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ABSTRACT

Current mainstream methods for learning with noisy labels often rely on sample
selection, such as the common ‘small-loss’ strategy that considers samples with
smaller losses as clean. Following this, most research focuses on developing more
robust sample selection strategies. However, they are still influenced by prob-
lems such as the ‘self-confirmation bias’, which stems from their reliance on the
in-training model. Furthermore, relying solely on visual information for sample
selection can introduce biases and challenges, such as the common issue of ‘hard
noise’, where samples are erroneously labeled as semantically similar categories.
To address these challenges, this paper proposes using the popular vision-language
model CLIP for sample selection. Leveraging CLIP, a pre-trained model, can effec-
tively mitigate self-confirmation bias. Additionally, CLIP’s distinctive language
modality supplements potential biases introduced by relying solely on visual infor-
mation for sample selection. Specifically, we introduce the CLIPSelector, which
utilizes both the CLIP’s zero-shot classifier and an easily-inducible classifier based
on its vision encoder and noisy labels for sample selection. We theoretically and
empirically demonstrate the unique advantages of the CLIPSelector. To evaluate
its effectiveness on existing benchmarks, we further introduce a semi-supervised
learning method called MixFix, tailored for noisy datasets. MixFix leverages the
subset selected by the CLIPSelector and gradually introduces missing clean sam-
ples and re-labeled noisy samples based on different thresholds. In comparison
to current hybrid methods involving iterative sample selection and multiple off-
the-shelf techniques like model co-training, our approach simplifies the process.
Nonetheless, our approach achieves competitive or superior performance across
various benchmarks, including datasets with synthetic and real-world noise. Code
will be released upon acceptance.

1 INTRODUCTION

Over the past two decades, deep neural networks have demonstrated exceptional success in various
vision tasks, attributed to the existence of high-precision, large-scale datasets such as ImageNet-1K.
However, collecting high-quality labels for such datasets is generally a time-consuming and labor-
intensive process. To mitigate the cost, an alternative is automatic labeling (e.g. “webly-labeled”
dataset by web-crawling the images and labels). While reducing the time and cost of manual labeling,
it inevitably leads to low-quality noisy labels.

To address the problem of label noise, a variety of methods have been proposed. Some methods, aim
to develop robust loss functions (Zhang & Sabuncu, 2018; Ghosh et al., 2017; Wang et al., 2019)
or noise transition matrix (Goldberger & Ben-Reuven, 2016; Patrini et al., 2017; Hendrycks et al.,
2018). However, in practice, these methods are often sub-optimal dealing with high noise ratio
and complicated noise. More recently, methods based on sample selection (Sun et al., 2022; Wei
et al., 2022; Wang et al., 2022; Karim et al., 2022; Patel & Sastry, 2023; Zhang et al., 2021a) to
filter out samples with noisy labels become perhaps the dominant paradigm. For example, the most
common sample selection strategy is the ‘small-loss’ mechanism motivated by the memorization
effect (Arpit et al., 2017), that is, the model tends to fit clean samples earlier than noisy samples in the
training process thus resulting in relatively smaller losses for the clean ones. Following this, most of
methods focus primarily on improving sample selection mechanisms, including different variants of
‘small-loss’ strategy (Li et al., 2020a; Xia et al., 2021; Arazo et al., 2019), and utilizing kNN (Bahri
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Example images from 'Tench' class

Figure 1: The losses distribution of WebVision dataset after one epoch warmup training, i.e., training
with whole dataset and cross-entropy loss. Here ‘clean’/‘noisy’ denotes samples been identified as
clean/noisy by CLIPSelector while the ‘gray vertical line’ denotes the sample selection boundary
induced by ‘small-loss’ mechanism. We show some example images on part 1 and part 4 which
represents samples identified as ‘clean’ by ‘small-loss’ while rejected by CLIPSelector and vice versa.
Especially, we mark two specific samples1from the semantic class ‘Tench’ with red and green. The
red one is a post stamp of the tench fish which is very semantically similar to the real tench images
thus with smaller loss. While the green one is actually a photo of pop-eyed goldfish however with
black color which is more different than the common tench fish with golden color.

et al., 2020; Ortego et al., 2021; Feng et al., 2022) or graph models (Wu et al., 2020; 2021) based on
samples’ feature space for sample selection. However, these methods are inherently affected by the
label noise as they still rely on the current in-training model, leading to the infamous self-confirmation
bias. Some methods (Han et al., 2018; Yu et al., 2019) attempt to alleviate self-confirmation bias
through model co-training, but this approach noticeably introduces additional computational overhead.
Moreover, these methods solely rely on the visual information within the images, which can readily
lead to biased sample selection outcomes, as exemplified in cases of ‘hard noise’ - noisy sample
exhibits a highly visual similarity with incorrectly labeled classes, as illustrated in fig. 1.

To address the aforementioned issues, this paper proposes utilizing popular vision-language model
- CLIP (Radford et al., 2021) for sample selection. As a pre-trained foundation model, CLIP is
unaffected by the label noise in the collected dataset thus avoiding self-confirmation bias. More
importantly, CLIP’s distinctive language modality and zero-shot classifier allow us to compensate for
the biases that may arise from solely relying on visual information for sample selection. For instance,
this allows us to identify ‘hard noise’ (fig. 1) that is difficult to distinguish using only the visual
modality. To the best of our knowledge, we are the first to employ a large-scale vision-language model,
particularly leveraging its language modality, for sample selection. Specifically, we simultaneously
utilize CLIP’s zero-shot classifier and an easily-inducible classifier based on noisy labels and CLIP’s
vision encoder. We name this method CLIPSelector and theoretically and empirically demonstrate
its effectiveness and unique advantages. Furthermore, to evaluate the performance of CLIPSelector
on existing datasets, we introduce a straightforward semi-supervised learning method tailored for
noisy datasets, namely MixFix. In detail, based on the subset selected by CLIPSelector we gradually
introduce ignored clean samples and re-labeled noisy samples into the initial subset using two
different thresholds and then perform class balancing to obtain the final training set.

By leveraging CLIPSelector and MixFix we establish a simple two-step framework to facilitate
learning in the presence of noisy labels: we initiate with sample selection for noisy datasets using
CLIPSelector and then perform pure semi-supervised learning using MixFix. Compared to existing
methods involving multiple iterations of sample selection and model training, our approach features a
simpler structure and aligns better with end-to-end training logic when the noise information in the
dataset is agnostic. Despite its simplicity, our method achieves competitive and superior performance
on various datasets, including CIFAR10/CIFAR100 with synthetic noise (symmetric, asymmetric, and
instance-dependent noise), as well as real-world noisy datasets like Red Mini-ImageNet, WebVision,
Clothing1M, and ANIMAL-10N.

1We can not find the specific source of red image, but highly-related images can be found with keyword:
1966 Japanese Goldfish Stamp Postage, while the green one can be originated back to https:
//acnl.fandom.com/wiki/Pop-Eyed_Goldfish.
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2 RELATED WORKS

Sample selection for noisy dataset Most of the recent sample selection methods do so, by relying
on the in-training model, for example the per-sample losses (Arazo et al., 2019; Li et al., 2020a; Han
et al., 2018; Yu et al., 2019; Jiang et al., 2018) or model predictions (Song et al., 2019; Malach &
Shalev-Shwartz, 2017; Yi & Wu, 2019). A few works focus on further improving the sample selection
quality by modelling the loss with markov process (Xia et al., 2021) or dynamically select samples
with multiple metrics (Zhou et al., 2020). Instead of selecting samples based on the model prediction,
some works try to utilize the feature representations for sample selection. Wu et al. (2020) and Wu
et al. (2021) try to build a kNN graph and identify clean samples through connected sub-graphs,
while Feng et al. (2022) and Ortego et al. (2021) propose to utilize a simpler kNN in feature space to
alleviate the effect of noisy labels. Some recent methods involving contrastive learning also identify
clean sample pairs based on neighborhood relationships in the feature space (Li et al., 2022) or fit
Gaussian distributions to model the clean distribution (Huang et al., 2023). However, these methods
remain unstable and prone to self-confirmation bias, especially in strong noise scenarios, due to its
intrinsic reliance on the in-training model based on noisy dataset.

Utilization of auxiliary model To alleviate self-confirmation bias, the utilization of an auxiliary
noise-free model is reasonable and straightforward. Related to us, some methods also try to use
pre-trained noise-free models for learning with noisy labels. Zheltonozhskii et al. (2021); Cheng
et al. (2021) propose to utilize self-supervised pre-training since it can learn good representations in
the label-free case. Bahri et al. (2020) utilize the pre-logit space of the pretrained model along with
the kNN classifier for sample selection. Zhu et al. (2022) follows the same idea and also involves
CLIP, but they only utilize its vision encoder as a common pretrained encoder without utilizing the
language encoder. We emphasize that language modality is critical as a supplementary modality.

Exploration of whole dataset To fully explore the entire dataset, specifically the non-selected
subset, earlier methods propose label correction techniques (Zhou et al., 2020; Song et al., 2019).
More recent methods typically treat the selected subset as labeled and the non-selected subset
as unlabeled, applying existing semi-supervised learning methods. For instance, techniques like
MixMatch (Berthelot et al., 2019) employed by DivideMix and FixMatch used by Self-Filter (Wei
et al., 2022) fall into this category. Some loss functions that do not involve labels, such as contrastive
loss, have also been applied to these samples to indirectly incorporate them into the training process.
In this paper, we present a semi-supervised learning method tailored for noisy datasets called MixFix.
Differing from existing methods, we set different thresholds based on the consistency between their
model-predicted labels and the given noisy labels when introducing samples into training.

3 METHOD

In section 3.1, we cast the learning with noisy labels problem in a formulation that covers mainstream
sample selection methods. We also provide essential details about the CLIP model. In section 3.2,
we elaborate our sample selection method, namely CLIPSelector. In section 3.3, we introduce our
semi-supervised learning method, namely MixFix. In section 3.4, we provide further discussions on
the topics of sample selection and the use of the CLIP model for this purpose.

3.1 PROBLEM FORMULATION

Sample selection with noisy labels Given a dataset of training samples (xi, yi)
N
i=1 i.i.d sampled

from a noisy joint distribution P (x, y) with support as sup(P ) = {x ∈ RC×H×W , y ∈ {1, ...,K}}
where K denotes the number of semantic classes, the goal of our method is to learn a classifier f
that can accurately predict the true labels y for new, unseen examples. Let us denote the clean joint
distribution as P true(x, y). Most sample selection methods aim to approximate and optimize the
unbiased empirical risk of f on the clean joint distribution P true(x, y) with samples from noisy
joint distribution P (x, y): R̂true(f) = 1

N

∑N
i=1 wiL(xi, yi; f), where wi are the sample weights.

Particularly, with optimal weights (wi = P true(yi|xi)/P (yi|xi)) we can achieve risk-consistent
learning2. However, since P true(yi|xi) and P (yi|xi) are typically both unknown for xi, the objective

2Refer to Appendix F for details. We omit the variables for brevity, e.g, P (y = yi|x = xi) as P (yi|xi).
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of sample selection methods often revolves around estimating these two to subsequently estimate
the optimal weights. In general, the noisy label yi can serve as a confident proxy of the noisy
distribution P (yi|xi), making our focus on utilizing an additional auxiliary classifier P̃ (yi|xi) to
estimate P true(yi|xi). Here, we propose a concise form sufficient to comprehensively represent
most existing sample selection methods:

w̃i = G(P̃ (yi|xi), yi) ∈ 0, 1, (1)

where G denotes a specific sample selection mechanism, such as the ‘small loss’ strategy, to further
refining the estimation. In addition, it is commonly accepted to restrict the weights as binary since
for most classification datasets, P true(yi|xi) tends to be highly centered around only one class. As a
result, the optimal weight wi usually leans towards either 0 or 1 for most samples.

CLIP We briefly introduce the CLIP model (Radford et al., 2021), which is currently one of the
most prevalent vision-language models. CLIP aims to learn from a dataset of image-text pairs,
denoted as (x′

i, zi)
M
i=1, which is i.i.d. sampled from a hidden joint distribution Q(x, z) with support

as sup(Q) = {x ∈ RC×H×W , z ∈ Rd}. We have below as CLIP training loss:

L(x′
i, zi; g, h) =

1

2
(− log

exp(g(x′
i)

Th(zi))∑M
j=1 exp(g(x

′
i)

Th(zj))
− log

exp(g(x′
i)

Th(zi))∑M
j=1 exp(g(x

′
j)

Th(zi))
). (2)

Here, g and h denote the vision and language encoder, respectively. Intuitively, the CLIP model tries
to maximize the correspondence between positive image-text pairs.

3.2 CLIPSELECTOR: SAMPLE SELECTION WITH VISION-LANGUAGE MODELS

In this section, we propose a new sample selection method based on CLIP, namely CLIPSelector.
According to eq. (1), our method is divided into two main steps: 1. estimate P̃ (yi|xi) with CLIP;
2. calculate weight w̃i with specific G. For the convenience of subsequent presentations, we make
the notations consistent for CLIP’s training dataset and the in-question noisy dataset. Specifically,
we extend the in-question noisy dataset to be sampled i.i.d from P (x, y,z), where sup(P ) = {x ∈
RC×H×W , y ∈ [0, 1, . . . ,K], z ∈ Rd}; similarly, we extend the sampling distribution of CLIP’s
training dataset to Q(x, y,z), where sup(Q) = {x ∈ RC×H×W , y ∈ 0, 1, . . . ,K, . . . ,K∞, z ∈
Rd}.

3.2.1 ESTIMATE P̃ (yi|xi) WITH CLIP

We consider two options for estimation: directly utilizing CLIP’s zero-shot classifier, or, ignoring
CLIP’s language modality and treating its vision encoder as a regular pre-trained model and training
a new classifier atop it with in-question noisy dataset.

Estimate P̃ (yi|xi) with CLIP zero-shot classifier Firstly, we assume the causal mechanism for
P and Q as: x → z → y where z denotes the description and y denotes the semantic label thus
we have y⊥x | z. Roughly speaking, we assume that the semantic label yi can be independently
generated based on a decent image description zi alone for each image xi. We thus have:

P̃zeroshot(yi|xi) =

∫
Q(yi|zi)Q(zi|xi)dz ∝

∫
Q(yi|zi)Q(zi,xi)dz. (3)

Specifically, according to eq. (2), we show that Q(zi,xi) can be estimated by computing the
output similarity (exp(g(xi)

Th(zi))) of the CLIP model (Appendix F). However, Q(yi|zi) remains
unknown and cannot be learned during the CLIP training process. Most current studies customarily
design a single prompt as follows: ‘A photo of class name of yi.’, implicitly assuming
that Q(y = yi|z = ‘A photo of class name of yi.

′) ≈ 1. We can then estimate the
integral by sampling zi. It is plausible that with more high-quality samplings of zi instead of only
utilizing one single prompt the estimation would be better. In this work, we propose below template
to generate multiple prompts using class-specific features:

‘A photo of {class name of yi}, which is/has {class-specific
feature j of class yi}.’
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For more details about how to generate prompts, please refer to Appendix B. Then we can simplify
eq. (3) with above prompts as below:

P̃zeroshot(yi|xi) ∝∼
∑J

j=1 Q̃(z = ‘A photo of {class name of yi}, which
is/has {feature j of class yi}.’,xi).

(4)

Estimate P̃ (yi|xi) with CLIP vision encoder and noisy dataset By treating the CLIP model as
an ordinary large-scale pre-trained model, we can leverage its vision encoder g solely along with the
in-question noisy dataset (xi, yi)

N
i=1 to train a new classifier f ′ for estimation. With the common

cross-entropy loss, it is straightforward that the normalized prediction logits serve as an estimate of
P̃ (y|x):

P̃trained(yi|xi) = softmax(f ′(g(xi)))yi . (5)
By default, we train a LogisticRegression classifier as f ′ with fixed extracted features and noisy
dataset. Empirically, we also consider non-parametric kNN in ablations Section 4.1.

3.2.2 CALCULATE WEIGHT wi

With P̃ (yi|xi) estimated above, we can estimate weight wi for each sample with any applica-
ble sample selection mechanism G. In this work, we consider two simple and popular mecha-
nisms, named Gloss and Gconsistency. For Gloss , we firstly model the per-sample cross-entropy
losses ({− log P̃ (y = yi|xi)}Ni=1) with GMM and then select samples by thresholding its probability
belonging to the smaller component. Due to the possible class imbalances and the various semantic
diversity of different classes, slightly different than the common approach utilizing a single GMM3,
we model the losses of samples from each class by a separate GMM model.

Gloss = 1(P(− log P̃ (y = yi|xi) ∈ GMMsmall) ≥ θloss). (6)

For Gconsistency , we calculate a consistency measure (defined as the ratio of the probability of noisy
label class to the highest class probability) and select samples with high consistency:

Gconsistency = 1(P̃ (y = yi|xi)/max
k

P̃ (y = k|xi) ≥ θcons). (7)

3.3 MIXFIX: EFFICIENT SEMI-SUPERVISED TRAINING BY ABSORBING AND RELABELLING

To evaluate our method on widely-acknowledged benchmarks, in this section, we propose a simple
semi-supervised learning method for noisy dataset — namely MixFix. Please note, the notations
employed in this section are defined independently. Specifically, we denote the selected subset and
non-selected subset as (Xc,Yc) and (Xn,Yn) respectively. Motivated by pseudo-labelling (Lee et al.,
2013) and FixMatch (Sohn et al., 2020), we then inspect each sample’s current prediction pi in
non-selected subset with:

(wi, yi) =


(0, yi), if max

l
pi(l) < θr and max

l
pi(l) < θ′r *Drop*

(1, yi), if max
l

pi(l) > θr and yi = argmax
l

pi(l) *Absorb*

(1, argmax
l

pi(l)), if max
l

pi(l) > θ′r and yi ̸= argmax
l

pi(l) *Relabel*

(8)

Intuitively, we ‘absorb’ missed clean samples (yi = argmaxl pi(l)) and ‘relabel’ noisy samples (yi ̸=
argmaxl pi(l)) with different thresholds in non-selected subset, and progressively append it to initial
selected subset to form a dynamic larger training set. Differing from existing semi-supervised learning
techniques, we typically set θr ≤ θ′r. This helps us make full use of noisy labels to differentiate
the ‘absorb’ and ‘relabel’ process. Please refer to Section 4.1 for more analysis. To further counter
the class imbalance in this new training set, the minority class is over-sampled. Then, we apply a
common cross-entropy loss for training with this expanded and class-balanced training set, along
with Mixup interpolation (Zhang et al., 2017). The detailed process is presented in Algorithm 1.

3.4 ADDITIONAL DISCUSSION

3Please refer to Appendix C for more comparisons on seperate GMM and single GMM.
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Algorithm 1: MixFix.
Input :Selected subset (Xc,Yc), non-selected

subset (Xn,Yn), θr, θ′r, max epochs T
while i < T do

Generate (X i
r , Yi

r) with eq. (8) ;
Generate (X i

t , Yi
t) with (X i

r , Yi
r) and

(Xc, Yc) ;
Minority over-sampling with (X i

t , Yi
t) ;

Model training with (X i
t , Yi

t) and MIXUP.
end

To be greedy or conservative? For all sam-
ple selection methods, an inevitable challenge
is how to balance the precision and recall of
sample selection. In this paper, we adopt a con-
servative sample selection strategy by taking the
intersection of different sample selection out-
comes, prioritizing the precision of sample se-
lection. Compared to more greedy sample selec-
tion strategies, we lean towards relying on the
semi-supervised learning strategy - MixFix to
gradually introduce more samples into training.
This can avoid magnifying the influence of noisy
samples due to excessively greedy sample selection, but it also has obvious weaknesses, that some
‘hard’ clean samples will inevitably be missed.

To fully explore CLIP? The utilization of the CLIP model for learning with noisy labels remains
an area that requires further investigation. To ensure a fair comparison with existing work, we adopt
standard sample selection paradigm, refraining from training or fine-tuning the CLIP model (Zhou
et al., 2022; Chen et al., 2022). In addition to exploiting CLIP for sample selection, incorporating
established techniques for learning from noisy labels into prompt-based learning may also offer
promising directions, please refer to Appendix E for preliminary results.

4 EXPERIMENTS

In this section, we conduct extensive experiments on two standard benchmarks with synthetic label
noise, CIFAR-10 and CIFAR-100, and four real-world noisy datasets, Red Mini-ImageNet (Jiang
et al., 2020), Clothing1M (Xiao et al., 2015), WebVision (Li et al., 2017), and ANIMAL-10N (Song
et al., 2019). We mainly follow previous works (Li et al., 2020a; Garg et al., 2023; Feng et al., 2022)
for model structures and training settings, please refer to Appendix A for more details.

4.1 ABLATIONS STUDY

Analyzing sample selection w.r.t different classifiers and different mechanisms In appendix G,
we theoretically conclude that the performance of the zero-shot classifier is influenced by the quality
of utilized prompts and the domain gap between CLIP training dataset and the in-question noisy
dataset, while the performance of the easily-inducible classifier trained based on CLIP’s vision
encoder and the in-question noisy dataset is influenced by the noise of the in-question dataset.
To validate this, we empirically test with two datasets with controllable noise ratios, that is, the
CIFAR10/100 dataset with synthetic noise and the Red Mini-ImageNet dataset with real-world noise.
In fig. 2, we show the sample selection performance and find that: i) As the noise ratio increases,
regardless of the dataset, noise types, the backbone of the CLIP model or the empirical variant of
the trained classifier (LogisticRegression VS kNN), the zero-shot classifier gradually outperforms
the trained classifier. This further validates our theoretical findings; ii) Additionally, we notice that
when comparing two different modes for obtaining the training classifier, the LogisticRegression
classifier empirically exhibits superior performance to the kNN classifier. Therefore, we choose the
LogisticRegression classifier as our default choice for trained classifier; iii) Furthermore, we find
that different sample selection mechanisms (Gconsistency VS Gloss) show distinct advantages and
disadvantages on different datasets. Given that noise information is typically unknown in real-world
scenarios, as analyzed in section 3.4, we default to a conservative sample selection strategy, which
involves simultaneously utilizing multiple sample selection strategies and selecting their intersection.

Analyzing CLIP Zero-shot classification as a baseline In this section, we consider utilizing
CLIP’s zero-shot classifier directly with the test set, following a procedure that we describe in
Section 3.2. In table 1, we present the zero-shot classification results on six common benchmarks
and compare them with current state-of-the-art methods (best results summarized from subsequent
tables in the paper.) as well as our own method. It’s worth noting that CLIP is utilized with the
VIT-B/32 architecture here, while our method and the SOTA methods adopt simpler structures,
such as PreResNet-18 for the CIFAR dataset. Therefore, this comparison is indeed ‘over stringent’.
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Figure 2: Comparisons of various sample selection methods w.r.t different dataset/noise type/noise
ratio. Here, we show the ROC AUC score of binary identification of clean samples.

Still, we observe that, when compared to directly utilizing CLIP’s zero-shot classifier, our method
delivers significantly improvements on most datasets, with the exception of the Red Mini-ImageNet
dataset. We attribute this to the fact that the Red Mini-ImageNet dataset introduces noisy samples
collected through online search engines and replaces clean samples with specific proportions. As
suggested in Theorem 1, this results in a small domain gap, which in turn benefits CLIP’s performance.
Nevertheless, our approach outperforms the SOTA on all datasets.

Table 1: Testing accuracy (%) with CLIP zero-shot classifier

Model CIFAR10 CIFAR100 Red Mini-ImageNet WebVision Clothing1M ANIMAL-10N

CLIP zero-shot 89.97 63.72 78.12 73.36 39.73 76.12

SOTA 92.68 67.7 49.55 80.9 74.84 84.6
Ours 95.15 71.17 54.21 81.56 74.87 88.14

Sample selection with other vision-language models Here, we compare CLIP with another
vision-language model - ALIGN (Jia et al., 2021). Specifically, we compare their performance on
sample selection based on the CIFAR10 dataset with instance-dependent noise (Chen et al., 2021a).
In table 2, we can see ALIGN behaves similarly well as CLIP concerning precision with even higher
recall. This demonstrates that our proposed idea of using vision-language models for sample selection
is widely effective.

Table 2: Precision-Recall of sample selection results with CLIP and ALIGN.

Noise ratio 0.1 0.2 0.3 0.4

Precision Recall Precision Recall Precision Recall Precision Recall
CLIP 99.73 70.75 99.53 75.07 99.25 77.77 99.03 79.23
ALIGN 99.47 72.47 99.13 78.64 99.01 81.22 98.74 84.53

Hyper-parameters w.r.t MixFix In this section, we ablate on the only two hyperparameters of our
semi-supervised training strategy MixFix: the ‘absorb’ threshold θr and the ‘relabel’ threshold θ′r.
Similar to our dilemma when doing sample selection, here we also need to weigh the precision and
recall when introducing additional training samples. In table 3 we demonstrate that under different
noise ratios, a too high or too low threshold leads to performance degradation. In fig. 3, we further
reveal the inherent mechanism, for example, after reducing the ‘absorb’ threshold θ′r, the proportion
of training samples increases and the accuracy of training samples decreases.

7
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Table 3: Ablations on MixFix with
synthetic CIFAR100 noisy dataset.
The top-3 results are bolded.

θr θ′r
Noise ratio

20% 50% 80% 90%

0.7 76.46 74.69 69.50 62.91
0.7 0.8 76.63 75.23 69.72 63.11

0.9 77.06 75.17 67.76 59.17

0.7 75.49 74.30 67.95 63.29
0.8 76.36 74.90 68.86 63.420.8
0.9 76.66 74.50 67.37 58.09

0.7 74.53 73.49 68.74 62.22
0.8 75.98 74.25 68.94 62.810.9
0.9 75.78 74.23 67.17 59.38

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

Figure 3: Ntrain denotes number of training sam-
ples, Nclean denotes number of clean training sam-
ples and Nall denotes number of clean training
samples.

4.2 RESULTS ON SYNTHETIC NOISY DATASET

In this section, we firstly evaluate our method on the CIFAR datasets with synthetic symmetric/asym-
metric noise. In table 4, We can see that our method gets competitive and better performance in all
experiment settings, especially when the noise ratio is high (63.11% testing accuracy with 90% sym-
metric noise on CIFAR100 dataset). Also, we would like to emphasize that we keep hyper-parameters
fixed for all experiments here as we believe the method robustness in a noise agnostic scenario is
critical.

Table 4: Testing accuracy (%) on on CIFAR-10 and CIFAR-100 with synthetic noise.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Co-teaching+ (Yu et al., 2019) 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
F-correction (Patrini et al., 2017) 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
PENCIL (Yi & Wu, 2019) 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
LossModelling (Arazo et al., 2019) 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
DivideMix (Li et al., 2020a) 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
ELR+ (Liu et al., 2020) 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
MOIT (Ortego et al., 2021) 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.5 36.0
SelCL+ (Li et al., 2022) 95.5 93.9 89.2 81.9 93.4 76.5 72.4 59.6 48.8
TCL (Huang et al., 2023) 95.0 93.9 92.5 89.4 92.6 78.0 73.3 65.0 54.5

Ours 95.92±0.15 95.67±0.28 95.04±0.37 94.23±0.54 94.89±0.16 78.20±0.45 75.23±0.29 69.72±0.61 63.11±0.89

To further validate the performance of our method in handling the ‘hard noise’, we also conduct
experiments on instance-dependent noise in table 5. Different from symmetric or asymmetric noise,
instance-dependent noise assumes that semantic-similar samples are more prone to get mislabelled,
aligning better with our earlier definition of ‘hard noise’. Besides, here we here exclude MixFix and
solely employ the selected samples for training with cross-entropy loss. This exclusion serves to
provide an additional ablation analysis of the sample selection performance of CLIPSelector.

4.3 RESULTS ON REAL-WORLD NOISY DATASETS

Finally, in table 6, table 7, and table 8 we show results on the ANIMAL-10N, Red Mini-ImageNet
and WebVision datasets, respectively. In summary, our proposed method demonstrates substantial
improvements compared to the current state-of-the-art approaches on both large-scale web-crawled
datasets and small-scale human-annotated noisy datasets. We note, that the proposed sample selection
method can be used in combination with other schemes. In table 9 we show results on the Clothing1M
dataset both with our default setting (CLIPSelector + MixFix) and with it incorporated to two
additional schemes. First incorporating our method with co-training, and second replacing MixFix
with DivideMix (Li et al., 2020a). We observe that we obtain results that are superior to the current
state-of-the-art. However, we would like to note that the majority of existing methods have small
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Table 5: Testing accuracy (%) on CIFAR10 with instance-
dependent noise.

Method Noise ratio

10% 20% 30% 40%

Cross-Entropy 91.25 86.34 80.87 75.68
F-correction (Patrini et al., 2017) 91.06 86.35 78.87 71.12
Co-teaching (Han et al., 2018) 91.22 87.28 84.33 78.72
GCE (Zhang & Sabuncu, 2018) 90.97 86.44 81.54 76.71
DAC (Thulasidasan et al., 2019) 90.94 86.16 80.88 74.80
DMI (Xu et al., 2019) 91.26 86.57 81.98 77.81
SEAL (Chen et al., 2021a) 91.32 87.79 85.30 82.98

Cross-Entropy* 90.76 86.08 80.64 75.27
CLIPSelector + Cross-Entropy 92.33±0.37 91.06±0.37 89.71±0.37 88.26±0.37

Table 6: Testing accuracy (%) on
ANIMAL-10N.

Method Accuracy

Cross-Entropy 79.4
SELFIE (Song et al., 2019) 81.8
PLC (Zhang et al., 2021b) 83.4
NCT (Chen et al., 2021b) 84.1
InstanceGM (Garg et al., 2023) 84.6

Ours 88.14±0.46

differences on the Clothing1M dataset despite the fact that they have large performance differences
on other datasets. This suggests that additional training techniques may have a greater impact than
sample selection methods on this specific dataset, possibly due to the fact that the Clothing1M dataset
is more fine-grained than other datasets. For such fine-grained noisy datasets, sample selection may
not be the optimal strategy, as suggested in Section 3.1, where the basis of sample selection methods
relies on highly concentrated conditional probabilities for the samples.

Table 7: Testing accuracy (%) on on Red Mini-ImageNet.

Method Noise ratio

20% 40% 60% 80%

Cross-Entropy 47.36 42.70 37.30 29.76
Mixup (Zhang et al., 2017) 49.10 46.40 40.58 33.58
DivideMix (Li et al., 2020a) 50.96 46.72 43.14 34.50
MentorMix (Jiang et al., 2020) 51.02 47.14 43.80 33.46
FaMUS (Xu et al., 2021) 51.42 48.06 45.10 35.50
InstanceGM (Garg et al., 2023) 58.38 52.24 47.96 39.62

Ours 61.44±0.45 58.42±0.66 53.18±0.47 43.82±0.87

Table 8: Testing accuracy (%) on on WebVision.

Methods WebVision ILSVRC2012

Top1 Top5 Top1 Top5

Co-teaching (Han et al., 2018) 63.5 85.20 61.48 84.70
DivideMix (Li et al., 2020a) 77.32 91.64 75.20 90.84
ELR+ (Liu et al., 2020) 77.78 91.68 70.29 89.76
NGC (Wu et al., 2021) 79.16 91.84 74.44 91.04
FaMUS (Xu et al., 2021) 79.4 92.8 77.0 92.8
RRL (Li et al., 2020b) 76.3 91.5 73.3 91.2
SelCL+ (Li et al., 2022) 79.9 92.6 76.8 93.0
SSR+ (Feng et al., 2022) 80.9 92.8 75.8 91.8
TCL (Huang et al., 2023) 79.1 92.3 75.4 92.4

Ours 81.56±0.29 93.26±0.65 77.80±0.25 92.08±0.44

Table 9: Testing accuracy (%) on
Clothing1M.

Method Accuracy

Cross-Entropy 69.21
F-correction (Patrini et al., 2017) 69.84
RRL (Li et al., 2020b) 74.30
C2D (Zheltonozhskii et al., 2021) 74.84
DivideMix (Li et al., 2020a) 74.76
ELR+ (Liu et al., 2020) 74.81
SSR+ (Feng et al., 2022) 74.83
TCL (Huang et al., 2023) 74.80

Ours 73.41±0.65
Ours (Co-training) 74.01±0.47
CLIPSelector + DivideMix 74.87±0.44

5 CONCLUSION

To mitigate the issues of ‘self-confirmation bias’ and compensate for visual-only modality in current
mainstream sample selection methods, in this paper we propose a method utilizing the large-scale
vision-language model CLIP for sample selection, called CLIPSelector. We substantiate its effec-
tiveness through both theoretically and empirically. Furthermore, we introduce a straightforward
semi-supervised learning method tailored for noisy datasets, called MixFix, without the need for
intricate off-the-shelf techniques. We emphasize that the exploration of utilizing vision-language
models for noisy datasets, such as the potential of existing prompt learning techniques, remains an
open direction. Additionally, the possibility of a large domain gap between the CLIP model and the
target dataset can influence results, indicating a need for more refined vision-language models. Lastly,
our experiments suggest that sample selection methods may not be optimal for fine-grained noisy
datasets, which presents itself also as one of our future research directions.
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A EXPERIMENT DETAILS

In this section, we present the dataset details and implementation details.

A.1 DATASET DETAILS

CIFAR10 and CIFAR100 datasets comprise 50,000 images. Following established conventions,
we assess our method’s performance with two types of artificial noise: "symmetric noise," wherein
labels are randomly flipped across all samples using a uniform distribution, and "asymmetric noise,"
wherein labels of visually similar categories, such as Horse ↔ Deer and Dog ↔ Cat, are ran-
domly interchanged. Moreover, we conduct experiments with various noise levels: 20%, 50%,
80% and 90% symmetric noise, as well as 40% asymmetric noise, adhering to the settings in Di-
videMix ((Li et al., 2020a)). For instance-dependent noise, we utilize the label noise file provided
by Chen et al. (2021a) (https://github.com/chenpf1025/IDN/tree/master/data/
CIFAR10/label_noisy).

Red Mini-ImageNet dataset (Jiang et al., 2020) is a real-world dataset containing a total of 100
categories. It is an extension of the Mini-Imagenet dataset, where noise is introduced at varying ratios.
Specifically, noisy images and their respective labels are obtained by crawling the internet, and these
noisy images replace the original images in the Mini-ImageNet dataset, with different noise ratios.
To ensure a fair comparison with previous studies (Garg et al., 2023; Xu et al., 2021), the images are
resized from their original size of 84×84 pixels to 32×32 pixels. Moreover, in accordance with the
existing literature (Garg et al., 2023; Xu et al., 2021), we utilize noise ratios of 20%, 40%, 60%, and
80%.

WebVision (Li et al., 2017) is an extensive dataset comprising 1,000 classes of images obtained
through web crawling. In line with previous studies (Jiang et al., 2018; Li et al., 2020a; Ortego et al.,
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2021), we evaluate our methods using the top 50 classes from the Google Subset of WebVision. The
estimated noise ratio for this subset is approximately 20%.

ANIMAL-10N (Song et al., 2019) is a recently introduced real-world noisy dataset comprises 10
classes of animals. The dataset has undergone manual labeling, with an estimated label noise ratio of
around 8%. Similar to the CIFAR datasets, ANIMAL-10N consists of 50,000 training images and
10,000 test images.

Clothing1M (Xiao et al., 2015) is a large-scale dataset containing 14 classes of clothing images,
obtained by crawling online shopping websites. It consists of a substantial collection of 1 million
noisy images. The estimated noise ratio for this dataset is approximately 38.5%.

A.2 IMPLEMENTATION DETAILS

We use CLIP model with VIT-B/32 backbone in all experiments except for specific ablations. In all
experiments, our default approach is CLIPSelector + MixFix (Ours).

For CIFAR10 and CIFAR100, we use a PresActResNet-18 (He et al., 2016) as the backbone in
all experiments following previous works. For CIFAR10, we set θloss = 0.5, θcons = 0.8 for
CLIPSelector and θr = 0.8, θ′r = 0.9 for MixFix; For CIFAR10, we set θloss = 0.5, θcons = 0.8 for
CLIPSelector and θr = 0.7, θ′r = 0.8 for MixFix. We train both networks with the a SGD optimizer
for 300 epochs with a momentum of 0.9 and a weight decay of 5e-4. The initial learning rate is 0.02
and is controlled by a cosine annealing scheduler. The batchsize is fixed as 128.

For Red Mini-ImageNet, we also use a PresActResNet-18 (He et al., 2016) as the backbone following
previous works (Garg et al., 2023; Xu et al., 2021). For CLIPSelector, we set θloss = 0.5, θcons = 0.8.
For MixFix, we set θr = 0.8, θ′r = 0.95. We train the network with a SGD optimizer for 300 epochs
with a momentum of 0.9 and a weight decay of 5e-4. The initial learning rate is 0.02 and reduced by
a factor of 10 after 200 and 250 epochs. The batchsize is fixed as 64.

For WebVision, we use a InceptionResNetv2 as the backbone following (Li et al., 2020a). For
CLIPSelector, we set θloss = 0.5, θcons = 1. For MixFix, we set θr = 0.7, θ′r = 1.0. We train the
network with a SGD optimizer for 150 epochs with a momentum of 0.9 and a weight decay of 1e-4.
The initial learning rate is 0.01 and reduced by a factor of 10 after 80 and 120 epochs. The batchsize
is fixed as 32.

For Clothing1M, we use a ResNet50 as the backbone following (Li et al., 2020a) with ImageNet
pretrained weights. For CLIPSelector, we set θloss = 0, θcons = 0.5. For MixFix, we set θr =
0.7, θ′r = 1.0. We train the network with a SGD optimizer for 150 epochs with a momentum of 0.9
and weight decay of 1e-3. The initial learning rate is 0.002 and reduced by a factor of 10 after 50 and
100 epochs. The batchsize is fixed as 32.

For ANIMAL-10N, we use a VGG-19 (Simonyan & Zisserman, 2014) as the backbone with batch-
normalization following (Song et al., 2019). For CLIPSelector, we set θloss = 0.5, θcons = 0.8. For
MixFix, we set θr = 0.7, θ′r = 0.95. We train the network with SGD optimizer for 300 epochs with a
momentum of 0.9 and weight decay of 5e-4. The initial learning rate is 0.02 and reduced by a factor
of 10 after 150 and 250 epochs. The batchsize is fixed as 128.

A.3 MIXUP

Mixup (Zhang et al., 2017) is widely used in current works dealing with label noise because it is very
lightweight and easy to implement. Assuming two random samples x1,y1 and x2,y2, a mixed new
sample xm,ym will be generated as:

λ ∼Beta(α, α)

λ′ =max(λ, 1− λ)

xm =λ′x1 + (1− λ′)x2

ym =λ′y1 + (1− λ′)y2.

We then train with the new virtual mixed sample (xm, ym). Instead of direct training with sam-
ples from the clean subset, we expect that virtual samples generated by Mixup are further away
from the dataset samples thus can alleviate the noise memorization effect (Zhang et al., 2017). in
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our experiments, following DivideMix (Li et al., 2020a), we set α as 4 for beta mixture for the
CIFAR10/CIFAR100 datasets, and as 0.5 for all other real-world noisy dataset.

B PROMPTS GENERATION AND FURTHER ANALYSIS

How multiple prompts with class-specific features are generated? Regarding the generation
multiple prompts based on class-specific features, motivated by recent work (Menon & Vondrick,
2022), we first generate multiple features for each class by asking ChatGPT about each category’s
characteristics. We use below question for ChatGPT 3.5:

For CLIP model, the prompts matter a lot. can you give me some
discriminative features of some classes? Please list it in nested
python as each class has multiple descriptions. Please ensure it

is formatted as ‘which has ...’ or ‘which is ...’ or ‘which
...’. For example, [‘Cat’, ‘Lynx’, ‘Wolf’, ‘Coyote’, ‘jaguar’,
‘Cheetah’, ‘Chimpanzee’, ‘Orangutan’, ‘Hamster’, ‘Guinea pig’].

We then generate multiple prompts with template in Section 3.2. We will include our generated
class-specific prompts along with the code upon acceptance.

Comparison of class-specific prompts with other prompt style To experimentally validate the
superiority of our prompt style based on class-specific features, we conduct a comparative analysis of
its zero-shot classification performance against alternative prompt styles. Specifically, we consider
three empirical variants including ours:

1. Single prompt: ‘A photo of {class name of yi}.’;
2. Multiple prompts with different templates: ‘A good photo of {class name of

yi}.’/‘An old picture of {class name of yi}.’ .etc;
3. Multiple prompts with class-specific features: ‘A photo of {class name of yi},

which is/has {class-specific feature j of class yi}.’ with features
such as the color, shape, etc.

In table 10, we present zero-shot classification results on six noisy datasets using the three prompt
styles mentioned above and different backbones for CLIP model (VIT-B/32 and VIT-L/14@336px).
We observe that, in most cases, the effectiveness of our prompting style is at its best, especially
when employing a larger-scale CLIP backbone (VIT-L/14@336px). This aligns with our theoretical
analysis.

Table 10: Zero-shot classification with different prompt styles.

Model Prompt technique CIFAR10 CIFAR100 Red Mini-ImageNet WebVision Clothing1M ANIMAL-10N

CLIP (ViT-B/32)
1 88.29 61.62 74.40 72.40 39.80 75.08
2 89.73 63.65 75.14 68.12 39.68 75.70
3 87.97 63.72 78.12 73.36 37.73 74.62

CLIP (ViT-L/14@336px)
1 94.78 74.36 80.20 45.13 85.18 85.12
2 95.17 74.96 79.88 47.26 85.78 87.00
3 95.19 76.78 81.96 48.15 85.36 87.98

C PER-CLASS SEPERATE GMM VS WHOLE SINGLE GMM

In this section, we compare the differences between using seperate GMM for each class and a single
GMM for all classes in sample selection. We conduct experiments on the CIFAR10 dataset with
instance-dependent noise. As shown in table 11, we observe that the seperate GMM yields a higher
recall while maintaining competitive precision in sample selection. In table 12, we find and validate
that the seperate GMM allows us to obtain a more balanced subset, thereby mitigating class imbalance
issues and partially explaining why we achieve a better recall above.
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Table 11: Precision and recall of sample selection on CIFAR10 dataset with instance-dependent noise
with Separate and Single GMM.

Noise ratio 0.1 0.2 0.3 0.4

Precision Recall Precision Recall Precision Recall Precision Recall
Separate GMM 99.73 70.75 99.53 75.09 99.25 77.77 99.04 79.26
Single GMM 99.77 68.90 99.61 71.88 99.43 73.68 99.29 72.67

Table 12: Max-Min number of selected samples from each class.

Noise ratio 0.1 0.2 0.3 0.4

Max Min Max Min Max Min Max Min

Separate GMM 4061 2228 3938 2148 3656 1851 3312 1440
Single GMM 4188 1720 4038 1757 3682 1455 3403 947

D ADDITIONAL RESULTS WITH MODEL CO-TRAINING

Previous experiments demonstrated that our approach is simple and achieves competitive results,
and we would also like to emphasize that our approach is not mutually exclusive but can be used
in conjunction with existing techniques. For example, we can seamlessly use CLIPSelector with
any existing method (including the mentioned UNICON and PES) by adding an additional warm-up
stage using only selected samples in CLIPSelector. Here, as an illustration, we co-train the models (a
proven effective and simple technique by exchanging selected samples between the two models) on
the CIFAR100 and Animal-10N datasets after combining it with our method Results are presented
(table 13), further demonstrating that our approach has great potential alongside existing techniques
and is comparable to existing works.

Table 13: Incorporating model co-training with our method.

Dataset CIFAR100 0.5sym CIFAR100 0.9sym Animal-10N

Ours 75.23 63.11 88.14
Ours + Co-training 77.51 66.72 88.79
UNICON (Karim et al., 2022) 77.6 44.8 /
PES (Bai et al., 2021) 74.3 / /

E UTILIZING CLIP AS A PRETRAINED VISUAL ENCODER

In addition to applying the CLIP model for sample selection, as a pre-trained foundation model,
combining CLIP with existing noisy label learning techniques is an interesting research direction that
we intend to explore in the future. Here, we present preliminary experiments based on SSR (Feng
et al., 2022) by replacing the original encoder with the CLIP pre-trained encoder. As shown in
table 14, the pre-trained CLIP encoder provides effective improvement, further demonstrating the
potential of the CLIP model for LNL. Also, please note that fine-tuning CLIP is not trivial, as
described in the following GitHub issues. Through better hyperparameter settings, we believe there
is still room for further progress.

F FULL DERIVATION IN SECTION 3.1 AND SECTION 3.2

In this section, we first provide the full derivation of the weighted empirical risk and the solution of
optimal weight. We then briefly explain the relation of output similarity in CLIP model and the joint
probability.

Weighted empirical risk minimization in sample selection For better clarification, we here repeat
the problem formulation in Section 3.1. Given a dataset of training samples (xi, yi)

N
i=1 i.i.d sampled
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Table 14: Replacing encoder in SSR (Feng et al., 2022) with CLIP vision encoder.

Method CIFAR10 50% symmetric noise CIFAR10 90% symmetric noise

SSR 95.45 93.45
CLIP+SSR 96.25 95.98

from a hidden joint distribution P (x, y) with supp(P ) = {x ∈ RC×H×W , y ∈ {1, ...,K}} and K
denotes the number of semantic classes, the goal of supervised learning is to learn a model f that can
accurately predict the true labels y for new, unseen examples. Mathematically, we often optimize the
empirical risk with samples i.i.d sampled from noisy distribution P (x, y):

R̂P (f) =
1

N

N∑
i=1

L(xi, yi; f)

Here L can be any applicable classification-calibrated surrogate loss to 0-1 loss, normally we use
Cross-Entropy loss:

L(xi, yi; f) = − log
exp(f(xi)yi

)∑K
j=1 exp(f(xi)j)

.

Owing to the ERM principle, we can uniformly minimize w.r.t the expected risk by minimizing above
empirical risk:

RP (f) = EP (x,y)L(x, y; f)

However, in this work we focus on learning with noisy labels, that is to say, there exist discrepancy
between the noisy training distribution P (x, y) and clean unknown distribution P true(x, y). In this
condition, for the same specific model f , we have the expected risk on real distribution as:

Rtrue(f) ≜ RP true

(f) = EP true(x,y)L(x, y; f)

To bridge the distribution discrepancy, we can easily find that:

Rtrue(f) = EP true(x,y)L(x, y; f) = EP (x,y)
P true(x, y)

P (x, y)
L(x, y; f).

Further, we assume P true(x,y)
P (x,y) = P true(y|x)P true(x)

P (y|x)P (x) = P true(y|x)
P (y|x) as label noise normally does not

affect the sample itself (P (x) = P true(x)). We then get the corresponding weighted empirical risk
with noisy labels,

R̂true(f) =
1

N

N∑
i=1

P true(yi|xi)

P (yi|xi)
L(xi, yi; f)

with which we can ensure a risk-consistent classifier w.r.t clean distribution learned with even noisy
labels.

More than sample selection? Other than sample selection, another applicable direction is
the so-called risk-consistent methods, for example, to estimate the noise transition matrix by
assuming P true(ytrue|x) = T (ytrue|y)P (y|x). A common assumption here is to assume
the noise transition is instance-independent and label-dependent only thus to alleviate it from
T (ytrue|y,x) to T (ytrue|y). Please refer to related paper (Xia et al., 2019; 2022) for more
details. Though theoretically consistent, these methods often achieves relative sub-optimal
performance, since noise modes in real-world datasets are extremely complex, and current
noise models cannot accurately simulate them.

Relation of joint probability Q(xi, zi) and the CLIP similarity exp(g(xi)
Th(zi)) The zero-

shot classification paradigm in eq. (4) is widely applied, however without clear theoretical explanation.
In this work, we bridge the CLIP model with zero-shot classification by eq. (3). We here explain
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the probabilistic relation of the learned similarity value (exp(g(xi)
Th(zi))) and the joint probability

Q(xi, zi). Specifically, we can easily write the empirical risk with CLIP loss function in eq. (2) as:

R̂Q(g, h) =
1

2

M∑
i=1

(− log
exp(g(xi)

Th(zi))∑M
j=1 exp(g(xj)Th(zi))

− log
exp(g(xi)

Th(zi))∑M
j=1 exp(g(xi)Th(zj))

)

= −1

2
log

M∏
i=1

exp(g(xi)
Th(zi))∑M

j=1 exp(g(xj)Th(zi))

exp(g(xi)
Th(zi))∑M

j=1 exp(g(xi)Th(zj))

For the specific i.i.d sampled dataset, based on MLE principle we have the negative log-likelihood as:

L(g, h; (xi, zi)
M
i=1) = − log

M∏
i=1

Qg,h(xi|zi,x ∈ {xj}Mj=1; g, h)Qg,h(zi|xi, z ∈ {zj}Mj=1; g, h)

= − log

M∏
i=1

Qg,h(xi, zi)∑M
j=1 Qg,h(xj , zi)

Qg,h(xi, zi)∑M
j=1 Qg,h(xi, zj)

Comparing R̂Q(g, h) with L(g, h; (xi, zi)
M
i=1), we have: exp(g(xi)

Th(zj)) ∝ Qg,h(xi, zj), where
latter serves as an estimation of Q(xi, zj) after training.

G THEORETICAL COMPARISON OF TWO OPTIONS FOR SAMPLE SELECTION
WITH CLIP

An immediate question is: how does the zero-shot classifier (eq. (4)) compare to the trained classi-
fier (eq. (5)) in estimating P̃ (y|x). If the latter demonstrates comparable or even superior performance
to the former, there may be little incentive to employ the CLIP model for sample selection. Rather, pur-
suing further enhancements to existing large-scale visual-only pre-trained models may yield greater
potential. To this end, we conduct a theoretical analysis and compare the distances between the
estimated P̃ (yi|xi) and true P true(yi|xi) of the two options. Specifically, we have below theorems:
Theorem 1 (ESTIMATION WITH ZERO-SHOT CLASSIFIER). Let G,H be the hypothesis space of
vision encoder g and language encoder h. Let us denote the rademacher complexity as R(G ◦ H) of
the combined CLIP model. Supposing the range of L from eq. (2) as [0, lclip∞ ] for all (x, z) in sup(Q)
with g, h ∈ G,H . Then, for any δ > 0, with probability at least 1− δ we have the following holds:

d(P̃zeroshot(yi|xi), P
true(yi|xi)) ≤ εdomain +∆( λ1R(G ◦ H) + λ2l

clip
∞

√
log 1/δ

M
+ λ3εn)

with λ1, λ2, λ3 > 0. Here, εdomain denotes the bias term induced by the domain gap between Q and
P true, and ∆ ≥ 1 denotes the bias coefficient induced in designing prompts and sampling in eq. (3).
Theorem 2 (ESTIMATION WITH TRAINED CLASSIFIER ). Let F be the hypothesis space of trained
classifier f ′. Let us denote the rademacher complexity as R(F) of the trained classifier. Supposing
the range of L for training f ′ as [0, lnoisy∞ ] for all (x, y) in sup(P ) with f ′ ∈ F . Then, for any δ > 0,
with probability at least 1− δ we have the following holds:

d(P̃trained(yi|xi), P
true(yi|xi)) ≤ εnoise + λ1R(F) + λ2l

noisy
∞

√
log 1/δ

N

with λ1, λ2 > 0. Here, εnoise denotes the difference term induced by the distribution difference
between P and P true.

With theorem 1 and theorem 2, ignoring the uncontrollable and common optimization bound error
terms (marked in gray), we confirm that the zero-shot classifier estimation is highly related to domain
gap and prompts quality while the trained classifier estimation is affected by the noise of in-question
dataset, which is intuitively consistent with our expectation. Moreover, we empirically verify that
the higher the noise ratio, the greater the performance advantage of zero-shot classifier over the
trained classifier (section 4.1). More importantly, εnoise is always inevitable while ∆ can be easily
improved with better prompt engineering and εdomain can be also reduced by training CLIP with
more abundant dataset and thus minimizing the domain gap.
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Proof To start with, we first state the essential generalization error bound based on Rademacher
complexity (R):
Lemma 1 (Rademacher generalization error bound (Mohri et al., 2018)). Supposing we have N i.i.d
samples {xi}Ni=1 from distribution P (x). Let F be the hypothesis space of model f and L be any
classification-calibrated surrogate loss function of 0-1 loss ranging from [a, b]. Then, for any δ > 0,
with probability at least 1− δ we have the following holds for all f ∈ F:

R(f) ≤ R̂(f) + 2R(F) + (b− a)

√
log(1/δ)

2N

Here, RP (f) = EP (x)L(x; f) denotes the expected risk with f and R̂P (f) = 1
N

∑N
i=1 L(xi; f)

denotes the empirical one. Please do not confuse the notations here with other notations.

G.1 DERIVATION OF THEOREM 1

Let us recall the formulation of CLIP model. CLIP aims to learn from a dataset of image-text
pairs, denoted as (xi, zi)

M
i=1, which is i.i.d. sampled from a hidden joint distribution Q(x, z) with

sup(Q) = {x ∈ RC×H×W , z ∈ Rd}. As the dataset for training CLIP is often also considered
‘noisy’ 4. Here, we denote the clean joint distribution for CLIP training dataset as Q′(x, z) and the
corresponding clean dataset as (xi, z

′
i)

M
i=1.

According to eq. (3) in main paper, to measure the distance between P̃zeroshot(y|x) with P true(y|x),
we then divide it into two parts, i.e, the distance between P̃zeroshot(y|x) and Q′(y|x) (Model error)
and the distance between Q′(y|x) and P true(y|x) (Domain gap).

On the one hand, we simply define the domain gap as εdomain here, which represents how different
the true prediction distribution (Q′(y|x)) of CLIP training dataset is than the true prediction distribu-
tion (P true(y|x)) of out targeted classification problem. This is technically irreducible but can be
improved by making the CLIP training dataset more abundant and reduce its domain gap with the
targeted classification dataset.

On the other hand, the model error is further divided into two parts:

1. the distance between Qg,h(z|x) and Q′(z|x) (CLIP generalization error);

2. the error induced by eq. (4) when estimating P̃zeroshot(y|x) based on Q′(x, z) (Prompt
sampling and designing).

Intuitively, the first part represents how good our CLIP model learn and generalize, and the second
part represents how much extra bias we introduce when we try to approximate the integral with
sampling (eq. (4)).

CLIP generalization error Following main paper’s notations, let us recall here the empirical risk
on i.i.d sampled dataset from the noisy CLIP distribution Q as R̂Q(f):

R̂Q(g, h) =
1

M

M∑
i=1

Lclip(xi, zi; g, h),

and the corresponding empirical risk w.r.t clean dataset as:

R̂Q′
(g, h) =

1

M

M∑
i=1

Lclip(xi, z
′
i; g, h),

while the expected risk on the unknown clean CLIP distribution Q′ as RQ′
(g, h), as:

RQ′
(g, h) = EQ′Lclip(x, z; g, h)

4The image description sometimes can be random due to the data collection process (Jia et al., 2021; Radford
et al., 2021). We here also consider this into consideration. Please note this is different with our interested
label noise in this work.
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Below we present how to bound the CLIP generalization error. We denote (ĝ, ĥ) =

argming∈G,h∈H R̂Q(g, h) as the empirical optimal model w.r.t i.i.d sampled dataset from Q,
(g∗, h∗) = argming∈G,h∈H RQ′

(g, h) as the best-achievable model w.r.t clean distribution Q′ and
(gbayes, hbayes) = argming,h R

Q′
(g, h) as the Bayes optimal model w.r.t clean distribution Q′. We

can decompose the excess risk of our learned empirical optimal model f̂ over the Bayes optimal
model fbayes as:

RQ′
(ĝ, ĥ)−RQ′

(gbayes, hbayes) = RQ′
(ĝ, ĥ)−RQ′

(g∗, h∗)︸ ︷︷ ︸
estimation error

+RQ′
(g∗, h∗)−RQ′

(gbayes, hbayes)︸ ︷︷ ︸
approximation error

= RQ′
(ĝ, ĥ)−RQ′

(g∗, h∗) + Bapprox

≈ RQ′
(ĝ, ĥ)−RQ′

(g∗, h∗)
(9)

Exact analysis of approximation error is often intractable, we thus abbreviate it as Bapprox and omit
it in subsequent analysis. For estimation error, we have:

RQ′
(ĝ, ĥ)−RQ′

(g∗, h∗) = RQ′
(ĝ, ĥ)− R̂Q(ĝ, ĥ) + R̂Q(ĝ, ĥ)

− R̂Q(g∗, h∗) + R̂Q(g∗, h∗)−RQ′
(g∗, h∗)

R̂Q(ĝ,ĥ)−R̂Q(g∗,h∗)≤0
===============⇒

≤ RQ′
(ĝ, ĥ)− R̂Q(ĝ, ĥ) + R̂Q(g∗, h∗)−RQ′

(g∗, h∗)

≤ 2supg∈G,h∈H|RQ′
(g, h)− R̂Q(g, h)|

(10)

Supposing the range of Lclip as [0, lclip∞ ] for all (x, z) in sup(Q) with g, h ∈ G,H and Lclip is
λ-Lipschitz continuous w.r.t zi, according to Lemma 1 and triangle inequality, we have:

|RQ′
(g, h)− R̂Q(g, h)| ≤

Lemma 1︷ ︸︸ ︷
|RQ′

(g, h)− R̂Q′
(g, h)|+

Lipschitz continuous︷ ︸︸ ︷
|R̂Q′

(g, h)− R̂Q(g, h)|

≤ 2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ λ

1

M

M∑
i=1

∥zi − z′
i∥2

≤ 2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ εn

(11)

Here, we rewrite λ 1
M

∑M
i=1∥zi−z′

i∥2 as εn which is the error term induced by language noise (zi ̸=
z′
i). With eq. (9) and eq. (11), we have:

RQ′
(ĝ, ĥ)−RQ′

(gbayes, hbayes) ≤ 2(2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ εn) (12)
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To further connect the generalization error bound above and the distance of estimated probability
Qg,h(z|x) and Q′(z|x), we have:

RQ′
(g, h) = EQ′Lclip(x, z; g, h)

= −1

2

∫
Q′(x)

∫
Q′(z|x) logQg,h(z|x)dzdx

− 1

2

∫
Q′(z)

∫
Q′(x|z) logQg,h(x|z)dxdz

=
1

2

∫
Q′(x)DKL(Q

′(z|x), Qg,h(z|x))dx− 1

2

∫
Q′(x)

∫
Q′(z|x) logQ′(z|x)dzdx

− 1

2

∫
Q′(z)

∫
Q′(x|z) logQg,h(x|z)dxdz

≥ 1

2

∫
Q′(x)DKL(Q

′(z|x), Qg,h(z|x))dx

≥ d(Qg,h(z|x), Q′(z|x))
(13)

Specifically, we have (gbayes, hbayes) = argminRQ(g, h) when and only when Qg,h(z|x) =
Q′(z|x). Intuitively, when and only when the learned model is Bayes optimal, we have a zero
distance between the estimated probability and the ground-truth probability. According to eq. (12),
we thus have:

RQ′
(ĝ, ĥ)−RQ′

(gbayes, hbayes) ≤ 2(2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ εn) =⇒

d(Qĝ,ĥ(z|x), Q
′(z|x)) ≤ RQ′

(gbayes, hbayes) + 2(2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ εn)

≤ 2(2R(G ◦ H) + lclip∞

√
log(1/δ)

2M
+ εn)

(14)

Prompt sampling and designing We then take step two into consideration. According to eq. (3),
with Qĝ,ĥ(z|x) we can estimate P̃zeroshot(y|x). To quantify the additional error of the sampling
process (eq. (4)), we denote as ∆ a error coefficient which represents how much extra error been
induced. Let us recall the domain gap (εdomain) before, we thus have Theorem 1 below:

Theorem (ESTIMATION WITH ZERO-SHOT CLASSIFIER). Let G,H be the hypothesis space of vision
encoder g and language encoder h. Let us denote the rademacher complexity as R(G ◦ H) of the
combined CLIP model. Supposing the range of L from eq. (2) as [0, lclip∞ ] for all (x, z) in sup(Q)
with g, h ∈ G,H . Then, for any δ > 0, with probability at least 1− δ we have the following holds:

d(P̃zeroshot(yi|xi), P
true(yi|xi)) ≤ εdomain +∆( λ1R(G ◦ H) + λ2l

clip
∞

√
log 1/δ

M
+ λ3εn)

with λ1, λ2, λ3 > 0. Here, εdomain denotes the bias term induced by the domain gap between Q and
P true, and ∆ ≥ 1 denotes the bias coefficient induced in designing prompts and sampling in eq. (3).

G.2 DERIVATION OF THEOREM 2

The derivation of Theorem 2 follows a similar but rather simpler process. Specifically, with
Q,Q′, zi, z

′
i,M replaced by P, P ′, yi, y

′
i, N , similar to eq. (12), we have:

Rtrue(f̂)−Rtrue(fbayes) ≤ 2(2R(F) + lnoisy∞

√
log(1/δ)

2N
+ εnoise) (15)
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To similarly connect the generalization error bound above and the distance of estimated probability
Pf (y|x) and P true(y|x), with Lnoisy as the cross-entropy loss, we have:

Rtrue(f) = EP trueLnoisy(x, y; f)

= −
∫

P true(x)

∫
P true(y|x) logPf (y|x)dydx

=

∫
P true(x)DKL(P

true(y|x), Pf (y|x))dx

−
∫

P true(x)

∫
P true(y|x) logP true(y|x)dydx

≥
∫

P true(x)DKL(P
true(y|x), Pf (y|x))dx

≥ 2d(Pf (y|x), P true(y|x))

(16)

Similarly, we then have Theorem 2:
Theorem (ESTIMATION WITH TRAINED CLASSIFIER ). Let F be the hypothesis space of trained
classifier f ′. Let us denote the rademacher complexity as R(F) of the trained classifier. Supposing
the range of L for training f ′ as [0, lnoisy∞ ] for all (x, y) in sup(P ) with f ′ ∈ F . Then, for any δ > 0,
with probability at least 1− δ we have the following holds:

d(P̃trained(yi|xi), P
true(yi|xi)) ≤ εnoise + λ1R(F) + λ2l

noisy
∞

√
log 1/δ

N

with λ1, λ2 > 0. Here, εnoise denotes the difference term induced by the distribution difference
between P and P true.
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