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ABSTRACT

Diffusion models are predominantly used for generative modeling, which synthe-
size samples by simulating the reverse process of a stochastic differential equation
(SDE) that diffuses data into Gaussian noise. However, when simulating the re-
verse SDE, the SDE solver suffers from numerical instability near the time bound-
ary; hence, in practice, the simulation is terminated before reaching the boundary
point. This heuristic time truncation hinders the rigorous formulation of diffu-
sion models, and requires additional costs of hyperparameter tuning. Moreover,
such numerical instability often occurs even in training, especially when using a
maximum likelihood loss. Therefore, the current diffusion model heavily relies
on the time truncation technique in both training and inference. In this paper,
we propose a method that completely eliminates the heuristic of time truncation.
Our method eliminates numerical instability during maximum likelihood training
by modifying the parameterization of the noise predictor and the noise schedule.
We also propose a novel SDE solver that can simulate without time truncation by
taking advantage of the semi-linear structure of the reverse SDE. These improve-
ments enable stable training and sampling of diffusion models without relying on
time truncation. In our experiments, we tested the effectiveness of our method on
the CIFAR-10 and ImageNet-32 datasets by evaluating the test likelihood and the
sample quality measured by the Fréchet inception distance (FID). We observe that
our method consistently improve performance in both test likelihood and the FID
compared to the baseline model of DDPM++.

1 INTRODUCTION

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and score-based gener-
ative models (Song & Ermon, 2019; 2020) have achieved state-of-the-art performance in terms of
sample quality especially for image generation. Both models consider to pertub data with a sequence
of noise distributions, and generate samples by learning to reverse the diffusion process from noise
to data. Song et al. (2020b) have shown that these two types of models can be interpreted using a
single framework, which we refer to as diffusion models in this paper.

The framework of diffusion models (Song et al., 2020b) involves gradually diffusing the data dis-
tribution towards a simple noise distribution, such as the standard Gaussian distribution, using a
stochastic differential equation (SDE), and learning the time reversal of this SDE for generative mod-
eling. The reverse-time SDE has an analytic expression which only depends on a time-dependent
score function of the perturbed data distribution. This score function can be efficiently estimated
by training a neural network (called a score-based model (Song & Ermon, 2019; 2020)) with a
weighted combination of score matching losses (Hyvärinen & Dayan, 2005; Vincent, 2011; Song
et al., 2020a) as the objective. After training, we can obtain samples from the model by simulating
the reverse SDE from a simple noise using the estimated score function.

However, when simulating the reverse-time SDE, the SDE solver suffers from numerical instabil-
ity near the time boundary. This is mainly because the estimated score function diverges near the
boundary, and simulation around the boundary region becomes infeasible with a numerical SDE
solver. To avoid the numerical instability, the simulation is terminated before reaching the bound-
ary point in practice. Moreover, such numerical instability is often observed even during training,
especially when the model is trained with a maximum likelihood objective. Therefore, heuristics
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like time truncation is widely used in both training and inference of diffusion models. Although
time truncation is one of the most naive ways to avoid numerical instability, it requires tuning of the
truncation time and also breaks the rigorous formulation of the diffusion model.

In this paper, we propose a method to completely eliminate the heuristic of time truncation from
both training and inference of diffusion models. First, to eliminate time truncation during training,
we consider sufficient conditions for the maximum likelihood objective not to diverge. Specifically,
by using a specific noise schedule and parameterization, we show that the objective becomes always
finite even around the boundary points. This prevents the diffusion model from suffering from
numerical instability when training with the maximum likelihood objective. We also provide a way
to reduce variance of the Monte-Carlo estimate of the objective. Second, we propose a new SDE
solver to eliminate time truncation time during sampling. This solver avoids numerical instability at
boundary points by taking advantage of the semi-linear structure of the reverse SDE.

By combining these techniques, we successfully remove the dependence on time truncation from
both training and inference of the diffusion model. We name this framework FullDiffusion. In
experiments, we validate the effectiveness of FullDiffusion on CIFAR-10 and ImegeNet 32x32 using
DDPM++ as a baseline and confirm that it consistently outperforms the baseline in terms of both
likelihood and sample quality measured by the Fréchet inception distance (FID).

2 BACKGROUND

2.1 DIFFUSION MODELS

In this section, we provide a priliminary knowledge on the concept of diffusion models. Diffusion
models are deep generative models that smoothly transform data x0 ∈ RD to noise with a diffusion
process, and generate samples by learning and simulating the time reversal of this diffusion. First,
we consider a following stochastic differential equation to diffuse the data distribution pdata (x0)
towards a noise distribution (i.e., a standard Gaussian distribution):

dxt = ftxtdt+ gtdw, (1)

where ft and gt are drift and diffusion coefficients, and w is a standard Wiener process. The solution
of an SDE, i.e., {xt}t∈[0,1], is called a diffusion process. We denote the marginal distribution of xt

and the transition probability from x0 to xt as qt (xt) and q0t (xt | x0), respectively. In the SDE of
Eq. (1), the transition probability q0t can be analytically obtained as follows:

q0t (xt | x0) = N
(
xt;αtx0, σ

2
t I

)
, (2)

where αt = exp
(∫ t

0
fsds

)
, and σ2

t = α2
t

∫ t

0

(
g2s/α

2
s

)
ds. By choosing the coefficients ft and gt so

that α1 = 0 and σ1 = 1 hold, the solution of Eq. (1) approaches a standard Gaussian distribution as
t→ 1, i.e., q1 (x1) = N (x1;0, I). There are several ways to meet this condition as listed below1.

Variance Preserving (VP): When ft is non-positive and g2t is set to −2ft, the SDE is known as
the variance preserving (VP) SDE, which is widely used for diffision models. In the VP SDE,
α2
t + σ2

t = 1 holds. In previous works, g2t is often denoted as βt for the VP SDE.

Sub-VP: Song et al. (2020b) also propose another type of SDE named sub-VP SDE, in which g2t is
defined as −2ft(1− e

∫ t
0
4fsds). In this case, α2

t + σt = 1 holds instead.

Straight Path (SP): When g2t is set to −2ft(1 − e
∫ t
0
fsds), the SDE is called the straight path

(SP) SDE (Zheng et al., 2023), where αt + σt = 1 holds. The SP SDE is often used for the optimal
transport (OT) conditional vector field in the context of flow matching (Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023; Liu et al., 2023).

In this paper, we focus on the VP SDE, because it is most widely used in the context of diffusion
models (Kingma et al., 2021; Kingma & Gao, 2023). If we can simulate the reverse process of

1Although the variance exploding (VE) SDE is also widely used, we exclude it here because the VE SDE
does not hold α1 = 0 and σ1 = 1.
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Eq. (1) from a standard Gaussian distribution, we can obtain samples from the data distribution
pdata = q0 at t = 0. Fortunately, the reverse process of Eq. (1) has an analytical form as follows:

dxt =
(
ftxt − g2t st (xt)

)
dt+ gtdw̄, (3)

where st (xt) = ∇xt log qt (xt), and w̄ is a standard Wiener process in the reverse-time direc-
tion. Since this reverse SDE includes a time-dependent score function st, which is unknown in
advance, we need to estimate it using a parameterized function, such as a neural network, i.e.,
ŝθ (xt, t) ≈ st (xt). To fit the function ŝθ to the true score function st, its parameter θ is optimized
by minimizing the following score matching loss:

JSM (θ) =
1

2
E
[
λt ∥st (xt)− ŝθ (xt, t)∥2

]
, (4)

where t ∼ U (t; 0, 1), xt ∼ qt (xt), and λt is some weighting function. Although JSM is intractable
since the true score st is not accesible, minimization of JSM is equivalent to minimization of the
following denoising score matching loss (Vincent, 2011):

JDSM (θ) =
1

2
E
[
λt ∥∇xt log q0t (xt | x0)− ŝθ (xt, t)∥2

]
(5)

=
1

2
E
[
λt

σ2
t

∥ϵ− ϵ̂θ (xt, t)∥2
]
, (6)

where x0 ∼ pdata (x0), ϵ ∼ N (ϵ;0, I), xt = αtx0 + σtϵ, and ϵ̂θ (xt, t) = −σtŝθ (xt, t). When
λt = σ2

t , the denoising score matching loss JDSM is equivalent to a simple noise prediction loss
used in the denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) and DDPM++ (Song
et al., 2020b). After training, the estimated score function ŝθ (xt, t) = −ϵ̂θ (xt, t) /σt is substituted
for the true score st to simulate the reverse diffusion process for sample generation:

dxt =
(
ftxt − g2t ŝθ (xt)

)
dt+ gtdw̄ (7)

=

(
ftxt +

g2t
σt

ϵ̂θ (xt)

)
dt+ gtdw̄, (8)

where x1 ∼ p1 (x1) = N (x1;0, I). To simulate the SDE, some numerical sover, e.g., the Eu-
ler–Maruyama method (Kloeden et al., 2012), is applied.

2.2 TIME TRUNCATION IN SAMPING

When simulating the estimated SDE of Eq. (8), we need to confront numerical instability around
the boundary points at t = 0, 1. For example, when we adopt the VP SDE, the coefficients of Eq.
(8) take the following form:

ft =
1

αt
· dαt

dt
, gt = −

2

αt
· dαt

dt
,
g2t
σt

= − 2

αtσt
· dαt

dt
. (9)

Since αt → 0 as t → 1 and σt → 0 as t → 0, these coefficients diverge at the boundary points.
Therefore, it is difficult to simulate the SDE around t = 0, 1 with a naive SDE solver. To avoid
the singularity, some heuristics are commonly used in previous works. For instance, Song & Ermon
(2019) limit the simulation time within t ∈ [tmin, 1] instead of t ∈ [0, 1] to avoid the divergence near
t = 0. The truncation time tmin is typically set to a small positive number (e.g., 10−5). In addition,
they use a noise schedule such that g2t = g2min+

(
g2max − g2min

)
t. In this noise schedule, α1 does not

exactly correspond to 0; hence the divergence at t = 1 is also avoided, although q1 = p1 no longer
holds. Such heuristics are dominantly used when sampling from continous-time diffusion models
after introduced by the original paper by Song & Ermon (2019).

2.3 TIME TRUNCATION IN MAXIMUM LIKELIHOOD TRAINING

Song et al. (2021) have shown that when the weighting function λt in Eq. (6) is equal to g2t , the
denoising score matching loss can be seen as an upper bound of the negative log-likelihood except

3
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for a constant factor as follows:

−E [log p0 (x0;θ)] ≤ E
[
g2t
2
∥∇xt

log q0t (xt | x0)− ŝθ (xt, t)∥2
]

(10)

− E
[
g2t
2
∥∇xt

log q0t (xt | x0)∥2 +Dft +H (q01, p1)

]
= Ex0

Et,ϵ

[
g2t
2σ2

t

∥ϵ̂θ∥2 −
g2t
σ2
t

ϵ̂⊤θ ϵ−Dft +H (q01, p1)

]
︸ ︷︷ ︸

LELBO(x0,θ)

(11)

= JDSM (θ) + const., (12)

where x0 ∼ pdata (x0), and pt is a marginal distribution of the solution of an SDE defined by the
estimated score function in Eq. (8). Eq. (12) justifies the minimization of the denoising score match-
ing loss JDSM as maximum likelihood training, since it is equivalent to maximizing the evidence
lower bound (ELBO).

However, when training diffusion models with the ELBO objective, we again encounter numerical
instability around the boundary points, since the coefficients of LELBO include divergent terms.
Therefore, heuristics to avoid the singularity, such as time truncation in Sec. 2.2, are also widely
used for the maximum likelihood training of diffusion models (Song et al., 2021; Kingma et al.,
2021). Song et al. (2021) justifies it by demonstrating that the ELBO objective with time truncation
corresponds to maximizing the ELBO for the perturbed data xtmin ∼ qtmin as follows:

−E [log ptmin
(xtmin

;θ)] ≤ J̃DSM (θ, tmin) + const., (13)

J̃DSM (θ, tmin) =

∫ 1

tmin

g2t
2σ2

t

∥ϵ− ϵ̂θ (xt, t)∥2 dt. (14)

Although the divergence at the boundary points occurs especially for the ELBO objective, time
truncation is often used even when training with the non-ELBO objective (e.g., λt = σ2

t in Song
et al. (2020b)).

In summary, the heuristics to avoid the numerical instability at the time boundaries, such as time
truncation, are predominantly applied in both trainig and inference time for diffusion models. Al-
thoguh such heuristics help to stabilize training and sampling of diffusion models in practice, they
hinder a rigorous correnpondence between the true SDE in Eq. (3) and the estimated SDE in Eq.
(8). Furthermore, it is difficult to chooce appropriate values of hyperparameters (e.g., tmin, g2min,
and g2max), requiring additional tuning costs. Our main focus in this paper is to completely eliminate
these heuristics without harming the practical performance of the diffusion models.

3 METHOD: FULLDIFFUSION

In this section, we provide a way to eliminate the time truncation from both training and sampling of
diffusion models. Specifically, we first demonstrate that the divergence of the ELBO objective at the
boundary points can be avoided by carefully designing the parameterization and the noise schedule.
By this modification, we can eliminate time truncation from training especially for the maximum
likelihood objective. Furthermore, we provide a way to reduce the variance of the Monte-Carlo
estimation of the ELBO objective using stratified sampling. Finally, to eliminate time truncation
from sampling, we introduce a novel numerical SDE solver to avoid the divergence during the SDE
simulation. By combining all of them, we can stably train and sample from diffusion models without
relying on any heuristics like time truncation. We name the framework of this training and sampling
scheme for diffusion models FullDiffusion.

3.1 PARAMETERIZATION AND NOISE SCHEDULE

As described in the previous section, the negative ELBO, LELBO, in Eq. (11) includes divergent
coefficients at the time boundaries t = 0, 1. This indicates that LELBO almost always diverges to
infinity in expectation; hence training is infeasible with the ELBO objective unless relying on time
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truncation. However, if the noise predictor ϵ̂θ has a structure that nagates the divergence at the time
boundaries, the divergence of LELBO can be avoided even when the coefficients are divergent.

More specifically, we derive sufficient conditions regarding the noise schedule and the parameteri-
zation to eliminate the divergence as follows:

1. ft = − t
1−t2 and gt =

√
2t

1−t2 , which leads to αt =
√
1− t2 and σt = t.

2. The noise predictor ϵ̂θ takes the following form:
ϵ̂θ (xt, t) = σt

(
σ2
t xt − α2

t ν̂θ (xt, t)
)
, (15)

where ν̂θ is some parametric function defined by a neural network (e.g., U-Net).

Under this parameterization and noise schedule, LELBO takes the following form:

LELBO (x0;θ) = E
[
αtν̂ (xt, t)

⊤ (
αtσtν̂ (xt, t) + 2

(
αt

(
1 + σ2

t

)
ϵ− σ3

t x0

))]
+

1

6
∥x0∥2 +

D

2

(
7

6
+ log (2π)

)
. (16)

The derivation is provided in Appendix A. It can be seen that the divergent coefficients are elimi-
nated from LELBO under this difinition; hence diffusion models can be trained with this objective
without relying on time truncation. In addition, the boundary conditions, i.e., (α0, σ0) = (1, 0)
and (α1, σ1) = (0, 1), strictly hold for this noise schedule, so this definition does not break the
correspondence between the true SDE and the estimated SDE.

In fact, this parameterization of the noise predictor ϵ̂θ is a very natural choice when we see it
as an estimator of the score function. Under this definition of ϵ̂θ, the estimated score function
ŝθ = −ϵ̂θ/σt has the following form:

ŝθ (xt, t) = α2
t ν̂θ (xt, t)− σ2

t xt (17)
When the time t approaches 1, this score estimator converges to−x1, which corresponds to the score
function of the standard Gaussian distribution, whereas it converges to ν̂θ (x0, 0) as t → 0. There-
fore, the neural network ν̂θ (·, t) will naturally learn the interpolation between the score function of
the non-perturbed data x0 and the one of the pure Gaussian distribution of x1 by definition.

3.2 VARIANCE REDUCTION VIA STRATIFIED SAMPLING

So far, we have focused on a way to fix the divergence of the ELBO itself. However, to train
diffusion models in a feasible manner, the variance of the Monte Carlo estimate of the ELBO should
also be small. Song et al. (2021) propose to use importance weighting to reduce the variance of the
maximum likelihood objective, but it cannot be directly applied to our case due to the difference
of the parameterization. Instead, we propose to use stratified sampling for the time variable t for
variance reduction. When we estimate the expectation of the ELBO over the training set using a

minbatch of n data
{
x
(i)
0

}n

i=1
, we construct an unbiased estimator of the expectation as follows:

Ex0
[LELBO (x0;θ)]

= E

[
1

n

n∑
i=1

αti ν̂θ

(
x
(i)
ti , ti

)⊤ (
αtiσti ν̂θ

(
x
(i)
ti , ti

)
+ 2

(
αti

(
1 + σ2

ti

)
ϵ− σ3

tix
(i)
0

))]

+
1

6n

n∑
i=1

∥∥∥x(i)
0

∥∥∥2 + D

2

(
7

6
+ log (2π)

)
, (18)

where ti ∼ U (ti; (i− 1) /n, i/n). We experimentally observe that this technique is effective to
reduce the variance of the Monte-Carlo estimation and stabilize the training.

3.3 FULLDIFFUSION-SOLVER: A SPECIAL SDE SOLVER FOR FULLDIFFUSION

Under our parameterization, the reverse-time diffusion in Eq. (8) takes the following form:

dxt = −t
(
1− 2t2

1− t2
xt + 2ν̂θ (xt, t)

)
dt+

√
2t

1− t2
dw̄ (19)
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Algorithm 1 FullDiffusion-Solver-1
Require: Number of discritization steps M , Predictor ν̂θ

xs ∼ N (xs;0, I)
s← 1
for i← 1 to M do

t← s− 1/M

xt ∼ N
(
xt;

√
1−s2

1−t2

((
1 + s2 − t2

)
xs +

(
s2 − t2

)
ν̂θ (xs, s)

)
,
t2(s2−t2)
s2(1−t2) I

)
s← t, xs ← xt

end for
return xt

Since the coefficients of the first and last terms diverges at t = 1, it is still difficult to simulate
it using a naive SDE solver, such as the Euler–Maruyama method. However, we can avoid the
singularity by utilizing the semi-linear structure of the SDE as proposed by Lu et al. (2022a;b).
First, we reformulate the SDE with the signal predictor x̂θ as follows:

dxt =
1

t

(
2− t2

1− t2
xt −

2√
1− t2

x̂θ (xt, t)

)
dt+

√
2t

1− t2
dw̄, (20)

where x̂θ (xt, t) = (xt − ϵ̂θ (xt, t)) /αt

= αt

((
1 + σ2

t

)
xt + σ2

t ν̂θ (xt, t)
) (21)

The solution for this SDE given the initial state xs can be analytically derived as follows:

xt = e
∫ t
s

2−u2

u(1−u2)
du
xs −

∫ t

s

2e
∫ t
τ

2−u2

u(1−u2)
du

τ
√
1− τ2

x̂θ (xτ , τ) dτ +

∫ t

s

√
2τ

1− τ2
e
∫ t
τ

2−u2

u(1−u2)
du
dwτ (22)

=
αsσ

2
t

αtσ2
s

xs −
2σ2

t

αt

∫ t

s

1

σ3
τ

x̂θ (xτ , τ) dτ +

√
2σ2

t

αt

∫ t

s

σ−3/2
τ dwτ , (23)

where 0 ≤ t < s ≤ 1. Using a first-order approximation for the second term, we can derive a
first-order solver for the SDE:

xt ≈
t2
√
1− s2

s2
√
1− t2

xs +
s2 − t2

s2
√
1− t2

x̂θ (xs, s) +
t
√
s2 − t2

s
√
1− t2

ξ (24)

=

√
1− s2

1− t2
((
1 + s2 − t2

)
xs +

(
s2 − t2

)
ν̂θ (xs, s)

)
+

t

s

√
s2 − t2

1− t2
ξ (25)

:= x̃t (26)

where ξ ∼ N (ξ;0, I). Since s > 0 and t < 1 always hold, this solver does not suffer from the
divergence at all timesteps; hence it can be applied without relying on time truncation.

Furthermore, we can extend it to a second-order approximation using the Runge–Kutta (RK)
method (Runge, 1895; Kutta, 1901; Rößler, 2009) as follows:

xt ≈
t2
√
1− s2

s2
√
1− t2

xs +
s2 − t2

s2
√
1− t2

((
1− 1

2c

)
x̂θ (xs, s) +

1

2c
x̂θ (x̃r, r)

)
+

t
√
s2 − t2

s
√
1− t2

ξ (27)

= x̃t +
s2 − t2

2cs2
√
1− t2

(x̂θ (x̃r, r)− x̂θ (xs, s)) , (28)

where 0 < c ≤ 1, r = s+ c (t− s). We set c = 2/3, which is known as the Ralston’s method (Ral-
ston, 1962) that has the smallest local approximation error among two-stage RK methods. The al-
gorithms of our solvers are summarized in Algorithms 1 and 2. We name our first- and second-order
solvers FullDiffusion-Solver-1 and -2, respectively.

As Song et al. (2020b) pointed out, there exists a corresponding probability flow ODE that shares
the same marginal density with the forward SDE in Eq. (1).

dxt =

(
ftxt −

1

2
g2t st (xt)

)
dt (29)

6
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Algorithm 2 FullDiffusion-Solver-2
Require: Number of discritization steps M , Predictor ν̂θ

xs ∼ N (xs;0, I)
s← 1
for i← 1 to M do

t← s− 1/M, r ← s− 2/ (3M)
ξ ∼ N (ξ;0, I)
ν̂s ← ν̂θ (xs, s)

x̃r ←
√

1−s2

1−r2

((
1 + s2 − r2

)
xs +

(
s2 − r2

)
ν̂s

)
+ r

s

√
s2−r2

1−r2 ξ

x̃t ←
√

1−s2

1−t2

((
1 + s2 − t2

)
xs +

(
s2 − t2

)
ν̂s

)
+ t

s

√
s2−t2

1−t2 ξ

ν̂r ← ν̂θ (x̃r, r)

x̂s ←
√
1− s2

((
1 + s2

)
xs + s2ν̂s

)
, x̂r ←

√
1− r2

((
1 + r2

)
x̃r + r2ν̂r

)
xt ← x̃t +

3(s2−t2)
4s2

√
1−t2

(x̂r − x̂s)

s← t, xs ← xt

end for
return xt

By approximating the score function st (·) with the estimator ŝθ (·, t) = −ϵ̂θ (·, t) /σt, the ODE
takes the following simple form under the noise schedule and the parameterization in Section 3.1:

dxt = −σt (xt + ν̂θ (xt, t)) dt (30)

Therefore, when using an ODE sampler, we do not need to care about the numerical instability, and
can use any sampler, such as the Euler method, the Heun’s method and so forth. In addition, we
can evaluate the exact likelihood of the ODE via the instantaneous change of variables formula as
proposed in Song et al. (2020b).

4 RELATED WORKS

4.1 NUMERICAL INSTABILITY IN DIFFUSION MODELS

The numerical instability of continuous-time diffusion models around the boundary points has been
widely recognized ever since the original paper by Song & Ermon (2019). However, to the best of
our knowledge, almost all previous works still rely on time truncation to deal with it (Kingma et al.,
2021; Karras et al., 2022). One of the most related attempts regarding this topic is a technique called
soft truncation (Kim et al., 2022), in which the truncation time tmin is randomly chosen during
training. Although soft truncation alleviates the numerical instablity during training, it still requires
the choice of a minimum truncation time. Yang et al. (2024) have also tackled the issue of the
numerical instability, and pointed out that the Lipschitz constant of the noise predictor ϵ̂θ tends to
diverge near the boundary point at t = 0. To alleviate it, they propose to round the time variable
t near the boundary point with a staircase function when inputting small t to the noise predictor.
While they experimentally demonstrate the effectiveness of this method, they only apply it to the
discrete-time diffusion model, so the applicability to the continuous-time model is still unclear.
Moreover, the rounding operation loses information about time near the boundary point, which may
leads to performance degradation especially for continuous-time models. On the other hand, our
method can fundamentally solve the problem of numerical instability by the design of the model
parameterization, the noise schedule, and the numerical solver.

4.2 MAXIMUM LIKELIHOOD TRAINING OF DIFFUSION MODELS

Originally, Ho et al. (2020) derived an ELBO objective for the discrete-time diffusion model, but
they experimentally show that a non-ELBO objective performs better in terms of the sample quality.
After Song et al. (2020b) reformulate the continuous-time diffusion model using stochastic differen-
tial equations, Song et al. (2021) and Huang et al. (2021) derive the corresponding ELBO objective
for it. In previous works, it is reported that the ELBO objective tends to perform better in terms of
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Table 1: Negative log-likelihood (bits/dim) and sample quality (FID scores) on CIFAR-10 and Ima-
geNet 32× 32. Bold indicates best result in the corresponding column. Lower is better.

Model
CIFAR-10 ImageNet 32× 32

NLL FID NLL FID

tmin SDE ODE SDE ODE SDE ODE SDE ODE

Baseline 10−5 ≤ 3.28 3.16 2.55 3.98 ≤ 3.62 3.56 5.42 5.68
+ ELBO loss 10−5 ≤ 3.08 2.95 5.87 6.03 ≤ 3.61 3.55 11.15 14.14

FullDiffusion 0 ≤ 2.83 2.80 2.53 2.89 ≤ 3.41 3.41 5.00 5.02
− Var. reduction 0 ≤ 2.86 2.85 2.58 2.92 ≤ 3.50 3.48 5.13 5.18

the likelihood evaluation, but the sample quality is likely to degrade compared to the simple noise
prediction loss (i.e., λt = σ2

t ). However, we experimentally observe that, when using our method,
the ELBO objective shows good performance in terms of both likelihood and sample quality, which
will be shown in Section 5.

4.3 PARAMETERIZATION & NOISE SCHEDULE

In the original paper by Song & Ermon (2019), the noise predictor ϵ̂θ is directly parameter-
ized by a neural network (e.g., U-Net), and many subsequent works follow that parameteriza-
tion. However, some variants are also proposed in the previous works, such as the signal predictor
x̂θ = (xt − ϵ̂θ) /αt, the velocity predictor v̂θ = (ϵ̂θ − σtxt) /αt (Salimans & Ho, 2022). How-
ever, these variants also suffer from the numerical instability around the boundary points, so they do
not contribute to our motivation.

On the noise schedule, Song & Ermon (2019) use the linear g2t schedule as described in Section 2.2,
but many variants have been proposed in previous works. For example, the cosine αt schedule is
often used (Nichol & Dhariwal, 2021; Salimans & Ho, 2022; Choi et al., 2022). In this paper, we
show that the combination of the linear σt schedule and the parameterization in Eq. (15) contributes
to the stable maximum likelihood training without time truncation. However, there might be other
variants to achive the same goal, which we leave as future work.

5 EXPERIMENT

To demonstrate the effectiveness of our FullDiffusion, we perform experiments of image generation
and density estimation tasks. We use DDPM++ (Song & Ermon, 2019) for VP SDE as a baseline
model, and perform an ablation study by modifying the design of parameterization, noise schedule,
and numerical solvers as explained in Section 3. We also compare with DDPM++ trained with
the ELBO objective as proposed in Song et al. (2021). Our experimental settings are based on the
original papers by Song et al. (2020b; 2021), and our implementations are also based on their official
codes.

Datasets: In our experiment, we use the CIFAR-10 and downsampled ImageNet (Deng et al., 2009)
datasets. Note that the old version of the downsampled ImageNet dataset used in Song et al. (2021)
is no longer available, so we adopt the new version of 32×32 resolution images provided at https:
//image-net.org. For fair comparison, we reimplement the official codes of Song et al. (2021)
for the new version of the downsampled ImageNet dataset, and compare the performance under the
same settings. Following the setting of Song & Ermon (2019); Song et al. (2021), we use uniform
dequantization to map the 8-bit images into a continuous space, since diffusion models are designed
for continuous data. We did not adopt variational dequantization in this experiment.

Evaluation: We evalutate the model performance with the negative log-liklihooed of the reverse
SDE and the probability flow ODE, and the Fréchet inception distance (FID) of the generated images
via SDE/ODE samplers. Since the negative log-likelihood for the reverse SDE is intractable, we
report its upper bound as in Song et al. (2021). We use FullDiffusion-Solver-2 introduced in Section
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(a) Ablation of Stratified Sampling (b) NFE vs FID

Figure 1: (a) Training curves of FullDiffusion with/without stratified sampling (SS). (b) Sample
quality measured by FID of the baseline model (DDPM++) and FullDiffusion (FD) for CIFAR-10.
For the baseline model, the Euler–Maruyama (EM) solver is applied.

3.3 and Euler method as SDE and ODE solvers respectively in order to generate samples for FID
evaluation of the FullDiffusion model.

The result is summarized in Table 1. Our key observations are as follows:

• FullDiffusion consistently performs beter than the baseline models in terms of both the
test likelihood and the FID, whereas previous studies have reported that there is a trade-off
between likelihood and FID, and models trained with an ELBO objective tend to perform
poorer in terms of FID. This may be due to the fact that our method eliminates numerical
instability in maximum likelihood training and sampling.

• FullDiffusion tends to have small gaps between SDE and ODE in the likelihood evaluation.
This indicates that FullDiffusion has a tight variational lower bound.

• Variance reduction via stratified sampling slightly improves the overall performance in
terms of both the likelihood and the FID.

Effect of variance reduction: To demonstrate the effectiveness of the stratified sampling for vari-
ance reduction of the Monte-Carlo estimate, we provide learning curves when training FullDiffusion
for CIFAR-10 with or without the stratified sampling in Figure 1 (a). It can be seen that the loss vari-
ance is significantly reduced by introducing stratified sampling. Although the variance is relatively
small even without stratified sampling, FullDiffusion can be trained more stably by using it.

Performance of FullDiffusion-Solvers: We also compare the performance of our first- and second-
order FullDiffusion-Solvers in terms of sample quality measured by FID scores for CIFAR-10. We
vary different number of function evaluations (NFE) which is the numebr of calls to the model
ν̂θ. The results are shown in Figure 1 (b). We observe that the FID converges to good sample
quality around 100 NFE even with the first-order solver, and the convergence accelerates slightly
by using the second-order solver, whereas the original DDPM++ requires about 1,000 NFE with
the Euler–Maruyama method to reach good quality. This indicates that our FullDiffusion-Solvers
are effective not only to avoid the divergence at the boundary points but also to efficiently generate
samples compared to naive solvers (e.g., the Euler–Maruyama method). The generated samples of
CIFAR-10 by our FullDiffusion-Solver-2 are visualized in Figure 2.

6 CONCLUSION

In this paper, we propose FullDiffusion, a framework to train and infer score-based diffusion models
without relying on time truncation around the boundary points. To overcome inherent numerical in-
stability of diffusion models, we reformulate the parameterization and the noise schedule so that the
maximum likelihood objective does not diverge around the boundary points. Moreover, to avoid the
divergence during SDE simulation, we propose a special SDE solver named FullDiffusion-Solver.
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(a) CIFAR-10 (b) ImageNet-32

Figure 2: Generated samples of (a) CIFAR-10 and (b) ImageNet-32 by FullDiffusion-Solver-2.

By combining these techniques, we completely eliminate heuristics like time truncation to alleviate
the numerical instability from continuouse-time diffusion models. We experimentally observe that
our FullDiffusion consistently outperforms the baseline models in terms of both likelihood evalu-
ation and sample quality measured by FID scores. Our experiments only include low-resolution
image generation, such as CIFAR-10, so validation in more large-scale and high-resolution datasets
is promising future direction. We hope that this work will help practioners eliminate troublesome
hyperparameter tunings regarding numerical instability (e.g., truncation time tmin) of diffusion mod-
els.
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A DERIVATION OF EQ. (16)

LELBO (x0,θ) = E
[
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t
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For the derivation, we have used the following facts:

E
[
∥ϵ∥2

]
= D,E

[
ϵ⊤x0

]
= 0. (38)

B DETAILS OF EXPERIMENTAL SETUPS

B.1 CODE

Our implementation for the experiment is available at https://anonymous.4open.
science/r/fulldiffusion_iclr2025-54A1/.

B.2 TOTAL AMOUNT OF COMPUTE

We run our experiments mainly on cloud GPU instances with 8× A100. It took approximately 330
hours for our experiments in total.

B.3 LICENSE OF ASSETS

Datasets: The terms of access for the CIFAR-10 database is provided at https://www.cs.
toronto.edu/˜kriz/cifar.html The terms of access for the ImageNet database is pro-
vided at https://www.image-net.org/download.

Code: Our implementation is based on the official PyTorch code of Song et al. (2020b) provided at
https://github.com/yang-song/score_sde_pytorch/tree/main.

C APPENDIX

You may include other additional sections here.

13

https://anonymous.4open.science/r/fulldiffusion_iclr2025-54A1/
https://anonymous.4open.science/r/fulldiffusion_iclr2025-54A1/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/download
https://github.com/yang-song/score_sde_pytorch/tree/main

	Introduction
	Background
	Diffusion Models
	Time Truncation in Samping
	Time Truncation in Maximum Likelihood Training

	Method: FullDiffusion
	Parameterization and Noise Schedule
	Variance Reduction via Stratified Sampling
	FullDiffusion-Solver: A Special SDE Solver for FullDiffusion

	Related Works
	Numerical Instability in Diffusion Models
	Maximum Likelihood Training of Diffusion Models
	Parameterization & Noise Schedule

	Experiment
	Conclusion
	Derivation of Eq. (16)
	Details of Experimental Setups
	Code
	Total amount of compute
	License of Assets

	Appendix

