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Two in One Go: Single-stage Emotion Recognition
with Decoupled Subject-context Transformer

Anonymous Author(s)
ABSTRACT
Emotion recognition aims to discern the emotional state of subjects
within an image, relying on subject-centric and contextual visual
cues. Current approaches typically follow a two-stage pipeline: first
localize subjects by off-the-shelf detectors, then perform emotion
classification through the late fusion of subject and context features.
However, the complicated paradigm suffers from disjoint training
stages and limited fine-grained interaction between subject-context
elements. To address the challenge, we present a single-stage emo-
tion recognition approach, employing a Decoupled Subject-Context
Transformer (DSCT), for simultaneous subject localization and
emotion classification. Rather than compartmentalizing training
stages, we jointly leverage box and emotion signals as supervision
to enrich subject-centric feature learning. Furthermore, we intro-
duce DSCT to facilitate interactions between fine-grained subject-
context cues in a “decouple-then-fuse” manner. The decoupled
query tokens—subject queries and context queries—gradually inter-
twine across layers within DSCT, during which spatial and semantic
relations are exploited and aggregated.We evaluate our single-stage
framework on two widely used context-aware emotion recognition
datasets, CAER-S and EMOTIC. Our approach surpasses two-stage
alternatives with fewer parameter numbers, achieving a 3.39% accu-
racy improvement and a 6.46% average precision gain on CAER-S
and EMOTIC datasets, respectively.

KEYWORDS
emotion recognition, single-stage framework, and query decouple.
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1 INTRODUCTION
Automatic human emotion recognition gets increasing research
attention in the multimedia community, where studies include
inferring emotions from speech [63, 74], image [41, 70] and multi-
modalities [36, 38]. Its potential applications span across healthcare,
driver surveillance, and diverse human-computer interaction sys-
tems [7, 42, 43, 59], reflecting the fundamental role of emotions [10].
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Figure 1: Motivation of single-stage framework. Contexts
play a vital and nuanced role in emotion recognition. In (a)
and (b), prior methods include two stages: subject without or
with context (blue and gold rectangles) region localization
and emotion classification without or with late fusion. In
(c), we propose a single-stage framework for simultaneous
localization and classification and decoupled subject-context
transformer with early fusion. Our method notices useful
and subtle emotional cues (blue and gold triangles).

In this paper, we focus on the problem of inferring the emo-
tion of one person in a real-world image. Concretely, given an in-
the-wild image, we aim to identify the subject’s apparent discrete
emotion categories (e.g. happy, sad, fearful, or neutral). Existing
methods typically involve two stages: subject detection and emo-
tion classification. Conventional approaches primarily emphasize
facial cues [6, 47, 56–58, 71, 78], featuring a two-stage without fusion
paradigm. As depicted in Fig. 1(a), a standard off-the-shelf detector
indicates a facial region, and a dedicated face encoder extracts facial
features for subsequent classification into distinct emotional cate-
gories. Recent advances have increasingly recognized the impor-
tance of contextual cues in emotion recognition, like body language,
scene semantics, and social interactions [18, 20, 24, 33, 34, 41, 60, 61].
This system is characterized as a two-stage with late fusion paradigm.
As illustrated in Fig. 1(b), it first identifies subjects and contexts
within the image, processes them through independent encoders,
and fuses the resulting features for emotion prediction.

While effective, existing approaches are hindered by two primary
limitations. Firstly, the disjointed learning processes of emotion
classifiers and subject detectors in a two-stage paradigm often result
in inefficient computational efficiency. Illustrated in Fig. 2, existing
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Figure 2: Performance vs. model efficiency of different meth-
ods on EMOTIC (red) andCAER-S (blue). Our proposed single-
stage framework (star) achieves state-of-the-art performance
with fewer parameters than two-stage prior arts (circle).

methods’ effectiveness is limited with many parameters. Secondly,
existing paradigms may exhibit a restricted capacity for subject-
context fusion, thereby falling short in addressing real-world im-
ages that are susceptible to nuanced contextual influences [32, 55].
Shown in Fig. 1, the first paradigm focuses solely on facial ex-
pressions, neglecting essential contextual cues, and the second
paradigm’s late fusion scheme misses fine-grained subject-context
interaction, leading to sub-optimal emotion recognition.

To alleviate the limitation, we introduce a single-stage frame-
work, employing a Decoupled Subject-Context Transformer (DSCT)
with early fusion, for simultaneous subject localization and emo-
tion classification, characterized as a single-stage with early fusion
paradigm. As illustrated in Fig. 1(c), we adopt an encoder-decoder
architecture with DSCT, where learnable queries are correlated
with the global and multi-scale features for prediction. Rather than
disjoint training stages, we jointly leverage box and emotion signals
as supervision to enrich subject-centric feature learning, i.e., the
framework is trained with a joint loss of classification and localiza-
tion. Fig. 2 demonstrates that our method is effective and efficient,
surpassing two-stage prior arts with fewer parameters.

Furthermore, we introduce DSCT to facilitate interactions be-
tween fine-grained subjects and context in a decouple-then-fuse
manner. As depicted in Fig. 1(c), the queries are decomposed into
subject and context queries to capture the subject’s emotional signal,
e.g., facial expression, and awide range of contextual cues, e.g., body
posture and gesture, agents, objects, and scene attributes. The decou-
pled query tokens—subject queries and context queries—gradually
intertwine across layers within DSCT. For effective fusion, the spa-
tial and semantic relations between context and subject information
are exploited and aggregated. The spatial relation picks up contex-
tual queries with short-range subject-context interaction, such as
the subject between objects in hands and close agents. As com-
plementary, the semantic relation chooses contextual queries with
long-range subject-context interaction, like the subject between

scene attributes and distant people. Fig. 1(c) shows that the single-
stage framework notices useful and subtle emotional cues between
the subject and context, e.g. the kid is looking at the father’s clothes.

Extensive experiments are conducted on two standard context-
aware emotion recognition benchmarks to validate the efficacy of
our approach. The proposed framework attains impressive results,
achieving 91.81% accuracy on the CAER-S dataset [20] and 37.81%
mean average precision on EMOTIC [18]. In the case of similar
parameter numbers, the proposal surpasses counterparts by a sub-
stantial margin of 3.39% accuracy and 6.46% average precision on
CAER-S and EMOTIC respectively. Furthermore, we provide valu-
able insights by visualizing network output, feature map activation,
and query selection, underscoring the proposal can discern useful
and nuanced emotional cues of subject and context.

The main contributions can be summarized as follows:

• We present a novel single-stage framework for simulta-
neous subject localization and emotion classification to
address the limitations of disjoint training stages.

• To facilitate fine-grained interactions between subjects and
context, we introduce a new decoupled subject-context
transformer to decouple and fuse queries across layers.

• The spatial and semantic relations are exploited and aggre-
gated to capture the short-range and long-range subject-
context interaction complementarily.

• Extensive experiments and visualization on two standard
datasets show that the single-stage framework outperforms
two-stage alternatives by a significant margin and excels
in capturing useful and nuanced emotional cues.

2 RELATEDWORK
Visual Emotion Recognition. The Visual Emotion Recognition
(VER) task can be broadly categorized into two main paradigms. 1)
Two-stage without fusion. Traditional methods focus on utilizing
subject-centric regions while treating contextual areas as noise, as
observed in various studies [8, 23, 39, 46, 71]. The pipeline includes
subject detection and emotion classification. These studies primarily
address challenges associated with label uncertainty [4, 5, 19, 30,
48, 51, 52, 62, 76, 77], micro expressions [37, 67], and disentangled
representations [65, 75]. 2) Two-stage with late fusion. In recent
years, the research has paid increasing attention to context-aware
emotion recognition, which emphasizes the use of multiple contexts
for more robust emotion classification [18, 20, 24, 34, 35, 49, 60, 61,
73]. In addition to two-stage components, the pipeline includes
multi-branch and late fusion characteristics. Typically, a multiple-
stream architecture, followed by a fusion network, is employed to
independently encode the subject and context information. Despite
the effectiveness of these methods, they suffer from disjoint training
stages and limited interaction between fine-grained subject-context
elements. In contrast, we present a single-stage approach with an
early fusion, employing a Decoupled Subject-Context Transformer,
for simultaneous subject localization and emotion classification.

End-to-EndObject Detection.The end-to-end frameworkwith
vision Transformers stirs up wind in the object detection task.
DETR [2] streamlines object detection into one step by a set-based
loss and a transformer encoder-decoder architecture. The following
works have attempted to eliminate the issue of slow convergence

2 2024-04-13 12:43. Page 2 of 1–10.
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Figure 3: Overall architecture of our single-stage emotion recognition approach for simultaneous subject localization and
emotion classification, employing a Decoupled Subject-Context Transformer (DSCT) with early subject-context fusion.
by designing architecture [9, 50], query [28, 54, 81], and bipartite
matching [3, 21, 22, 68, 69]. The original DETR framework, along
with its various adaptations, has not only brought forth a simple yet
powerful end-to-end architecture for common object detection but
has also been extended to other related tasks, including multiple-
object tracking [66], action detection [29], human-object interac-
tion [16, 17], person search [1], and instance segmentation [14, 53].
We propose the adaptation and modification for VER: First, since we
suggest a single-stage framework, we adopt deformable DETR for
simultaneous subject localization and emotion classification; Second,
as generic objects exhibit distinct and localized characteristics, but
contexts are essential and nuanced-related for VER, we introduce a de-
coupled subject-context transformer to capture contextual interaction.

3 METHOD
3.1 Single-stage Framework
Current two-stage approaches for in-the-wild emotion recogni-
tion may suffer low efficiency from disjoint training stages and
limited interaction between fine-grained subject-context elements.
To address the limitation, we introduce a single-stage framework,
employing a Decoupled Subject-Context Transformers with early
fusion, for subject localization and emotion classification.

Architecture. As shown in Fig.3, the system handles an en-
tire image through a CNN backbone, an encoder with deformable
transformers, and a decoder with novel Decoupled Subject-Context
Transformers (DSCT). Given an image, we extract multi-scale fea-
tures through the backbone, flatten them in spatial dimensions, and
supplement position encoding and level embeddings. The encoder
subsequently encodes the global and multi-scale features through
six deformable transformers. After that, the decoder correlates the
given learnable queries with encoded features with six DSCTs. Fi-
nally, the Feed-Forward Networks (FFNs) transform a set of 𝑁
subject queries into 𝑁 final predictions, including emotion classes
and bounding boxes. We defer to the supplementary material the
detailed definition of the architecture, which follows deformable
DETR [81]. We jointly train classification and localization to en-
rich subject-centric feature learning. Furthermore, DSCTs facilitate
fine-grained subject-context interactions by early fusion.

Queries. Each learnable query is a concatenation of 256-dimension
spatial and 256-dimension semantic embeddings. The spatial embed-
ding is decoded into the 2-d normalized coordinate of the reference
point and the semantic one into 1) the bounding box as relative
offsets w.r.t. the reference point and 2) the corresponding emotion
class of the subject. The semantic embeddings of queries adaptively
integrate multi-scale image features by sampling locations around
the reference points. We refer the reader to the supplementary ma-
terial for detailed definitions, which follow deformable DETR [81].
We adopt a set of 𝑁 queries for prediction, where 𝑁 is typically
larger than the average subject number per image in a dataset.

Optimization.We use set-level prediction [2] that encapsulates
several predictions or ground truth within a set. For clarity, we
denote the 𝑖-th element of a set as (cls𝑖 , box𝑖 ), where cls𝑖 repre-
sents the categorical emotion label and box𝑖 ∈ [0, 1]4 specifies the
normalized center coordinate and box’s height and width.

During training, since the prediction number is larger than the
actual number of subjects in an image, we first pad the set of ground
truths with ∅ to ensure a consistent size. We employ the bipartite
matching [2] that computes one-to-one associations between the
set of predictions 𝑦 and the padded ground truths 𝑦:

�̂� = argmin
𝜎∈𝔖𝑁

𝑁∑︁
𝑖

Lmatch
(
𝑦𝑖 , 𝑦𝜎 (𝑖 )

)
, (1)

where �̂� represents the optimal assignment, 𝜎 ∈ 𝔖𝑁 denotes a
permutation of 𝑁 elements, Lmatch

(
𝑦𝑖 , 𝑦𝜎 (𝑖 )

)
indicates a pair-wise

matching cost between ground truth and a prediction with index
𝜎 (𝑖). Lmatch encompasses a classification loss Lcls and a box re-
gression loss Lbox, expressed as:

Lmatch = 𝜃clsLcls (𝑦cls𝑖 , 𝑦cls
𝜎 (𝑖 ) ) + 𝜃boxLbox (𝑦box𝑖 , 𝑦box

𝜎 (𝑖 ) ), (2)

where 𝜃cls, 𝜃box ∈ R are hyperparameters. We efficiently compute
the matching results using the Hungarian algorithm [2].

Given the optimal assignment �̂� , the training loss L is:

L = 𝜆clsLcls (𝑦cls, 𝑦cls�̂� ) + 𝜆boxLbox (𝑦box, 𝑦box�̂�
), (3)

where 𝜆cls, 𝜆box ∈ R are hyperparameters. For matching and train-
ing, we employ the focal loss [26] for Lcls and set Lbox as the 𝑙1
loss and generalized IoU loss [45].
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During inference, we set the mean of the class output logit as
the score of each prediction. For multi-label tasks, subject emotions
are determined with a threshold 𝑡 :

𝑜 = {𝑖 | 𝑦𝑖 > 𝑡}, (4)

where 𝑜 represents the index list of the emotion class. In the case
of multi-class tasks, subject emotions are determined as:

𝑜 = argmax
𝑖

{𝑦𝑖 }, (5)

where 𝑜 corresponds to the index of the emotion class.
Discussion. Current approaches of emotion recognition usually

include two steps of detection and classification, which suffer from
low efficiency from disjoint training stages. There, we pursue a
single-stage framework to simultaneously recognize the subject’s
bounding box and emotion class. The deformable DETR pipeline,
including the above-mentioned one-stage processing and joint clas-
sification and localization loss, aligns well with our demand.

3.2 Decoupled Subject-Context Transformer
To facilitate interactions between fine-grained subject and contex-
tual elements, we introduce a novel Decoupled Subject-Context
Transformer (DSCT), which treats queries in a “decouple-then-fuse”
manner and exploits spatial-semantic relational aggregation.

Decouple then Fuse. Before the DSCT, the queries are decom-
posed into subject and context queries. As shown in Fig. 3, we adopt
𝑁 subject queries and a large number of context queries as input
queries of the decoder, where all queries have the same tensor size.
In DSCT, both types of queries are correlated with multi-scale image
features through the base deformable transformer, and then subject
queries integrate context queries by spatial-sentimental relational
aggregation before output. As illustrated in the left section of Fig. 4,
the reference point of the subject query primarily attends to the
subject area to capture the subject’s emotional signal, e.g., facial
expression, while the reference points of the context queries are
distributed across the entire image to pick up extensive and subtle
contextual cues, e.g., body posture and gesture, surrounding agents,
and scene attributes like grass and sky.

Spatial-Semantic Relational Aggregation. As shown in the
right part of Fig. 4, the DSCT fuses context queries based on their
spatial-semantic relationships w.r.t. the subject query.

The DSCT first picks up the short-range contextual cues, such
as objects in hands and close agents, based on the relative spatial
distance between the subject and context queries. For each context
query, the distance is calculated as the Euclidean distance between
reference points of the context and subject queries. For the subject
and context queries, we denote their coordinate vectors of the
reference points as 𝑝𝑛

𝑆
, where 𝑛 = 1, ..., 𝑁 and 𝑁 is the total number

of the subject queries, and 𝑝𝑚
𝐶
, where 𝑚 = 1, ..., 𝑀 and 𝑀 is the

total number of the context queries. The relative spatial distance
for a pair of subject and context query 𝑑𝑛𝑚 is computed as:

𝑑𝑛𝑚 = ∥𝑝𝑚𝐶 − 𝑝𝑛𝑆 ∥2 . (6)
Then we select 𝐾𝑠𝑝 queries of the shortest spatial distance from
total𝑀 context queries for each subject query.

As complementary, the long-range contextual signals, like scene
attributes and distant people, are chosen via the semantic relevance
of the subject and context queries. For each context query, the rele-
vance is calculated as the similarity between semantic embeddings
of context and subject queries. For the subject and context queries,
we denote their semantic embeddings as 𝐸𝑛

𝑆
, where 𝑛 = 1, ..., 𝑁

and 𝑁 is the total number of the subject queries, and 𝐸𝑚
𝐶
, where

𝑚 = 1, ..., 𝑀 and𝑀 is the total number of the context queries. The
semantic relevance for a pair of subject and context query 𝑟𝑛𝑚 is
calculated as:

𝑟𝑛𝑚 = dot(𝐸𝑚𝐶 , 𝐸
𝑛
𝑆 ) . (7)

Since the semantic embeddings are processed with image features
in the same architecture, we can measure their similarity without
the transforming matrices in previous methods [24, 61]. Then we
select 𝐾𝑠𝑚 queries of the smallest semantic relevance from total𝑀
context queries for each subject query.

Finally, we adopt relevance re-weighting fusion to integrate the
context queries into the subject query. We denote their semantic
embeddings as 𝐸𝑆 and 𝐸𝑘𝐶 , where 𝑘 = 1, ..., 𝐾𝑠𝑚 +𝐾𝑠𝑝 . The attention
weight𝑤𝑘 is computed by the dot product of 𝐸𝑆 and 𝐸𝑘

𝐶
. Then the

softmax function makes the sum of attention weights to be 1. After
that, the fused contextual subject query 𝐸𝑆 is defined as:

𝐸𝑆 =

𝐾𝑠𝑚+𝐾𝑠𝑝∑︁
𝑘=1

𝑤𝑘𝐸𝑘𝐶 + 𝐸𝑆 . (8)

Discussion. In the object detection task, queries can capture
effective information from distinctive and localized areas. While in

4 2024-04-13 12:43. Page 4 of 1–10.
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the task of emotion recognition, contextual cues are essential and
nuanced-related, we introduce the novel DSCT to capture sufficient
and useful contexts based on spatial-semantic relationships.

4 EXPERIMENTS
4.1 Implementations
We set the number of queries 𝑁 to 4 and 9 for CAER-S [20] and
EMOTIC [18]. We set 𝑁 to 4 and 9. To facilitate the training, we
initialize the weights of architecture and borrow 300 context queries
from Deformable DETR [81], which was pre-trained on COCO [27].
Our batch size is 32, andwe set hyperparameters 𝜃box, 𝜆box, 𝜃cls, and
𝜆cls to 5, 5, 2, and 5, respectively. For evaluation, we first use non-
max-suppression to remove the duplicate subjects and then select
the subject that exhibits the highest bounding box overlap with
the ground truth. The experiments were conducted using 8 GPUs
of the NVIDIA Tesla A6000. We show details about architectural
configurations, training strategies, and preprocessing steps, which
follow those outlined in [81], in the supplementary material.

4.2 Datasets
We conducted extensive experiments on two typical and popular
context-aware emotion recognition datasets in real-world scenarios,
namely the CAER-S [20] and EMOTIC [18].

The CAER-S dataset consists of 70,000 images, randomly divided
into training (70%), validation (10%), and testing (20%) sets. Anno-
tations include face bounding boxes and multi-class emotion labels.
The dataset encompasses seven emotion categories: Surprise, Fear,
Disgust, Happiness, Sadness, Anger, and Neutral. Performance on
this dataset is measured using overall accuracy (acc) [20].

The EMOTIC dataset [18] contains a total number of 23,571 im-
ages and 34,320 annotated agents, which are randomly split into
training (70%), validation (10%), and testing (20%) sets. Annota-
tions include body and head bounding boxes, as well as multi-label
emotion categories. EMOTIC encompasses 26 emotion categories:
Affection, Anger, Annoyance, Anticipation, Aversion, Confidence,
Disapproval, Disconnection, Disquietment, Doubt/Confusion, Em-
barrassment, Engagement, Esteem, Excitement, Fatigue, Fear, Hap-
piness, Pain, Peace, Pleasure, Sadness, Sensitivity, Suffering, Sur-
prise, Sympathy, Yearning. Performance on EMOTIC is evaluated
based on the mean Average Precision (mAP) for all classes [18].

4.3 Quantitative and Qualitative Results
The performance of various methods on CAER-S and EMOTIC
datasets is presented in Table 1 and Table 2. To facilitate a fair
comparison, we categorize the methods into two groups based
on the number of parameters: similar-parameter measures and
larger-parameter ones, using a threshold of 100 Million (M) pa-
rameters. For the methods without released code, we count their
parameters through their backbone configuration in paper and
present the details in the rightmost column. Subscripts in Emoti-
Con [34] and HECO [61] correspond to specific context modalities
as mentioned in their respective papers. The performance of the
methods is sourced from their original papers or re-implemented re-
sults of other papers. Our proposal framework outperforms similar-
parameter methods by a notable margin, achieving a significant
3.39% improvement on CAER-S and an impressive 6.46% boost on

Methods Acc (%) Param.(M) Backbone
With <100M parameters
Ours-R18 84.96 22 ResNet18
CAER-Net-S [20] 73.51 22 12-layer CNN
GNN-CNN [72] 77.21 23 VGG16
EfficientFace [80] 85.87 25 MobileNet28, ResNet18
EMOT-Net [18] 74.51 32 ResNet18 × 2
SIB-Net [25] 74.56 33 ResNet18 × 3
Ours-R50 91.81 39 ResNet50
GRERN [11] 81.31 45 ResNet101
RRLA [24] 84.82 48 ResNet50, RCNN50
MA-Net [79] 88.42 52 Multi-Scale ResNet18
With >100M parameters

EmotiCon [34] 88.65 181 OpenPose, RobustTP,
Megadepth

VRD [13] 90.49 380 {VGG19, ResNet50,
FRCNN50} × 2

CCIM+EmotiCon [60] 91.17 223 OpenPose, RobustTP,
Megadepth, ResNet101

Table 1: Performance and model efficiency on the CAER-S.

EMOTIC. Notably, the proposal even surpasses larger-parameter
approaches, underscoring its suitability for emotion recognition
when compared to two-stage methods.

We present the qualitative results in Fig. 5 and Fig. 6, depicting
the bounding boxes and emotion classes output by our proposal
framework, alongside those produced by the EMO-Net [18], a rep-
resentative two-stage late-fusion method. To enhance the clarity
of the proposal’s output, we include visual indicators for subject
queries’ reference points (colored in red) and sampling locations.
Outputs of different subjects are color-coded for differentiation.
These visualizations illustrate that the proposal consistently yields
high-quality results, showcasing superior classification accuracy
when compared to EMO-Net. In EMOTIC, the EMO-Net might ne-
glect subtle emotions like “Pain", or produce wrong even opposite
emotions like “Disapproval". In CAER-S, when the facial expression
is not distinguishing, the EMO-Net is confused with “Anger" and
“Neutral", “Happy" and “Surprise", or “Surprise" and “Fear".
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Figure 5: The output visualization on EMOTIC.
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Methods mAP (%) Param.(M) Backbone
With <100M parameters
Ours-R50 37.26 39 ResNet50
Ours-R101 37.81 58 ResNet101
EMOT-Net [18] 27.93 84 YOLO, ResNet18
CAER-Net [18] 20.84 84 YOLO, CNN-12
EmotiCon(1) [34] 31.35 85 OpenPose, 15-layer CNN
With >100M parameters
EmotiCon(1,3) [34] 35.28 108 OpenPose, 15-layer CNN,

Medadepth
HECO(1) [61] 22.25 135 YOLO, Alphapose,

ResNet18
EmotiCon(1,2) [34] 32.03 139 OpenPose, RobustTP,

ResNet18
HECO(1,2) [61] 36.18 146 YOLO, Alphapose,

ResNet18 × 2
HECO(1,2,3) [61] 34.93 173 YOLO, Alphapose,

ResNet50, ResNet18 × 2
EmotiCon(1,2,3) [34] 32.03 183 OpenPose, RobustTP,

ResNet18, Megadepth
GCN-CNN [72] 28.16 189 YOLO, VGG16, 6-layer

GCN
HECO(1,2,3,4) [61] 37.76 219 YOLO, Alphapose,

{ResNet18, ResNet50} ×2,
Faster RCNN50

EmotionCLIP [73] 32.91 577 YOLO, ViT_b_32

Table 2: Performance and model efficiency on the EMOTIC.
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Figure 6: The output visualization on CAER-S.

4.4 Visualization and Analysis
Classification and localization.We conducted experiments to
fine-tune 𝜃cls and 𝜆cls on the EMOTIC dataset [18] and keep 𝜃box =

5 and 𝜆box = 5. The results of these hyperparameter experiments
are thoughtfully presented in Table 3. Notably, the most compelling
performance is achieved when 𝜃cls : 𝜃box is set to 2:5, and 𝜆cls :
𝜆box is set to 5:5. We can see adding appropriate localization loss
can boost classification performance and facilitate subject-centric
feature learning. Besides, we noticed that 𝜃cls has minimal impact
on performance, whereas 𝜆cls significantly influences the results.

Feature map activation.We visualize feature map activation
of methods of different paradigms. We select EMO-Net [18] as a

𝜃cls 5 10 15 2 2 2
𝜆cls 2 2 2 5 10 15
mAP (%) 35.41 35.89 35.41 36.01 34.99 34.64
𝜃cls 2 5 10 15 1 1
𝜆cls 2 5 10 15 10 8
mAP (%) 35.94 35.00 35.05 34.75 34.70 35.45

Table 3: Performance of different classification coefficients.
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Figure 7: The visualization of feature maps activation.

representative two-stage method. For fairness, we re-implement
EMO-Net using ResNet50 as the backbone to achieve a similar
model complexity to the proposal (referred to as EMO-Net-R50).
The selected feature maps originate from the final layer of the
ResNet50 backbone. In Fig. 7, a clear distinction emerges: EMO-Net-
R50 exhibits a tendency to emphasize a few large regions, while the
proposal consistently places importance on smaller, more intricate
areas. This observation suggests that the proposal excels in the
precise handling of fine-grained subject-context cues compared to
conventional two-stage methods of coarse-grained cues.

Feature sampling positions of queriesWe visualize the ref-
erence point and feature sampling positions of the normal subject
queries and contextual subject queries of the DSCT in Fig. 8. The
reference points are drawn as big blue stars and the sampling po-
sitions as small grey circles. For the normal subject query, the
sampling positions only rely on its own sampling points [81]. For
the contextual subject query, the sampling positions rely on both
the sampling points of itself and context queries. We can see the
sampling positions of normal subject queries only cover the subject
area while the contextual ones are densely distributed across the
image. The quantitative result shows the contextual query of DSCT
outperforms the normal one with a 0.71% precision improvement.
The gain can be attributed to aggregating extensive contextual cues,
which are essential for in-the-wild emotion recognition.

Multiple subjects.We conduct an evaluation on images with
varying subject numbers. We select EMO-Net-R50 and EMO-Net-
R50-M, which further masks subjects in the context [20], for com-
parison. Table 4 presents the performance on EMOTIC for images
with different subject numbers. As the subject number in an image
increases, the complexity of subject-context interaction also rises.
Notably, the proposal maintains stable performance with increasing
subject numbers, while EMO-Net-R50’s performance deteriorates.
This observation verifies our early fusion proposal can handle com-
plex interactions better than late fusion two-stage methods.

6 2024-04-13 12:43. Page 6 of 1–10.
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Figure 8: The visualization of the reference point (blue star)
and sampling positions (grey circle) of queries.

Subject # 1 2 3 4 >=5
Image # 2444 938 234 37 29
EMO-Net-R50 22.34 20.50 19.62 18.77 18.06
EMO-Net-R50-M 22.54 20.96 19.65 19.20 19.50
Ours-R50 36.91 35.20 31.20 40.96 35.97

Table 4: Performance on images with multiple subjects.
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Figure 9: The position visualization of subject queries.

Set Number 1 2 3 4 5
EMOTIC (mAP %) 37.14 36.71 36.61 37.26 36.70
CAER-S (Acc %) 91.78 91.57 91.39 91.57 91.47
Set Number 6 7 8 9 10
EMOTIC (mAP %) 36.97 36.03 36.26 35.92 35.68
CAER-S (Acc %) 91.52 91.59 91.42 91.81 91.44
Table 5: Ablation study on subject query number.

4.5 Ablation Study
Subject Query Number.We conduct experiments to investigate
the impact of query number setting. Table 5 presents the perfor-
mance of different query numbers. Fig. 9 offers a visualization of
bounding boxes (colorful rectangles), reference points (red circles),
and sampling locations (colorful circles) corresponding to different
subject query numbers. Table 5 shows the proposal achieves the
best result on EMOTIC and CAER-S when the query number is 4
and 9 respectively. Notably, we observe a consistent performance
stability trend as the query number increases, ranging from 1 to 6
on EMOTIC and from 1 to 10 on CAER-S. Fig. 9 also indicates that
different subject queries attend to separate subject areas.

Components of DSCT.We assess the impact of components of
DSCT on the EMOTIC dataset [18], and the results are displayed

Baseline Decouple-fuse Spatial Semantic mAP (%)
✓ × × × 36.55
✓ ✓ × × 36.73
✓ ✓ ✓ × 37.11
✓ ✓ × ✓ 36.85
✓ ✓ ✓ ✓ 37.26
Table 6: Ablation study on DSCT components.

in Table 6. The categories include “baseline” (only subject queries),
“Decouple-fuse” (decouple queries and then fuse), “Spatial” (select
𝐾𝑠𝑝 context queries with shortest spatial distance), and “Semantic”
(select 𝐾𝑠𝑒 context queries with semantic relevance). As we can see,
the DSCT enhances performance by 0.71%, highlighting the impor-
tance of sufficient contextual interaction and fusion. Specifically,
decoupling and fusing context queries improve performance by
0.18%, and selecting context queries based on spatial and semantic
relation boosts the result by an extra 0.56% and 0.12%. The results
demonstrate the effectiveness of each proposed component.

Selection of Spatial and Semantic Relation. We conduct ex-
periments with varying values of 𝐾𝑠𝑝 and 𝐾𝑠𝑒 on EMOTIC [18] to
evaluate the sensitivity of Spatial and Semantic Relation parameters.
As shown in Figure 11, the optimal performance is achieved when
𝐾𝑠𝑝 is set to 100. The best performance is 0.41% higher than the one
when 𝐾𝑠𝑝 is 300. This observation suggests that not all contextual
information is valuable for effective emotion recognition. The selec-
tion of the 100 closest context queries w.r.t. the subject query also
aligns with gradual interaction decay in [61]. Figure 10 shows spa-
tial relational selection keeps short-range contextual cues such as
objects in hands and close agents. Besides, the optimal performance
is achieved when 𝐾𝑠𝑒 is set to 50, which is 0.39% higher than the
one when 𝐾𝑠𝑒 is 300. This suggests that some contextual informa-
tion is a disturbance. Figure 10 shows semantic relational selection
preserves long-range contextual signals, like scene attributes and
distant people. We can see two selections are complementary.

Re-weighting Strategy.We conduct experiments of re-weighting
fusion strategies for context queries on the EMOTIC dataset. The
results, shown in Table 7, indicate the performance under differ-
ent re-weighting strategies: Semantic (semantic relevance weights
based on semantic relation w.r.t the subject query), Equal (equal
weights), Spatial (spatial distance weights based on spatial relation
w.r.t the subject query), and Attentive (attentive weights learned
from the subject query through a linear layer). The findings reveal
that the best performance is achieved when employing semantic re-
weighting, which performs better than equal re-weighting by 0.53%.
The observation aligns well with previous studies that contexts
have variant contributions to emotion recognition [24, 61].

Re-weighting strategy Semantic Equal Spatial Attentive
mAP % 37.26 36.73 36.48 36.93

Table 7: The ablation study on re-weighting strategy.

Fusion location.We conduct experiments of different locations
for subject-context fusion on the EMOTIC dataset and show the
results in Table 8. The decoder has six layers, and we perform the
query fusion in different layers. The best performance is achieved

2024-04-13 12:43. Page 7 of 1–10. 7
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Figure 11: The evaluation of 𝐾𝑠𝑝 and 𝐾𝑠𝑒 on EMOTIC [18]

when fusing in the 1st to 6th layers, which exceeds fusing only in the
6th layer by 0.57%. It can be explained by that early fusion can cap-
ture fine-grained subject-context interaction to boost performance.
The observation aligns with the psychological studies [32, 55].

locations 1st to 6th 2nd to 6th 4th to 6th 6th
mAP % 37.01 36.58 36.82 36.44
Table 8: The ablation study on fusion location.

Feature Extractor. To evaluate the influence of feature extrac-
tors, we conducted experiments with various backbone architec-
tures for the proposal on both EMOTIC and CAER-S datasets. The
results, as depicted in Table 9, include performance metrics and cor-
responding parameter counts. Specifically, “R" refers to ResNet [12],
and “WR" designates Wide ResNet [64]. For ResNet50, we utilized
a pre-trained backbone from deformable DETR as the initializa-
tion. The optimal performance on EMOTIC is attained when using
ResNet-101 as the backbone, while on CAER-S, ResNet-50 yields the
best results. Interestingly, it’s evident that the relationship between
performance and parameter counts is not linear on both datasets.
Moreover, the performance on CAER-S seems to be significantly
influenced by the choice of pre-trained initialization.

DETR-like Architecture. The family of DETR-like architec-
tures has gained significant momentum in the object detection task.
To assess the impact of incorporating different DETR-like archi-
tectures into proposal, we conducted experiments on the CAER-S
dataset by leveraging the detrex platform [44]. For equitable com-
parisons, all architectures utilize ResNet50 as the backbone. The
results, summarized in Table 10, reveal the performance of proposal

Backbone Param. (M) EMOTIC (mAP %) CAER-S (Acc %)
R18 22 35.68 84.98
R34 33 34.40 84.52
R50 39 37.26 91.81
R101 58 37.81 85.39
R152 74 37.32 83.88
WR50 82 34.46 85.71
WR101 140 34.07 83.16

Table 9: Ablation study on feature extractor.

with various DETR-like architectures. Notably, there is a perfor-
mance gap of around 1% between DETR-based and deformable
DETR-based architectures. However, performances remain compa-
rable within DETR-based and deformable DETR-based architectures
even though they adopt different techniques.

Architecture Acc % Architecture Acc %
DETR [2] 89.74 DINO [69] 89.27
Anchor-DETR [54] 90.42 Deformable DETR [81] 91.81
DAB-DETR [9] 87.49 DAB-D-DETR [9] 91.39
DN-DETR [21] 89.79 H-D-DETR [15] 91.65
Conditional-DETR [31] 90.07 DETA [40] 91.77
Table 10: Ablation study on different DETR architectures.

5 CONCLUSION
This paper introduces a single-stage visual emotion recognition
framework with Decoupled Subject-Context Transformers (DSCT).
The proposal predicts subjects’ emotions and locations simultane-
ously and processes subject and context emotional cues by early
fusion. We evaluate our single-stage framework on two widely used
context-aware emotion recognition datasets, CAER-S and EMOTIC.
Our approach surpasses two-stage alternatives with fewer parame-
ter numbers, achieving a 3.39% accuracy improvement and a 6.46%
average precision gain on CAER-S and EMOTIC datasets, respec-
tively. We observe that the joint training of localization and classi-
fication can facilitate subject-centric feature learning. Besides, we
find that early fusion improves handling the fine-grained subject-
context interaction, e.g. multiple subjects in one scene. We also
explore the spatial and semantic relationships between subject and
contextual cues for more effective interaction and fusion.
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