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ABSTRACT

We propose a novel information bottleneck (IB) method named Drop-Bottleneck,
which discretely drops features that are irrelevant to the target variable. Drop-
Bottleneck not only enjoys a simple and tractable compression objective but also
additionally provides a deterministic compressed representation of the input vari-
able, which is useful for inference tasks that require consistent representation.
Moreover, it can jointly learn a feature extractor and select features considering
each feature dimension’s relevance to the target task, which is unattainable by
most neural network-based IB methods. We propose an exploration method based
on Drop-Bottleneck for reinforcement learning tasks. In a multitude of noisy and
reward sparse maze navigation tasks in VizDoom (Kempka et al., 2016) and DM-
Lab (Beattie et al., 2016), our exploration method achieves state-of-the-art per-
formance. As a new IB framework, we demonstrate that Drop-Bottleneck outper-
forms Variational Information Bottleneck (VIB) (Alemi et al., 2017) in multiple
aspects including adversarial robustness and dimensionality reduction.

1 INTRODUCTION

Data with noise or task-irrelevant information easily harm the training of a model; for instance, the
noisy-TV problem (Burda et al., 2019a) is one of well-known such phenomena in reinforcement
learning. If observations from the environment are modified to contain a TV screen, which changes
its channel randomly based on the agent’s actions, the performance of curiosity-based exploration
methods dramatically degrades (Burda et al., 2019a;b; Kim et al., 2019; Savinov et al., 2019).

The information bottleneck (IB) theory (Tishby et al., 2000; Tishby & Zaslavsky, 2015) provides a
framework for dealing with such task-irrelevant information, and has been actively adopted to ex-
ploration in reinforcement learning (Kim et al., 2019; Igl et al., 2019). For an input variable X and a
target variable Y , the IB theory introduces another variable Z, which is a compressed representation
of X . The IB objective trains Z to contain less information about X but more information about Y
as possible, where the two are quantified by mutual information terms of I(Z;X) and I(Z;Y ), re-
spectively. IB methods such as Variational Information Bottleneck (VIB) (Alemi et al., 2017; Chalk
et al., 2016) and Information Dropout (Achille & Soatto, 2018) show that the compression of the
input variable X can be done by neural networks.

In this work, we propose a novel information bottleneck method named Drop-Bottleneck that com-
presses the input variable by discretely dropping a subset of its input features that are irrelevant to
the target variable. Drop-Bottleneck provides some nice properties as follows:

• The compression term of Drop-Bottleneck’s objective is simple and is optimized as a
tractable solution.

• Drop-Bottleneck provides a deterministic compressed representation that still maintains
majority of the learned indistinguishability i.e. compression. It is useful for inference tasks
that require the input representation to be consistent and stable.

• Drop-Bottleneck jointly trains a feature extractor and performs feature selection, as it learns
the feature-wise drop probability taking into account each feature dimension’s relevance to
the target task. Hence, unlike the compression provided by most neural network-based IB
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methods, our deterministic representation reduces the feature dimensionality, which makes
the following inference better efficient with less amount of data.

• Compared to VIB, both of Drop-Bottleneck’s original (stochastic) and deterministic com-
pressed representations can greatly improve the robustness to adversarial examples.

Based on the newly proposed Drop-Bottleneck, we design an exploration method that is robust
against noisy observations in very sparse reward environments for reinforcement learning. Our ex-
ploration maintains an episodic memory and generates intrinsic rewards based on the predictability
of new observations from the compressed representations of the ones in the memory. As a result,
our method achieves state-of-the-art performance on multiple environments of VizDoom (Kempka
et al., 2016) and DMLab (Beattie et al., 2016). We also show that combining our exploration method
with VIB instead of Drop-Bottleneck degrades the performance by meaningful margins.

Additionally, we empirically compare with VIB to show Drop-Bottleneck’s superior robustness
to adversarial examples and ability to reduce feature dimensionality for inference with ImageNet
dataset (Russakovsky et al., 2015). We also demonstrate that Drop-Bottleneck’s deterministic rep-
resentation can be a reasonable replacement for its original representation in terms of the learned
indistinguishability, with Occluded CIFAR dataset (Achille & Soatto, 2018).

2 RELATED WORK

2.1 INFORMATION BOTTLENECK METHODS

There have been a number of IB methods that are approximations or special forms of the original IB
objective. Variational Information Bottleneck (VIB) (Alemi et al., 2017) approximates the original
IB objective by establishing variational bounds on the compression and prediction terms. Chalk et al.
(2016) propose the same variational bound on the IB objective in the context of sparse coding tasks.
Conditional Entropy Bottleneck (CEB) and Variational Conditional Entropy Bottleneck (VCEB)
(Fischer, 2020; Fischer & Alemi, 2020) use an alternative form of the original IB objective derived
under the Minimum Necessary Information (MNI) criterion to preserve only a necessary amount of
information. The IB theory (Tishby et al., 2000) has been used for various problems that require
restriction of information or dealing with task-irrelevant information. Information Dropout (Achille
& Soatto, 2018) relates the IB principle to multiple practices in deep learning, including Dropout,
disentanglement and variational autoencoding. Moyer et al. (2018) obtain representations invariant
to specific factors under the variational autoencoder (VAE) (Kingma & Welling, 2013) and VIB
frameworks. Amjad & Geiger (2019) discuss the use of IB theory for classification tasks from
a theoretical point of view. Dai et al. (2018) employ IB theory for compressing neural networks
by pruning neurons in networks. Schulz et al. (2020) propose an attribution method that determines
each input feature’s importance by enforcing compression of the input variable via the IB framework.

Similar to our goal, some previous research has proposed variants of the original IB objective. De-
terministic information bottleneck (DIB) (Strouse & Schwab, 2017) replaces the compression term
with an entropy term and solves the new objective using a deterministic encoder. Nonlinear in-
formation bottleneck (NIB) (Kolchinsky et al., 2019) modifies the IB objective by squaring the
compression term and uses a non-parametric upper bound on the compression term. While DIB
is always in the deterministic form, we can flexibly choose the stochastic one for training and the
deterministic one for test. Compared to NIB, which is more computationally demanding than VIB
due to its non-parametric upper bound, our method is faster.

2.2 REINFORCEMENT LEARNING WITH INFORMATION BOTTLENECK METHODS

The IB theory has been applied to several reinforcement learning (RL) tasks. Variational discrimi-
nator bottleneck (Peng et al., 2019) regulates the discriminator’s accuracy using the IB objective to
improve adversarial training, and use it for imitation learning. Information Bottleneck Actor Critic
(Igl et al., 2019) employs VIB to make the features generalize better and encourage the compres-
sion of states as input to the actor-critic algorithm. Curiosity-Bottleneck (Kim et al., 2019) employs
the VIB framework to train a compressor that compresses the representation of states, which is
still informative about the value function, and uses the compressiveness as exploration signals. In-
foBot (Goyal et al., 2019) proposes a conditional version of VIB to improve the transferability of a
goal-conditioned policy by minimizing the policy’s dependence on the goal. Variational bandwidth
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bottleneck (Goyal et al., 2020) uses a modified, conditional version of VIB, and solves RL tasks with
privileged inputs (i.e. valuable information that comes with a cost). Our exploration method differs
from these methods in two aspects. First, we propose a new information bottleneck method that is
not limited to exploration in RL but generally applicable to the problems for which the IB theory is
used. Second, our method generates exploration signals based on the noise-robust predictability i.e.
the predictability between noise-robust representations of observations.

3 DROP-BOTTLENECK

3.1 PRELIMINARIES OF INFORMATION BOTTLENECK

Given an input random variable X , the information bottleneck (IB) framework (Tishby et al., 2000;
Tishby & Zaslavsky, 2015) formalizes a problem of obtaining X’s compressed representation Z,
which still and only preserves information relevant to the target variable Y . Its objective function is

minimize−I(Z;Y ) + βI(Z;X), (1)

where β is a Lagrangian multiplier. The first and second terms are prediction and compression terms,
respectively. The prediction term I(Z;Y ) encourages Z to preserve task-relevant information while
the compression term I(Z;X) compresses the input information as much as possible.

As reviewed in the previous section, there have been several IB methods (Alemi et al., 2017; Chalk
et al., 2016; Achille & Soatto, 2018; Strouse & Schwab, 2017; Kolchinsky et al., 2019), among
which the ones derived using variational inference such as Variational Information Bottleneck (VIB)
(Alemi et al., 2017) have become dominant due to its applicability to general problems.

3.2 DROP-BOTTLENECK

We propose a novel information bottleneck method called Drop-Bottleneck (DB), where the input
information is compressed by discretely dropping a subset of input features. Thus, its compres-
sion objective is simple and easy to optimize. Moreover, its representation is easily convertible to a
deterministic version for inference tasks (Section 3.3), and it allows joint training with a feature ex-
tractor (Section 3.4). While discrete dropping of features has been explored by prior works including
Dropout (Srivastava et al., 2014), DB differs in that its goal is to assign different drop probabilities
to feature variables based on their relevance to the target variable.

For an input variableX = [X1, . . . , Xd] and a drop probability p = [p1, . . . , pd] ∈ [0, 1]d, we define
its compressed representation as Z = Cp(X) = [c(X1, p1), . . . , c(Xd, pd)] such that

c(Xi, pi) = b · Bernoulli(1− pi) ·Xi, where b =
d

d−∑k pk
, (2)

for i = 1, . . . , d. That is, the compression procedure drops the i-th input feature (i.e. replaced by
zero) with probability pi. Since the drop probability is to be learned, we use a scaling factor b to
keep the scale of Z constant. We use a single scaling factor for all feature dimensions in order to
preserve the relative scales between the features.

With the definition in Equation (2), we derive the compression term of DB to minimize as

I(Z;X) =

d∑
i=1

I(Zi;X1, . . . , Xd|Z1, . . . , Zi−1) (3)

=

d∑
i=1

[I(Zi;Xi|Z1, . . . , Zi−1) + I(Zi;X1, . . . , Xd \Xi|Z1, . . . , Zi−1, Xi)] (4)

=

d∑
i=1

I(Zi;Xi|Z1, . . . , Zi−1) ≤
d∑
i=1

I(Zi;Xi) = Î(Z;X) (5)

using that Zi⊥⊥X1, . . . , Xi−1, Xi+1, . . . , Xd|Z1, . . . , Zi−1, Xi and Zi⊥⊥Z1, . . . , Zi−1|Xi. Note
that Î(Z;X) − I(Z;X) =

(∑d
i=1H(Zi)

)
− H(Z1, . . . , Zd) = TC(Z) where TC(Z) is the

total correlation of Z and H(·) denotes the entropy, and Î(Z;X) = I(Z;X) if X1, . . . , Xd are in-
dependent. To provide a rough view on the gap, due to the joint optimization with the compression
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term Î(Z;X) and the prediction term I(Z;Y ), Z becomes likely to preserve less redundant and less
correlated features, and TC(Z) could decrease as the optimization progresses.

Finally, DB’s new compression term, Î(Z;X), is computed as

Î(Z;X) =

d∑
i=1

I(Zi;Xi) =

d∑
i=1

(
H(Xi)−H(Xi|Zi)

)
(6)

=

d∑
i=1

(
H(Xi)− pi ·H(Xi|Zi = 0)− (1− pi) ·H(Xi|Zi = bXi)

)
(7)

≈
d∑
i=1

(
H(Xi)− pi ·H(Xi)− (1− pi) · 0

)
=

d∑
i=1

H(Xi)(1− pi). (8)

From Equation (7) to Equation (8), we use the two ideas: (i) H(Xi|Zi = 0) = H(Xi) because
Zi = 0 means it contains no information about Xi, and (ii) H(Xi|Zi = bXi) = 0 because Zi =
bXi means Zi preserves the feature (i.e. Zi fully identifies Xi) and thus their conditional entropy
becomes zero. Importantly, DB’s compression term is computed as the simple tractable expression
in Equation (8). As the goal of the compression term is to penalize I(Z;X) not H(X), the drop
probability p is the only parameter optimized with our compression term. Thus, each H(Xi) can be
computed with any entropy estimation method such as the binning-based estimation, which involves
quantization for continuous Xi, since the computation has no need to be differentiable.

However, one issue of Equation (8) is that Z is not differentiable with respect to p as Bernoulli
distributions are not differentiable. We thus use the Concrete relaxation (Maddison et al., 2017;
Jang et al., 2016) of the Bernoulli distribution to update p via gradients from Z:

Bernoulli(p) ≈ σ
(

1

λ
(log p− log(1− p) + log u− log(1− u))

)
, (9)

where u ∼ Uniform(0, 1) and λ is a temperature for the Concrete distribution. Intuitively, p is
trained to assign a high drop probability to the feature that is irrelevant to or redundant for predicting
the target variable Y .

3.3 DETERMINISTIC COMPRESSED REPRESENTATION

With Drop-Bottleneck, one can simply obtain the deterministic version of the compressed represen-
tation as Z̄ = C̄p(X) = [c̄(X1, p1), . . . , c̄(Xd, pd)] for

c̄(Xi, pi) = b̄ · 1(pi < 0.5) ·Xi, where b̄ =
d∑

k 1(pk < 0.5)
. (10)

b̄ is defined similarly to b with a minor exception that the scaling is done based on the actual, deter-
ministic number of the dropped features. The deterministic compressed representation Z̄ is useful
for inference tasks that require stability or consistency of the representation as well as reducing the
feature dimensionality for inference, as we demonstrate in Section 5.4.

3.4 TRAINING WITH DROP-BOTTLENECK

We present how Drop-Bottleneck (DB) is trained with the full IB objective allowing joint training
with a feature extractor. Since DB proposes only a new compression term, any existing method for
maximizing the prediction term I(Z;Y ) can be adopted. We below discuss an example with Deep
Infomax (Hjelm et al., 2019) since our exploration method uses this framework (Section 4). Deep
Infomax, instead of I(Z;Y ), maximizes its Jensen-Shannon mutual information estimator

IJSD
ψ (Z;Y ) =

1

2

(
EPZY

[−ζ(−Tψ(Z, Y ))]− EPZ⊗PY
[ζ(Tψ(Z, Ỹ ))] + log 4

)
, (11)

where Tψ is a discriminator network with parameter ψ and ζ(·) is the softplus function.

Finally, the IB objective with Drop-Bottleneck becomes

minimize−IJSD
ψ (Z;Y ) + β

d∑
i=1

H(Xi)(1− pi), (12)
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which can be optimized via gradient descent. To make p more freely trainable, we suggest simple
element-wise parameterization of p as pi = σ(p′i) and initializing p′i ∼ Uniform(a, b). We obtain
the input variable X from a feature extractor, whose parameters are trained via the prediction term,
jointly with p and ψ. In next section, we will discuss its application to hard exploration problems
for reinforcement learning.

4 ROBUST EXPLORATION WITH DROP-BOTTLENECK

Based on DB, we propose an exploration method that is robust against highly noisy observations
in a very sparse reward environment for reinforcement learning tasks. We first define a parametric
feature extractor fφ that maps a state to X . For transitions (S,A, S′) where S,A, and S′ are current
states, actions and next states, respectively, we use the DB objective with

X = fφ(S′), Z = Cp(X), Y = Cp(fφ(S)). (13)

For every transition (S,A, S′), the compression term I(Z;X) = I(Cp(fφ(S′)); fφ(S′)) encourages
Cp to drop unnecessary features of the next state embedding fφ(S′) as possible. The prediction
term I(Z;Y ) = I(Cp(fφ(S′));Cp(fφ(S))) makes the compressed representations of the current
and next state embeddings, Cp(fφ(S)) and Cp(fφ(S′)), informative about each other.

Applying Equation (13) to Equation (12), the Drop-Bottleneck objective for exploration becomes

minimize−IJSD
ψ (Cp(fφ(S′));Cp(fφ(S))) + β

d∑
i=1

H((fφ(S′))i)(1− pi). (14)

While fφ, p, and Tψ are being trained online, we use them for the agent’s exploration with the help
of episodic memory inspired by Savinov et al. (2019). Starting from an empty episodic memory M ,
we add the learned feature of the observation at each step. For example, at time step t, the episodic
memory is M = {C̄p(fφ(s1)), C̄p(fφ(s2)), . . . , C̄p(fφ(st−1))} where s1, . . . , st−1 are the earlier
observations from that episode. We then quantify the degree of novelty of a new observation as an
intrinsic reward. Specifically, the intrinsic reward for st is computed utilizing the Deep Infomax
discriminator Tψ , which is trained to output a large value for joint (or likely) input and a small value
for marginal (or arbitrary) input:

ri
M,t(st) =

1

t− 1

t−1∑
j=1

[g(st, sj) + g(sj , st)] , s.t. g(x, y) = ζ(−Tψ(C̄p(fφ(x)), C̄p(fφ(y))), (15)

where g(st, sj) and g(sj , st) denote the unlikeliness of st being the next and the previous state of sj ,
respectively. Thus, intuitively, for st that is close to a region covered by the earlier observations in
the state space, ri

M,t(st) becomes low, and vice versa. It results in a solid exploration method capable
of handling noisy environments with very sparse rewards. For computing the intrinsic reward, we
use the DB’s deterministic compressed representation of states to provide stable exploration signals
to the policy optimization.

5 EXPERIMENTS

We carry out three types of experiments to evaluate Drop-Bottleneck (DB) in multiple aspects. First,
we apply DB exploration to multiple VizDoom (Kempka et al., 2016) and DMLab (Beattie et al.,
2016) environments with three hard noise settings, where we compare with state-of-the-art methods
as well as its VIB variant. Second, we empirically show that DB is superior to VIB for adversar-
ial robustness and feature dimensionality reduction in ImageNet classification (Russakovsky et al.,
2015), and we juxtapose DB with VCEB, which employs a different form of the IB object, for the
same adversarial robustness test, in Appendix A. Finally, in Appendix B, we make another compari-
son with VIB in terms of removal of task-irrelevant information and the validity of the deterministic
compressed representation, where Appendix C provides the visualization of the task-irrelevant in-
formation removal on the same task.

5.1 EXPERIMENTAL SETUP FOR EXPLORATION TASKS

For the exploration tasks on VizDoom (Kempka et al., 2016) and DMLab (Beattie et al., 2016),
we use the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) as the base RL
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method. We employ ICM from Pathak et al. (2017), and EC and ECO from Savinov et al. (2019)
as baseline exploration methods. ICM learns a dynamics model of the environment and uses the
prediction errors as exploration signals for the agent. EC and ECO are curiosity methods that use
episodic memory to produce novelty bonuses according to the reachability of new observations, and
show the state-of-the-art exploration performance on VizDoom and DMLab navigation tasks. In
summary, we compare with four baseline methods: PPO, PPO + ICM, PPO + EC, and PPO + ECO.
Additionally, we report the performance of our method combined with VIB instead of DB.

We conduct experiments with three versions of noisy-TV settings named “Image Action”, “Noise”
and “Noise Action”, as proposed in Savinov et al. (2019). We present more details of noise and their
observation examples in Appendix E.1. Following Savinov et al. (2019), we resize observations as
160×120 only for the episodic curiosity module while as 84×84 for the PPO policy and exploration
methods. We use the official source code1 of Savinov et al. (2019) to implement and configure the
baselines (ICM, EC and ECO) and the three noise settings.

For the feature extractor fφ, we use the same CNN with the policy network of PPO from Mnih
et al. (2015). The only modification is to use d = 128 i.e. 128-dimensional features instead of
512 to make features lightweight enough to be stored in the episodic memory. The Deep Infomax
discriminator Tψ consists of three FC hidden layers with 64, 32, 16 units each, followed by a final
FC layer for prediction. We initialize the drop probability p with pi = σ(p′i) and p′i ∼ Uniform(a, b)
where a = −2, b = 1. We collect samples and update p, Tψ, fφ with Equation (14) every 10.8K and
21.6K time steps in VizDoom and DMLab, respectively, with a batch size of 512. We duplicate the
compressed representation 50 times with differently sampled drop masks, which help better training
of the feature extractor, the drop probability and the discriminator by forming diverse subsets of
features. Please refer to Appendix E for more details of our experimental setup.

5.2 EXPLORATION IN NOISY STATIC MAZE ENVIRONMENTS

VizDoom (Kempka et al., 2016) provides a static 3D maze environment. We experiment on the My-
WayHome task with nine different settings by combining three reward conditions (“Dense”, “Sparse”
and “Very Sparse”) in Pathak et al. (2017) and three noise settings in the previous section. In the
“Dense”, “Sparse” and “Very Sparse” cases, the agent is randomly spawned in a near, medium and
very distant room, respectively. Thus, “Dense” is a relatively easy task for the agent to reach the
goal even with a short random walk, while “Sparse” and “Very Sparse” require the agent to perform
a series of directed actions, which make the goal-oriented navigation difficult.

Table 1 and Figure 1 compare the DB exploration with three baselines, PPO, PPO + ICM, and PPO
+ ECO on the VizDoom tasks, in terms of the final performance and how quickly they learn. The
results suggest that even in the static maze environments, the three noise settings can degrade the
performance of the exploration by large margins. On the other hand, our method with DB shows
robustness to such noise or task-irrelevant information, and outperforms the baselines in all the nine
challenging tasks, whereas our method combined with VIB does not exhibit competitive results.

5.3 EXPLORATION IN NOISY AND RANDOMLY GENERATED MAZE ENVIRONMENTS

As a more challenging exploration task, we employ DMLab (Savinov et al., 2019), which are general
and randomly generated maze environments where at the beginning of every episode, each maze is
procedurally generated with its random goal location. Thanks to the random map generator, each
method is evaluated on test mazes that are independent of training mazes. As done in Savinov et al.
(2019), we test with six settings according to two reward conditions (“Sparse” and “Very Sparse”)
and the three noise settings. In the “Sparse” scenario, the agent is (re-)spawned at a random location
when each episode begins or every time it reaches the goal i.e. the sparse reward; the agent should
reach the goal as many times as possible within the fixed episode length. The “Very Sparse” is its
harder version: the agent does not get (re-)spawned near or in the same room with the goal.

Table 1 compares between different exploration methods on the DMLab tasks. The results demon-
strate that our DB exploration method achieves state-of-the-art performance with significant margins
from the baselines on all the 6 tasks, and performs better than our method equipped with VIB as well.
The plots too suggest that our method provides stable exploration signals to the agent under different
environmental and noise settings. As mentioned in Section 5.1, our method can achieve better per-

1https://github.com/google-research/episodic-curiosity.
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Table 1: Comparison of the average episodic sum of rewards in VizDoom (over 10 runs) and DMLab
(over 30 runs) under three noise settings: Image Action (IA), Noise (N) and Noise Action (NA).
The values are measured after 6M and 20M (4 action-repeated) steps for VizDoom and DMLab
respectively, with no seed tuning done. Baseline results for DMLab are cited from Savinov et al.
(2019). Grid Oracle† provides the performance upper bound by the oracle method for DMLab tasks.

Method
VizDoom DMLab

Dense Sparse Very Sparse Sparse Very Sparse

IA N NA IA N NA IA N NA IA N NA IA N NA

PPO (Schulman et al., 2017) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 8.5 11.6 9.8 6.3 8.7 6.1
PPO + ICM (Pathak et al., 2017) 0.87 1.00 1.00 0.00 0.50 0.40 0.00 0.73 0.20 6.9 7.7 7.6 4.9 6.0 5.7
PPO + EC (Savinov et al., 2019) – – – – – – – – – 13.1 18.7 14.8 7.4 13.4 11.3
PPO + ECO (Savinov et al., 2019) 0.71 0.81 0.72 0.21 0.70 0.33 0.19 0.79 0.50 18.5 28.2 18.9 16.8 26.0 12.5

PPO + Ours (VIB) 1.00 1.00 1.00 0.21 0.61 0.40 0.37 0.70 0.67 28.2 31.9 27.1 23.5 25.4 22.3
PPO + Ours (Drop-Bottleneck) 1.00 1.00 1.00 0.90 1.00 0.99 0.90 1.00 0.90 30.4 32.7 30.6 28.8 29.1 26.9

PPO + Grid Oracle† – – – – – – – – – 37.4 38.8 39.3 36.3 35.5 35.4
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Figure 1: Reward trajectories as a function of training step (in millions) for VizDoom (columns 1-3)
and DMLab (columns 4-6) with (a) Very Sparse, (b) Sparse and (c) Dense settings. For VizDoom
tasks, we show all the 10 runs per method. For DMLab tasks, we show the averaged episode rewards
over 30 runs of our exploration with the 95% confidence intervals.
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Figure 2: Evolution examples of the drop probability distribution p on Very Sparse DMLab envi-
ronments with (left) Image Action, (middle) Noise and (right) Noise Action settings. Each figure
shows a histogram per p value according to training iterations (the more front is the more recent).

formance even using much lower resolution observations of 84×84 than 160×120 of EC and ECO.
Also, excluding the policy network, our method maintains 0.5M parameters, which is significantly
smaller compared to ECO with 13M parameters. Please refer to Appendix D for an ablation study,

Figure 2 shows evolution examples of the drop probability distribution over training time steps. It
overviews the role of drop probability p in DB. As the joint training of the feature extractor fφ with p
progresses, p gets separated into high- and low-value groups, where the former drops task-irrelevant
or redundant features and the latter preserves task-relevant features. This suggests that in the DMLab
environments, the DB objective of Equation (14) successfully encourages dropping the features
unrelated to transition between observations and also the deterministic compressed representation
becomes stable as the training progresses.
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Table 2: Results of the adversarial robustness for Drop-
Bottleneck (DB) and Variational Information Bottle-
neck (VIB) (Alemi et al., 2017) with the targeted `2
and `∞ attacks (Carlini & Wagner, 2017). Succ. de-
notes the attack success rate in % (lower is better), and
Dist. is the average perturbation distance over success-
ful adversarial examples (higher is better).

Attack
type β

VIB DB DB (determ.)

Succ. Dist. Succ. Dist. Succ. Dist.

`2

0.0001 99.5 0.806 100.0 0.929 99.5 0.923
0.0003162 99.5 0.751 100.0 0.944 100.0 0.941
0.001 100.0 0.796 99.5 1.097 100.0 1.134
0.003162 99.5 0.842 27.0 3.434 23.0 2.565
0.01 100.0 0.936 18.5 6.847 20.0 6.551
0.03162 100.0 0.695 41.0 2.160 39.5 1.953
0.1 99.5 0.874 85.5 2.850 85.5 2.348

`∞

0.0001 99.5 0.015 91.0 0.013 95.5 0.009
0.0003162 99.5 0.017 85.0 0.016 91.5 0.009
0.001 100.0 0.017 62.5 0.020 70.0 0.012
0.003162 97.5 0.017 1.5 0.009 1.5 0.020
0.01 87.0 0.019 2.0 0.022 2.0 0.013
0.03162 25.0 0.121 8.5 0.022 8.0 0.023
0.1 15.5 0.202 23.0 0.017 23.0 0.019
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Figure 3: Classification accuracy of
Inception-ResNet-v2 equipped with VIB
(Alemi et al., 2017) and DB on ImageNet
validation set (Russakovsky et al., 2015).
DB (determ.) quickly drops many feature
dimensions with increased β, while VIB
retains them at 1024 regardless of β.

5.4 COMPARISON WITH VIB: ADVERSARIAL ROBUSTNESS & DIMENSION REDUCTION

We experiment with image classification on ImageNet (Russakovsky et al., 2015) to compare Drop-
Bottleneck (DB) with Variational Information Bottleneck (VIB) (Alemi et al., 2017), the most
widely-used IB framework, regarding the robustness to adversarial attacks and the reduction of
feature dimensionality. We follow the experimental setup from Alemi et al. (2017) with some ex-
ceptions. We use β1 = 0.9 and no learning rate decay for DB’s Adam optimizer (Kingma & Ba,
2015). For prediction, we use one Monte Carlo sample of each stochastic representation. Addition-
ally, we provide a similar comparison with the mutual information-based feature selection method.

Robustness to adversarial attacks. Following Alemi et al. (2017), we employ the targeted `2 and
`∞ adversarial attacks from Carlini & Wagner (2017). For each method, we determine the first
200 validation images on ImageNet that are classified correctly, and apply the attacks to them by
selecting uniformly random attack target classes. Please refer to Appendix E.2 for further details.

Table 2 shows the results. For the targeted `2 attacks, choosing the value of β from [0.003162, 0.1]
provides the improved robustness of DB with the maximum at β = 0.01. On the other hand, VIB
has no improved robustness in all ranges of β. For the targeted `∞ attacks, DB can reduce the attack
success rate even near to 0% (e.g. β = 0.003162 or 0.01). Although VIB decreases the attack
success rate to 15.5% at β = 0.1, VIB already suffers from the performance degradation at β = 0.1
compared to DB (Figure 3), and increasing β accelerates VIB’s degradation even further. Note that
the validation accuracies of both VIB and DB are close to zero at β = 0.3162.

Dimensionality reduction. Figure 3 compares the accuracy of DB and VIB by varying β on the
ImageNet validation set. Overall, their accuracies develop similarly with respect to β; while VIB is
slightly better in the lower range of β, DB produces better accuracy in the higher range of β. Note
that DB (determ.) shows the almost identical accuracy plot with DB. Importantly, DB (determ.) still
achieves a reasonable validation accuracy (≥ 75%) using only a few feature dimensions (e.g. 8) out
of the original 1024 dimensions. This suggests that DB’s deterministic compressed representation
can greatly reduce the feature dimensionality for inference with only a small trade-off with the
performance. It is useful for improving the efficiency of the model after the training is complete.
On the other hand, VIB has no such capability. Finally, as Figure 3 shows, the trade-off between the
dimensionality reduction and the performance can be controlled by the value of β.

Comparison with feature selection. As the deterministic representation of DB, DB (determ.), pro-
vides the dimensionality reduction, we also empirically compare DB with the univariate mutual
information-based feature selection method for obtaining the feature space with a reduced dimen-
sionality. In the experiments, the same features provided to DB and VIB are given as input to the
feature selection method as well, and for a more straightforward comparison, we let the feature se-
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Table 3: Results of the adversarial robustness for Drop-
Bottleneck (DB) and the mutual information-based fea-
ture selection with the targeted `2 and `∞ attacks (Car-
lini & Wagner, 2017), using the same number of fea-
tures. Succ. denotes the attack success rate in % (lower
is better), and Dist. is the average perturbation distance
over successful adversarial examples (higher is better).

Attack
type

# of
features

MI-based FS DB (determ.)

Succ. Dist. Succ. Dist.

`2

196 99.5 1.484 99.5 0.923
70 100.0 1.323 100.0 0.941
19 99.5 1.161 100.0 1.134
8 99.5 1.164 20.0 6.551
5 97.0 1.202 39.5 1.953
4 97.0 1.127 85.5 2.348

`∞

196 99.5 0.016 95.5 0.009
70 100.0 0.014 91.5 0.009
19 99.5 0.013 70.0 0.012
8 99.5 0.014 2.0 0.013
5 97.0 0.016 8.0 0.023
4 97.0 0.015 23.0 0.019
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Figure 4: Classification accuracy of
Inception-ResNet-v2 equipped with the
mutual information-based feature selec-
tion and DB on ImageNet validation set
(Russakovsky et al., 2015), using the same
number of features.

lection method preserve the same number of features as DB (determ.). Refer to Appendix E.3 for
further details of the feature selection procedure. Figure 4 shows the classification accuracy of the
two methods for the same numbers of features. The results show that while the mutual information-
based feature selection method could provide a marginal performance benefit when a larger subset
of the pre-trained features is preserved, DB is significantly better at retaining the accuracy with a
small number of feature dimensions. For instance, DB achieves the accuracy over 71% even with
4 features, but the accuracy of feature selection method drops from ≈ 68% to ≈ 10% when the
number of features is < 26. Also, we make a comparison of the adversarial robustness; Table 3
suggests that the features preserved with the feature selection method show almost no robustness to
the targeted `2 and `∞ attacks, where every attack success rate is ≥ 97%. On the other hand, DB
(determ.) can reduce the success rate to 20% for the `2 and to 2% for the `∞ attacks with 8 features.

6 CONCLUSION

We presented Drop-Bottleneck as a novel information bottleneck method where compression is done
by discretely dropping input features, taking into account each input feature’s relevance to the tar-
get variable and allowing its joint training with a feature extractor. We then proposed an exploration
method based on Drop-Bottleneck, and it showed state-of-the-art performance on multiple noisy and
reward-sparse navigation environments from VizDoom and DMLab. The results showed the robust-
ness of Drop-Bottleneck’s compressed representation against noise or task-irrelevant information.
With experiments on ImageNet, we also showed that Drop-Bottleneck achieves better adversarial
robustness compared to VIB and can reduce the feature dimension for inference. In the exploration
experiments, we directly fed the noisy observations to the policy, which can be one source of per-
formance degradation in noisy environments. Therefore, applying Drop-Bottleneck to the policy
network can improve its generalization further, which will be one interesting future research.
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Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019b.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Matthew Chalk, Olivier Marre, and Gasper Tkacik. Relevant sparse codes with variational informa-
tion bottleneck. In Advances in Neural Information Processing Systems, pp. 1957–1965, 2016.

Bin Dai, Chen Zhu, and David Wipf. Compressing neural networks using the variational information
bottleneck. arXiv preprint arXiv:1802.10399, 2018.

Ian Fischer. The conditional entropy bottleneck. arXiv preprint arXiv:2002.05379, 2020.

Ian Fischer and Alexander A Alemi. Ceb improves model robustness. arXiv preprint
arXiv:2002.05380, 2020.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15, pp. 315–323, 2011.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew M Botvinick, Hugo
Larochelle, Sergey Levine, and Yoshua Bengio. Infobot: Transfer and exploration via the in-
formation bottleneck. ArXiv, abs/1901.10902, 2019.

Anirudh Goyal, Yoshua Bengio, Matthew M Botvinick, and Sergey Levine. The variational band-
width bottleneck: Stochastic evaluation on an information budget. ArXiv, abs/2004.11935, 2020.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In Proceedings of the 7th International Conference on Learning Representa-
tions (ICLR), 2019.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cynthia H Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In NeurIPS, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the 4th International Conference on Learning Representations (ICLR), 2016.

10



Published as a conference paper at ICLR 2021

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
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A COMPARISON WITH VCEB: ADVERSARIAL ROBUSTNESS

In this section, we compare Drop-Bottleneck (DB) with Variational Conditional Entropy Bottleneck
(VCEB) (Fischer, 2020; Fischer & Alemi, 2020) on the same ImageNet (Russakovsky et al., 2015)
tasks for the adversarial robustness as in Section 5.4. VCEB variationally approximates the CEB
objective, which is defined as

minimize−I(Z;Y ) + γI(Z;X|Y ). (16)

Note that Equation (16) is an alternative form of the original IB objective, Equation (1), as
I(Z;X,Y ) = I(Z;Y ) + I(Z;X|Y ) = I(Z;X) + I(Z;Y |X) and I(Z;Y |X) = 0 (∵ Z⊥⊥Y |X).
As in Section 5.4, we employ the experimental setup from VIB (Alemi et al., 2017) with small mod-
ifications to the hyperparameters for the Adam optimizer (Kingma & Ba, 2015) that β1 = 0.9 and
no learning rate decay is used. Additionally for VCEB, we apply the configurations suggested by
Fischer & Alemi (2020): 1) at test time, use the mean of the Gaussian encoding instead of sampling
from the distribution, and 2) reparameterize γ = exp(−ρ) and anneal the value of ρ from ρ = 100
to the final ρ during training. For our experiments, the annealing is performed via the first 100000
training steps, where each epoch consists of 6405 steps.

Employing the experimental setup from Alemi et al. (2017), we adopt the targeted `2 and `∞ ad-
versarial attacks from Carlini & Wagner (2017). We determine the first 200 correctly classified
validation images on ImageNet for each setting and perform the attacks where the attack target
classes are chosen randomly and uniformly. Further details are described in Appendix E.2.
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Figure 5: Classification accuracy of
Inception-ResNet-v2 equipped with
VCEB (Fischer, 2020; Fischer & Alemi,
2020) on ImageNet (Russakovsky et al.,
2015). ρ is annealed from 100 to the final
ρ over the first 100000 training steps.

Figure 5 visualizes the classification accuracy for each
corresponding final value of ρ, and the adversarial ro-
bustness results are shown in Table 4. Overall, both
VCEB and DB provide meaningful robustness to the
targeted `2 and `∞ attacks. For the targeted `2 at-
tacks, although VCEB could achieve the higher aver-
age perturbation distance over successful attacks, DB
and its deterministic form show better robustness com-
pared to VCEB in terms of the attack success rates:
18.5% (DB at β = 0.01) and 20.0% (DB (determ.) at
β = 0.01) versus 45.0% (VCEB at the final ρ = 3.454).
For the targeted `∞ attacks, DB and its determinis-
tic version again achieve the lower attack success rates
than VCEB: 1.5% and 2.0% (DB and DB (determ.) at
β ∈ {0.003162, 0.01})) versus 12.5% (VCEB at the fi-
nal ρ = 3.454).

B REMOVAL OF TASK-IRRELEVANT INFORMATION AND VALIDITY OF
DETERMINISTIC COMPRESSED REPRESENTATION

We experiment Drop-Bottleneck (DB) and Variational Information Bottleneck (VIB) (Alemi et al.,
2017) on occluded image classification tasks to show the following:

• DB can control the degree of compression (i.e. degree of removal of task-irrelevant infor-
mation) in the same way with VIB as the popular IB method.

• DB’s deterministic compressed representation works as a reasonable replacement for its
stochastic compressed representation and it maintains the learned indistinguishability better
than the attempt of VIB’s deterministic compressed representation.

We employ the Occluded CIFAR dataset using the experimental settings from Achille & Soatto
(2018). The Occluded CIFAR dataset is created by occluding CIFAR-10 (Krizhevsky, 2009) images
with MNIST (LeCun et al., 2010) images as shown in Figure 6a, and each image has two labels of
CIFAR and MNIST. We use a modified version of All-CNN-32 (Achille & Soatto, 2018) equipped
with an IB method (either of DB or VIB) for the feature extractor whose output dimension is d. Each
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Table 4: Results of the adversarial robustness for Drop-Bottleneck (DB) and Variational Conditional
Entropy Bottleneck (VCEB) (Fischer, 2020; Fischer & Alemi, 2020) with the targeted `2 and `∞
attacks (Carlini & Wagner, 2017). Succ. denotes the attack success rate in % (lower is better), and
Dist. is the average perturbation distance over successful adversarial examples (higher is better). †ρ
for VCEB is annealed from 100 to the final ρ over the first 100000 training steps.

Attack
type

Constraint on I(Z;X|Y ) Constraint on I(Z;X)

Final ρ† VCEB
β

DB DB (determ.)

Succ. Dist. Succ. Dist. Succ. Dist.

`2

9.210 99.0 1.200 0.0001 100.0 0.929 99.5 0.923
8.059 92.0 2.028 0.0003162 100.0 0.944 100.0 0.941
6.908 86.5 5.040 0.001 99.5 1.097 100.0 1.134
5.757 65.0 7.198 0.003162 27.0 3.434 23.0 2.565
4.605 46.0 12.016 0.01 18.5 6.847 20.0 6.551
3.454 45.0 10.744 0.03162 41.0 2.160 39.5 1.953
2.303 53.0 14.021 0.1 85.5 2.850 85.5 2.348

`∞

9.210 86.0 0.012 0.0001 91.0 0.013 95.5 0.009
8.059 64.5 0.013 0.0003162 85.0 0.016 91.5 0.009
6.908 48.0 0.016 0.001 62.5 0.020 70.0 0.012
5.757 29.0 0.019 0.003162 1.5 0.009 1.5 0.020
4.605 17.0 0.025 0.01 2.0 0.022 2.0 0.013
3.454 12.5 0.025 0.03162 8.5 0.022 8.0 0.023
2.303 17.5 0.027 0.1 23.0 0.017 23.0 0.019

run consists of two phases. In the first phase, we train the feature extractor with a logistic classifier
using both the classification loss for CIFAR and the compression objective of the IB method. Fixing
the trained feature extractor, we train a logistic classifier for MNIST in the second phase. We
train two different versions of classifiers for each of VIB and DB using stochastic or deterministic
compressed representation from the feature extractor. For the deterministic representation of VIB,
we use the mode of the output Gaussian distribution.

Figures 6b–6d contain the experimental results with d = 32, d = 64, and d = 128. In the first phase,
DB retains only a subset of features that concentrate more on the CIFAR part of the images. Thus,
the trained feature extractor preserves less information about the MNIST parts, and the errors of the
MNIST classification are high. The first observation is that for both DB and VIB with the original
stochastic compressed representation, nuisance plots show that increasing β from the minimum
value to ∼ 0.1/d barely changes the primary CIFAR errors but grows the nuisance MNIST errors
up to ∼ 90% (i.e. the maximum error for the 10-way classification). With even larger β, enforcing
stronger compression results in the increase of the primary errors too, as shown in primary plots.
This suggests that both DB and VIB provide fine controllability over the removal of task-irrelevant
information.

Secondly, if we move our focus to the nuisance (deterministic) plots in Figures 6b–6d, which show
the test errors on the nuisance MNIST classification with the feature extractor’s deterministic rep-
resentation, the results become different between DB and VIB. In DB, the nuisance (deterministic)
plots follow the nuisance plots in the range of β where the compression takes effect (i.e. where
the nuisance errors increase). Moreover, the two plots get closer as β increases. It means that
Drop-Bottleneck’s deterministic compressed representations maintain the majority of the indistin-
guishability for the task-irrelevant information learned during the first phase, especially when β is
large enough to enforce some degree of the compression. On the other hand, VIB’s nuisance (de-
terministic) plots are largely different from the nuisance plots; even the primary errors rise before
the nuisance (deterministic) errors reach their maximum values. This shows that employing the
mode of VIB’s output distribution as its deterministic representation results in loss of the learned
indistinguishability.

In summary, we confirm that DB provides controllability over the degree of compression in a similar
way as VIB. On the other hand, DB’s deterministic representation can be a reasonable replacement
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Figure 6: (a) A few samples from Occluded CIFAR dataset (Achille & Soatto, 2018). (b)–(d)
Test error plots on the primary task (i.e. the classification of occluded CIFAR images) and on the
nuisance tasks (i.e. classification of the MNIST digits). For all the three types of tasks, we use the
same feature extractor trained for the primary task, where its deterministic representation is used
only for training and test of the nuisance (deterministic) task.

Raw image

Primary

Nuisance (agg.)
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(a) Without DB (b) With DB

Figure 7: Grad-CAM (Selvaraju et al., 2017) visualization for the last convolutional layer of the
feature extractor on the Occluded CIFAR classification task. For the visualization, d = 128, and
β = 5.623/d for (b) are used. Primary denotes the maps of the logits for the primary labels.
Nuisance (agg.) means the maps on the nuisance task aggregated over all the logits (i.e. 10 logits).
(a) indicates that the feature extractor without DB trained on the primary task still outputs much
information about the nuisance tasks, and thus the nuisance classifier could depend on the features
extracted from the nuisance (MNIST) regions. In contrast, (b) suggests that the feature extractor
with DB could learn to discard the nuisance features, so that the nuisance classifier mostly fails to
learn due to the lack of nuisance-relevant features.

for its original stochastic representation in terms of preserving the learned indistinguishability, which
is not exhibited by VIB.

C VISUALIZATION OF TASK-IRRELEVANT INFORMATION REMOVAL

In this section, we visualize the removal of task-irrelevant information with Drop-Bottleneck (DB).
To this end, we employ the Occluded CIFAR dataset (Achille & Soatto, 2018) with the same exper-
imental setup as in Appendix B. Each image of Occluded CIFAR dataset is one of the CIFAR-10
(Krizhevsky, 2009) images occluded by MNIST (LeCun et al., 2010) digit images. In the first
phase of the experiments, the feature extractor and the classifier are trained on the primary (oc-
cluded CIFAR classification) task in a normal way. During the second phase, the learned feature
extractor is fixed, and only a new classifier is trained on the nuisance (MNIST classification) task.
In Appendix B, we quantitatively showed that the feature extractor with DB could focus more on
the occluded CIFAR images and preserve less information about the MNIST occlusions. We take a
qualitative approach in this section and visualize the phenomenon using Grad-CAM (Selvaraju et al.,
2017). Grad-CAM is popular for providing visual explanation given convolutional neural networks
with their target values (e.g. target logits in classification tasks).

We first sample multiple test images from the Occluded CIFAR dataset, and load full, trained models,
which include the feature extractor, primary classifier and nuisance classifier. We then obtain the
activation maps for the last convolutional layer of the feature extractor on the primary and nuisance
tasks. On the primary task, we compute the activation maps simply targeting the logits for the sample
labels. However, on the nuisance task, we get the activation maps of all the logits and aggregate them
by taking the maximum of the maps at each pixel location. Therefore, the aggregated maps on the
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nuisance task visualize the activation related to not only the logits for the true class labels but also
the other logits, capturing most of the feature usage induced during the training on the nuisance task.

Figure 7 compares two trained models: the d = 128 model without DB, and the d = 128 model
with DB (deterministic). We use the DB model with β = 5.623/d for the visualization, as the
value is sufficiently large enough to enforce strong compression while it still keeps the primary error
not high. Figure 7a shows that regarding the logits for the nuisance (MNIST) task, a large portion
of each image including the MNIST digit is activated in most cases, and thus it indicates that the
feature extractor trained without DB preserves much of the nuisance features. On the other hand,
Figure 7b visualizes that the feature extractor with DB outputs notably less of the nuisance features,
preventing the nuisance classifier from learning correctly.

To sum up, we provide the visual demonstration that on the classification task with the Occluded
CIFAR dataset, the feature extractor equipped with DB trained on the primary task could discard
majority of the nuisance i.e. task-irrelevant information given a value of β that is strong enough.

D ABLATION STUDY: EXPLORATION WITHOUT DROP-BOTTLENECK

We perform an ablation study to show Drop-Bottleneck (DB)’s ability of dealing with task-irrelevant
input information. We examine the performance of the same exploration method as described in Sec-
tion 4 but without DB; that is, the feature vectors are fully used with no dropping. In order to em-
phasize the effectiveness of DB for noisy and task-irrelevant information, we conduct experiments
with both noisy and original (i.e. without explicit noise injection) settings.

Table 5: Comparison of the average episodic sum of rewards in DMLab tasks (over 30 runs), where
PPO + Ours (No-Drop-Bottleneck) denotes our exploration method without DB. The original (i.e.
without explicit noise injection) and three noisy settings are tested: Image Action (IA), Noise (N),
Noise Action (NA) and Original (O). The values are measured after 20M (4 action-repeated) time
steps, with no seed tuning done. Baseline results for DMLab are cited from Savinov et al. (2019).

Method
DMLab

Very Sparse

IA N NA O

PPO (Schulman et al., 2017) 6.3 8.7 6.1 8.6
PPO + ICM (Pathak et al., 2017) 4.9 6.0 5.7 11.2
PPO + EC (Savinov et al., 2019) 7.4 13.4 11.3 24.7
PPO + ECO (Savinov et al., 2019) 16.8 26.0 12.5 40.5

PPO + Ours (No-Drop-Bottleneck) 14.9 11.7 10.3 33.0
PPO + Ours (Drop-Bottleneck) 28.8 29.1 26.9 42.7
Improvement (%) 93.3 148.7 161.2 29.4

Table 5 shows the results on “Very Sparse” DMLab environments with “Image Action”, “Noise”,
“Noise Action” and “Original” settings. Compared to “Original” setting where observations con-
tain only implicit, inherent noisy information irrelevant to state transitions, DB brings much more
significant improvement to exploration methods in “Image Action”, “Noise”, and “Noise Action”
settings, which inject explicit, severe transition-irrelevant information to observations. These results
suggest that DB plays an important role handling noisy or task-irrelevant input information.

E DETAILS OF EXPERIMENTS

We describe additional details of the experiments in Section 5. For all the experiments with DB,
each entropy H(Xi) is computed with the binning-based estimation using 32 bins, and the drop
probability p is initialized with pi = σ(p′i) and p′i ∼ Uniform(a, b) for a = −2, b = 1.
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Table 6: Hyperparameters of PPO (Schulman et al., 2017), PPO + ICM (Pathak et al., 2017), PPO +
ECO (Savinov et al., 2019), and PPO + Ours for the VizDoom experiments.

PPO PPO + ICM PPO + ECO PPO + Ours

PPO
Learning rate 0.00025 0.00025 0.00025 0.00025
Entropy coefficient 0.01 0.01 0.01 0.01
Task reward scale 5 5 5 5

Exploration method
Training period and sample size – 3K 120K 10.8K
# of optimization epochs – 4 10 4
Intrinsic bonus scale – 0.01 1 0.001

Table 7: Hyperparameters of PPO (Schulman et al., 2017), PPO + ICM (Pathak et al., 2017), PPO +
EC/ECO (Savinov et al., 2019), and PPO + Ours for the DMLab experiments.

PPO PPO + ICM PPO + EC/ECO PPO + Ours

PPO
Learning rate 0.00019 0.00025 0.00025 0.00025
Entropy coefficient 0.0011 0.0042 0.0021 0.0011
Task reward scale 1 1 1 1

Exploration method
Training period and sample size – 3K 720K (ECO) 21.6K
# of optimization epochs – 4 10 (ECO) 2
Intrinsic bonus scale – 0.55 0.030 0.005

E.1 DETAILS OF EXPLORATION EXPERIMENTS

To supplement Section 5.1, we describe additional details of the VizDoom (Kempka et al., 2016)
and DMLab (Beattie et al., 2016) exploration experiments. We collect training samples in a buffer
and update p, Tψ, fφ with Equation (14) periodically. We use Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.0001 and a batch size of 512. In each optimization epoch, the
training samples from the buffer are re-shuffled. For each mini-batch, we optimize the Deep In-
fomax (Hjelm et al., 2019) discriminator Tψ with 8 extra epochs with the same samples, to make
the Jensen-Shannon mutual information bound tighter. This way of training Tψ only runs forward
and backward passes on Tψ for the fixed output of the feature extractor fφ, and thus can be done
with low computational cost. β is the hyperparameter that determines the relative scales of the com-
pression term and the Deep Infomax Jensen-Shannon mutual information estimator. It is tuned to
β = 0.001/128 for DB and β = 0.0005/128 for VIB. To make experiments simpler, we normalize
our intrinsic rewards with the running mean and standard deviation.

Table 6 and Table 7 report the hyperparameters of the methods for VizDoom and DMLab exper-
iments, respectively. We tune the hyperparameters based on the ones provided by Savinov et al.
(2019). Unless specified, we use the same hyperparameters with Savinov et al. (2019).

Under the three noise settings suggested in Savinov et al. (2019), the lower right quadrant of every
observation is occupied by a TV screen as follows.

• “Image Action”: Every time the agent performs a specific action, it changes the channel of
the TV randomly to one of the 30 predefined animal images.

• “Noise”: At every observation, a new noise pattern is sampled and shown on the TV screen
(independently from the agent’s actions).

• “Noise Action”: Same as “Noise”, but the noise pattern only changes when the agent does
a specific action.

Figure 8 shows some observation examples from VizDoom and DMLab environments with “Image
Action” and “Noise” settings.
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(a) VizDoom (b) DMLab

Figure 8: Example observations from VizDoom (Kempka et al., 2016) and DMLab (Beattie et al.,
2016) environments with “Image Action” (first) and “Noise” (second) settings.

E.2 DETAILS OF ADVERSARIAL ROBUSTNESS EXPERIMENTS

For the experiments, each input image is sized as 299 × 299 × 3 and each pixel value is ranged
[−1, 1]. We perform our adversarial robustness experiments based on the official source code2 of
Carlini & Wagner (2017). For the targeted `2 attack we increase the number of binary search steps
to 20 and use a batch size of 25. Other than the two, the default hyperparameters are used.

E.3 DETAILS OF RUNNING FEATURE SELECTION METHOD

The input of the feature selection method is the same as DB’s and VIB’s: the input features are ob-
tained with a pre-trained model of Inception-ResNet-v2 on ImageNet (Russakovsky et al., 2015). We
randomly pick 100k samples out of the total 1281167 training samples of ImageNet, and compute
the relevance scores for features using those samples by estimating the mutual information between
each feature and its label using the entropy estimation with the k-nearest neighbors (Kraskov et al.,
2004; Ross, 2014). Given the computed scores, we perform the feature selection by preserving the
features with the highest scores.

E.4 DETAILS OF OCCLUDED IMAGE CLASSIFICATION EXPERIMENTS

We use a modified version of All-CNN-32 (Achille & Soatto, 2018). The model architecture for
feature dimension d is described in Table 8. Batch normalization (Ioffe & Szegedy, 2015) is applied
to Conv layers, and the ReLU (Nair & Hinton, 2010; Glorot et al., 2011) activation is used at every
hidden layer. We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001. To
ensure the convergence, in each training, the model is trained for 200 epochs with a batch size of
100.

Table 8: The network architecture for the occluded image classification experiments.

Input image 32× 32× 3

Feature extractor

Conv [3× 3, 96, stride 1]
Conv [3× 3, 96, stride 1]
Conv [3× 3, 96, stride 2]

Conv [3× 3, 192, stride 1]
Conv [3× 3, 192, stride 1]
Conv [3× 3, 192, stride 2]

FC [d] FC [2d]

DB [d] VIB [d]

Classifier
FC [10]

softmax

2https://github.com/carlini/nn_robust_attacks.
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