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Abstract—This paper utilizes a hierarchical algorithm to focus
on the distributed guaranteed-performance consensus problem of
multiagent systems. With this algorithm, the consensus problem
can be transformed into the tracking problem between agents in
adjacent layers. Compared to the existing hierarchical algorithm,
the proposed hierarchical rules consider the practical significance
of topological weights, which makes the partition results more
reasonable. In addition, a shifting function is designed and in-
corporated into the conventional prescribed performance control
approach, which eliminates the existing feasibility condition.
Meanwhile, the information concerning the Laplacian matrix is
no longer required when prescribing the bounds of the tracking
errors. Based on Lyapunov theory, the sufficient conditions for
the boundedness of all signals in the closed-loop system are
derived. Finally, two simulation examples verify the efficacy of
the scheme.

Index Terms—Distributed consensus, hierarchical algorithm,
multiagent systems, prescribed performance control.

I. INTRODUCTION

THE cooperative control technology of multiagent systems
(MASs) has been widely devoted to numerous fields in

practice, thus attracting significant concentration from indi-
viduals. As one of the hot investigation issues of cooperative
control, consensus control demands that a group of agents’
cluster behaviour remain consistent during their movement
procedure. In particular, when a leader exists in this group of
agents, the related problem is named the consensus tracking
problem, and considerable works [1]– [4] have investigated
this problem under multiple cases. For instance, recognizing
that the agents’ network bandwidth in practice is limited
due to the restrictions of hardware devices, the authors in
[1] designed an adaptive event-triggered mechanism in the
development of a consensus tracking algorithm for MASs,
achieving the desired consensus mission while decreasing the
consumption of unnecessary network resources. Moreover, the
relationships of collaboration and competition coexist among
agents. Following this reality, Niu et al. [4] focused on the
bipartite consensus tracking (BCT) problem of the signed-
directed networks.

Currently, the distributed control approach that utilizes
agents’ local information or their neighbors’ information is

one of the effective ways to solve the consensus tracking
control (CTC) problem of MASs. This approach enables the
agents to achieve parallel computing and division of labor
and improves the response speed and execution efficiency of
systems. In addition, distributed control allows systems to be
more flexible, and the agents can make autonomous deci-
sions and adjustments according to the environment changes
and task requirements. So far, numerous distributed control
methods have been proposed in [6]– [12]. For example, Zhao
et al. [6] designed a distributed control strategy, achieving
the consensus tracking task of a set of heterogeneous MASs
consisting of first- and second-order dynamics, where each
agent is subjected to Bouc-Wen hysteresis input. In [12], the
authors utilized a hierarchical algorithm to divide the agents
into different layers, and then they researched the distributed
BCT problem of signed directed networks with unbalanced
structures. Although this hierarchical algorithm is helpful for
the design of distributed control schemes, it does not consider
the practical meaning of the topology weights, such that the
rationality of the partition results needs to be improved when
dealing with some complex topologies. How to solve this
problem is one of the driving forces of this paper.

It should be emphasized that the works [12] did not analyze
the consensus tracking problem of MASs from the perspective
of tracking performance. Some practical control missions re-
quire agents to track reference signals with a desired precision
within a specified time. Especially for agents in uncertain
environments, maintaining satisfactory tracking performance
is not an easy task. Therefore, the literature [13] adopt the
prescribed performance control (PPC) method to maintain that
the tracking performance does not decrease during the motion
of the controlled systems. For instance, via a designed observ-
er, Zhang et al. [13] focused on the guaranteed-performance
CTC problem of MASs with unmeasured states. In [1], a finite-
time consensus tracking approach for MASs is proposed based
on PPC technique, in which the designer can directly set the
settling time of tracking errors. Although the conventional PPC
technique can improve the tracking performance of MASs
to a certain extent, this technique needs the tracking error
to satisfy a feasibility condition (the initial value of the



tracking error must be restricted to the range enveloped by
the performance function). In addition, this approach relies
on the Laplacian matrix to prescribe the bound of tracking
error, which induces some inconvenience in implementing the
control scheme. Therefore, how to solve the above deficiencies
is the primary research motivation of this paper.

Inspired by the observations above, this paper investi-
gates the distributed guaranteed-performance CTC problem of
MASs based on a hierarchical algorithm. The main contribu-
tions can be given as follows.

1) A shifting function is designed to remove the feasibility
condition in the conventional PPC approach.

2) Different from the CTC schemes [1] where the tracking
precision depends on the Laplacian matrix, the proposed
scheme can preset the bounds of tracking errors inde-
pendently of the Laplacian matrix.

3) Compared with the hierarchical algorithm in [13], new
hierarchical rules are designed based on the practical
significance of topological weights, which makes the
hierarchical results more reasonable.

II. THE MAIN RESULTS

A. Error Transformation

In this section, an error transformation mechanism is p-
resented to guarantee that the second control objective is
completed. The bipartite distributed error si1 is provided as

si1 =

M∑
ζ=1

|aiζ |(yi − sgn(aiζ)yζ) + |bi|(yi − sgn(bi)yd) (1)

where sgn(·) denotes the symbolic function. Based on si1, we
present the following error transformation mechanism

si1 = ϑ(t)ρ(zi1) (2)

where ρ(zi1) = 2
π arctan(zi1). Define ci =

∑M
ζ=1 |aiζ | + |bi|,

then we can further get

dzi1 = σi

(
ci(xi2 + gi1)−

M∑
ζ=1

aiζ(xζ2 + gζ1)− biẏl − oi

)
dt

+ σi

(
cihi1 −

M∑
ζ=1

aiζhζ1

)
dω (3)

where oi = 2
π arctan(zi1)ϑ̇(t) and σi =

π(1+z2
i1)

2ϑ(t) .

B. Controller Design

This section gives the design process of the controller. We
give the following coordinate transformation mechanism.{

λi1 = zi1

λi = xi − ᾱi(−1),  = 2, 3, . . . ni
(4)

where ᾱi(−1) denotes the output of the first-order filter con-
cerning the virtual controller αi(−1).

The compensating signal ξi1 is designed as

ξ̇i1 =− (li1 + 1)ξi1 + σici(ᾱi1 − αi1) + σiciξi2

− ki1σicisgn(ξi1) (5)

where li1 and ki1 denote positive designed parameters.
To solve unknown functions Gi1 and HiHT

i , NNs
φT

i11Λi11(Xi11) and φT
i12Λi12(Xi12) are adopted, respectively. For

any given constants δ∗i11 > 0 and δ∗i12 > 0, the following
relationships hold{

Gi1 = φT
i11Λi11(Xi11) + δi11(Xi11)

HiHT
i = φT

i12Λi12(Xi12) + δi12(Xi12)

where δi11(Xi11) and δi12(Xi12) denote approximation errors.
The virtual controller αi1 is designed as

αi1 =− li1 + 1
σici

λi1 +
1
ci

(
biẏl +

2
π

arctan(zi1)ϑ̇(t)

−
3ε

4
3
i11

4
λ̄i1σ

1
3
i Ψ̂i‖Λi11‖

4
3 − 3ε2

i13

4
λ̄i1σ

3
i Ψ̂i‖Λi12‖2

− 3
4
λ̄i1σ

1
3
i −

3ε
4
3
i12

4
λ̄i1σ

1
3
i −

3ε2
i14

4
λ̄i1σ

3
i

)
(6)

Then, LVi1 can be further rewritten as

LVi1 ≤ λ̄3
i1σiciλ̄i2 − (li1 + 1)λ̄4

i1 +
1
ϕi

Ψ̃i(Γi1 − ˙̂
Ψi) + γi1

where Γi1 =
3ϕiε

4
3
i11

4 λ̄4
i1σ

4
3
i ‖Λi11‖

4
3 +

3ϕiε
2
i13

4 λ̄4
i1σ

4
i ‖Λi12‖2 and γi1

=
k4

i1c4
i

4 + 1
4ε4

i11
+

δ∗4
i11

4ε4
i12

+ 3
4ε2

i13
+

3δ∗2
i12

4ε2
i14

.
Step τ (2 ≤ τ < ni): Construct Lyapunov function as

Viτ = Vi(τ−1) +
1
4
λ̄4

iτ

where λ̄iτ = λiτ − ξiτ represents the compensated error, and
the compensating signal ξiτ is designed as

ξ̇iτ =− (liτ + 1)ξiτ + (ᾱiτ − αiτ )− ε̌ξi(τ−1)

+ ξi(τ+1) − kiτ sgn(ξiτ ) (7)

where liτ > 0 and kiτ > 0 are designed parameters. ε̌ = σici

if and only if τ = 2. Otherwise, ε̌ = 1. Then, the infinitesimal
generator of Viτ can be calculated as

LViτ ≤ λ̄3
iτ

[
λ̄i(τ+1) + αiτ + giτ − ˙̄αi(τ−1) + (liτ + 1)ξiτ

+ ε̌ξi(τ−1) + kiτ sgn(ξiτ )
]

+ ε̌λ̄3
i(τ−1)λ̄iτ

−
τ−1∑
j=1

lijλ̄4
ij − λ̄4

i(τ−1) +
Ψ̃i

ϕi

(
Γi(τ−1) −

˙̂
Ψi

)
+ γi(τ−1) +

3
2
λ̄2

iτhiτhT
iτ

For unknown nonlinear function giτ , we have

λ̄3
iτgiτ ≤

3ε
4
3
iτ1

4
λ̄4

iτΨi‖Λiτ1‖
4
3 +

1
4ε4

iτ1
+

3ε
4
3
iτ2

4
λ̄4

iτ +
δ∗4

iτ1

4ε4
iτ2



where εiτ1 > 0 and εiτ2 > 0 are designed parameters, and
δ∗iτ1 > 0 is any given constant.

3
2
λ̄2

iτhiτhT
iτ ≤

3ε2
iτ3

4
λ̄4

iτΨi‖Λiτ2‖2 +
3

4ε2
iτ3

+
3ε2

iτ4

4
λ̄4

iτ +
3δ∗2

iτ2

4ε2
iτ4

where εiτ3 > 0 and εiτ4 > 0 are designed parameters and
δ∗iτ2 > 0 is any given constant. By Lemma ??, one gets

ε̌λ̄3
i(τ−1)λ̄iτ ≤ λ̄4

i(τ−1) +
33

44 ε̌
4λ̄4

iτ

λ̄3
iτkiτ sgn(ξiτ ) ≤ 3

4
λ̄4

iτ +
k4

iτ

4
The virtual controller αiτ is designed as

αiτ = −(liτ + 1)λiτ + ˙̄αi(τ−1) −
3ε

4
3
iτ1

4
λ̄iτ Ψ̂i‖Λiτ1‖

4
3

− 3ε2
iτ3

4
λ̄iτ Ψ̂i‖Λiτ2‖2 −

3ε
4
3
iτ2

4
λ̄iτ −

3ε2
iτ4

4
λ̄iτ

− 3
4
λ̄iτ −

33

44 ε̌
4λ̄iτ − ε̌ξi(τ−1) (8)

Then, LViτ satisfy the following inequaltiy

LViτ ≤ λ̄3
iτ λ̄i(τ+1) −

τ∑
j=1

lijλ̄4
ij − λ̄4

iτ +
Ψ̃i

ϕi
(Γiτ − ˙̂

Ψi) + γiτ

where Γiτ = Γi(τ−1) +
3ϕiε

4
3
iτ1

4 λ̄4
iτ‖Λiτ1‖

4
3 +

3ϕiε
2
iτ3

4 λ̄4
iτ‖Λiτ2‖2

and γiτ = γi(τ−1) + 1
4ε4

iτ1
+

δ∗4
iτ1

4ε4
iτ2

+ 3
4ε2

iτ3
+

3δ∗2
iτ2

4ε2
iτ4

+
k4

iτ
4 .

Step ni: We design the compensating signal as

ξ̇ini =− (lini + 1)ξini − ξi(ni−1) − kini sgn(ξini)

where lini > 0 and kini > 0 are designed parameters. Then,
select the following Lyapunov function as

Vini = Vi(ni−1) +
1
4
λ̄4

ini

where λ̄ini = λini − ξini denotes the compensated error. The
infinitesimal generator of Vini can be calculated as

LVini ≤ λ̄3
i(ni−1)λ̄ini −

ni−1∑
j=1

lijλ̄4
ij − λ̄4

i(ni−1) + γi(ni−1)

+
1
ϕi

Ψ̃i

(
Γi(ni−1) −

˙̂
Ψi

)
+

3
2
λ̄2

ini
hini h

T
ini

+ λ̄3
ini

(
ui + gini

− ˙̄αi(ni−1) + (lini + 1)ξini

+ ξi(ni−1) + kini sgn(ξini)
)

(9)

Similar to inequalities (??) and (??), the unknown function
λ̄3

ini
gini

satisfies the following inequality

λ̄3
ini

gini
≤

3ε
4
3
ini1

4
λ̄4

ini
Ψi‖Λini1‖

4
3 +

1
4ε4

ini1
+

3ε
4
3
ini2

4
λ̄4

ini
+

δ∗4
ini1

4ε4
ini2

where εini1 > 0 and εini2 > 0 are designed parameters, and
δ∗ini1 > 0 is any given constant. Moreover, we can obatin

3
2
λ̄2

ini
hini h

T
ini
≤

3ε2
ini3

4
λ̄4

ini
Ψi‖Λini1‖2 +

3
4ε2

ini3

+
3ε2

ini4

4
λ̄4

ini
+

3δ∗2
ini2

4ε2
ini4

where εini3 > 0 and εini4 > 0 are designed parameters, and
δ∗ini2 > 0 is any given constant. Moreover, we have

λ̄3
i(ni−1)λ̄ini ≤ λ̄4

i(ni−1) +
33

44 λ̄
4
ini

λ̄3
ini

kini sgn(ξini) ≤ λ̄4
ini

+
33

44 k4
ini
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