.60† 69.05† 73.08† 72.11∗ 77.28†

Table 3: Retrieval performance (%) on unseen multi-
hop and single-hop QA datasets, where † denotes p-
value<0.05 compared with best-performing baselines.

4.2 Results and Analysis389

We present our primary results in this section. Ad-390

ditional results are provided in Appendix C.391

(RQ1): How does KiRAG perform in multi-hop392

QA compared with baselines? The retrieval and393

QA6 results are provided in Table 1 and Table 2,394

respectively, which yield the following findings:395

(1) KiRAG consistently outperforms all baselines396

in retrieval performance on all datasets. Compared397

to the strongest baselines, KiRAG achieves statis-398

tically significant average improvements of 9.40%399

in R@3 and 7.59% in R@5, demonstrating its su-400

perior ability to enhance retrieval performance.401

(2) KiRAG consistently achieves the best QA per-402

formance on all datasets. It significantly outper-403

forms best-performing baselines, with average im-404

provements of 3.12% in EM and 5.14% in F1. The405

results validate the effectiveness of KiRAG in facili-406

tating multi-hop QA through high-quality retrieval.407

(3) Compared to KiRAG-Doc and KiRAG-Sent,408

which perform iterative retrieval at document and409

sentence levels, KiRAG achieves substantially410

higher retrieval performance. The suboptimal per-411

formance of these variants stems from the iterative412

retrieval process being misled by noise in docu-413

ments and sentences. In contrast, KiRAG uses414

finer-grained knowledge triples, reducing the im-415

pact of noise and improving retrieval recall.416

(4) Compared to IRCoT, which uses CoT for iter-417

ative retrieval, KiRAG achieves superior retrieval418

results, with an average improvement of 10.42%419

in R@3. This improvement stems from LLM’s420

tendency to generate hallucinated CoT. By using421

document-grounded knowledge triples, KiRAG en-422

sures a more reliable and faithful retrieval process.423

6QA performance is based on the top-3 retrieved doc-
uments. The results for the top-5 retrieved documents are
provided in Appendix C.2, which demonstrate similar results.
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Figure 3: Retrieval performance (%) for relevant docu-
ments required across different steps, where most ques-
tions in 2Wiki have only two relevant documents.

(RQ2): Why does KiRAG improve retrieval 424

performance for multi-hop questions? To ex- 425

plain why KiRAG achieves superior retrieval per- 426

formance, we analyze its ability to retrieve relevant 427

documents required at different steps of the reason- 428

ing process. For a multi-hop question, there are 429

multiple logically ordered relevant documents. For 430

instance, the first relevant document for the ques- 431

tion in Figure 2 is about “Kirton End”, while the 432

second relevant document relates to “Boston”. At 433

step i, we only consider the document required at 434

that specific step as relevant and compute its recall. 435

This approach allows us to assess how well KiRAG 436

retrieves the necessary information at each step. 437

The results on HotPotQA and 2Wiki are shown 438

in Figure 3, yielding the following findings: (1) The 439

recall of both KiRAG and baselines declines with 440

increasing steps, highlighting the growing chal- 441

lenge of retrieving relevant documents for later 442

steps in the reasoning process; (2) Compared to 443

RAG and IRCoT, KiRAG shows comparable, and 444

occasionally slightly lower, retrieval recall at the 445

first step. However, it achieves substantially higher 446

retrieval recall in subsequent steps, which con- 447

tributes to its overall retrieval effectiveness. This 448

improvement stems from KiRAG’s iterative re- 449

trieval process, which dynamically adapts to evolv- 450

ing information needs, enabling the effective re- 451

trieval of relevant documents required at each step. 452

(RQ3): Can KiRAG effectively generalise to un- 453

seen multi-hop and single-hop QA datasets? To 454

evaluate the generalisation ability of KiRAG, we 455

conduct additional experiments on two multi-hop 456

QA datasets, Bamboogle and WebQA, as well as 457

a single-hop QA dataset, NQ, none of which were 458

included during training. The retrieval results7 are 459

presented in Table 3, which shows that KiRAG sig- 460

7The QA performance, presented in Table 13 of the Ap-
pendix, shows consistent results with retrieval performance.
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Model Retriever Aligner Constructor HotPotQA 2Wiki MuSiQue

R@3 R@5 F1 R@3 R@5 F1 R@3 R@5 F1

KiRAG ✓ ✓(trained) ✓ 80.32∗ 84.08∗ 59.76∗ 77.76∗ 85.32∗ 50.57∗ 54.53∗ 61.16∗ 30.00∗

KiRAG w/o Retriever ✗ ✓(trained) ✓ 74.09† 78.03† 57.07† 77.29† 83.65† 48.76† 53.93† 60.68† 27.14†

KiRAG w/o Aligner ✓ ✗ ✓ 73.34† 75.79† 53.47† 67.66† 70.73† 39.06† 45.60† 49.62† 21.80†

KiRAG w/o Constructor ✓ ✓(trained) ✗ 74.96† 79.51† 55.67† 72.64† 80.89† 45.69† 46.98† 55.12† 23.71†

KiRAG w/o Training ✓ ✓(w/o training) ✓ 76.35† 81.56† 59.03† 75.37† 82.50† 48.33† 51.33† 58.66† 28.08†

Table 4: Ablation studies of KiRAG, where † indicates p-value < 0.05 compared with KiRAG.

Model Retrieval QA

R@3 R@5 EM F1

E5 29.50∗ 43.25∗ 23.00∗ 31.56∗

KiRAG w/o Constructor 76.50† 79.25† 31.00† 48.22†

KiRAG 84.25† 86.50† 39.00† 53.63†

Table 5: Performance in retrieving relevant knowledge
triples for the 100 manually labeled questions on 2Wiki,
where † denotes p-value<0.05 compared with E5.

nificantly outperforms all baselines on two multi-461

hop QA datasets, and demonstrates comparable re-462

trieval performance to IRCoT, the best-performing463

baseline, on the single-hop QA dataset NQ. These464

findings highlight the strong generalisation ability465

of KiRAG in handling diverse QA tasks.466

(RQ4): What are the effects of each component467

and the training strategy in KiRAG? To evalu-468

ate the impact of the Retriever, we introduce Ki-469

RAG w/o Retriever, where the retriever is removed470

and candidate triples are directly retrieved from471

the knowledge graph corpus using the Reasoning472

Chain Aligner. Table 4 shows that removing the Re-473

triever leads to a significant performance drop on474

HotPotQA while maintaining comparable perfor-475

mance on 2Wiki and MuSiQue. This demonstrates476

the Aligner’s effectiveness in identifying relevant477

knowledge triples but highlights the limitations of478

relying solely on the knowledge graph, which may479

loss contextual information present in documents.480

To assess the impact of the Aligner, we introduce481

KiRAG w/o Aligner, where the Aligner is removed482

and all knowledge triples from the retrieved docu-483

ments are passed to the Reasoning Chain Construc-484

tor. Table 4 shows that KiRAG w/o Aligner suffers485

an average decrease of 8.67% in R@3 and 11.47%486

in R@5 compared to KiRAG. This decline is due487

to the absence of filtering or ranking by the Aligner,488

resulting in noisy and irrelevant triples that hinder489

the Reasoning Chain Constructor’s ability to build490

coherent reasoning chains, which is essential for491

guiding the iterative retrieval process effectively.492

Moreover, to evaluate the impact of the Con-493

structor, we introduce KiRAG w/o Constructor,494

which constructs reasoning chain using only the495

top-ranked triple identified by the Aligner. Table 4496
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Figure 4: The effect of the number of iterative steps L.

indicates that removing the Constructor leads to 497

significantly inferior performance, highlighting the 498

importance of the LLM-based Constructor in build- 499

ing coherent reasoning chains through its advanced 500

reasoning and contextual understanding capability. 501

To assess the impact of training the Aligner for 502

retrieving and integrating triples, we introduce Ki- 503

RAG w/o Training, where the Aligner is replaced 504

with a frozen E5, which is trained for general text 505

retrieval. Table 4 shows that KiRAG w/o Training 506

exhibits a significant decline in both retrieval and 507

QA results. These results highlight the effective- 508

ness of our training strategy in enabling the Aligner 509

to identify relevant knowledge triples. 510

(RQ5): Can KiRAG retrieve relevant knowledge 511

triples to address multi-hop questions? To eval- 512

uate the quality of knowledge triples retrieved by 513

KiRAG, we randomly select 100 questions from 514

the 2Wiki test set and manually identify knowledge 515

triples that are useful in answering these questions. 516

These manually selected triples are considered rel- 517

evant8. We use R@K to measure retrieval per- 518

formance and compute QA metrics (EM and F1) 519

using the retrieved triples as context. We compare 520

KiRAG with E5, which directly retrieves knowl- 521

edge triples from the knowledge graph corpus, and 522

the Reasoning Chain Aligner, which iteratively re- 523

trieves triples using the trained Aligner. Table 5 524

shows that KiRAG significantly outperforms E5 in 525

both retrieval and QA performance, demonstrating 526

its effectiveness in retrieving relevant knowledge 527

triples. This superior performance is attributed to 528

the Aligner and the Constructor, which are specifi- 529

cally designed to identify relevant triples. 530

8Appendix C.5 provides details and examples of the man-
ually curated data, which will be released alongside the code.

7



Q: Which man who presented the Australia
2022 FIFA World Cup bid was born on
October 22, 1930?

Input

A: Frank Lowy

KiRAG Generated Reasoning Chain:
Step 1: <Australia 2022 FIFA World Cup bid;
bid presenters; Frank Lowy, Ben Buckley,
Quentin Bryce, Elle Macpherson> 
Step 2: <Frank Lowy; birth year; 1930> 
Step 3: <Frank Lowy; birth date; 22 October>
Step 4: So the answer is: Frank Lowy. 

Output

IRCoT Generated Chain-of-Thought:
Step1: There is no mention of a person born
on October 22, 1930, in the provided texts. 
Step 2: The texts mention Frank Lowy, Ben
Buckley, Quentin Bryce, and Elle Macpherson
as the presenters of the Australia 2022 FIFA
World Cup bid, but none None of the
individuals mentioned in the provided texts
were born on October 22, 1930.

Q: The Memphis Hustle are based in a
suburb of a city with a population of what
in 2010?

Input

A: 48,982

KiRAG Generated Reasoning Chain:
Step 1: <Memphis Hustle; location;
Southaven, Mississippi>
Step 2: <Southaven; population; 48,982
as of 2010> 
Step 3: So the answer is: 48,982.

Output

IRCoT Generated Chain-of-Thought:

Step 1: The Memphis Hustle are based in
Southaven, Mississippi, which is a suburb
of Memphis, Tennessee. 
Step 2: According to the Wikipedia article
on Collierville, Tennessee, the population
of Memphis was 43,965 at the 2010
census. So the answer is: 43,965.

Figure 5: Case study of KiRAG and IRCoT on Hot-
PotQA test set, where the relevant and irrelevant context
are marked in blue and orange , respectively.

(RQ6): How does the number of iterative steps531

L affect the performance of KiRAG? Table 4532

shows the retrieval and QA results of KiRAG with533

different values of L on HotPotQA and 2Wiki de-534

velopment sets. The results show that as the value535

of L increases, both retrieval and QA performance536

initially improve and then reach a plateau, with537

KiRAG achieving optimal performance at a moder-538

ate value of L. This highlights the importance of539

selecting a proper value of L in KiRAG to balance540

high accuracy and efficiency in multi-hop QA.541

Case Study. We conduct a case study to examine542

the reasoning chains generated by KiRAG. Figure 5543

shows examples of the reasoning chains produced544

by KiRAG and the CoTs generated by IRCoT. The545

examples show that KiRAG can generate coherent546

and contextually relevant reasoning chains for an-547

swering multi-hop questions, which are essential548

for effectively guiding the iterative retrieval process.549

In contrast, IRCoT may struggle with missing in-550

formation or hallucinations, hindering its ability to551

retrieve the necessary knowledge.552

5 Related Work553

RAG Models. RAG models have shown superior554

performance in QA tasks (Lewis et al., 2020; Izac-555

ard and Grave, 2021b; Ram et al., 2023). These556

models typically employ the retriever-reader archi-557

tecture, which consists of a retriever (Karpukhin558

et al., 2020; Wang et al., 2022; Fang et al., 2023)559

and a reader (Izacard and Grave, 2021b; Jiang et al.,560

2023b). Efforts to improves RAG models generally561

follows three main directions: (1) enhance the re-562

triever for better retrieval performance (Izacard and563

Grave, 2021a; Shi et al., 2023; Wang et al., 2024b); 564

(2) enhance the reader for better comprehension 565

and answer generation (Lin et al., 2024; Xu et al., 566

2024; Wang et al., 2024c); (3) introduce additional 567

modules to bridge the retriever and the reader (Yu 568

et al., 2023; Xu et al., 2023; Ye et al., 2024). 569

Iterative RAG Models for Multi-Hop QA. Itera- 570

tive RAG models (Trivedi et al., 2023; Shao et al., 571

2023; Asai et al., 2024; Liu et al., 2024; Yao et al., 572

2024) address multi-hop QA by performing multi- 573

ple steps of retrieval and reasoning. For instance, 574

IRCoT (Trivedi et al., 2023) use LLM-generated 575

chain-of-thoughts for retrieval, while DRAGIN (Su 576

et al., 2024) dynamically decides when and what 577

to retrieve based on the LLM’s information needs. 578

However, these models all rely on LLM-generated 579

thoughts, making them prone to hallucination. In 580

contrast, KiRAG employs knowledge triples and 581

a trained retriever to actively identify and retrieve 582

missing information, enabling a more reliable and 583

accurate retrieval for multi-hop QA. 584

KG-Enhanced RAG Models. Recently, KGs have 585

been integrated into RAG models (Peng et al., 586

2024). Some studies leverage information from 587

existing KGs (Vrandečić and Krötzsch, 2014) for 588

additional context (Yu et al., 2022; Sun et al., 2024), 589

while others generate KGs from documents to im- 590

prove knowledge organisation (Edge et al., 2024; 591

Gutiérrez et al., 2024; Chen et al., 2024) or enhance 592

reader comprehension (Li and Du, 2023; Fang et al., 593

2024a,b; Panda et al., 2024). These models pri- 594

marily follow the standard RAG pipeline, whereas 595

our work focuses on the iRAG pipelines. More- 596

over, while they rely on single-step retrieval with 597

pre-existing retrievers, KiRAG employs a trained 598

retriever tailored for iterative retrieval, allowing it 599

to dynamically adapt to the evolving information 600

needs in multi-step reasoning. 601

6 Conclusion 602

This paper proposes KiRAG to enhance retrieval 603

process of iRAG models. KiRAG decomposes 604

documents into knowledge triples and employs a 605

knowledge-driven iterative retrieval framework to 606

systematically retrieve relevant knowledge triples. 607

The retrieved triples are used to rank documents, 608

which serve as inputs for answer generation. Empir- 609

ical results show that KiRAG achieves significant 610

retrieval and QA improvements, with an average 611

increase of 9.40% in R@3 and 5.14% in F1, high- 612

lighting its effectiveness in multi-hop QA. 613
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Limitations614

We identify the following limitations of our work:615

(1) The Aligner model is trained using silver data616

constructed from only three multi-hop QA datasets.617

While our results demonstrate its effectiveness, we618

leave the exploration of methods to construct larger-619

scale and higher-quality training data for future620

work; (2) In KiRAG, we train only the Aligner621

model and keep the Constructor model frozen.622

While further training the Constructor could po-623

tential improve performance, we choose to keep it624

frozen to maintain our framework’ adaptability to625

different LLMs, rather than relying on a specific626

fine-tuned LLM. Appendix C.9 provides a detailed627

analysis of the performance using different LLM-628

based Constructor within our framework.629
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A Prompts 925

A.1 Prompt for Knowledge Triple Extraction 926

The prompt used for extracting knowledge triples 927

from a document is illustrated in Figure 6. 928

A.2 Prompt for Reasoning Chain 929

Construction 930

The prompt used by the reasoning chain constructor 931

to build reasoning chains is illustrated in Figure 7, 932

where we instruct the Reasoning Chain Constructor 933

to complete the i-th step reasoning chain with the 934

provided candidate knowledge triples. 935

A.3 Prompt for Answer Generation 936

The prompt used by the reader to generate answers 937

is illustrated in Figure 8. 938
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Prompt Used for Knowledge Triple Extraction

Instruction: You are a knowledge graph con-
structor tasked with extracting knowledge triples
in the form of <head entity; relation; tail entity>
from a document. Each triple denotes a specific
relationship between entities or an event. The
head entity and tail entity can be the provided
title or phrases in the text. If multiple tail entities
share the same relation with a head entity, ag-
gregate these tail entities using commas. Format
your output in the form of <head entity; relation;
tail entity>.

Examples:
Title: Dana Blankstein
Text: Dana Blankstein- Cohen( born March 3, 1981)
is the director of the Israeli Academy of Film and
Television. She is a film director, and an Israeli cul-
ture entrepreneur.
Knowledge Triples: <Dana Blankstein; full name;
Dana Blankstein-Cohen>, <Dana Blankstein; birth
date; March 3, 1981>, <Dana Blankstein; nation-
ality; Israeli>, <Dana Blankstein; position; direc-
tor of the Israeli Academy of Film and Television>,
<Dana Blankstein; profession; film director, culture
entrepreneur>

Inputs:
Title: {document title}
Text: {document text}
Knowledge Triples:

Figure 6: Prompt used for extracting knowledge triples.

B Experimental Details939

B.1 Datasets940

In our experiments, we employ five multi-hop QA941

datasets: HotPotQA, 2WikiMultiHopQA (2Wiki),942

MuSiQue, Bamboogle as well as WebQuestions943

(WebQA), and one single-hop QA dataset: Nat-944

ural Questions (NQ). For HotpotQA, we use the945

corpus provided by its authors for retrieval. For946

2WikiMultihopQA and MuSiQue, we construct the947

retrieval corpus following the exact same proce-948

dure outlined by Trivedi et al. (2023). For all other949

datasets, we leverage the Wikipedia corpus intro-950

duced by Karpukhin et al. (2020).951

For datasets with public test sets (Bamboogle,952

WebQA and NQ), we report performance on their953

full test sets. For those with non-public test sets954

(HotPotQA, 2Wiki and MuSiQue), we use their955

full development sets as test sets and report the cor-956

Prompt Used by Reasoning Chain Constructor

Instruction: Follow the examples to answer the
input question by reasoning step-by-step. Output
both reasoning steps and the answer.
Examples:
Question: Consider the racer for whom the bend at
the 26th Milestone, Isle of Man is dedicated. When
were they born?
Thought: <26th Milestone, Isle of Man; named after;
Joey Dunlop>,<Joey Dunlop; date of birth; 25 Febru-
ary 1952>. So the answer is 25 February 1952.....
Inputs:
Context: {candidate triples}
Question: {question}
Thought: {i-th step reasoning chain}

Figure 7: Prompt used by Reasoning Chain Constructor.

Prompt Used for Answer Generation

Instruction: Given some context and a question,
please only output the answer to the question.
Inputs:
Context: {retrieved documents}
Question: {question}
Answer:

Figure 8: Prompt used by the Reader.

responding performance. Since these three datasets 957

are also used for training, we randomly select 500 958

questions from their original training sets to serve 959

as development sets, while the remaining questions 960

are used for training. The statistics of experimen- 961

tal datasets can be found in Table 6. Moreover, in 962

KiRAG, we precompute knowledge triples for all 963

the documents in the corpus. The statistics of the 964

resulting KG corpus are also provided in Table 6. 965

B.2 Baselines 966

Standard RAG model follows the vanilla retriever- 967

reader pipeline, where the retriever model first 968

retrieves top-K documents from the corpus and 969

the reader model then generates answers based 970

on these retrieved documents. For IRCoT and 971

FLARE, we use the implementations provided by 972

FlashRAG (Jin et al., 2024). For other models, in- 973

cluding DRAGIN, BeamDR and Vector-PRF, we 974

adapt the code released by their authors to align 975

with our experimental setup. Notably, for fair com- 976

parison, both our KiRAG and baselines use the 977

same retriever for retrieving documents from the 978

corpus and the same reader for generating answers. 979
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HotPotQA 2Wiki MuSiQue Bamboogle WebQA NQ

Train Dev. Test Train Dev. Test Train Dev. Test Test Test Test

Statistics of Experimental Datasets
# Questions 89,947 500 7,405 166,954 500 12,576 19,438 500 2,417 125 2,032 3,610

Statistics of Retrieval Corpus
Corpus HotPotQA 2WikiMultiHopQA MuSiQue Wikipedia Wikipedia Wikipedia
# Documents 5M 431K 117K 21M 21M 21M

Statistics of the Extracted Knowledge Graph Corpus
Avg. # Entities per Document 6.93 8.16 9.40 11.12 11.12 11.12
Avg. # Triples per Document 5.91 7.32 8.20 08.33 08.33 08.33

Table 6: Statistics of experimental datasets, retrieval corpus, and pre-computed knowledge graph corpus.

Train Dev.

# Questions 115,567 815
Avg. Chain Length 2.36 2.35

Table 7: Statistics of the data used for training the Rea-
soning Chain Aligner.

B.3 Training and Hyperparameter Details980

Training Data Construction. We generate train-981

ing data for the Reasoning Chain Aligner using982

existing multi-hop QA datasets. Specifically, for983

each multi-hop question and its ground-truth rel-984

evant documents, we apply TRACE (Fang et al.,985

2024b) (using the default hyperparameter setting)986

to construct five potential knowledge triple-based987

reasoning chains for answering the question. For988

each chain, we use Llama3 as the reader to gener-989

ate an answer based on the context provided by the990

chain. The first chain that successfully produces the991

correct answer is selected as the ground-truth rea-992

soning chain for that question. The question and its993

ground-truth reasoning chain will serve as labeled994

data for training. We filter out questions where all995

reasoning chains fail to produce the correct answer.996

In practice, we build training data from the training997

sets of three multi-hop QA datasets: HotPotQA,998

2Wiki and MuSiQue. In addition, we use the same999

procedure to construct development data from the1000

development sets of these three datasets for hyper-1001

parameter tuning. The statistics of the data used to1002

train the Aligner are presented in Table 7.1003

Training Details. For an incomplete reasoning1004

chain r, we treat the correct next triple as posi-1005

tive sample. To generate negative samples, we1006

follow the procedure described in “Knowledge De-1007

composition” section to obtain a set of candidate1008

triples T̃ i. The training process uses the Adam1009

optimizer (Kingma and Ba, 2015) with a learning1010

rate of 2e-5 and a weight decay of 0.01. We set1011

the batch size to 64, include 7 negative samples1012

per data point, and use a temperature parameter τ1013

of 0.01. The Aligner is trained for 10 epochs, and1014

Model Huggingface Checkpoint

E5 intfloat/e5-large-v2
BGE BAAI/bge-large-en-v1.5

Llama3 meta-llama/Meta-Llama-3-8B-Instruct
Mistral mistralai/Mistral-7B-Instruct-v0.2

Gemma2 google/gemma-2-9b-it
Qwen2.5 Qwen/Qwen2.5-7B-Instruct
Flan-T5 google/flan-t5-xl

Table 8: The specific huggingface checkpoints used in
our experiments.

we select the checkpoint with the best performance 1015

(R@5) on the development set. 1016

Implementation and Hyperparameter Details. 1017

Throughout the experiments, we set the maximum 1018

number of iterative steps L to 5. The details of each 1019

component in our KiRAG are outlined as follows: 1020

For the Retriever model, we use either E5 (Wang 1021

et al., 2022) or BGE (Xiao et al., 2024) to retrieve 1022

documents. The number of retrieved documents 1023

per iteration (i.e., K0) is 10. For the Knowledge 1024

Decomposition component, we use Llama3 (Dubey 1025

et al., 2024) to extract knowledge triples for each 1026

retrieved document. For the Reasoning Chain 1027

Aligner, given the question and partial reasoning 1028

chain, it selects top-20 (i.e., N = 20) knowledge 1029

triples that are likely to extend the existing chain. 1030

For the Reasoning Chain Constructor, we try 1031

different LLMs, including Llama3, Mistral (Jiang 1032

et al., 2023a) and Gemma2 (Team et al., 2024), to 1033

select a triple to extend the partial reasoning chain 1034

for subsequent retrieval. We main report the per- 1035

formance of using Llama3 as the Constructor as it 1036

achieves the best performance (see Appendix C.9). 1037

Moreover, when completing the partial reasoning 1038

chain, we filter triples that are not present in the 1039

provided candidate set to ensure factual reliability. 1040

Moreover, we leverage different readers to eval- 1041

uate the QA performance, which includes Llama3, 1042

Qwen2.5 (Yang et al., 2024), Flan-T5 (Chung et al., 1043

2024) and TRACE (Fang et al., 2024b). The spe- 1044

cific huggingface checkpoints we used in our ex- 1045
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Model HotPotQA 2Wiki MuSiQue

R@3 R@5 R@3 R@5 R@3 R@5

RAG 64.46∗ 69.71∗ 60.50∗ 64.91∗ 39.40∗ 45.16∗

Vector-PRF 64.38∗ 69.34∗ 60.19∗ 64.37∗ 39.16∗ 43.86∗

FLARE 53.63∗ 58.83∗ 60.28∗ 69.30∗ 37.10∗ 43.16∗

DRAGIN 71.71∗ 76.93∗ 62.42∗ 71.14∗ 45.78∗ 52.44∗

IRCoT 69.96∗ 75.62∗ 60.20∗ 72.23∗ 42.13∗ 48.91∗

KiRAG-Doc 52.42∗ 67.81∗ 41.42∗ 56.55∗ 28.64∗ 39.82∗

KiRAG-Sent 47.81∗ 62.99∗ 41.42∗ 56.55∗ 28.27∗ 38.26∗

KiRAG 79.69† 83.61† 78.50† 88.94† 52.62† 58.39†

Table 9: Retrieval performance (%) using BGE as the re-
triever model, where the best and the second-best results
are marked in bold and underlined, respectively, and †
denotes p-value<0.05 compared to the best-performing
baseline. Results for BeamDR are omitted as it relies
on its own trained BERT model for retrieval, yielding
the same results as presented in Table 1.

Model HotPotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1

RAG 34.11∗ 46.68∗ 14.73∗ 30.16∗ 08.77∗ 17.01∗

Vector-PRF 33.94∗ 46.58∗ 14.70∗ 30.00∗ 08.65∗ 16.97∗

BeamDR 38.34∗ 51.64∗ 14.42∗ 27.25∗ 07.08∗ 14.42∗

FLARE 34.49∗ 46.65∗ 25.01∗ 40.59∗ 13.07∗ 21.38∗

DRAGIN 41.73∗ 55.68∗ 24.62∗ 40.69∗ 16.43∗ 26.29∗

IRCoT 43.18∗ 57.08∗ 24.25∗ 40.12∗ 14.89∗ 23.99∗

KiRAG-Doc 30.47∗ 42.52∗ 11.97∗ 23.97∗ 07.03∗ 14.59∗

KiRAG-Sent 30.44∗ 42.00∗ 12.82∗ 25.22∗ 08.56∗ 16.16∗

KiRAG 45.16† 59.85† 35.02† 54.01† 18.87† 29.17†

Table 10: QA performance (%) using BGE as the Re-
triever. The best and second-best performance are high-
lighted in bold and underlined, respectively. † indicates
p-value<0.05 compared with best-performing baseline.

periments are provided in Table 8.1046

C Additional Experimental Results and1047

Analysis1048

C.1 Overall Performance of Using Different1049

Retrievers and Readers1050

To validate the effectiveness of KiRAG, we pro-1051

vide additional results using different retrievers and1052

readers. Specifically, we replace the E5 Retriever1053

with BGE Retriever for retrieving documents from1054

the corpus and the other components remain un-1055

changed. The corresponding retrieval and QA per-1056

formance are presented in Table 9 and Table 10,1057

respectively. The results are consistent with those1058

obtained using the E5 Retriever, demonstrating the1059

adaptability and effectiveness of our KiRAG across1060

different retriever models.1061

Moreover, to assess the quality of the documents1062

retrieved by KiRAG, we report QA performance1063

using different reader models in Table 11. The re-1064

sults suggest that KiRAG consistently outperforms1065

all the baselines across different readers, demon-1066

Reader Model HotPotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1

Qwen2.5

RAG 34.69∗ 46.15∗ 33.37∗ 38.51∗ 09.14∗ 17.17∗

Vector-PRF 34.54∗ 46.12∗ 33.41∗ 38.51∗ 08.90∗ 16.91∗

BeamDR 39.61∗ 51.51∗ 22.41∗ 29.95∗ 06.70∗ 14.06∗

FLARE 36.30∗ 47.33∗ 36.73∗ 44.38∗ 12.58∗ 21.22∗

DRAGIN 44.07∗ 56.91∗ 36.75∗ 44.49∗ 18.16∗ 28.68∗

IRCoT 43.44∗ 56.46∗ 38.39∗ 45.97∗ 15.60∗ 25.36∗

KiRAG-Doc 35.68∗ 47.15∗ 29.23∗ 34.51∗ 07.61∗ 15.27∗

KiRAG-Sent 34.21∗ 45.64∗ 29.78∗ 34.92∗ 09.64∗ 17.83∗

KiRAG 47.89† 61.41† 47.42† 56.02† 19.73† 30.79†

Flan-T5

RAG 37.08∗ 47.32∗ 17.42∗ 22.05∗ 08.94∗ 15.06∗

Vector-PRF 37.02∗ 47.23∗ 31.58∗ 36.26∗ 08.98∗ 15.16∗

BeamDR 41.89∗ 52.83∗ 18.73∗ 23.29∗ 07.03∗ 12.21∗

FLARE 39.81∗ 50.46∗ 33.31∗ 39.95∗ 13.28∗ 19.74∗

DRAGIN 46.75∗ 58.52∗ 34.19∗ 40.68∗ 18.12∗ 25.22∗

IRCoT 47.32∗ 59.05∗ 35.90∗ 42.31∗ 16.42∗ 23.61∗

KiRAG-Doc 36.18∗ 46.45∗ 25.03∗ 29.58∗ 07.45∗ 13.53∗

KiRAG-Sent 38.86∗ 49.59∗ 31.27∗ 36.58∗ 11.34∗ 17.98∗

KiRAG 49.31† 61.38† 39.99† 46.51† 19.07† 27.29†

TRACE

RAG 39.18† 51.82† 21.10† 34.28† 11.63∗ 19.49∗

Vector-PRF 38.85∗ 51.54∗ 21.91∗ 34.81∗ 11.58∗ 19.59∗

BeamDR 43.21∗ 56.28∗ 21.01∗ 33.23∗ 10.67∗ 18.26∗

FLARE 39.31† 51.40† 31.85∗ 45.50∗ 14.89∗ 23.75∗

DRAGIN 44.29∗ 57.64∗ 31.88∗ 45.55∗ 18.11∗ 27.41∗

IRCoT 45.29∗ 58.77∗ 32.05∗ 46.55∗ 16.84∗ 25.78∗

KiRAG-Doc 45.36∗ 58.82∗ 29.41∗ 43.99∗ 13.69∗ 22.44∗

KiRAG-Sent 43.38∗ 56.68∗ 27.51∗ 41.92∗ 16.84∗ 25.59∗

KiRAG 46.41† 60.22† 33.13† 48.49† 19.32† 29.10†

Table 11: QA performance (%) using different Reader
models, where † indicates p-value<0.05 compared with
best-performing baseline.

Model HotPotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1

RAG 34.34∗ 47.72∗ 12.95∗ 29.94∗ 09.43∗ 17.50∗

Vector-PRF 34.56∗ 47.87∗ 13.76∗ 30.42∗ 10.10∗ 17.74∗

BeamDR 38.60∗ 52.24∗ 14.49∗ 28.71∗ 07.74∗ 15.13∗

FLARE 35.08∗ 48.07∗ 24.87∗ 41.95∗ 13.20∗ 22.23∗

DRAGIN 41.16∗ 55.48∗ 24.47∗ 41.37∗ 17.54∗ 27.74∗

IRCoT 41.61∗ 56.01∗ 24.89∗ 42.90∗ 14.85∗ 24.48∗

KiRAG-Doc 36.87∗ 50.68∗ 15.54∗ 32.17∗ 09.23∗ 17.50∗

KiRAG-Sent 36.58∗ 50.09∗ 15.49∗ 31.59∗ 12.16∗ 20.66∗

KiRAG 43.81† 58.42† 27.26† 47.59† 17.58 28.92†

Table 12: QA performance (%) using top-5 retrieved
document as context. The best and second-best results
marked in bold and underlined, respectively. † denote
p-value<0.05 compared with best-performing baseline.

strating its ability to provide high-quality retrieval 1067

results that enhance downstream QA performance. 1068

C.2 QA Performance based on Top-5 1069

Documents 1070

Table 12 presents the QA performance using the 1071

top-5 retrieved documents as the context, demon- 1072

strating similar results to those obtained with the 1073

top-3 retrieved documents. 1074

C.3 Retrieval Performance at Different Steps 1075

on MuSiQue Dataset 1076

Figure 9 presents the retrieval performance of Ki- 1077

RAG and baseline methods at different steps on the 1078

MuSiQue dataset, showing similar trends to those 1079

observed on the HotPotQA and 2Wiki datasets. 1080
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Model Bamboogle WebQA NQ

EM F1 EM F1 EM F1

RAG 15.20∗ 22.66∗ 18.41∗ 31.04∗ 35.93∗ 41.18∗

Vector-PRF 15.20∗ 23.73∗ 18.31∗ 31.02∗ 36.09∗ 41.25∗

BeamDR 11.20∗ 15.29∗ 15.50∗ 25.46∗ 21.63∗ 25.31∗

FLARE 24.00∗ 31.93∗ 20.57∗ 31.47∗ 31.22∗ 35.17∗

DRAGIN 26.20∗ 37.68∗ 20.37∗ 32.31∗ 35.43∗ 39.87∗

IRCoT 21.60∗ 33.69∗ 19.39∗ 31.31∗ 37.34∗ 42.50∗

KiRAG-Doc 17.60∗ 27.92∗ 18.36∗ 30.75∗ 33.63∗ 39.22∗

KiRAG-Sent 16.00∗ 28.15∗ 19.14∗ 31.27∗ 33.60∗ 38.12∗

KiRAG 29.60† 42.00† 20.67∗ 32.87∗ 36.29∗ 41.49∗

Table 13: QA performance (%) on unseen multi-hop and
single-hop QA datasets, where † denotes p-value<0.05
compared with best-performing baselines.
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Figure 9: Retrieval performance (%) at different steps
on MuSiQue dataset.

C.4 QA Performance on Unseen Datasets1081

Due to page limit, we present the QA performance1082

on unseen multi-hop and single-hop QA datasets1083

in Table 13, which aligns with the retrieval perfor-1084

mance reported in Table 3. The results highlight1085

that KiRAG can effectively generalise to different1086

types of QA tasks, maintaining high performance1087

without overfitting to specific training data.1088

C.5 Details and Examples of Manually1089

Labeled Relevant Knowledge Triples1090

To quantitatively evaluate the quality of knowledge1091

triples retrieved using our proposed knowledge-1092

driven iterative retrieval framework, we manually1093

label relevant knowledge triples for 100 questions1094

randomly sampled from the 2Wiki dataset. Specifi-1095

cally, for each multi-hop question and its ground-1096

truth relevant documents, we use Llama3 to extract1097

knowledge triples from these relevant documents,1098

and then manually select a subset of knowledge1099

triples that directly support answering the question.1100

We provide some examples of the manually curated1101

data in Table 14.1102

C.6 Effect of the Number of Initially1103

Retrieved Documents1104

During the iterative retrieval process of KiRAG, the1105

Retriever model initially retrieves K0 documents1106

from the corpus, from which relevant knowledge1107

can be extracted. To examine the impact of K0, we1108

vary its value from 10 to 100. Figure 10 illustrates1109
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Figure 10: Retrieval performance (%) of KiRAG under
different values of K0 on three multi-hop QA datasets.
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Figure 11: Retrieval performance (%) of KiRAG under
different values of N on three multi-hop QA datasets.

the retrieval performance of KiRAG under differ- 1110

ent values of K0 on the development sets of three 1111

multi-hop QA datasets. The results indicate that 1112

increasing K0 beyond a certain point can degrade 1113

performance. This occurs because a larger docu- 1114

ment pool raises the likelihood of including noisy 1115

or irrelevant knowledge triples, making it more 1116

challenging for the Reasoning Chain Aligner to 1117

accurately identify the triples essential for answer- 1118

ing multi-hop questions. Therefore, it is crucial 1119

to select a proper K0 to achieve superior retrieval 1120

performance. 1121

C.7 Effect of the Number of Candidate 1122

Triples 1123

In the iterative retrieval process of KiRAG, the Rea- 1124

soning Chain Aligner selects N knowledge triples 1125

that are most likely to form a coherent reasoning 1126

chain with the existing chain. To investigate the 1127

effect of N , we vary its value from 10 to 40. Fig- 1128

ure 11 shows the retrieval performance of KiRAG 1129

under different values of N on the development 1130

sets of three multi-hop QA datasets. The results 1131

indicate that KiRAG is not sensitive to the value 1132

of N , as the performance remains relatively sta- 1133

ble across different values. This stability can be 1134

attributed to the powerful reasoning and contex- 1135

tual understanding abilities of the Reasoning Chain 1136

Constructor, which effectively identifies the most 1137

useful triple even from a potentially noisy set of 1138

candidates triples. 1139
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Question: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?
Relevant Knowledge Triples: <Blind Shaft; release year; 2003>, <The Mask of Fu Manchu; release year; 1932>

Question: When did John V, Prince Of Anhalt-Zerbst’s father die?
Relevant Knowledge Triples: <John V, Prince of Anhalt-Zerbst; father; Ernest I, Prince of Anhalt-Dessau>,
<Ernest I, Prince of Anhalt-Dessau; death date; 12 June 1516>

Question: Which film has the director died first, Crimen A Las Tres or The Working Class Goes To Heaven?
Relevant Knowledge Triples: <Crimen a las tres; director; Luis Saslavsky>, <The Working Class Goes to Heaven;
director; Elio Petri>, <Luis Saslavsky; death date; March 20, 1995>, <Elio Petri; death date; 10 November 1982>

Question: Who died first, Fleetwood Sheppard or George William Whitaker?
Relevant Knowledge Triples: <Fleetwood Sheppard; death date; 25 August 1698>, <George William Whitaker;
death date; March 6, 1916>

Question: Who is the spouse of the director of film Eden And After?
Relevant Knowledge Triples: <Eden and After; director; Alain Robbe-Grillet>, <Alain Robbe-Grillet; spouse;
Catherine Robbe-Grillet>

Table 14: Examples of manually labeled relevant knowledge triples for multi-hop questions on the 2Wiki dataset.
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Figure 12: Retrieval performance (R@3) v.s. average
latency per question for different models on the Hot-
PotQA test set. KiRAG (online) represents a variant of
our approach where knowledge triples extracted dynam-
ically during iterative retrieval, without precomputation.

C.8 Efficiency Analysis1140

We evaluate the efficiency of KiRAG in comparison1141

to the baseline models. Specifically, we conduct ex-1142

periments on a 3.5 GHZ, 32-cores AMD Ryzen1143

Threadripper Process paired with an NVIDIA1144

A6000 GPU. For fair comparison, both KiRAG1145

and baselines leverage the same E5 model for doc-1146

ument retrieval and the same Llama3 model as1147

the reasoning component. It is worth noting that1148

the knowledge triple extraction in our KiRAG is1149

query-independent and precomputed, which helps1150

to improve efficiency. To evaluate the impact of pre-1151

computing triples, we introduce a variant: KiRAG1152

(online), where knowledge triples are dynamically1153

extracted during the iterative retrieval process.1154

Figure 12 presents the average latency and re-1155

trieval performance of different models on the Hot-1156

PotQA test set, which yields the following findings:1157

(1) Compared with KiRAG (online), KiRAG sub-1158

Model HotPotQA 2Wiki MuSiQue

R@3 R@5 R@3 R@5 R@3 R@5

IRCoT 71.44 77.57 64.30 75.56 45.61 52.21
KiRAG (Llama3) 80.32 84.08 77.76 85.32 54.53 61.16
KiRAG (Mistral) 74.14 79.51 74.14 82.30 49.10 56.65
KiRAG (Gemma2) 79.66 84.03 77.04 83.59 54.82 62.42

Table 15: Retrieval performance (%) of KiRAG using
different LLM-based Reasoning Chain Constructor.

stantially reduces latency without compromising 1159

retrieval performance, highlighting the efficiency 1160

benefits of precomputed knowledge triple extrac- 1161

tion; (2) KiRAG exhibits latency comparable to IR- 1162

CoT while achieving significantly better retrieval 1163

performance, indicating that our approach effec- 1164

tively enhances retrieval effectiveness without in- 1165

troducing substantial computational overhead. (3) 1166

KiRAG achieves a better balance between retrieval 1167

effectiveness and efficiency compared to baselines, 1168

as evidenced by the relatively lower latency and 1169

higher retrieval recall. 1170

C.9 Performance of Using Different 1171

LLM-Based Constructor 1172

KiRAG leverages a frozen LLM as the Reasoning 1173

Chain Constructor to maintain the adaptability of 1174

our framework. Figure 15 presents the retrieval 1175

performance of our KiRAG using different LLM- 1176

based Constructor. The results indicate that KiRAG 1177

consistently outperforms IRCoT across different 1178

Constructors, indicating the robustness of our ap- 1179

proach in improving retrieval performance regard- 1180

less of the specific LLM used. 1181
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