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Abstract

Learning agent behaviors from observational data
has shown to improve our understanding of their
decision-making processes, advancing our ability
to explain their interactions with the environment
and other agents. While multiple learning tech-
niques have been proposed in the literature, there
is one particular setting that has not been explored
yet: multi agent systems where agent identities
remain anonymous. For instance, in financial mar-
kets labeled data that identifies market partici-
pant strategies is typically proprietary, and only
the anonymous state-action pairs that result from
the interaction of multiple market participants
are publicly available. As a result, sequences
of agent actions are not observable, restricting
the applicability of existing work. In this paper,
we propose a Policy Clustering algorithm, called
K-SHAP, that learns to group anonymous state-
action pairs according to the agent policies. We
frame the problem as an Imitation Learning (IL)
task, and we learn a world-policy able to mimic
all the agent behaviors upon different environmen-
tal states. We leverage the world-policy to explain
each anonymous observation through an additive
feature attribution method called SHAP (SHapley
Additive exPlanations). Finally, by clustering the
explanations we show that we are able to identify
different agent policies and group observations ac-
cordingly. We evaluate our approach on simulated
synthetic market data and a real-world financial
dataset. We show that our proposal significantly
and consistently outperforms the existing meth-
ods, identifying different agent strategies.
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1. Introduction
Insect colonies, animal swarms, and human societies
are examples of the complex multi-agent systems in
nature. Each agent in these systems develops a be-
havioral strategy to take suitable actions in response
to environmental changes. Animals learn different be-
haviors to survive and exploit available resources (e.g.,
food), while humans may develop complex behaviors to
efficiently interact and pursue their own goals.

The study and understanding of human and animal behav-
iors has been a fundamental problem in both computer and
behavioral sciences (Cichos et al., 2020). In particular,
understanding agent behaviors from observational data is
essential to study, predict and simulate their behaviors (Li
et al., 2020; Suo et al., 2021).

Existing work borrows tools from the reinforcement learn-
ing literature to learn agent strategies (Hussein et al., 2017;
Ho and Ermon, 2016; Song et al., 2018; Fu et al., 2021)
using Markov Decision Processes (MDPs) as an efficient
mathematical framework to formulate the problem. In par-
ticular, Inverse Reinforcement Learning (IRL) (Ng et al.,
2000) has been widely studied to characterize the decision-
making behavior of animals and humans. IRL aims at recov-
ering a reward function that explains the agent goal. It has
been used to study worm behavioral strategies (Yamaguchi
et al., 2018); to model the behaviors of mice exploring a
labyrinth (Ashwood et al.); to identify and capture the behav-
ior of troll accounts in social networks (Luceri et al., 2020).
Imitation Learning (IL) (Hussein et al., 2017) is another
technique that has demonstrated great success in modeling
agent behaviors, learning directly from their trajectories
(state-action pairs). Recently, IL has shown to learn realistic
driving behaviors from human demonstrations (Suo et al.,
2021). Finally, Hidden Markov Models (HMMs) have been
extensively used to analyze temporal dynamics and model
agent behaviors from observed sequential data. HMMs have
been used to study different animal behaviors, including
honey bees (Feldman and Balch, 2004) and mice (Jiang et
al., 2018).

While all these techniques assume that clear observation se-
quences for each agent are given, some critical domains with
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Figure 1: The three major phases of K-SHAP.

privacy concerns may provide only anonymous state-action
pairs as data. For example, military operations are often
anonymous to conceal strategies to opponents, especially in
case of cyber-attacks or when illegal activities are operated
(e.g., use of chemical or biological weapons) (Koblentz,
2019; Rid and Buchanan, 2015). In financial markets la-
beled data that identifies market participants is typically pro-
prietary, and publicly available transaction data is typically
anonymous (NASDAQ, 2022). However, understanding
market participant strategies for the purpose of ensuring
that markets are orderly and compliant with regulations is
necessary (Hagströmer and Nordén, 2013; Kirilenko et al.,
2017; Wang et al., 2021). For instance, in (Kirilenko et
al., 2017) the authors were able to study and demonstrate
that high frequency traders did not contribute to the 2010
flash crash using audit trail transaction-level data, which
reveals the identities of market participants. Nevertheless, it
is most common that only the anonymous state-action pairs
without any agent identifiers are publicly available from
exchanges (NASDAQ, 2022).

It is well known that thousands of individual market partici-
pants can be broadly assigned to a small number of distinct
behavioral strategies (Kirilenko et al., 2017; Vyetrenko et
al., 2020). For example, multiple market agents might trade
on momentum signals even though these momentum signals
are of different magnitudes. Similarly, all market makers
are required to place both buy and sell orders to provide liq-
uidity in the markets, even though individual market makers
might act upon different proprietary signals to do that. Previ-
ous work has used IRL with reward clustering to distinguish
high frequency from other trading strategies in simulated
(but not the real) markets (Yang et al., 2012). However, the
proposed method requires the inventory level and the la-
beled sequence of actions for each trader, which are usually
unknown in real markets. We are not aware of any other
work that would allow us to identify the individual agents
or their strategies from anonymous state-action pairs.

To address the challenge of learning agent strategies from

anonymous state-action pairs, in this paper we propose a
novel policy-clustering method – in which we group state-
action observations that belong to agents sharing the same
behavior or policy. These clusters describe the different
behaviors of agents, enabling further studies and analysis.
In detail, we propose K-SHAP, a Policy Clustering algo-
rithm for anonymous state-action pairs. K-SHAP comprises
three major phases shown in Figure 1. First, we model
the problem as an Imitation Learning task to learn a world-
policy (Coletta et al., 2022) using supervised learning over
the anonymous state-action pairs. The world-policy is an
extension of the world-model approach (Ha and Schmid-
huber, 2018) to state-action pairs: it emulates collective
agent behaviors, learning their actions (output) in response
to the different environmental states (input). Then, we inter-
pret the world-policy to explain each anonymous observa-
tion through an additive feature attribution method, namely
SHAP (SHapley Additive exPlanations) (Lundberg and Lee,
2017). Finally, we show that the explanations, called SHAP
values, better reveal the intrinsic clustering structure among
data; and by applying a K-Means algorithm (Hartigan and
Wong, 1979) in the new SHAP values space, we can group
the anonymous observations into K clusters, which reflect
the real agent strategies.

To support the soundness of our method, we experimentally
evaluate it with market data. We first consider synthetic data
from a multi-agent simulator labeled with agent IDs to serve
as a ground truth (Byrd et al., 2019; Liu et al., 2022), then
we consider real anonymous market data from NASDAQ
stock exchange (NASDAQ, 2022). For real data we evaluate
the Utility and Silhouette, as ground truth labels are not
available. In particular, by Utility we mean the ability to im-
prove a specific downstream task (i.e., supervised learning)
when trained on the clusters rather than original demon-
strations. We compare our proposal against state-of-art
clustering algorithms, including Deep Clustering Network
(DCN) (Mukherjee et al., 2019) and ClusterGAN (Mukher-
jee et al., 2019). We also adapt Σ-GIRL (Ramponi et al.,
2020), a Multiple-Intent IRL clustering algorithm, to anony-
mous state-action pairs. We show that we significantly and
consistently outperform the existing work, and that K-SHAP
clusters anonymous observations according to the agent be-
haviors. K-SHAP outperforms existing methods by a factor
of 2 on all the performance metrics.

1.1. Main contributions

To the best of our knowledge, this is the first work that
addresses the problem of policy clustering with anonymous
state-action pairs as observations from multiple agents. We
summarize the main contributions of our paper as follows:

• We formalize the k-policy clustering problem under
anonymous multi-agent state-action pairs.
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• We propose K-SHAP, a Policy Clustering Algorithm
which leverages IL and SHAP values to identify k
distinct behavioral clusters.

• We experimentally evaluate K-SHAP against exist-
ing work, showing that it achieves good performance
in all performance metrics, with both synthetic and
real-world data. In particular, we show that K-SHAP
can group market observations according to the trader
strategies, improving our understanding of market par-
ticipant and their impact.

2. Preliminaries and Problem Formulation
2.1. Agent behaviors as Markov Decision Processes

We consider a multi-agent system with N autonomous
agents interacting in a given environment. We adopt Markov
Decision Processes (MDPs) as a natural underlying de-
cision model for each single agent. A MDP is a tuple
M = (S,A,P,R) composed by: the state space S; the
action space A; a transition function P : S × A → ∆(S),
where ∆(S) denotes the probability distributions over state
space S; and a reward function R : S ×A → R.
We consider that each agent follows a policy π (i.e., behav-
ior) to maximize the expected reward over time:

J(π) = E

[
T−1∑
t=0

γtR(st, at)

]
(1)

where γ ∈ [0, 1] is the discounted factor that can be used
to prioritize early actions. We consider a general policy
π : S → A that describes the preferred action a ∈ A in the
state s ∈ S.

2.2. Agent observations

In our problem setting, we do not have direct access to
the agent rewards or policies, we consider instead a more
general case of an MDP without reward (MDP\{R}). In
this setting the reward R is unknown, and agent behaviors
are represented by a set of trajectories D = {ξ0, . . . , ξt}
for each agent, where a trajectory is a sequence of state-
action pairs ξi = {(s0, a0), . . . , (sk, ak)}. However, we
have an additional confidentiality constraint: agents act
anonymously and their observations do not contain any
identifier. Thus, we are not able to identify a trajectory ξ for
a single agent, but observational data is anonymously gath-
ered from all the agents into a new set D = {(si, ai)}Ti=1

over a time T . Notice that the collected state-action pairs
(si, ai) do not contain any information about which anony-
mous agent generated the action ai at state si, preventing
the identification of state-action sequences generated by an
agent. This scenario is typical of military or financial do-
mains, where agents want to hide their strategies for tactical

reasons. In particular, in financial domains, the actions are
the orders submitted by traders according to the current fi-
nancial market state.
Anonymous observations exponentially increase the com-
plexity of behavioral studies as identifying an agent behavior
with existing approaches is almost impracticable: consider-
ing k agents and n observations, we have O(kn) possible
assignment of the observations to reconstruct the agent tra-
jectories needed by most of the existing methodologies.

2.3. Reward functions to model agent behaviors

Given an MDP formulation, a classic approach to identify
agent behaviors is to study their reward function R. This
function is the most succinct representation of the agent
goals, which define their extrinsic motivation to act (Chen-
tanez et al., 2004). Therefore, rewards help to study agent
behaviors and can be used to solve intent-clustering (Ram-
poni et al., 2020; Babes et al., 2011) in which we aim at
identifying groups of agents sharing the same goal. Consid-
ering a MDP\{R}, previous work employs IRL to recover
the unknown reward function R : S ×A → R from the
agent demonstrations (Ramponi et al., 2020; Yamaguchi et
al., 2018; Yang et al., 2012). In the general case, the un-
known reward function Rω(s, a) can be defined as a linear
combination of q weighted features: ωTϕ(s, a), ω ∈ Rq,
where ϕ(s, a) is the feature function and ωT the feature
weights.
However, in IRL the problem is ill-posed: even under per-
fect knowledge with demonstrations from an optimal policy,
there exist many solutions (reward functions) for which a
given behavior is optimal (Ng et al., 2000). In general, the
real reward function is not identifiable (Cao et al., 2021).
Most important, IRL requires observations as sequences of
state-action pairs for each agent, while we consider domains
in which state-action pairs are anonymous.

2.4. Learning a policy to study agent behaviors

Another simple, yet effective, approach to study the behavior
of an agent is to directly describe their mapping from state
features to actions, as the most parsimonious description
of the policy itself. Recently, IL (Hussein et al., 2017)
has demonstrated that it is possible to reconstruct the agent
policies directly from state-action pair observations. In
particular, in IL we aim at learning an optimal policy πθ for
an agent i according to its demonstrations:

argmax
θ

Es∼dπi ,a∼πi(·|s)[log πθ(a|s)] (2)

Notice that dπi denotes the distribution over states induced
by agent policy πi. Once we reconstruct the policy πi, we
directly study the behavior of the agent i by investigating
how the policy maps state to actions.
In fact, for a simple policy the best explanation is often the
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model πi itself, as a parsimonious description of the agent
behavior. However, models describing complex policies
cannot be easily studied and explained. In such cases, we
can borrow techniques from explainable AI to investigate
the behavior of the model (Dwivedi et al., 2022).

2.5. SHAP (SHapley Additive exPlanations)

A recent successful technique for explainability is the SHAP
values method (SHapley Additive exPlanations) (Lundberg
and Lee, 2017). This method belongs to the additive feature
attribution methods, which are local methods designed to ex-
plain a single prediction f(x) based on the input x (Ribeiro
et al., 2016). These methods approximate the real model f
using a simpler explanation model g. The model g tries to
guarantee that g(x′) ≈ f(hx(x

′)), where x′ is a simplified
input for g, and hx is a mapping function to reconstruct the
original input x = hx(x

′). The explanation model is then a
linear combination of binary variables x′:

g(x′) = ϕ0 +

m∑
i=1

ϕi · x′
i (3)

where m is the number of simplified input features, and
ϕi ∈ R measures the contribution of each feature to the
model output. The sum of all feature contributions approxi-
mates the original model output f(x). In particular, SHAP
values method uses classic game theory to explain the model
predictions. Given a set of features F the method computes
the contribution ϕi of each feature i ∈ F by evaluating the
model with and without such a feature. To fairly account
for the effects of the withholding of a feature among the
others, SHAP computes the average contribution of a fea-
ture i considering the model over all the possible subsets
S ⊆ F \ i:

ϕi =
∑

S⊆F\i

|S|!(|F | − |S| − 1)!

|F |!

[
fS∪{i}(xS∪{i})−fS(xS)

]

where xS represents the input features in the subset S, and
fS is the model trained on the subset of features S or its
approximation. Therefore, the SHAP values describe how
the input features (state) contribute to the output (action).
We denote with Φ ∈ Rm the new space of SHAP values,
and with ϕ ∈ Φ the SHAP values vector for an input x.

While IL and SHAP values provide a promising approach
to study the behavior of an agent, IL requires a trajectory ξ,
or a set of state-action pairs, for each agent to approximate
the policy correctly. Therefore, we cannot directly combine
these two methods in our setting, as state-action pairs are
anonymous without any agent identifier. In the following
sections, we will show that if we are able to learn a world-
policy describing all the agent behaviors, SHAP values are
naturally well suited to describe each observation as the

market state contribution to the action, which characterizes
the different trader strategies (see Section 1).

2.6. Policy-Clustering under anonymous state-action
pairs

In the general policy-clustering setting we consider a set of
n agents A = {A0, . . . ,An} following a finite unknown
set of policies π = {π0, . . . , πk} such that k < n (i.e.,
multiple agents may have the same behavior πi). The goal
of policy-clustering is to group the agents A into k clus-
ters, according to their policies from the observational data
D = {ξ0, . . . , ξt}ni=0. Agents in the same cluster will follow
the same strategy or behavior. Unlike the general formula-
tion, we relax the assumption of knowing agent identities
and trajectories. Thus, the goal of policy-clustering under
anonymous state-action pairs is to group the anonymous ob-
servational data D = {(si, ai)}Ti=0 into k clusters, such that
observations in the same cluster belong to agents sharing
the same policy π.

3. K-SHAP Framework
This section introduces our main contribution, K-SHAP,
a Policy Clustering algorithm that learns to cluster the
anonymous input observations D into k different policies.
K-SHAP is inspired by recent advancements in Imitation
Learning, world policy, and explainable AI. The Algorithm
comprises three major phases:

• We first frame the problem as an IL task with anony-
mous state-action pairs to learn a unique world policy
able to emulate all the agent behaviors;

• We compute local explanations of the world policy
for each state-action pair through SHAP (SHapley Ad-
ditive exPlanations). The explanations describe the
different agent behaviors upon each observation;

• We discuss SHAP values properties and how they fa-
cilitate the clustering. Finally, we apply a K-Means
algorithm to group the observations into k policies.

3.1. World Policy

Hypothetically we could learn the agent policies by solving
n IL problems, one for each agent; however, anonymous
state-action pairs restrict this approach due to the lack of
individual agent trajectories. Another approach could be a
world policy π̂θ trained over all the observations D.
Recent work shows that highly complex environments with
multiple autonomous agents can be successfully simulated
by learning a unique world-policy able to mimic all the
agents (Ha and Schmidhuber, 2018; Coletta et al., 2021;
2022). To truthfully simulate the real world and the agent
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interactions, these models have to learn and impersonate
multiple heterogeneous behaviors upon different input from
the environment. Therefore, they inherently hold some
knowledge about all the agent strategies.

Hereafter, we assume that a world-policy π̂θ is the most
parsimonious model able to represent the different agent
behaviors by learning their mapping from states to actions
from a set of observations D:

π̂θ = argmin
θ

∑
(s,a)∈D

l(πθ(s), a) (4)

where l is the loss function of the learning problem.
Given the world policy, we can study its behavior over each
state-action pair (si, ai), to infer the different strategies
adopted by the real agents, and cluster the observations
accordingly. In K-SHAP we train a world policy π̂θ in a
behavioral cloning fashion, which learns the expert policies
using supervised learning.1

3.2. Local explanations

Explaining the world-policy π̂θ behavior under different
inputs can reveal details about the strategies adopted by
the real agents. K-SHAP borrows a successful technique
from explainable AI, namely SHAP (SHapley Additive ex-
Planations) (Lundberg and Lee, 2017) to disentangle the
world-policy’s complexity and study its behavior.

For a demonstration (s, a) we can compute the SHAP val-
ues as a vector ϕ ∈ R|F | defined as the average marginal
contribution ϕi of each state feature i ∈ F to the prediction
π̂θ(s) ≈ a. Therefore, we can express the behavior of a real
agent for an observation j as the approximated mapping
from state s to action a, defined by the SHAP values vec-
tor ϕj (which describes how each state feature i drives the
agent behavior a in the state s). In general, the state s can
be any representation of the environment in which the agent
interacts, including images, text and tabular data, as SHAP
values method can deal with complex and continuous data.

3.3. K-SHAP Algorithm

We now describe how K-SHAP combines IL and SHAP
values to group the anonymous state-action pairs. The full
procedure is shown in Algorithm 1.

First, K-SHAP learns the world policy using all the avail-
able observations (line 1) in a behavioral cloning fashion. It
trains a model using supervised learning, where each state s
is used as input and the related action a is considered as the
output for the model. Then, by leveraging the world-policy

1Different training procedures or approaches can be applied
to learn the world-policy, including adversarial training (Ho and
Ermon, 2016).

Algorithm 1 K-SHAP Algorithm
Input: A set of observations D = {(si, ai)}Ti=1, the number of

clusters k, the IL loss function l
Output: Labels L for each observation to a given policy

1 π̂θ = argmin
θ

∑
(si,ai)∈D

l(πθ(si), ai)

2 Dϕ = ⟨⟩

3 for i = 0 to |D| do
4 ϕ = ⟨⟩

5 foreach j ∈ F do
6 ϕ[j]←

∑
S⊆F\j

ωS

[
π̂S∪{j}(siS∪{j})− π̂S(siS )

]
where ωS = |S|!(|F |−|S|−1)!

|F |!

7 Dϕ[i]← ϕ

8 L = K-Means(Dϕ, k)

9 return L

π̂θ and SHAP, it computes the explanations (i.e., SHAP
values) for each observation (s, a) ∈ D. The explanations
represent the anonymous observations in a new SHAP val-
ues space Dϕ = {ϕi}Ti=0 (lines 3-7). Finally, we adopt an
existing clustering approach, namely K-Means, to group
observations according to their SHAP values, such that ob-
servation in the same cluster will be originated from the
same strategy (line 8). Formally, we cluster observations by
minimizing the inertia, or within-cluster sum-of-squares, of
their SHAP values:

k∑
j=0

∑
ϕi∈Cj

||ϕi − µj ||2 (5)

where µ are the cluster centroids, and Cj identify the obser-
vations assigned to cluster j.

We now briefly discuss two essential properties of SHAP
values that we leverage to solve our k policy-clustering prob-
lem.
The first implication of the new space Dϕ is the ability to
capture the agent behaviors as a response to the environ-
ment. In fact, SHAP values explain the world-policy π̂θ

predictions with a linear explanation model g that captures
state features contributions to an action a. By assuming
that the world-policy mimics the different agent behaviors,
the SHAP values define how the agents respond to the dif-
ferent input features. Therefore, the SHAP vectors ϕ are
similar for observations that originate from comparable be-
haviors — they respond similarly to environmental changes
(i.e., features) – and they are close in the vector space Dϕ.
Contrarily, dissimilar behaviors have different vectors in the
space.
Secondly, SHAP values offer a natural advantage in cluster-
ing problems (Lundberg et al., 2018): by definition SHAP
values convert all the state features into the same metric
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Figure 2: Example of K-SHAP clustering.

space. Each feature will have the same units as the model
output, as the features measure their impact on the model
output in the new SHAP space. This enables us to easily
compare and cluster data, regardless of the different mag-
nitude and units of the features. For example, while in
Figure 2 it can be challenging to compare the temperature
in Fahrenheit to the number of flowers, in the SHAP space
both the features will have the same unit, representing their
contribution to the action a.

K-SHAP training Our method generally requires select-
ing the number of clusters k as a unique hyper-parameter.
When k is unknown, we adopt the classic Elbow method
to optimize k according to the distortion or variance of the
clusters in the SHAP values space. In Appendix D.1, we
compare the clustering performance in scenarios where the
value of k is either unknown or provided. In Section 4, we
also show that we can use dimensionality reduction tech-
niques like UMAP (McInnes et al., 2018a) on the SHAP
values space to visualize or improve clustering.
Finally, as we adopt a supervised IL technique we may need
to use multiple world-policies in case of observations with
identical states to disambiguate them and let the models
learn the correct behaviors. In the case of identical states,
a unique world-policy may average actions from multiple
agents, with inaccurate SHAP values and clustering.

Algorithm illustration As an illustrative example, in Fig-
ure 2 we consider honey bees that act according to two dif-
ferent unknown behaviors (a) foraging and (b) defense. For
simplicity, we describe the honey bee action a ∈ [−1, 1] as
the probability of staying close to protect the hive (a ≈ −1)
or moving to search for food (a ≈ 1). We identify four state
features describing the number of flowers, bees, tempera-
ture, and hazards close to the hive.

• In the scenario (a), we consider a foraging observation
in which the honey bee observes the environment and flies
close to the flower. We explain the honey behavior through
the world policy using SHAP values. The SHAP values
describe the honey bee behavior (i.e., search for food) as a

strong contribution to the action a = 1 from the presence of
a flower (i.e., food), and a small contribution from presence
of warm weather (i.e., temperature). The presence of other
bees around the hive is instead a negative contribution, as
they may compete for the flower.

• In the scenario (b), we consider a defense observation in
which a honey bee observes the environment and chooses to
defend the hive. In this case the SHAP values describe the
bee behavior as a major contribution to the action a = −1
from the presence of one hazard (i.e., mantis). The presence
of few bees slightly reduces the need to defend the hive.

Finally, in the leftmost picture we show how we use the
computed SHAP values to group the observations into k = 2
policies through a K-Means algorithm. The picture shows
SHAP values from foraging and defense observations that
lay into different regions of the space, i.e., clusters.

4. Experiments
We now experimentally evaluate K-SHAP on both synthetic
and real data. We apply K-SHAP to anonymous observa-
tions from agents in a financial market (i.e., traders), and we
experimentally demonstrate that we can identify state-action
pair clusters dictated by the different behavioral strategies.
We average the results over 20 runs, and we assume to
know the number of clusters k.2 We consider a Random
Forest as the world-policy for K-SHAP, and we compute
the SHAP values using TreeSHAP (Lundberg et al., 2020).
We consider two variants of our approach: K-SHAP in
which we directly cluster the SHAP values; and K-SHAP
(Z) in which we cluster a 2-dimensional embedding Z of
the SHAP values, obtained by applying UMAP (McInnes et
al., 2018a). UMAP is a dimensionality reduction technique
similar to t-SNE (Van der Maaten and Hinton, 2008) that
preserves more the global structure of the data, and requires
less computational resources.

2In Appendix D.1, we show that K-SHAP achieves similar
performance also when the number of clusters k is unknown.
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Data We first use the state-of-art multi-agent market sim-
ulator ABIDES (Byrd et al., 2019) to simulate synthetic
market data. We would like to underline that simulated envi-
ronment allows to generate state-action pairs with agent IDs,
hence, providing the ground truth information for our study.
We let market agents realize six distinct trading strategies: 3

• Market Making (Chakraborty and Kearns, 2011) that pro-
vides liquidity to the market by placing both buy and sell
orders;
• Fundamental Trading (Wah et al., 2017) that trades ac-
cording to a belief of the real stock value;
• (δ1, δ2)-based Momentum Trading (Byrd et al., 2019) that
trades following two momentum signals of the price (i.e.,
moving averages) computed over the last δ1 and δ2 minutes;
• Noise Trading (Gode and Sunder, 1993) that places orders
randomly;
• Irrational RL Trading (Liu et al., 2022) that models a
sub-rational human behavior;
• Rational RL Trading (Liu et al., 2022) that models an
electronic (i.e., rational) trading algorithm.

By combining these strategies, we generate six scenarios:

• Abides π3 comprises of Market Making, (12, 26)-based
Momentum, and Fundamental trading strategies, with 127
agents.
• Abides π4 comprises of Market Making, (12, 26)-based
Momentum, Fundamental, and Noise trading strategies, with
5127 agents.
• Abides π5 comprises of Market Making, (0.2, 0.4)-based
Momentum, (12, 26)-based Momentum, (48, 96)-based Mo-
mentum, and Fundamental trading strategies, with 157
agents.
• Abides π6 comprises of Market Making, (0.2, 0.4)-based
Momentum, (12, 26)-based Momentum, (48, 96)-based Mo-
mentum, Fundamental, and Noise trading strategies, with
5157 agents.
• RL-Agents Bubble comprises of a Irrational and Ratio-
nal RL agent, with a Bubble market scenario (Siegel, 2003).
• RL-Agents Sine comprises of a Irrational and Rational
RL agent, with a cyclic market scenario.

In the last two scenarios, we model the market and train the
RL agents according to the original paper (Liu et al., 2022).
In these two scenarios we simulate 11 days of market, while
in the first four scenarios we simulate 4 days.

For real market data we consider historical data from
NASDAQ stock exchange where agent IDs are not avail-
able (NASDAQ, 2022). We consider three stocks (i.e.,
AVXL, AINV, and ADAP) over 4 trading days from 05th to
8th Jan 2021.

3A detailed description of ABIDES agents is provided in Ap-
pendix B.1.

Metrics For synthetic data the ground-truth cluster la-
bels are available, and we apply three standard metrics to
evaluate the clustering: purity score, Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) and Normalized Mutual
Information (NMI) (Vinh et al., 2009). The purity score
ranges from 0 to 1, and it evaluates how homogeneous each
cluster is (where 1 being a cluster consists of observations
from a single strategy). The ARI ranges from -1 to 1, and
it represents the adjusted for chance version of Rand index,
which measures the percentage of correct cluster assign-
ments (where 1 being a perfect clustering and 0 being a
random clustering). The NMI ranges from 0 to 1 (where 1
indicated a perfect clustering), and it measures how much
information is shared between the clusters and the labels,
adjusted by the number of clusters.
For the historical market data where the ground truth is
not available we evaluate the Silhouette Index (Rousseeuw,
1987) and we introduce a Utility metric for the clusters. The
Silhouette Index measures the similarity of each state-action
pair to its own cluster compared to other clusters. It ranges
between -1 and 1, where 1 indicate the highest degree of
confidence that the observation belongs to a correct cluster.
The Utility evaluates the learning improvement when we
learn a unique policy from all the state-action pairs w.r.t.
learning k policies from the identified clusters. Thus, an
improvement in Utility indicates that each cluster contains
homogeneous state-action pairs in terms of strategy, as a
model trained on them can predict the next action more eas-
ily. An higher Utility indicates a better clustering. Both the
Silhouette Index and the Utility are the appropriate metrics
to use as they can validate the cluster analysis in the absence
of ground truth.4

Benchmarks To the best of our knowledge this is the first
approach to tackle policy clustering under anonymous state-
action pairs. We first compare our approach against data
clustering methods, which represent a natural first attempt
to cluster anonymous observations:
• We consider K-Means (Hartigan and Wong, 1979) to group
the anonymous observations, using the state-action pairs di-
rectly (K-Means), or their 2d embedding Z obtained through
UMAP (K-Means (Z)).
• We consider Deep Clustering Network (DCN) (Mukherjee
et al., 2019) that jointly optimizes dimensionality reduction
and clustering. The dimensionality reduction is accom-
plished via learning a deep autoencoder. We apply DCN on
the anonymous state-action pairs.
• We consider ClusterGAN (Mukherjee et al., 2019) that
clusters by back-projecting the data to the latent-space
learned by a generative adversarial network (GAN) (Good-
fellow et al., 2020). It introduces a mixture of one-hot and
continuous variables as latent variables, which retain infor-

4We provide a mathematical definition of the metrics in Ap-
pendix C.1.
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Figure 3: Two-dimensional space visualization of state-action pairs
and learned clustering embedding, using UMAP. K-SHAP better
reveals the intrinsic clustering structure among data.

mation about the data and reveal some intrinsic clustering
structure.
• We also consider HC-MGAN (de Mello et al., 2022), a
Hierarchical Clustering approach using Multiple GANs to
implicitly learn a latent representation of the data. In partic-
ular, this work clusters data by exploiting the fact that each
GAN tends to generate data that correlates with a sub-region
of the real data distribution.
Finally, we consider Σ-GIRL (Ramponi et al., 2020), a re-
cent work that solves an intention-clustering problem. This
work clusters agents based on their goals in an expectation-
maximization (EM) fashion, using IRL in the maximization
step. It solves a problem similar to ours, but it does not
consider anonymous state-action pairs. We consider a mod-
ified version called EM K-Clustering. Instead of a joint
optimization process in which we learn the agent-cluster
assignments and the reward functions through IRL, we learn
the observation-cluster assignments and the policy functions
through IL. We consider a Neural Network (NN) to learn
the policies through IL.

4.1. Multi-Agent Synthetic Data

Table 1 investigates the algorithm performance using the
simulated market data with ground truth labels. In all the sce-
narios, our algorithm K-SHAP outperforms existing work.
In Abides π3, K-SHAP outperforms other approaches of
around 300% in terms of ARI and NMI, while it consistently
and significantly shows the best performance in all Abides
scenarios. In the scenarios with two RL agents, most of
the approaches fail to distinguish between the two different
strategies. However, when we apply K-SHAP using a 2-
dimensional embedding of the SHAP values (K-SHAP (Z))
we obtain encouraging results. It achieves 10 times better
performance in terms of ARI and NMI. It is worth noticing
that the purity score is less relevant with only two clusters
(e.g., if we put all the observations in one cluster, we still
obtain a purity score of 0.5).
Figure 3 shows a 2-dimensional visualization of the original

Dataset Algorithm ARI NMI Purity

Abides π3

(Byrd et al., 2019)

K-Means 0.00±0.00 0.00±0.00 0.35±0.00
K-Means (Z) 0.00±0.00 0.00±0.00 0.35±0.00
ClusterGAN (Mukherjee et al., 2019) 0.11±0.10 0.14±0.14 0.33±0.25
DCN (Yang et al., 2017) 0.10±0.09 0.14±0.12 0.50±0.08
HC-MGAN (de Mello et al., 2022) 0.03±0.01 0.07±0.02 0.42±0.02
EM K-Clustering 0.13±0.07 0.15±0.11 0.53±0.07
K-SHAP 0.50±0.10 0.56±0.05 0.77±0.03
K-SHAP (Z) 0.23±0.00 0.25±0.00 0.60±0.00

Abides π4

(Byrd et al., 2019)

K-Means 0.00±0.00 0.00±0.00 0.27±0.01
K-Means (Z) 0.00±0.00 0.00±0.00 0.28±0.00
ClusterGAN (Mukherjee et al., 2019) 0.08±0.08 0.11±0.12 0.24±0.19
DCN (Yang et al., 2017) 0.04±0.06 0.06±0.04 0.33±0.07
HC-MGAN (de Mello et al., 2022) 0.04±0.01 0.07±0.01 0.36±0.02
EM K-Clustering 0.08±0.04 0.11±0.06 0.43±0.10
K-SHAP 0.35±0.07 0.52±0.02 0.65±0.11
K-SHAP (Z) 0.21±0.08 0.32±0.03 0.55±0.03

Abides π5

(Byrd et al., 2019)

K-Means 0.00±0.00 0.01±0.00 0.23±0.00
K-Means (Z) 0.01±0.00 0.01±0.00 0.24±0.00
ClusterGAN (Mukherjee et al., 2019) 0.07±0.06 0.10±0.08 0.22±0.17
DCN (Yang et al., 2017) 0.08±0.04 0.11±0.05 0.33±0.04
HC-MGAN (de Mello et al., 2022) 0.04±0.01 0.07±0.00 0.29±0.01
EM K-Clustering 0.07±0.03 0.12±0.06 0.40±0.12
K-SHAP 0.22±0.08 0.37±0.06 0.51±0.10
K-SHAP (Z) 0.20±0.03 0.33±0.01 0.50±0.06

Abides π6

(Byrd et al., 2019)

K-Means 0.00±0.00 0.01±0.00 0.20±0.01
K-Means (Z) 0.01±0.00 0.01±0.00 0.21±0.00
ClusterGAN (Mukherjee et al., 2019) 0.06±0.04 0.10±0.07 0.19±0.15
DCN (Yang et al., 2017) 0.06±0.03 0.11±0.07 0.29±0.04
HC-MGAN (de Mello et al., 2022) 0.02±0.00 0.05±0.01 0.23±0.01
EM K-Clustering 0.07±0.03 0.12±0.04 0.38±0.15
K-SHAP 0.15±0.01 0.31±0.01 0.42±0.01
K-SHAP (Z) 0.15±0.02 0.29±0.01 0.42±0.02

RL-Agents Bubble
(Liu et al., 2022)

K-Means 0.00±0.00 0.00±0.00 0.58±0.00
K-Means (Z) 0.00±0.00 0.00±0.00 0.58±0.00
ClusterGAN (Mukherjee et al., 2019) 0.00±0.00 0.00±0.00 0.37±0.27
DCN (Yang et al., 2017) 0.00±0.00 0.00±0.00 0.58±0.00
HC-MGAN (de Mello et al., 2022) 0.00±0.00 0.00±0.00 0.58±0.00
EM K-Clustering 0.00±0.00 0.00±0.00 0.58±0.00
K-SHAP 0.00±0.00 0.00±0.00 0.58±0.00
K-SHAP (Z) 0.42±0.20 0.35±0.15 0.81±0.10

RL-Agents Sine
(Liu et al., 2022)

K-Means 0.00±0.00 0.00±0.00 0.56±0.00
K-Means (Z) 0.00±0.00 0.00±0.00 0.56±0.00
ClusterGAN (Mukherjee et al., 2019) 0.00±0.00 0.00±0.00 0.39±0.28
DCN (Yang et al., 2017) 0.00±0.00 0.00±0.00 0.56±0.00
HC-MGAN (de Mello et al., 2022) 0.00±0.00 0.01±0.00 0.58±0.01
EM K-Clustering 0.02±0.00 0.01±0.00 0.58±0.00
K-SHAP 0.02±0.00 0.01±0.00 0.56±0.00
K-SHAP (Z) 0.25±0.07 0.20±0.06 0.75±0.04

Table 1: Multi-Agent Synthetic Data

state-action pairs against the learned clustering embedding
for DCN, ClusterGAN, and K-SHAP. We omit K-Means
and EM K-Clustering, as they do not use embedding repre-
sentations. We consider Abides π4 and the colors represent
the ground-truth labels. The figure clearly shows how the
original state-action pairs do not retain any natural struc-
ture to help the clustering. Moreover, ClusterGAN latent
space does not efficiently cluster the observations, while
DCN only partially identifies Market Makers observations.
Instead, for our algorithm the SHAP values better reveal the
intrinsic clustering structure among data, and only Noise
Agents, which place random orders, are slightly confused
with Momentum Agents.

4.2. Historical Market Data

Finally, we consider an experiment with historical market
data from NASDAQ stock exchange where agent IDs are not
available. We define the Utility as the percentage difference
between the mean squared error (MSE) obtained by a NN
trained over all the state-action pairs, and the MSE obtained
by k NNs trained over the identified clusters. Each NN
predicts the next action a given the current market state s,
and all the NNs have the same architecture.
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Stock Algorithm Utility Silhouette

ADAP K-Means 0.00±0.00 0.23±0.01
(NASDAQ, 2022) K-Means (Z) 0.06±0.01 0.00±0.01

ClusterGAN (Mukherjee et al., 2019) 0.12±0.11 0.02±0.01
DCN (Yang et al., 2017) 0.00±0.00 0.00±0.00
EM K-Clustering 0.47±0.02 0.01±0.01
K-SHAP 0.33±0.00 0.12±0.00
K-SHAP (Z) 0.21±0.04 0.00±0.01

AINV K-Means 0.00±0.00 0.24±0.00
(NASDAQ, 2022) K-Means (Z) 0.05±0.02 0.00±0.00

ClusterGAN (Mukherjee et al., 2019) 0.07±0.06 0.01±0.01
DCN (Yang et al., 2017) 0.00±0.00 0.00±0.01
EM K-Clustering 0.43±0.02 0.01±0.03
K-SHAP 0.19±0.06 0.11±0.06
K-SHAP (Z) 0.10±0.05 0.01±0.01

AVXL K-Means 0.00±0.01 0.21±0.00
(NASDAQ, 2022) K-Means (Z) 0.05±0.04 0.12±0.04

ClusterGAN (Mukherjee et al., 2019) 0.13±0.03 0.01±0.01
DCN (Yang et al., 2017) 0.14±0.04 0.02±0.02
EM K-Clustering 0.53±0.04 0.01±0.02
K-SHAP 0.36±0.01 0.09±0.00
K-SHAP (Z) 0.24±0.05 0.02±0.03

Table 2: Historical Market Data

Table 2 shows that K-Means always achieves the best Sil-
houette while the best algorithm for the Utility is EM K-
Clustering. However, K-Means optimizes the clusters for
within-cluster sum-of-squares which maximizes the Silhou-
ette; while EM K-Clustering optimizes the clusters using k
policies in an EM fashion, which indirectly maximizes the
Utility metric. Both the approaches easily succeed in these
metrics but they fail short in the other metric: K-Means has
0 Utility, and EM K-Clustering has 0.01 Silhouette. Instead,
K-SHAP achieves a good trade-off between Silhouette and
Utility, without maximizing any of them directly. In all the
scenarios we consider k = 3, we refer to Appendix D.3 for
more experiments and charts.

4.3. The impact of state features

While K-SHAP is most effective when the latent policies
use multiple state features to make decisions, K-SHAP can
also distinguish strategies using only few features. Given
the local accuracy property (see Section 2.5), the local ex-
planation ϕi for a state feature i can be both negative or
positive, with different magnitudes according to the impact
on the action. Therefore, policies that use the same few
features, but in different ways, can still be distinguished;
while with null states our approach may fail. To better study
the applicability of our approach with few and no features,
we created an iterated prisoner’s dilemma and a one-shot
prison dilemma.

First, we consider a strategy that always “betrays” and one
that always “cooperates”. K-SHAP achieves Purity =
0.5, NMI = 0 and ARI = 0 (i.e., random clusters) when
the state is null. It achieves Purity=NMI=ARI=1 (i.e.,
perfect clusters) when the state is provided (i.e., time-step
and previous opponent’s action). In the latter scenario, with
just a two-dimensional state space, the SHAP latent space
is meaningful and can be used to distinguish the policies.

As a further example we consider a strategy that always

“cooperates” and a strategy that flips his behavior w.r.t. the
previous action. When the state is null we have random clus-
ters. When the state is provided (i.e., time-step and previous
action) K-SHAP achieves Purity = 0.75, NMI = 0.35,
and ARI = 0.25. We introduced this example to highlight
that: while the SHAP values ϕ can be useful even when the
strategies rely on the same few features, the world policy
may underfit with such a small state space and overlapping
agent strategies, resulting in worse clusters.

We conclude that the number of state features, and how the
latent policies use them, is important for both the SHAP
values and the world policy.

5. Conclusions and Future Work
We proposed a Policy Clustering algorithm, K-SHAP, that
groups anonymous state-action pairs according to the agent
strategies. We framed the problem as an IL to learn a com-
pact representation of the agent strategies as a world-policy;
we explained such a policy using SHAP; finally, we use the
SHAP values to group observations according to the agent
behaviors. We shown that K-SHAP consistently outper-
forms existing work on both synthetic and real market data.
As we only access anonymous observations, the current
approach works well when the actions are mostly driven
by the state features: K-SHAP has not enough information
to classify an action driven only by a sequence of previous
actions, unless the state retains traces of the agent actions.
Similarly, identical state-action pairs cannot be classified
with different strategies. As future work, we envisioned
to further explore and apply K-SHAP in these scenarios.
Please refer to the appendix for more detailed experiments
and discussions on our work impact.
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solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

Acknowledgements
Images are in part designed by Macrovector / Freepik.

9



K-SHAP: Policy Clustering Algorithm for Anonymous State-Action Pairs

References
Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana

Vyetrenko, Tucker Balch, and Manuela Veloso. Abides-
gym: gym environments for multi-agent discrete event
simulation and application to financial markets. In Pro-
ceedings of the Second ACM International Conference
on AI in Finance, pages 1–9, 2021.

Zoe Ashwood, Aditi Jha, and Jonathan W Pillow. Dynamic
inverse reinforcement learning for characterizing animal
behavior. In Advances in Neural Information Processing
Systems.

Monica Babes, Vukosi Marivate, Kaushik Subramanian,
and Michael L Littman. Apprenticeship learning about
multiple intentions. In Proceedings of the 28th interna-
tional conference on machine learning (ICML-11), pages
897–904, 2011.

Joseph B Bak-Coleman, Mark Alfano, Wolfram Barfuss,
Carl T Bergstrom, Miguel A Centeno, Iain D Couzin,
Jonathan F Donges, Mirta Galesic, Andrew S Gersick,
Jennifer Jacquet, et al. Stewardship of global collective
behavior. Proceedings of the National Academy of Sci-
ences, 118(27):e2025764118, 2021.

Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier,
and Martin Gould. Trades, quotes and prices: financial
markets under the microscope. Cambridge University
Press, 2018.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch.
Abides: Towards high-fidelity market simulation for ai
research. arXiv preprint arXiv:1904.12066, 2019.

Haoyang Cao, Samuel Cohen, and Lukasz Szpruch. Iden-
tifiability in inverse reinforcement learning. Advances
in Neural Information Processing Systems, 34:12362–
12373, 2021.

Tanmoy Chakraborty and Michael Kearns. Market making
and mean reversion. In Proceedings of the 12th ACM con-
ference on Electronic commerce, pages 307–314, 2011.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh.
Intrinsically motivated reinforcement learning. Advances
in neural information processing systems, 17, 2004.

Frank Cichos, Kristian Gustavsson, Bernhard Mehlig, and
Giovanni Volpe. Machine learning for active matter. Na-
ture Machine Intelligence, 2(2):94–103, 2020.

Andrea Coletta, Matteo Prata, Michele Conti, Emanuele
Mercanti, Novella Bartolini, Aymeric Moulin, Svitlana
Vyetrenko, and Tucker Balch. Towards realistic market
simulations: a generative adversarial networks approach.
In Proceedings of the Second ACM International Confer-
ence on AI in Finance, pages 1–9, 2021.

Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, and
Tucker Balch. Learning to simulate realistic limit order
book markets from data as a world agent. In Proceed-
ings of the Third ACM International Conference on AI in
Finance, pages 428–436, 2022.

Daniel PM de Mello, Renato M Assunçao, and Fabricio
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A. Broader Impact
Our paper introduces a first approach to understand agent strategies and their interaction in anonymized systems. In general,
we believe this is an important research area to develop more accurate computational models of complex systems (Goldstone
and Janssen, 2005), resulting in a better understanding of agent behaviors needed to design more suitable solutions (Bak-
Coleman et al., 2021).

For example, in financial markets, identifying archetypal behavioral strategies allows to construct market simulation
environments that can reproduce important structural properties of the market (LeBaron, 2006). Experimentation with
counterfactual scenarios in such simulators has been documented to provide significant benefits for the financial community.
For instance:

• Agent-based simulation that was constructed with similar archetypal agents was used to replay May 2010 flash crash
scenario – hence, promoting the understanding of the flash crash and allowing to subsequently design the policies that
prevent flash crashes in the future (Kirilenko et al., 2017).

• Another benefit of our approach to financial systems is the investigation of market mechanisms that can make markets
more fair – it was demonstrated in simulated market environments that stock exchanges can implement the dynamic fee
policy in order to enable equitability of outcomes to market participants (Dwarakanath et al., 2022).

• Additionally, evaluating trading strategies or assumptions against poorly calibrated agent-based models can lead to
harmful and misleading conclusions (e.g., a severe market crash in 1987 causing $1.71 trillion losses is attributed to
the prevalence of simplistic market models) (Bouchaud et al., 2018) - hence, it is imperative to build reliable market
simulation models for the overall market stability.

B. Details of the Datasets
Here we introduce experimental details that do not fit into the main body of the paper.

In our experiments, we consider a stock market in which multiple agents (i.e., traders) interact by selling and buying shares.
We consider a synthetic simulated market, which serves as ground truth, and historical market data from NASDAQ stock
exchange (NASDAQ, 2022). Each state-action pair is generated by a trader in the market. The state represents the recent
and ongoing stock market state (e.g., the price, volume and volatility of the stock) and the action is the agent trade (e.g.,
buy/sell a given number of shares at price x). In the following, we discuss in detail how we construct the synthetic datasets,
and we summarize the main statistics of both synthetic and historical market data.

B.1. Multi-Agent Synthetic data

All the synthetic datasets have been generated using a state-of-art multi-agent simulator called ABIDES (Byrd et al., 2019),
and its OpenAI Gym extension called ABIDES-gym (Amrouni et al., 2021). The simulator is written in Python3, and
it is publicly available at https://github.com/jpmorganchase/abides-jpmc-public. It is a high-fidelity multi-agent market
simulation used by practitioners and researchers to generate synthetic markets. The market is generated by simulating the
interactions between a given set of agents, for which we can define the number, type, and strategy to simulate different
markets. More details on the simulator can be found in the original ABIDES paper (Byrd et al., 2019).

Agent Strategies Here we describe the agent strategies in detail:

• Market Making agents provide liquidity to the market by both buying and selling shares while making a profit
by keeping a low net position. We use the implementation provided in the public repository of ABIDES,
(i.e., adaptive market maker agent.py) that follows the Chakraborty-Kearns ‘ladder’ market-making strat-
egy (Chakraborty and Kearns, 2011), wherein the size of orders placed at each level is set as a fraction of measured
transacted volume in the previous time period.

• Noise agents belong to the class of Zero Intelligence (ZI) agents introduced in (Gode and Sunder, 1993) to model agents
that do not base their trading decisions on the knowledge of market microstructure. Noise agents wake up once in the
trading day, and place one order randomly. Both their order direction d ∈ {buy, sell}, and volume v ∈ [1, 100] are
randomly sampled, while the order price is the best available on the market (i.e., near touch). We use the implementation
provided in the public repository of ABIDES, i.e., noise agent.py.
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• Fundamental Trading agents belong to the class of ZI agents, but have access to an exogenous fundamental value of
the stock, which represents the agent’s understanding of the outside world (e.g., assets and earnings of the company).
These agents trade the stock according this estimated exogenous fundamental value. They believe that if the stock is
overpriced w.r.t. to the fundamental value, the price will go down, and vice versa. Therefore, they sell in the first case
and buy in the other one. All the agents have a noisy observation of a simulated fundamental value of the stock, which
they use to generate orders. They randomly sample the order volume v ∈ [1, 100], while the price is the best available
for 90% of the orders (i.e., near touch). For 10% of the orders, they use a more aggressive price close to the far touch.
We use the implementation provided in the public repository of ABIDES, i.e., value agent.py.

• (δ1, δ2)-based Momentum Trading agents trade according to a price momentum indicator of the stock. These agents
consider two moving averages (MAs) of the stock price. The short MA is computed using the price values in the
previous δ1 minutes, while the long MA considers δ2 minutes. This agent attempts to exploit extreme short-term price
moves, by playing a buy order when the short MA δ1 ≥ long MA δ2, and a sell order otherwise. The order volume
v ∈ [1, 100] is randomly sampled, and the price is the best available (i.e., near touch). We extended the implementation
provided in the public repository of ABIDES, (i.e., momentum agent.py) by changing the MA windows.

• Irrational RL Trading agents model a sub-rational human behavior. We train these RL agents according to the original
paper (Liu et al., 2022), in which the authors model a myopic human investor by decreasing the discount factor γ in the
Bellman equation (Sutton and Barto, 2018). Therefore, as γ → 0 the RL agent becomes more myopic and trades to
maximize only a one-step reward. In the experiments the Irrational RL agents use γ = 0.01.

• Rational RL Trading agents (Liu et al., 2022) model an electronic (i.e., rational) trading algorithm. We train these RL
agents according to the original paper (Liu et al., 2022), in which the authors increase the discount γ to have a fully
rational agent that considers both short-term and long-term rewards. In the experiments the Rational RL agents use
γ = 0.99.

Market Scenarios We combine the agent strategies to generate six different market scenarios.

• In the first four scenarios (Abides π3, Abides π4, Abides π5, and Abides π6) we simulate 4 days of synthetic market,
considering for each strategy the following number of agents: 5000 Noise agents; 110 Fundamental Agents; 2 Market
Making Agents; 15 (0.2,0.4)-based Momentum Agents; 15 (12,26)-based Momentum Agents; and 15 (48,96)-based
Momentum Agents. The agents trade a synthetic stock priced at around 100$. The market is simulated with nanosecond time
resolution, and we consider 29 state features and 3 features for the agent actions (i.e., order depth, volume, and direction).
The detailed statistics for these datasets are reported in Table 5 for Abides π3; Table 6 for Abides π4; Table 7 for Abides π5

and Table 8 for Abides π6. We use the implementation provided in the public repository of ABIDES (i.e., rmsc04.py) to
define the agent interactions.

• The last two scenarios consider RL-based agents, which are simulated according to the two original paper (Liu et al.,
2022). In particular we consider a Bubble (Siegel, 2003) market scenario, and a market scenario in which the price follows a
sine wave, with the same starting and closing price. In these scenarios, the market is simulated every minute, and the agents
have 9 different actions modeled as an integer a ∈ [−4, 4]. The action a ∈ {−4,−3,−2,−1} represents a buy order of size
2, where the value of a represents the order price w.r.t. the mid-price. The action a = 0 represents the HOLD action. The
action a ∈ {1, 2, 3, 4} represents a sell order of size 2, where the value of a represents the order price w.r.t. the mid-price. In
these scenarios, we simulate 11 days of market data, we consider 20 state features and 1 integer feature for the agent actions.
In Table 12 and Table 13 we summarize the dataset properties for the Bubble and Sine market scenarios, respectively.

B.2. Historical Market Data

Finally, we consider real market data from NASDAQ stock exchange (NASDAQ, 2022). In particular, we use historical
market data that includes all the orders submitted to the market, without any agent identifiers. We consider three stocks (i.e.,
AVXL, AINV, and ADAP) over 4 days from 05th to 8th Jan 2021. The historical data contains anonymous state-action
pairs at nanosecond time resolution, and we consider the same 29 state features and 3 action features as in Abides synthetic
dataset. Table 9, Table 10, and Table 11, summarize the dataset properties for AINV, AVXL, and ADAP, respectively.
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C. Algorithm and Benchmark details
• We consider K-Means (Hartigan and Wong, 1979) to group the anonymous observations, using the state-action pairs
directly (K-Means), or their 2d embedding Z obtained through UMAP (K-Means (Z)). We use K-Means implementation
provided by scikit-learn (Pedregosa et al., 2011), and the official UMAP implementation (McInnes et al., 2018b).

• We consider Deep Clustering Network (DCN) (Mukherjee et al., 2019) that jointly optimizes dimensionality reduction
and clustering. The dimensionality reduction is accomplished via learning a deep autoencoder. We apply DCN on the
anonymous state-action pairs: we feed both the states and the actions to the deep autoencoder that learns their encoding and
reconstruction. We consider the official implementation of the paper available at https://github.com/boyangumn/DCN-New.

• We consider ClusterGAN (Mukherjee et al., 2019) that clusters by back-projecting the data to the latent-space. It
introduces a mixture of one-hot and continuous variables as latent variables, which retain information about the data and
reveal some intrinsic clustering structure. We apply ClusterGAN to the anonymous state-action pairs. We consider the
official implementation of the paper available at https://github.com/sudiptodip15/ClusterGAN.

• Finally, we consider a modified version of Σ-GIRL (Ramponi et al., 2020). This work solves the intent-clustering
problem in an expectation-maximization (EM) fashion, using IRL in the maximization step. Instead of a joint optimization
process in which we learn the agent-cluster assignments and the reward functions through IRL, we learn the observation-
cluster assignments and the policy functions through IL. In particular, we learn to assign the anonymous observations
to k clusters while learning k policies through IL. We consider a Neural Network (NN) to learn the policies through
IL. The NN architecture is described in Appendix C. We modified the official implementation of the paper available at
https://github.com/gioramponi/sigma-girl-MIIRL.

Neural Network Architecture Here we briefly describe the architecture of the NN used in the experiments: to solve the
IL task in EM K-Clustering; to model the world-policy in Appendix D.2; and to compute the Utility score C.1. We consider
a feedforward Neural Network with 2 linear hidden layers with Leaky ReLU activation function, and respectively 64 and 32
neurons. After Each hidden layer we consider a 0.1-dropout layer.

World-Policy Architecture For the Random Forest world-policy we use the implementation provided by scikit-learn (Pe-
dregosa et al., 2011), where we fix the number of trees to 100 and we use mean squared error as objective. For UMAP we
use the official implementation (McInnes et al., 2018b), and we fix the number of neighbors observations to 15.

C.1. Metrics

• The purity score ranges from 0 to 1, and it evaluates how homogeneous each cluster is (where 1 being a cluster consists of
observations from a single strategy). The purity is defined as follows:

purity(Ω, C) =
1

N

∑
k

max
j

|Ωk ∩ Cj |

where N is the number of observations, k and j are the number of clusters and strategies (ground truth), respectively. We
denote with Ω the set of identified clusters, while C represents the ground truth clusters.

• The Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) ranges from -1 to 1, and it represents the adjusted for chance
version of Rand index, which measures the percentage of correct cluster assignments (where 1 being a perfect clustering and
0 being a random clustering). We use the ARI implementation provided by scikit-learn (Pedregosa et al., 2011), and we
refer to the original paper for further details (Hubert and Arabie, 1985).

• The Normalized Mutual Information (NMI) (Vinh et al., 2009) ranges from 0 to 1 (where 1 indicated a perfect clustering),
and it measures how much information is shared between the clusters and the labels, adjusted by the number of clusters. We
use NMI implementation provided by scikit-learn (Pedregosa et al., 2011), and we refer to the original paper for further
details (Vinh et al., 2009).

• The Silhouette Index (SI) (Rousseeuw, 1987) measures the similarity of each state-action pair to its own cluster compared
to other clusters. It ranges between -1 and 1, where 1 indicate the highest degree of confidence that the observation belongs
to a correct cluster. Let bi be the mean euclidean distance between a sample i and all other points in the same cluster; and ci
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the mean distance between the sample i and all the other points in the nearest cluster, then the SI is computed as follows:

SI =
1

N

N∑
i=0

ci − bi
max(bi, ci)

• The Utility evaluates the learning improvement when we learn a unique policy from all the state-action pairs w.r.t. learning
k policies from the identified clusters. Thus, an improvement in Utility indicates that each cluster contains homogeneous
state-action pairs in terms of strategy, as a model trained on them can predict the next action more easily. A higher utility
indicates a better clustering. In particular, to evaluate the Utility we compare the performance of a NN trained over all the
state-action pairs w.r.t. to k NNs trained on the identified clusters. Let ϵi = ||π(si)− ai||2 be the error for an observation i
when the action ai is predicted by a learned policy π. We denote with ϵ̂i the error when i is predicted by a unique policy π̂
trained on all the state-action pairs, while we denote with ϵ̄i the error when i is predicted by a policy π̄ trained on the cluster
where i belongs. Thus, the Utility U can be defined as :

U =
1

N

N∑
i=0

ϵ̂i − ϵ̄i
ϵ̂i

D. Additional Experiments
Here we present additional experiments that do not fit into the main body of the paper.

D.1. Unknown number of clusters k

In this section, we evaluate the ability of K-SHAP to group the anonymous observations when the number of clusters k is
unknown. In such a case we adopt the classic Elbow method to optimize k according to the distortion of the clusters in the
SHAP values space. The distortion measures the mean distance of each point to its assigned cluster.

Figure 4 shows the performance of K-SHAP when the ground truth number of clusters k is given (left picture) and when
k is unknown (right picture). We consider only synthetic data as we do not know the ground truth k for real market data.
The picture shows that even if the performance is slightly inferior, K-SHAP maintains a similar trend and satisfactory
performance when k is unknown.

Figure 4: K-SHAP - Elbow Optimization
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D.2. Contributions of the world-policy model

We now evaluate K-SHAP using three different models for the world-policy:

• Random Forest - we use the implementation provided by scikit-learn (Pedregosa et al., 2011), where we fix the number of
trees to 100 and we use mean squared error as objective.

• XGBoost (Chen and Guestrin, 2016) - we use the implementation provided at https://github.com/dmlc/xgboost. We fix the
max depth to 100, and we use mean squared error as objective.

• Neural Network - we implement a feedforward NN with 2-hidden layers using PyTorch. The architecture details are
provided in Appendix C.

For each world-policy we also consider a variant that uses a 2d embedding Z of the SHAP values, obtained through UMAP.

Table 3 and Table 4 show the results for the different world-policies, for both synthetic and real data. The results on synthetic
data confirm that a Random Forest world-policy better suits the anonymous market observations and provides better results.
However, also XGBoost achieves comparable performance, while the NN is not able to fully capture the structure of the
data, achieving lower performance. The results are similar on the real historical data, even if XGBoost and NN outperform
Random Forest for some stocks. In general, the higher the model accuracy in predicting the next action, given the input
state, the better the SHAP values and related clustering.

Dataset World-Policy ARI NMI Purity

Abides π3

(Byrd et al., 2019)

Random Forest 0.50±0.10 0.56±0.05 0.77±0.03
Random Forest (Z) 0.23±0.00 0.25±0.00 0.60±0.00
NN 0.03±0.02 0.05±0.01 0.42±0.02
NN (Z) 0.20±0.01 0.23±0.01 0.58±0.01
XGBoost 0.48±0.01 0.55±0.01 0.76±0.00
XGBoost (Z) 0.34±0.06 0.41±0.07 0.69±0.06

Abides π4

(Byrd et al., 2019)

Random Forest 0.35±0.07 0.52±0.02 0.65±0.11
Random Forest (Z) 0.21±0.08 0.32±0.03 0.55±0.03
NN 0.04±0.01 0.06±0.01 0.35±0.01
NN (Z) 0.16±0.04 0.19±0.05 0.44±0.03
XGBoost 0.29±0.01 0.44±0.05 0.57±0.01
XGBoost (Z) 0.24±0.01 0.35±0.01 0.56±0.00

Abides π5

(Byrd et al., 2019)

Random Forest 0.22±0.08 0.37±0.06 0.51±0.10
Random Forest (Z) 0.20±0.03 0.33±0.01 0.50±0.06
NN 0.06±0.05 0.09±0.08 0.30±0.04
NN (Z) 0.15±0.01 0.20±0.01 0.37±0.01
XGBoost 0.21±0.01 0.36±0.02 0.48±0.01
XGBoost (Z) 0.20±0.01 0.32±0.02 0.48±0.01

Abides π6

(Byrd et al., 2019)

Random Forest 0.15±0.01 0.31±0.01 0.42±0.01
Random Forest (Z) 0.15±0.02 0.29±0.01 0.42±0.02
NN 0.12±0.00 0.20±0.01 0.31±0.00
NN (Z) 0.13±0.01 0.17±0.01 0.32±0.01
XGBoost 0.15±0.01 0.31±0.02 0.41±0.01
XGBoost (Z) 0.16±0.00 0.26±0.00 0.40±0.01

RL-Agents Bubble
(Liu et al., 2022)

Random Forest 0.00±0.00 0.00±0.00 0.58±0.00
Random Forest (Z) 0.42±0.20 0.35±0.15 0.81±0.10
NN 0.00±0.00 0.00±0.00 0.58±0.00
NN (Z) 0.09±0.07 0.08±0.07 0.64±0.06
XGBoost 0.00±0.00 0.00±0.00 0.58±0.00
XGBoost (Z) 0.00±0.00 0.00±0.00 0.58±0.00

RL-Agents Sine
(Liu et al., 2022)

Random Forest 0.02±0.00 0.01±0.00 0.56±0.00
Random Forest (Z) 0.25±0.07 0.20±0.06 0.75±0.04
NN 0.00±0.00 0.00±0.00 0.56±0.00
NN (Z) 0.05±0.00 0.04±0.00 0.62±0.00
XGBoost 0.02±0.00 0.01±0.00 0.56±0.00
XGBoost (Z) 0.01±0.00 0.00±0.00 0.56±0.00

Table 3: World Policies - Multi-Agent Synthetic Data

Stock World-Policy Utility Silhouette

ADAP Random Forest 0.33±0.00 0.12±0.00
(NASDAQ, 2022) Random Forest (Z) 0.21±0.04 0.00±0.01

NN 0.01±0.00 0.22±0.01
NN (Z) 0.00±0.00 0.01±0.01
XGBoost 0.33±0.01 0.11±0.00
XGBoost (Z) 0.28±0.05 0.01±0.01

AINV Random Forest 0.19±0.06 0.11±0.06
(NASDAQ, 2022) Random Forest (Z) 0.10±0.05 0.01±0.01

NN 0.00±0.00 0.06±0.02
NN (Z) 0.00±0.00 0.03±0.05
XGBoost 0.28±0.00 0.09±0.00
XGBoost (Z) 0.21±0.02 0.01±0.01

AVXL Random Forest 0.36±0.01 0.09±0.00
(NASDAQ, 2022) Random Forest (Z) 0.28±0.06 0.04±0.05

NN 0.00±0.00 0.05±0.00
NN (Z) 0.00±0.00 0.05±0.06
XGBoost 0.36±0.01 0.08±0.00
XGBoost (Z) 0.36±0.02 0.01±0.01

Table 4: World Policies - Historical Market Data
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D.3. Historical market data at varying of number of clusters k

In this section, we evaluate the Utility and Silhouette when we vary the number of clusters k from 2 to 6. We use historical
market data for AVXL stock. For clarity of the presentation, we remove from the picture the variants of K-Means and
K-SHAP that use a dimensionality reduction technique, namely K-Means (Z) and K-SHAP (Z).

Figure 5 confirms the trend shown in the paper, and K-SHAP still represents a good trade-off between Utility and Silhouette.
For k = 2 K-SHAP groups the state-action pairs mostly into buy and sell orders. These two clusters improve the Silhouette,
as the orders in each cluster are more homogeneous, but the Utility is close to 0. In fact, a cluster containing only buy (or
sell) observations does not highlight any particular strategy.

Figure 5: Historical Market data AVXL at varying of nr. clusters k.
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Feature mean min max Type

Spread 2.346 1.000 67.000 Int
Vol. Imbalance Lev.1 0.500 0.001 0.999 Float
Vol. Imbalance Lev.2 0.507 0.002 0.998 Float
Vol. Imbalance Lev.5 0.513 0.007 0.997 Float
Exec. Vol. Imbalance 1min 0.462 0.000 1.000 Float
Exec. Vol. Imbalance 5min 0.463 0.187 0.820 Float
Exec. Vol. Imbalance 12min 0.463 0.255 0.765 Float
Exec. Vol. Imbalance 26min 0.463 0.289 0.725 Float
Price return 1min -0.000 -0.002 0.002 Float
Price return 5min -0.000 -0.003 0.004 Float
Price return 12min -0.000 -0.003 0.006 Float
Price return 26min -0.000 -0.005 0.007 Float
Price MA 12s 99.966 99.547 100.821 Float
Price MA 26s 99.966 99.532 100.822 Float
Price MA 60s 99.966 99.562 100.821 Float
Price MA 5min 99.966 99.586 100.814 Float
Price MA 12min 99.966 99.599 100.804 Float
Price MA 26min 99.967 99.644 100.793 Float
Price MA 48min 99.970 99.759 100.754 Float
Price MA 1h36min 99.976 99.832 100.567 Float
Spread MA 12s 1.599 1.000 49.083 Float
Spread MA 26s 1.594 1.000 57.192 Float
Spread MA 60s 1.595 1.000 39.950 Float
Spread MA 5min 1.601 1.000 21.200 Float
Spread MA 12min 1.606 1.000 13.250 Float
Spread MA 26min 1.611 1.000 7.885 Float
Price MA Diff 12s-26s 0.501 0.000 1.000 Float
Price MA Diff 12min-26min 0.392 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.395 0.000 1.000 Float
Order Size 41.634 1.000 100.000 Int
Order depth 9.217 -23.000 91.000 Int
Order Direction 0.495 0.000 1.000 Bin

Table 5: Summary and Description of Abides π3

Feature mean min max Type

Spread 2.647 1.000 67.000 Int
Vol. Imbalance Lev.1 0.503 0.001 0.999 Float
Vol. Imbalance Lev.2 0.511 0.002 0.998 Float
Vol. Imbalance Lev.5 0.517 0.007 0.997 Float
Exec. Vol. Imbalance 1min 0.464 0.000 1.000 Float
Exec. Vol. Imbalance 5min 0.464 0.187 0.820 Float
Exec. Vol. Imbalance 12min 0.464 0.255 0.765 Float
Exec. Vol. Imbalance 26min 0.463 0.289 0.725 Float
Price return 1min -0.000 -0.003 0.002 Float
Price return 5min 0.000 -0.004 0.004 Float
Price return 12min 0.000 -0.004 0.006 Float
Price return 26min 0.000 -0.005 0.007 Float
Price MA 12s 99.970 99.534 100.821 Float
Price MA 26s 99.970 99.527 100.822 Float
Price MA 60s 99.970 99.562 100.821 Float
Price MA 5min 99.970 99.586 100.814 Float
Price MA 12min 99.970 99.599 100.804 Float
Price MA 26min 99.969 99.644 100.793 Float
Price MA 48min 99.971 99.759 100.754 Float
Price MA 1h36min 99.978 99.832 100.567 Float
Spread MA 12s 1.638 1.000 49.083 Float
Spread MA 26s 1.627 1.000 57.192 Float
Spread MA 60s 1.626 1.000 39.950 Float
Spread MA 5min 1.632 1.000 21.200 Float
Spread MA 12min 1.641 1.000 13.250 Float
Spread MA 26min 1.661 1.000 7.885 Float
Price MA Diff 12s-26s 0.512 0.000 1.000 Float
Price MA Diff 12min-26min 0.406 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.395 0.000 1.000 Float
Order Size 43.883 1.000 100.000 Int
Order depth 6.441 -23.000 91.000 Int
Order Direction 0.502 0.000 1.000 Bin

Table 6: Summary and Description of Abides π4

Feature mean min max Type

Spread 2.779 1.000 67.000 Int
Vol. Imbalance Lev.1 0.507 0.001 0.999 Float
Vol. Imbalance Lev.2 0.509 0.004 0.998 Float
Vol. Imbalance Lev.5 0.515 0.005 0.997 Float
Exec. Vol. Imbalance 1min 0.464 0.002 0.988 Float
Exec. Vol. Imbalance 5min 0.462 0.187 0.819 Float
Exec. Vol. Imbalance 12min 0.463 0.255 0.765 Float
Exec. Vol. Imbalance 26min 0.461 0.290 0.725 Float
Price return 1min -0.000 -0.002 0.002 Float
Price return 5min -0.000 -0.003 0.004 Float
Price return 12min -0.000 -0.003 0.006 Float
Price return 26min -0.000 -0.005 0.007 Float
Price MA 12s 99.964 99.564 100.821 Float
Price MA 26s 99.964 99.547 100.822 Float
Price MA 60s 99.964 99.577 100.821 Float
Price MA 5min 99.964 99.586 100.813 Float
Price MA 12min 99.964 99.599 100.804 Float
Price MA 26min 99.965 99.644 100.793 Float
Price MA 48min 99.968 99.759 100.754 Float
Price MA 1h36min 99.975 99.832 100.567 Float
Spread MA 12s 1.617 1.000 46.250 Float
Spread MA 26s 1.593 1.000 57.192 Float
Spread MA 60s 1.590 1.000 33.100 Float
Spread MA 5min 1.612 1.000 21.200 Float
Spread MA 12min 1.614 1.000 13.250 Float
Spread MA 26min 1.604 1.000 7.885 Float
Price MA Diff 12s-26s 0.506 0.000 1.000 Float
Price MA Diff 12min-26min 0.397 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.374 0.000 1.000 Float
Order Size 42.638 1.000 100.000 Int
Order depth 4.688 -23.000 91.000 Int
Order Direction 0.486 0.000 1.000 Bin

Table 7: Summary and Description of Abides π5

Feature mean min max Type

Spread 2.904 1.000 67.000 Int
Vol. Imbalance Lev.1 0.507 0.001 0.999 Float
Vol. Imbalance Lev.2 0.511 0.004 0.998 Float
Vol. Imbalance Lev.5 0.516 0.005 0.997 Float
Exec. Vol. Imbalance 1min 0.465 0.002 1.000 Float
Exec. Vol. Imbalance 5min 0.463 0.187 0.819 Float
Exec. Vol. Imbalance 12min 0.463 0.255 0.765 Float
Exec. Vol. Imbalance 26min 0.462 0.290 0.725 Float
Price return 1min -0.000 -0.003 0.002 Float
Price return 5min 0.000 -0.004 0.004 Float
Price return 12min 0.000 -0.004 0.006 Float
Price return 26min -0.000 -0.005 0.007 Float
Price MA 12s 99.967 99.534 100.821 Float
Price MA 26s 99.967 99.527 100.822 Float
Price MA 60s 99.967 99.576 100.821 Float
Price MA 5min 99.968 99.586 100.813 Float
Price MA 12min 99.967 99.599 100.804 Float
Price MA 26min 99.967 99.644 100.793 Float
Price MA 48min 99.969 99.759 100.754 Float
Price MA 1h36min 99.976 99.832 100.567 Float
Spread MA 12s 1.635 1.000 46.250 Float
Spread MA 26s 1.614 1.000 57.192 Float
Spread MA 60s 1.608 1.000 33.100 Float
Spread MA 5min 1.634 1.000 21.200 Float
Spread MA 12min 1.644 1.000 13.250 Float
Spread MA 26min 1.643 1.000 7.885 Float
Price MA Diff 12s-26s 0.514 0.000 1.000 Float
Price MA Diff 12min-26min 0.408 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.380 0.000 1.000 Float
Order Size 44.081 1.000 100.000 Int
Order depth 3.617 -23.000 91.000 Int
Order Direction 0.489 0.000 1.000 Bin

Table 8: Summary and Description of Abides π6
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Feature mean min max Type

Spread 2.719 1.000 12.000 Int
Vol. Imbalance Lev.1 0.477 0.001 0.999 Float
Vol. Imbalance Lev.2 0.488 0.008 0.997 Float
Vol. Imbalance Lev.5 0.482 0.070 0.938 Float
Exec. Vol. Imbalance 1min 0.615 0.000 1.000 Float
Exec. Vol. Imbalance 5min 0.663 0.000 1.000 Float
Exec. Vol. Imbalance 12min 0.671 0.000 1.000 Float
Exec. Vol. Imbalance 26min 0.650 0.034 1.000 Float
Price return 1min 0.000 -0.008 0.011 Float
Price return 5min 0.000 -0.014 0.012 Float
Price return 12min 0.000 -0.022 0.016 Float
Price return 26min 0.000 -0.030 0.021 Float
Price MA 12s 11.258 10.416 12.131 Float
Price MA 26s 11.257 10.419 12.133 Float
Price MA 60s 11.257 10.421 12.129 Float
Price MA 5min 11.257 10.430 12.131 Float
Price MA 12min 11.256 10.452 12.198 Float
Price MA 26min 11.256 10.465 12.252 Float
Price MA 48min 11.261 10.482 12.375 Float
Price MA 1h36min 10.380 10.492 11.471 Float
Spread MA 12s 2.506 1.000 10.333 Float
Spread MA 26s 2.517 1.000 9.846 Float
Spread MA 60s 2.536 1.000 8.300 Float
Spread MA 5min 2.664 1.000 9.400 Float
Spread MA 12min 2.802 1.000 11.500 Float
Spread MA 26min 3.035 1.154 18.154 Float
Price MA Diff 12s-26s 0.582 0.000 1.000 Float
Price MA Diff 12min-26min 0.516 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.452 0.000 1.000 Float
Order Size 105.494 1.000 300.000 Int
Order depth 0.655 -4.000 74.000 Int
Order Direction 0.550 0.000 1.000 Bin

Table 9: Summary and Description of AINV stock data

Feature mean min max Type

Spread 3.038 1.000 12.000 Int
Vol. Imbalance Lev.1 0.479 0.000 1.000 Float
Vol. Imbalance Lev.2 0.478 0.001 0.999 Float
Vol. Imbalance Lev.5 0.479 0.048 0.974 Float
Exec. Vol. Imbalance 1min 0.536 0.000 1.000 Float
Exec. Vol. Imbalance 5min 0.574 0.000 1.000 Float
Exec. Vol. Imbalance 12min 0.584 0.000 1.000 Float
Exec. Vol. Imbalance 26min 0.569 0.010 0.972 Float
Price return 1min -0.000 -0.016 0.011 Float
Price return 5min -0.000 -0.022 0.016 Float
Price return 12min -0.001 -0.030 0.021 Float
Price return 26min -0.002 -0.041 0.033 Float
Price MA 12s 5.560 5.132 6.020 Float
Price MA 26s 5.561 5.140 6.017 Float
Price MA 60s 5.561 5.140 6.015 Float
Price MA 5min 5.560 5.143 6.015 Float
Price MA 12min 5.561 5.145 6.010 Float
Price MA 26min 5.564 5.153 6.009 Float
Price MA 48min 5.569 5.160 5.997 Float
Price MA 1h36min 5.574 5.179 6.026 Float
Spread MA 12s 2.804 1.000 11.917 Float
Spread MA 26s 2.835 1.000 15.192 Float
Spread MA 60s 2.887 1.000 16.783 Float
Spread MA 5min 3.067 1.000 16.000 Float
Spread MA 12min 3.216 1.167 13.417 Float
Spread MA 26min 3.374 1.308 15.885 Float
Price MA Diff 12s-26s 0.547 0.000 1.000 Float
Price MA Diff 12min-26min 0.465 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.517 0.000 1.000 Float
Order Size 149.949 1.000 600.000 Int
Order depth 1.599 -4.000 94.000 Int
Order Direction 0.497 0.000 1.000 Bin

Table 10: Summary and Description of AVXL stock data
Feature mean min max Type

Spread 2.254 1.000 26.000 Int
Vol. Imbalance Lev.1 0.459 0.000 1.000 Float
Vol. Imbalance Lev.2 0.462 0.002 0.998 Float
Vol. Imbalance Lev.5 0.475 0.068 0.967 Float
Exec. Vol. Imbalance 1min 0.568 0.000 1.000 Float
Exec. Vol. Imbalance 5min 0.582 0.000 1.000 Float
Exec. Vol. Imbalance 12min 0.574 0.000 1.000 Float
Exec. Vol. Imbalance 26min 0.565 0.004 1.000 Float
Price return 1min 0.001 -0.027 0.025 Float
Price return 5min 0.002 -0.038 0.053 Float
Price return 12min 0.004 -0.054 0.056 Float
Price return 26min 0.007 -0.069 0.077 Float
Price MA 12s 5.994 5.260 6.405 Float
Price MA 26s 5.993 5.260 6.404 Float
Price MA 60s 5.992 5.260 6.401 Float
Price MA 5min 5.990 5.281 6.393 Float
Price MA 12min 5.984 5.329 6.375 Float
Price MA 26min 5.974 5.373 6.391 Float
Price MA 48min 5.964 5.411 6.407 Float
Price MA 1h36min 5.953 5.448 6.433 Float
Spread MA 12s 2.193 1.000 23.667 Float
Spread MA 26s 2.199 1.000 26.192 Float
Spread MA 60s 2.238 1.000 28.350 Float
Spread MA 5min 2.397 1.000 25.200 Float
Spread MA 12min 2.688 1.000 27.333 Float
Spread MA 26min 3.098 1.000 18.077 Float
Price MA Diff 12s-26s 0.609 0.000 1.000 Float
Price MA Diff 12min-26min 0.605 0.000 1.000 Float
Price MA Diff 48min-1h36min 0.560 0.000 1.000 Float
Order Size 156.239 1.000 600.000 Int
Order depth 1.069 -4.000 50.000 Int
Order Direction 0.546 0.000 1.000 Bin

Table 11: Summary and Description of ADAP stock data
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Feature mean min max Type

Price Best Ask 99.893 98.858 100.352 Float
Price Best Bid 99.892 98.857 100.350 Float
Vol Best Ask 51.604 0.000 1443.000 Int
Vol Best Bid 43.314 0.000 1000.000 Int
Exec. Vol Ask 1min 3.504 0.000 400.000 Int
Exec. Vol Bid 1min 3.800 0.000 298.000 Int
Book depth Ask 14.420 0.000 1378.000 Int
Book depth Bid 15.873 0.000 1342.000 Int
Last Exec Price 99.884 98.857 100.302 Float
Volatility 30 min 72.411 0.000 608.599 Float
Spread 1.013 0.000 2.000 Int
Price 99.892 98.857 100.350 Float
Norm. Price MA 1min 1.000 0.992 1.011 Float
Norm. Price MA 2min 1.000 0.992 1.012 Float
Norm. Price MA 3min 1.000 0.988 1.012 Float
Norm. Price MA 5min 1.000 0.987 1.012 Float
Norm. Price MA 6min 1.000 0.987 1.012 Float
Norm. Price MA 10min 1.000 0.987 1.013 Float
Norm. Price MA 15min 1.000 0.988 1.013 Float
Norm. Price MA 30min 1.000 0.987 1.013 Float
Action 0.319 -4.000 4.000 Int

Table 12: Summary and Description of RL-Agents Bubble

Feature mean min max Type

Price Best Ask 100.088 98.932 101.217 Float
Price Best Bid 100.087 98.931 101.217 Float
Vol Best Ask 45.171 0.000 500.000 Int
Vol Best Bid 45.905 0.000 776.000 Int
Exec. Vol Ask 1min 3.199 0.000 113.000 Int
Exec. Vol Bid 1min 2.453 0.000 200.000 Int
Book depth Ask 116.077 0.000 3664.000 Int
Book depth Bid 71.810 0.000 1396.000 Int
Last Exec Price 100.057 98.931 101.024 Float
Volatility 30 min 276.131 0.000 744.593 Float
Spread 1.001 0.000 2.000 Int
Price 100.087 98.931 101.217 Float
Norm. Price MA 1min 1.000 0.990 2.002 Float
Norm. Price MA 2min 1.001 0.990 2.002 Float
Norm. Price MA 3min 1.001 0.989 2.002 Float
Norm. Price MA 5min 1.001 0.987 2.002 Float
Norm. Price MA 6min 1.001 0.987 2.002 Float
Norm. Price MA 10min 1.000 0.985 2.002 Float
Norm. Price MA 15min 1.001 0.986 2.002 Float
Norm. Price MA 30min 1.000 0.986 2.002 Float
Action 0.095 -4.000 4.000 Int

Table 13: Summary and Description of RL-Agents Sine
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