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Abstract

A common challenge towards the adaptability of Large Language Models (LLMs)
is their ability to learn new languages over time without hampering the model’s per-
formance on languages in which the model is already proficient (usually English).
Continual fine-tuning (CFT) is the process of sequentially fine-tuning an LLM to
enable the model to adapt to downstream tasks with varying data distributions and
time shifts. This paper focuses on the language adaptability of LLMs through CFT.
We study a two-phase CFT process in which an English-only end-to-end fine-tuned
LLM from Phase 1 (predominantly Task Ability) is sequentially fine-tuned on a
multilingual dataset – comprising task data in new languages – in Phase 2 (predom-
inantly Language Ability). We observe that the “similarity” of Phase 2 tasks with
Phase 1 determines the LLM’s adaptability. For similar phase-wise datasets, the
LLM after Phase 2 does not show deterioration in task ability. In contrast, when
the phase-wise datasets are not similar, the LLM’s task ability deteriorates. We test
our hypothesis on the open-source MISTRAL-7B and LLAMA-3-8B models with
multiple phase-wise dataset pairs. To address the deterioration, we analyze tailored
variants of two CFT methods: layer freezing and generative replay. Our findings
demonstrate their effectiveness in enhancing the language ability of LLMs while
preserving task performance, in comparison to relevant baselines.

1 Introduction

With ever-increasing adoption of LLMs in real world applications and expanding multilingual user
bases of these applications, it is important to cater these models to wide enough multilingual audiences.
Model training is compute hungry, and there is an abundance of both labelled and unlabelled data in
English as compared to other languages [36]. As such, it is imperative to find efficient ways to use
pre-trained or fine-tuned models to improve performance on other languages. In this paper, we refer
to a model’s ability in non-English languages as predominantly its language ability (LA), which can
be achieved without relying on large amounts of data in those languages. Instead, we can exploit the
predominantly task ability (TA) learned from English data.

To this end, researchers use techniques like continual pre-training, continual fine-tuning or language
adaption to adapt models to a newer set of languages to enhance their language abilities (refer to §2).
While these techniques are effective, they are highly task-specific. Furthermore, existing techniques
for multilingual LLMs rely on parallel data, old fine-tuning data, or old and new set of parameters.
Parameter efficient techniques like LoRA [20] are also widely used to efficiently fine-tune LLMs
on multilingual data. However, such techniques show both: catastrophic forgetting on English and
incapability to exploit the task ability that the model receives from the English fine-tuning data [1].
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Figure 1: Comparing hidden activations for MISTRAL-7B and LLAMA-3-8B during our two-phase
continual fine-tuning process. We prompt each model with examples from MTBENCH [48], and
visualize the similarity between the mean hidden activations, for each model layer. For datasets that
encode “similar" tasks (ALPACA & MULTIALPACA), model’s task ability does not decline (e.g., 3%
gain for IFEval). For non-similar datasets (Instruct & MULTIALPACA), the task ability declines
(e.g., 8% decline for IFEval). Here, Phase 2 model representations do not align with Phase 1’s; thus,
suggesting greater model weight interference and a decline in task ability.

In such a setting, we want to enhance the model’s language ability (other than English) while
preserving the task ability achieved via (firstly) English fine-tuning. This setting results in the
challenge of catastrophic forgetting, i.e., the model’s task ability on English may decline while
fine-tuning on multilingual data [31]. Furthermore, a trivial solution that fine-tunes on the mixture of
multilingual and English-only data may be sub-par (e.g., due to language relatedness [11]). Hence, it
is challenging to improve an LLM’s language ability while preserving its performance on English.

Our Approach. We use a two-phase continual fine-tuning (CFT) technique for language adaption.
We study the effects of various English and multilingual instruction tuning datasets when the models
are fine-tuned in two phases: where Phase 1 is fine-tuning the model in English to improve its task
ability and then fine-tuning it on a proportionally-sized multilingual dataset in Phase 2. In Phase
1, we use ALPACA [41] and OPENORCA [29], and in Phase 2 we use MULTIALPACA [43] and
MOPENORCA (§4.1).

We perform this study on two open-source models, namely LLAMA-3-8B and MISTRAL-7B.
We also use fine-tuned versions of them, namely LLAMA-3-8B-INSTRUCT and MISTRAL-7B-
INSTRUCT, as off-the-shelf Phase 1 fine-tuned models. We quantify a model’s task ability based on its
performance on four English datasets: (i) two for instruction following (i.e., IFEval [49] and Alpaca
Eval [28]) and (ii) two for reasoning tasks (i.e., MMLU [19] and HellaSwag [45]). Likewise, we
quantify a model’s language ability based on its performance on (i) two question answering tasks
(i.e., MLQA [27] and XQuAD [3]) and (ii) XLSUM [17], a summarization task.

2



Our Contributions. First, we observe that when phase-wise English and multilingual datasets encode
different tasks, we see a decline in the Phase 2 model’s performance on English. On the other hand,
when Phase 1 and Phase 2 datasets encode similar tasks, the Phase 2 model’s performance on English
improves (refer to Figure 1). Second, to quantify the similarity of these phase-wise datasets, we
introduce two metrics based on language-agnostic embeddings and model representations. We show
that our quantification correlates with the decline in task ability (§4.3). Third, we study the efficacy
of two tailored variants of existing CFT strategies to mitigate the decline in task ability after Phase 2
fine-tuning, while also boosting the language ability. The first strategy we study is generative replay,
i.e., using instructions from a similar English counterpart of the Phase 2 dataset to generate replay
data using the Phase 1 model. The second strategy uses heuristic-based layer freezing. Here, we use
the weight difference between the Base and Phase 1 models to pick specific layers for freezing during
Phase 2 fine-tuning. We study the gains in task and language ability of these strategies compared to
specific baselines (§5).

2 Related Work

Continual Learning in LLMs. In general, continual learning in LLMs can be broadly categorized
into (i) continual pre-training (CPT) and (ii) continual fine-tuning (CFT). In CPT, the LLMs are
continuously pre-trained to adapt to new domains or tasks by continuously updating them with new
data alongside the existing data [37]. CPT builds on the existing LLM’s knowledge and is more
computationally efficient than retraining an LLM using the current and old pre-training data [16]. CPT
is employed when distributional shifts occur (i) over time [2, 21, 22], (ii) across languages [24, 14, 5]
or (iii) across domains [25, 15, 44].

On the other hand, CFT involves training the LLM on successive downstream tasks with varying
data distribution or time shifts [37]. CFT comprises fine-tuning for different tasks [7], instruction-
tuning [6], model refinement/editing [46] and alignment [40]. Recent literature also focuses on using
CFT to assist the LLM to learn new languages [35, 34, 4].

CFT: Enhancing LLMs Multilingual Abilities. Cahyawijaya et al. [6] propose InstructAlign
which uses cross-lingual alignment and episodic replay to align an LLM’s pre-trained languages to
unseen languages but requires parallel data and previous task data. Shaham et al. [36] introduces
multilinguality during the first instruction fine-tuning phase which improves an LLM’s instruction
following capability across languages. He et al. [18] show catastrophic forgetting during CFT and
use techniques such as joint fine-tuning and model regularization to mitigate it. However, these
techniques are computationally expensive or require access to previous task data.

Language Adaption. This set of works looks at language and task adaption by adjusting the model
to understand new languages and enhancing its performance on specific tasks through fine-tuning,
respectively [9, 47, 33]. For instance, Chen et al. [9] perform task adaption by fine-tuning the model
on downstream task data. For language adaption, they fine-tune only the token embedding layer,
helping the model learn specific lexical meanings of new languages. Language and task ability are
either trained in parallel or sequentially. However, in this paper, we try to incorporate language ability
in models with the constraint that they may have already learned task ability (e.g., MISTRAL-7B-
INSTRUCT). To the best of our knowledge, this is a first attempt at studying the effect of task and
language self-instruct datasets on an LLM’s multilingual ability through CFT.

3 Enhancing Language Ability through Continual Fine-tuning

A common recipe to training LLMs to learn new languages is to use a training paradigm that focuses
on task and language adaption [9]. Concretely, we define task adaption as the model’s ability to
comprehend the input text and then provide a suitable output. We refer to language adaption as the
model’s ability to perform those tasks in languages other than English.

In Task Adaption, the LLM is trained to follow instructions, usually using labeled English data.
Language Adaption focuses on training the LLM to understand text from newer languages. Task
adaptation leverages cross-lingual transfer, facilitating language adaptation to a certain degree.
However, this process can result in a decline in the LLM’s task adaptation performance due to the
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Model Phase 1 (P1) Phase 2 (P2) IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average
Dataset Dataset P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

MISTRAL-7B ALPACA

MULTIALPACA

0.364 0.395 0.12 0.16 0.552 0.573 0.581 0.616 0.404 0.436
Instruct 0.550 0.462 0.35 0.15 0.575 0.533 0.641 0.416 0.529 0.390

LLAMA-3-8B ALPACA 0.277 0.326 0.10 0.11 0.231 0.242 0.556 0.567 0.291 0.311
Instruct 0.735 0.182 0.14 0.10 0.340 0.239 0.533 0.278 0.437 0.2

Table 1: Task Ability results for two-phase Continual Fine-tuning (CFT). When the phase-wise
datasets are similar (Definition 1 and Definition 2), task ability post Phase 2 (P2) fine-tuning con-
sistently improves (denoted with green). When the phase-wise datasets are not similar, we see a
significant decline in task ability post Phase 2 (P2) fine-tuning (denote with red).

risk of catastrophic forgetting. Despite this challenge, task adaptation often yields greater benefits
compared to relying solely on cross-lingual transfer for language adaptation.

Continual Fine-tuning for Language Adaption. To improve the language adaption of LLMs, we
re-imagine the above recipe as a two-phase CFT process. We have:

• Phase 1. We fine-tune a base LLM end-to-end on an English instruction dataset. Phase 1 aims to
predominantly teach the LLM instruction following ability, which we refer to as task ability.

• Phase 2. Here, we use the fine-tuned LLM from Phase 1 and further end-to-end fine-tune it on a
Multilingual instruction dataset. Unlike Chen et al. [9], in our setting, the data in Phase 2 is labeled.
However, compared to Phase 1, Phase 2’s dataset is geared towards enhancing the LLM’s language
ability, and comprises multiple languages with fewer data points per language.

This paper relates English fine-tuning with task ability enhancement as English fine-tuning predomi-
nantly helps in the task ability of LLMs. Whereas multilingual fine-tuning predominantly helps with
an LLM’s language ability.

CFT for Language Adaption: Challenges. The primary challenge in our two-phase fine-tuning
process is that the LLM’s language ability must not come at the cost of its task ability. We impose
two additional constraints based on real-world scenarios. First, in Phase 2, we cannot re-use Phase
1’s dataset. Often instruction fine-tuned LLMs are available without their corresponding datasets
(e.g., MISTRAL-7B-INSTRUCT [23]). Second, in Phase 2, we cannot use the weights of the Phase 1
model during training, as saving both old and new set of parameters on the GPU for training would
be computationally expensive.

In a nutshell, we focus on CFT for language adaption for an LLM while preserving the model’s task
ability.

4 Evaluating Task & Language Ability for Multilingual CFT

4.1 Experiment Setup & Evaluation Tasks

Fine-tuning Models. We continually fine-tune open-source MISTRAL-7B [23] and LLAMA-3-
8B [12] LLMs for language adaption.

Fine-tuning Datasets. For our phase-wise datasets, we use the open-source ALPACA [41], MUL-
TIALPACA [43], and OPENORCA [29] datasets. ALPACA is a self-instruct English-only dataset.
MULTIALPACA is a multilingual dataset created by translating ALPACA’s seed tasks to 11 languages
and using GPT-3.5-Turbo for response collection. The languages are in equal proportions and
are “French”, “Arabic”, “German”, “Spanish”, “Indonesian”, “Japanese”, “Korean”, “Portuguese”,
“Russian”, “Thai”, and “Vietnamese”. The appendix (§??) describes OPENORCA and MOPENORCA.

Fine-tuning Technique. We perform full fine-tuning with bf16 precision to study the effects of full
fine-tuning with multilingual data in Phase 2 and its effect on task ability. We also wish to exploit the
benefits gained via complete fine-tuning of these models, which may not be possible with parameter
efficient fine-tuning [1, 32]. However, in §5, we propose a heuristic-based layer freezing strategy
to mitigate forgetting of task ability in which we freeze some layers and fine-tune the rest. For our
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Model Phase 1 Phase 2 MLQA (↑) XLSUM (↑) XQuAD (↑) Average
Dataset Dataset Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

MISTRAL-7B ALPACA

MULTIALPACA

0.229 0.288 0.012 0.060 0.290 0.602 0.177 0.317
Instruct 0.246 0.307 0.012 0.033 0.351 0.436 0.203 0.259

LLAMA-3-8B ALPACA 0.438 0.597 0.033 0.034 0.586 0.737 0.352 0.456
Instruct 0.609 0.321 0.048 0.027 0.712 0.417 0.456 0.255

Table 2: Language Ability results for two-phase Continual Fine-tuning (CFT). With green, we denote
an improvement in language ability post Phase 2 fine-tuning. Likewise, we denote a decline in
language ability with red. For MLQA and XQUAD we use F1 abstractive score, while for XLSUM
we use ROUGE Score.

experiments, we use Axolotl2, an open-source framework to fine-tune LLMs. We conducted our
experiments on NVIDIA A100 GPUs with 80 GB RAM.

Evaluation Tasks. To quantify an LLM’s task ability, we evaluate Phase 1 and Phase 2 models
on two instruction-following tasks (i) IFEval [49] and (ii) Alpaca Eval [28], (iii) MMLU [19] for
problem-solving and (iv) HellaSwag [45] for commonsense reasoning ability. To quantify an LLM’s
language ability, we evaluate our fine-tuned models on three benchmark datasets comprising two
multilingual generative tasks: question answering (MLQA [27] & XQuAD [3]) and summarization
(XLSUM [17]). Further details on these tasks are available in the Appendix (§??).

To evaluate our models on TA and LA, we use LM-Evaluation-Harness3, which is a unified framework
for zero/few-shot evaluations of LLMs. For both task and language ability, we use zero-shot
evaluation. For additional details on the training setup, code, and evaluation tasks, we refer the reader
to the Appendix (§A).

4.2 Task and Language Ability Results

We compare the task and language ability of MISTRAL-7B and LLAMA-3-8B continually fine-tuned
models on different phase-wise datasets4. Table 1 presents the results for task ability, while Table 2
presents the results for language ability. Table 2 reports the average score across languages. We
provide language-specific scores in the Appendix (§B).

Results Discussion. From Table 1, we see that for phase-wise datasets like Instruct and MULTIAL-
PACA, the performance of the Phase 2 models trained on them declines for English. This decline
occurs when they are continually fine-tuned on multilingual data in Phase 2. However, we see a jump
in MISTRAL-7B’s language ability from the results for the multilingual generative tasks (Table 2).
These models fine-tuned on multilingual datasets show catastrophic forgetting in English. However,
for phase-wise datasets like ALPACA followed by MULTIALPACA, we see that models trained on
them do not show a decline in task ability (Table 1). We also see a gain in these models’ language
ability (Table 2)5.

Additional Ablations. In the Appendix (§B), we also present results for OPENORCA-MOPENORCA
phase-wise datasets. For MISTRAL-7B, we observe that the average task ability of the Phase 2
model (over Phase 1’s MISTRAL-7B-OPENORCA) marginally declines: 0.487 from 0.504. Whereas,
for MISTRAL-7B-INSTRUCT, the average decline in task ability is significant: 0.376 from 0.529.
Likewise, for LLAMA-3-8B, the average task ability for LLAMA-3-8B OPENORCA MOPENORCA
sees an increase of 0.415 from 0.404. In contrast, with Instruct-MOPENORCA as the phase-wise
datasets, the task ability significantly drops, from 0.437 to 0.173.

Observation. With Table 1, we see that our two-phase CFT setup for language adaption shows an
interesting trend: for certain pairs of phase-wise datasets (e.g., ALPACA & MULTIALPACA), the
LLM after Phase 2 sees an improvement in the task ability (computed on English evaluation tasks).
We notice that phase-wise datasets like ALPACA and MULTIALPACA have the same seed prompts.
Alternately, the two datasets encode the same tasks in different languages. We hypothesize an LLM

2github.com/axolotl-ai-cloud/axolotl/
3github.com/EleutherAI/lm-evaluation-harness
4When it is clear from the context, we use “Instruct” to denote the dataset used in Phase 1 to instruction

fine-tune MISTRAL-7B-INSTRUCT or LLAMA-3-8B-INSTRUCT.
5LLAMA-3-8B Instruct MULTIALPACA shows deterioration in LA. We explain this behavior in §5.3.
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fine-tuned on either of these datasets learns the same task ability, and therefore, the second phase of
CFT leads to lesser interference in the representation space. That is, an LLM continually fine-tuned
on ALPACA & MULTIALPACA preserves its task ability across phases. We next define two metrics
that aim to quantify the task-specific similarity of two datasets.

4.3 Phase-wise Datasets: Similarity of Representations

Dataset Embedding Similarity (DES). To quantify whether two datasets encode the same tasks,
we define DES that computes a similarity score using the dot product of the average representations
(embedding) generated by a language-agnostic model.

Definition 1 (Dataset Embedding Similarity (DES)). Given a language-agnostic text embedding
model Θ, and any pair of datasets D1 and D2, let DES be the function fDES : D ×D → [0, 1]

fDES(D1, D2; Θ) = ⟨EΘ(D1),EΘ(D2)⟩ (1)

Here, EΘ(Di) ∈ Rd, ∀i ∈ {1, 2} is the normalized mean embedding across samples in Di.

Higher the DES score, more similar the embedding, i.e., greater similarity between D1 and D2. For
Θ, we use the language-agnostic sentence-tokenizer LaBSE [13]. We compute DES by encoding
500 random samples from ALPACA, MULTIALPACA, OPENORCA, and MOPENORCA, and measure
fDES for each pair.

Fixing ALPACA as the Phase 1 dataset D1, when the Phase 2 dataset D2 is MULTIALPACA, the
DES score is 0.924 and 0.792 for MOPENORCA. When D1 is OPENORCA, the DES score for
MOPENORCA as D2 is 0.953 and 0.774 when D2 is MULTIALPACA. For dataset pairs with similar
tasks, we see a high DES score and relatively low scores for datasets with different tasks. That is,
DES captures the (pair-wise) variation in task abilities of these datasets.

Model Parameter Difference (MPD). Another method of quantifying the similarity of tasks for two
datasets D1 and D2 is to compute the difference between the parameters of models Θ1 (fine-tuned
on D1) and Θ2 (fine-tuned on D2). Geometrically, the difference of the parameters captures the
representation shift of Θ2 in the space defined by Θ1. If D1 & D2 encode the same tasks, the
combined shift by Θ2 should be relatively lower, compared to the shift if D1 & D2 encode different
tasks. Formally,

Definition 2 (Model Parameter Difference (MPD)). Given any two models Θ1 and Θ2 fine-tuned
on self-instruct datasets D1 and D2 respectively, from the same base model ΘB , let MPD be the
function fMPD : Θ×Θ → R≥0 s.t.

fMPD(Θ1,Θ2; ΘB) =
1

n

n∑
i=1

∥w(Θ1,i)−w(Θ2,i)∥2 (2)

Here, w(Θj,i), ∀j ∈ {1, 2} is Θj’s ith parameter.

The smaller the MPD score, the closer the fine-tuned models are in the parameter space. Fixing
MISTRAL-7B as the base model ΘB , and D1 as MULTIALPACA, we vary D2 as one of AL-
PACA, OPENORCA, and MOPENORCA, and observe the corresponding MPD scores. We normalize
the MPD scores with the maximum observed score across all three models for a fair comparison.
With D2 as ALPACA, the MPD score is 0.294. For D2 as Instruct, MPD is 1.0 and 0.55 when D2 is
OPENORCA. These scores show a similar trend to DES: for ALPACAand MULTIALPACA, the scores
are lower, highlighting the similarities in the datasets in the parameter space. We see relatively higher
scores for the other pair of models, implying a difference in the dataset pairs.

4.4 Visualizing Decline in Task Ability

Setup. To explain the effect of similar phase-wise data sets on the LLM task ability, we look at the
model representations when parsing English (as the task ability is computed over English). We feed
MTBENCH [48] to the models, an English prompt dataset for testing, and visualize the similarity
between the mean hidden activations, for each model layer. For the analysis, given an LLM Θ with l
layers, let XΘ ∈ Rl×d be the mean hidden activations, across n samples from MTBENCH.
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Figure 2: We see a greater change in the variation of the representations for non-similar datasets
(e.g., Instruct & MULTIALPACA) compared to similar datasets (e.g., ALPACA & MULTIALPACA).
Interestingly, for LLAMA-3-8B the change is large across layers and a magnitude higher than
MISTRAL-7B. For MISTRAL-7B, we see the later layers showing the most change.

t-SNE Visualization. Figure 1 depicts t-SNEs [42] for XMISTRAL-7B and XLLAMA-3-8B LLMs, continu-
ally fine-tuned on the phase-wise datasets ALPACA & MULTIALPACA and Instruct & MULTIALPACA.
We observe that for similar phase-wise datasets, the model before and after Phase 2 produces similar
hidden activations. Contrarily, for non-similar phase-wise datasets, the hidden activations form
distinct clusters, implying separation between the phase-wise activations. That is, the model repre-
sentations for non-similar phase-wise datasets are well-separated. The model representations during
Phase 2 do not align with Phase 1 representations; thus, resulting in greater model weight interference
leading to a decline in task ability.

Visualizing Variance in Model Representations. Figure 1 provides some intuition for the correlation
between phase-wise datasets and decline in task ability. To further understand the layer-wise behavior
of the hidden activations, similar to Chang et al. [8], we compute covariance matrices ΣΘ for each XΘ.
Intuitively, ΣΘ captures the variance in different directions for representations of hidden activations
for Θ.

We first compute the mean centered activation matrix X̄Θ = XΘ − µΘ, according to µΘ ∈ Rd. Next,
we derive ΣΘ = 1

l−1 · X̄T
ΘX̄Θ ∈ Rd×d. To compare the layer-wise variance in representations, we

compute the L2-Norm of the difference of the matrices ΣMISTRAL-7B (Figure 2 (left)) or ΣLLAMA-3-8B
(Figure 2 (right)) when continually fine-tuned on ALPACA & MULTIALPACA (blue lines) or Instruct
& MULTIALPACA (red lines).

From the figures, we see clear evidence of representational change, both in terms of the magnitude of
the change and the subset of layers that show a greater change. For MISTRAL-7B, the Phase 2 model
after CFT with Instruct & MULTIALPACA, shows 3 to 4 times more variation in its representations
compared to the model with ALPACA & MULTIALPACA phase-wise datasets. This gap is significantly
larger for LLAMA-3-8B.

5 Mitigating Strategies for Multilingual CFT

To mitigate the decline in task ability, we study two CFT techniques, Generative Replay (GR) and
heuristic-based Layer Freezing (LF). In Generative Replay, we consider a new English data generation
method motivated by the correlation between dataset similarity and task ability (§4.2). With heuristic-
based Layer Freezing, we employ specific heuristics to find out the subset of layers to freeze in the
model during Phase 2 fine-tuning.
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CFT Setup Task Ability (TA) Language Ability (LA)
Phase 2 Mitigating IFEval Alpaca Eval MMLU HellaSwag Avg MLQA XLSum XQUAD Avg
Dataset Strategy (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

M
IS

T
R

A
L

-7
B

– – 0.55 0.35 0.575 0.641 0.529 0.246 0.012 0.351 0.203

MULTIALPACA

– 0.462 0.15 0.533 0.416 0.390 0.307 0.033 0.436 0.259
LF_H1 0.456 0.03 0.497 0.598 0.395 0.176 0.016 0.215 0.136
LF_H2 0.364 0.12 0.364 0.504 0.338 0.213 0.014 0.442 0.223
GR_5 0.540 0.17 0.540 0.611 0.465 0.311 0.008 0.428 0.249
GR_10 0.567 0.12 0.567 0.594 0.462 0.213 0.007 0.427 0.215
LoRA 0.383 0.09 0.579 0.625 0.42 0.289 0.043 0.518 0.283
ER_10 0.593 0.08 0.580 0.635 0.599 0.249 0.008 0.398 0.218

L
L

A
M

A
-3

-8
B

– – 0.735 0.14 0.340 0.533 0.436 0.609 0.048 0.712 0.456

MULTIALPACA

– 0.182 0.10 0.239 0.278 0.217 0.321 0.030 0.417 0.256
LF_H1 0.303 0.0 0.231 0.275 0.202 0.368 0.037 0.505 0.303
LF_H2 0.380 0.06 0.485 0.525 0.373 0.400 0.038 0.505 0.314
GR_5 0.269 0.01 0.516 0.316 0.279 0.437 0.019 0.593 0.349
GR_10 0.264 0.12 0.229 0.250 0.228 0.254 0.009 0.314 0.192
LoRA 0.196 0.0 0.280 0.235 0.179 0.007 0.008 0.005 0.007
ER_10 0.420 0.02 0.603 0.561 0.420 0.434 0.025 0.53 0.330

Table 3: Task and Language ability results for our mitigating strategies, Generative Replay (GR_5 &
GR_10) and Layer Freezing (LF_H1 & LF_H2). We also use LoRA [20] and ER_10 as two baseline
strategies. Here, we perform Phase 2 fine-tuning with rank 64 and quantisation bfloat16 for LoRA.
For ER_10, we use the English dataset used in GR_5 with original responses. The Phase 1 dataset is
Instruct for each row. The first two rows for both MISTRAL-7B and LLAMA-3-8B provide numbers
for Instruct and Instruct-MULTIALPACA (from Table 1 & Table 2).

5.1 Generative Replay

Typically, Generative Replay (GR) is a technique that generates data from past distributions to be
used alongside new task data for the continual fine-tuning of a model on a new task [38]. However,
from §4.2, we see that if the phase-wise datasets encode similar tasks, the decline in task ability is
mitigated. Based on this observation, we use the Phase 1 model to generate responses, in English,
from the English counterpart of the multilingual dataset used for training in Phase 2. This generated
replay dataset acts as a bridge between the distributions of Phase 1 and Phase 2.

During Phase 2 fine-tuning, we include varying quantities of this generated data: specifically, 5%
(GR_5) and 10% (GR_10), of the Phase 2 dataset. As a baseline, we also fine-tune the models with a
similar sized subset of the English counterpart with original responses6. We refer to this baseline as
English Replay (ER_10).

5.2 Heuristic-based Layer Freezing

Model regularization is an effective technique to mitigate the drop in the previous task’s performance
in continual learning (e.g., EWC [26]). However, this is computationally inefficient as it requires
using both the old and new sets of parameters. Instead, we use Layer Freezing (LF), a relatively
efficient technique for use as a ‘regularizer’ to preserve task ability during Phase 2. We consider the
following two variations to select the set of layers to freeze:

1. LF_H1: freezing a random set of 10 layers of the model from Phase 1 to be fine-tuned in Phase 2.
2. LF_H2: freezing the top-10 layers that have changed the most during Phase 1 fine-tuning (e.g.,

MISTRAL-7B Base to MISTRAL-7B-INSTRUCT). We select these layers separately for Key,
Query, and Value, for each attention head.

We present our results in Table 3 for both GR and LF. Along with English Replay (ER), we define
another baseline in which we use LoRA [20] for continually fine-tuning in Phase 2.

6This dataset may not be available for all multilingual datasets eg. Aya [39]. In that case, instructions can
always be translated to English but it is not always practical to translate responses. Hence, this baseline is the
best-case scenario for our GR strategy.
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5.3 Results Discussion

From Table 3, we see that GR and LF successfully mitigate the decline in task ability and also show
gains in language ability. For instance, MISTRAL-7B with GR_5 achieves better performance in
MLQA and XLSUM when fine-tuned with MULTIALPACA. We also close the gap with MISTRAL-7B-
INSTRUCT on IFEval, Alpaca Eval, MMLU, and HellaSwag with our mitigation strategies.
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Figure 3: *
(a) MISTRAL-7B
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Figure 4: *
(b) LLAMA-3-8B

Figure 5: Demonstrating extent of cross-lingual transfer in MISTRAL-7B and LLAMA-3-8B on a
parallel dataset prepared by subsampling FLORES [10]. We find that the English activation cluster for
LLAMA-3-8B is separated from the multilingual cluster, compared to MISTRAL-7B.

LLAMA-3-8B Doesn’t Show Consistent Improvement with our Mitigations. From Table 3,
while both GR and LF improve on the baseline LLAMA-3-8B-INSTRUCT MULTIALPACA, the gains
in task and language ability are not comparable to LLAMA-3-8B-INSTRUCT.

To understand this further, for GR, we investigate the cross-linguality difference between LLAMA-
3-8B and MISTRAL-7B. Like Figure 1, we plot t-SNEs of the mean model activations for the
MISTRAL-7B and LLAMA-3-8B base models on two parallel datasets, English and Multilingual.
We create the parallel datasets by subsampling data from FLORES [10]. In Figure 5, we see that the
English activation cluster for LLAMA-3-8B is separated out from multilingual cluster, compared to
MISTRAL-7B. This suggests that GR may not be as effective when the model has less cross lingual
ability. While for LF, we acknowledge that our method to identify the layers to freeze may not be the
best and better methods to identify which layers to freeze can be a direction for future work.

Last, but not the least, we acknowledge that LLAMA-3-8B-INSTRUCT seems to be a strong model
even on multilingual benchmarks. Hence, it is also important to evaluate Phase 1 models on these
benchmarks first and then decide if the Phase 2 fine-tuning step should be undertaken or not.

With regards to LLAMA-3-8B-INSTRUCT MULTIALPACA LA results in Table 2, we believe that
this is due to lack of cross-linguality in LLAMA-3-8B-INSTRUCT and less data in MULTIALPACA
which fails to cause sufficient representation drift to improve the model’s performance.

Forgetting with LoRA. For MISTRAL-7B-INSTRUCT and LoRA fine-tuning, we see an increase in
language ability but a decline in task ability. But the decline is not as much as full fine-tuning. For
LLAMA-3-8B-INSTRUCT and LoRA, there is a greater decline in both task and language ability. The
decline is similar (or slightly lower) than the full fine-tuning scenario. These results show that LoRA
also suffers from forgetting when used for continual fine-tuning.

Additional Results. In the Appendix (§C), we repeat the same experiment from §4.4 to quantify
the representation change in the fine-tuned models using our mitigating strategies. We see a trend
similar to Figure 2. That is, a decrease in the variation in the model activations, compared to
the baseline model trained on Instruct and MULTIALPACA. The decrease is more pronounced for
MISTRAL-7B compared to LLAMA-3-8B. In Appendix §C, we also present TA and LA results for
the Instruct-MOPENORCA phase-wise datasets.
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6 Conclusion & Future Work

In this paper, to the best of our knowledge, we present a first study on the influence of the similarity of
phase-wise datasets on the task and language adaptability of LLMs through CFT. Through extensive
experiments on the MISTRAL-7B and LLAMA-3-8B models, we show that when datasets are
similar, task ability is preserved; otherwise, it declines. Towards mitigation, we study layer freezing
and generative replay as mitigating strategies based on specific heuristics. Our results indicate that
these strategies help improve task performance while not compromising on the LLM’s language
adaptability.

Future Work. Our results show that there is no one-size-fits-all strategy to mitigate decline in task
ability, among the strategies discussed. Future work can explore developing other parameter-efficient
regularization methods that address the current computational challenges with methods like EWC or
forgetting due to LoRA. One can also explore analytical notions for task similarity in datasets.

7 Limitations

The study assumes that the similarity between phase-wise datasets can be effectively quantified
using DES and MPD metrics. However, these metrics may not capture all nuances of task similarity.
Moreover, the experiments were conducted on MISTRAL-7B and LLAMA-3-8B models. The
results and conclusions drawn may not generalize to other LLMs with different architectures or
training paradigms. Additionally, The study’s fine-tuning and evaluation processes were constrained
by available computational resources. More extensive experiments with larger models and longer
training datasets were not possible.Furthermore, while generative replay and heuristic-based layer
freezing showed promise, their effectiveness may vary with different models and datasets. Lastly, the
evaluation of task and language ability was based on specific benchmarks. These metrics may not
encompass all aspects of model performance, particularly in real-world applications.
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A Training Details

A.1 Hyperparameters for Fine-tuning and Training Setup

Hyperparameter Value

Learning Rate 1× 10−6

Epochs 4
Global Batch size 16
Scheduler Cosine
Warmup Linear
Warmup Steps 10
Optiimizer AdamW [30]
Weight Decay 0

Table 4: Hyperparameters for continual fine-tuning

A.2 Fine-tuning and Evaluation Dataset Details

A.3 Evaluation Tasks

In this paper, we consider two sets of benchmarks to evaluate task and language ability. We explain
them briefly next.

Task Ability (TA). To quantify an LLM’s task ability, we evaluate Phase 1 and Phase 2 models on
the following tasks:

1. IFEval [49]: Instruction-Following Evaluation (IFEval) asses the ability of an LLM to follow
natural language instructions. It comprises 500 verifiable instructions (e.g., “mention the keyword
AI 3 times"). We choose IFEval as the instructions are verifiable and also test an LLM’s context
understanding.

2. Alpaca Eval [28]: This is an LLM based automatic evaluator for instruction following models,
to measure task ability. Like Aggarwal et al. [1], we evaluate our CFT models against text-davinci-
003 responses on 800 instructions and use GPT4 (gpt-4-32k) as the evaluator.

3. MMLU [19]: Massive Multitask Language Understanding (MMLU) is a benchmark to assess an LLM’s
knowledge and problem solving abilities. It includes 57 subjects across domains like STEM, or
law, with 16k MCQs in total.

4. HellaSwag [45]: This is a popular benchmark to evaluate the commonsense reasoning ability of
an LLM. HellaSwag’s test split contains 10k samples in total.

Language Ability (LA). To quantify an LLM’s language ability, we evaluate our fine-tuned models
on three benchmark datasets comprising two multilingual generative tasks: question answering and
summarisation.

• Question Answering: MLQA [27] contains 5k extractive question-answering instances in 7 lan-
guages. The XQuAD dataset [3] consists of a subset of 240 paragraphs and 1190 question-answer
pairs across 11 languages.

• Summarisation: XLSUM [17] spans 45 languages, and we evaluate our models in Arabic, Chinese-
Simplified, English, French, Hindi, Japanese and Spanish.

To evaluate our models on TA and LA, we use LM-Evaluation-Harness7, which is a unified framework
for zero/few-shot evaluations of LLMs. For both task and language ability, we use zero-shot
evaluation. For additional details on the training setup, code and the evaluation tasks, we refer the
reader to the accompanying supplementary (Appendix §A). A reproducibility checklist is available
after the References section with details in Appendix §A.

7https://github.com/EleutherAI/lm-evaluation-harness
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Model Phase 1 (P1) Phase 2 (P2) IFEval (↑) Alpaca Eval (↑) MMLU (↑) HellaSwag (↑) Average
Dataset Dataset P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

MISTRAL-7B OPENORCA

MOPENORCA

0.494 0.482 0.31 0.32 0.601 0.582 0.612 0.562 0.504 0.487
Instruct 0.550 0.426 0.35 0.06 0.575 0.507 0.641 0.509 0.529 0.376

LLAMA-3-8B OPENORCA 0.377 0.425 0.09 0.07 0.579 0.599 0.571 0.564 0.404 0.415
Instruct 0.735 0.205 0.14 0.0 0.340 0.236 0.533 0.250 0.437 0.173

Table B1: Task Ability results for two-phase Continual Fine-tuning (CFT). With green, we highlight
an increase in a model’s task ability post P2 fine-tuning. Likewise, red highlights a decline in a
model’s task ability.

Model Phase 1 Phase 2 MLQA
Dataset Dataset Phase 1 Phase 2

ar de es hi vi zh ar de es hi vi zh

MISTRAL-7B ALPACA

MULTIALPACA

0.143 0.337 0.331 0.149 0.385 0.031 0.172 0.485 0.529 0.196 0.336 0.009
Instruct 0.113 0.440 0.395 0.088 0.369 0.073 0.228 0.456 0.529 0.279 0.327 0.0222

LLAMA-3-8B ALPACA 0.320 0.538 0.563 0.438 0.611 0.155 0.552 0.672 0.765 0.573 0.784 0.237
Instruct 0.549 0.701 0.769 0.624 0.788 0.192 0.316 0.453 0.526 0.137 0.464 0.028

MISTRAL-7B OPENORCA

MOPENORCA

0.374 0.504 0.511 0.395 0.600 0.226 0.298 0.506 0.572 0.274 0.481 0.030
Instruct 0.113 0.440 0.395 0.088 0.369 0.073 0.115 0.253 0.213 0.088 0.222 0.038

LLAMA-3-8B OPENORCA 0.262 0.545 0.565 0.369 0.568 0.099 0.437 0.549 0.622 0.462 0.625 0.024
Instruct 0.320 0.538 0.563 0.438 0.611 0.155 0.554 0.701 0.771 0.625 0.787 0.188

Table B2: MLQA: Language Ability results for two-phase Continual Fine-tuning (CFT).

B Evaluating Language Ability for Multilingual Continual Fine-tuning

Task Ability. Table B1 and Table ?? present the task and language ability numbers of our ablations
on the OPENORCA and MULTIALPACA datasets using MISTRAL-7B and LLAMA-3-8B models.

Language Ability. Table B2, Table B3, and Table B4 present the language-specific results for MLQA,
XLSUM, and XQuAD, respectively.

C Mitigating Strategies

Visualizing Variance in Model Representations. In Figure 6, we repeat the same experiment as in
§ 4.5 to quantify the representation change in the fine-tuned models using our mitigating strategies.
The trend seen is expected from § 4.5: we see a decrease in the variation in the model activations,
compared to the baseline model trained on Instruct and MULTIALPACA. The decrease is more
pronounced for MISTRAL-7B compared to LLAMA-3-8B.

Additional Ablations. We also present the impact of our mitigating strategies for the Instruct-
MOPENORCA phase-wise datasets. Table C5 presents these results.
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Figure 6: Visualizing Variance in Model Representations for MISTRAL-7B Mitigating Strategies:
We see a decrease in the variance of model representations for models trained using our mitigation
strategies compared to vanilla Phase 2 models (similar to Figure 2).
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CFT Setup Task Ability Language Ability

Model Phase 1 Phase 2 Mitigating IFEval ALPACA Eval MMLU HellaSwag Avg MLQA XLSum XQUAD AvgDataset Dataset Strategy

MISTRAL-7B Instruct

– – 0.55 0.35 0.575 0.641 0.529 0.246 0.012 0.351 0.203

MOPENORCA

– 0.426 0.06 0.507 0.509 0.376 0.155 0.040 0.323 0.173
LF_H2 0.401 0.048 0.518 0.487 0.364 0.258 0.060 0.527 0.282
GR_5 0.281 0.027 0.478 0.495 0.320 0.167 0.042 0.305 0.171
GR_10 0.305 0.013 0.483 0.494 0.324 0.150 0.038 0.238 0.142
LoRA 0.587 0.13 0.567 0.591 0.469 0.167 0.027 0.354 0.183
ER_10 0.367 0.025 0.479 0.493 0.341 0.157 0.042 0.305 0.168

Table C5: Task and Language ability results for our mitigating strategies, Generative Replay (GR_5 &
GR_10) and Layer Freezing (LF_H1 & LF_H2). We also use LoRA [20] and ER_10 as two baseline
strategies. Here, we perform Phase 2 with rank 64 and bf16 for LoRA. For ER_10, we use the English
dataset used in GR_5 with original responses.
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