Under review as a conference paper at ICLR 2025

HoOw SPARSE ATTENTION APPROXIMATES EXACT
ATTENTION?YOUR ATTENTION IS NATURALLY nC-
SPARSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Attention is a technique that approximates standard attention computation
with sub-quadratic complexity. This is achieved by selectively ignoring smaller
entries in the attention matrix during the softmax function computation. Variations
of this technique, such as pruning KV cache, sparsity-based fast attention, and
Sparse Transformer, have been extensively utilized for efficient Large Language
Models (LLMs) deployment. Despite its widespread use, a theoretical understand-
ing of the conditions under which sparse attention performs on par with traditional
attention remains elusive. This work aims to bridge this gap by examining the
inherent sparsity of standard attention processes. Our theoretical framework
reveals several brand-new key insights:

* Attention is n“-sparse, implying that considering only the largest (n®)
entries out of all n entries is sufficient for sparse attention to approximate
the exact attention matrix with decreasing loss. Here, n represents the input
length and C' € (0,1) is a constant.

* Stable o(log(n))-sparse attention, which approximates attention computation
with log(n) or fewer entries, may not be feasible since the error will persist at
a minimum of O(1).

* An adaptive strategy (.- n~, a € R) for the window size of efficient attention
methods rather than a fixed one is guaranteed to perform more accurately and
efficiently in a task for inference on flexible context lengths.

c

1 INTRODUCTION

Large Language Models (LLMs) Vaswani et al.|(2017); Radford et al.| (2018)); Devlin et al.| (2018));
Radford et al.|(2019); |Brown et al.|(2020); [Chowdhery et al.|(2022)); Zhang et al.| (2022); (ChatGPT
(2022) have emerged as a cornerstone of contemporary artificial intelligence, exhibiting remarkable
capabilities across a plethora of Al domains. Their prowess is grounded in their ability to comprehend
and generate human language with a level of sophistication that is unprecedented. This has catalyzed
transformative applications in natural language processing, including machine translation |He et al.
(2021)), content creation |(ChatGPT|(2022); OpenAl| (2023)), and beyond, underscoring the profound
impact of LLMs on the field of Al

However, the architectural backbone of these models, particularly those built on the transformer
framework [Vaswani et al.| (2017), presents a significant challenge: computational efficiency Tay
et al.| (2022). The essence of the transformer architecture, the Attention mechanism, necessitates
a computational and memory complexity of O(n?), where n represents the sequence length. This
quadratic dependency limits the scalability of LLMs, especially as we venture into processing longer
sequences or expanding model capacities.

In an effort to mitigate this bottleneck, the Al research community has pivoted towards innovative
solutions, one of which is sparse attention |Child et al.|(2019)); |Correia et al.|(2019). Sparse attention
mechanisms aim to approximate the results of the full attention computation by selectively focusing
on a subset of the input data points. This is typically achieved by omitting certain interactions in
the Query and Key multiplications within the attention mechanism, thereby inducing sparsity in the
attention matrix. In order to arrive at the goal of preserving the model’s performance while alleviating
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the computational and memory demands, prior works, including pruning KV cache, sparsity-based
fast attention, and sparse transformer modeling, demonstrate outstanding efficiencies with O(n!+°(1)
(sub-quadratic) complexity and sub-linear memory cache with competitive performance compared
with standard attention across various tasks |Liu et al.| (2023b); Zhang et al.| (2024); | Kacham et al.
(2023));|/Addanki et al|(2023)); Lee et al.|(2024); Xiong et al.| (2021)); Zandieh et al.[(2023); [Alman &
Song|(2023;2024bza); [Han et al.| (2023)).

Despite these advancements, the theoretical underpinnings of sparse attention mechanisms and their
implications on model performance and behavior remain an area of active inquiry. In detail, it’s not
clear when and when not sparse attention can approximate standard attention with a stable error.
Also, the sparsity that attention naturally processes, which we call attention sparsity, lacks a strict
confirmation of its existence and measurement. Especially, we would like to ask:

How Sparse Attention Approximates Exact Attention?

Our Contributions. In this work, we explore the theory of the sparse attention computation problem.
Particularly, we first provide a analysis framework that first theoretically confirms the sparsity appears
in standard attention. In detailed, our analysis describes the relationships between attention sparsity
and input boundary, weights of attention networks and context length. Therefore, we derive several
incremental insights based on this framework.

2 PRELIMINARY

Assumption. In this work, we consider one-layer self-attention computation both in standard form
and sparsity-based approximate form. To begin with, we give the assumption of the input matrix
of attention computation, denoted as X € R"*¢ where n is the context length and d stands the
dimension, as follows (refer to Definition for the formal and detailed version of assumption):

* Independent Entries. For any two entries X;, ;, and X;, j, in matrix X, Viy, i3 € [n] and
Ji,j2 € [d], they are independent.

* Bounded Entries. For failure probability § € (0,0.1). With a probability 1 — 4, the entry
X ; in matrix X, Vi € [n] and j € [d], we have | X; ;| < B for some positive constant
B>0.

Attention Computation. Hence, we are about to introduce the standard attention computation, which
occupies the main time and space complexity O(n?) in LLMs inference. First, we denote the weights
of query, key and value projection as Wq, Wg, Wy, € R?¥4_ Thus, we let query, key and value state
matrices be computed by Q := XWg, K := XWg,V := XWy € R"*9 We state the following
definition:

Definition 2.1 (Attention computation). Given Query, Key and Value states matrices Q, K,V €
R" ¥4, We then define A := exp(QK " /\/d), D := diag(A1,,) € R"*™. The attention computation
Attn(Q, K, V) € R™*? s given by: Attn(Q, K,V) := D™1AV € R"*4, Specially, we denote
D! = diag(1/(A1,)) € R™ ",

Attention Sparsity. In Deﬁnition D~1A € R™ " represents the attention matrix, indicating how
much the model focuses on each vector. In much of the sparse attention literature, D~ 1A is assumed
to be sufficiently sparse, allowing sparsity-based efficient attention methods to disregard some zero
entries in order to achieve a balance between accuracy and efficiency. In this paper, we introduce
a threshold, denoted as €, and define attention sparsity as the number of entries in each row of
D=1 A € R™ that are smaller than ¢. Specifically, for a softmax vector u € R", if there are at least
n — k entries in u that are not greater than e for all integers k € [n], we say that u is (e, k)-sparse.
Since ¢ is intended to be a very small value, we will simply refer to u as being k-sparse. The formal
definition is provided below:

Definition 2.2 ((¢, k)-sparsity). For a vector u € R™ and error € > 0, we define sparse set S¢(u)
as: Se(u) == {i € [n] | |u;| < €}. Hence, we say u is at least (e, k)-sparse when it holds that
|Se(u)| > n — k.

Problem Definition I: Estimating e. In practical implementations, establishing a clear relationship
between € and the sparsity k proves to be challenging. Therefore, we first analyze how to estimate a
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boundary for € based on a given sparsity integer k € [n]. Naively, given k, we would like to find a
guaranteed value for e that satisfies |Sc(u)| > n — k. Address this problem will enable us to assess
the loss associated with approximating standard attention using sparse attention, ultimately guiding us
in finding the optimal trade-off between € (where lower values yield greater accuracy) and k (where
lower values lead to higher efficiency).

Sparse Attention and Approximation. Here we state an ideal mathematical definition for the sparse
attention in this paper. Initially, we define a set, T (u), to filter out the greatest k entries in a vector
u € R™. The integer k € [1,n] is also called window size in some sparse attention works.

Definition 2.3. For a vector u € R™, given a sparsity integer k, we denote a top-k set Ty, (u) := {i €
[n] | Su,(u) = n — k}, then we define vector topk(u) := [u1 - LieTi(u)s** » Un * Lner(w]' € R™

Note that 1;c7; (,,) is an indicator where when i € T (u), it equals 1, otherwise, 0. We utilize topk (u)

to compute a sparsity-based approximating version of A = exp(QK ") in Definition 2.1} we denote
it Agpar. Accordingly, we provide a universal version for all sparsity-based attention as follows:

Definition 2.4 (Sparse attention). Given Query, Key and Value state matrices Q,K,V €

R™"*4. We then define A := exp(QK'/\d) € R"™ ™. Especially, we define Aspar

[topk(A7 ), -+ ,topk(An,*)]T, Dgpar = diag(Asparln) € R"*". The sparse attention com-

putation SparseAttn(Q, K, V) € R™"*4 is given by:
SparseAttn(Q, K, V) := DL Ag.V € R™*4

spar

Specially, we denote D}, = diag(1/(Asparly)) € R™¥™
It should be noted that directly accessing top k entries in the attention matrix without any extra
computational cost is overly ideal for efficient LLMs in real-world cases. Prior works usually utilize
some additional approximate algorithm to meet this condition, e.g. Locality-Sensitive Hashing (LSH)
for retrieving larger query-key pairs, but this also brings more approximating errors. We only focus on
the part of approximating attention computation in this study and leave the part of pre-approximating
top-k entries in D~ A as a future direction.

Problem Definition II: Sparse Attention Approximation. The variations of sparse attention,
including pruning KV Cache Liu et al.[(2021); X1ao et al.| (2023) and sparsity-based attention Kitaev
et al.| (2020); Zandieh et al.[(2023); Han et al.| (2023)), focus on solving the approximation of the
attention matrix, where we call it sparse attention approximation. In particular, we emphasize the
importance of stable sparse attention approximation, which directly affects the extensibility of sparse
attention under long context scenes. We denote f : Nt — N as the strategy to choose a suitable
window size due to different input lengths. Hence, we give:

Definition 2.5 (Stable sparse attention approximation SSAA(f)). For some strategy f : Nt — N*
to choose the sparsity k = f(n) in sparse attention (Definition , the problem of stable sparse
attention approximation SSAA(f) is to solve: L(f,n) = | D35 Aspar — D Allp, where || - ||,
denotes some norm. We say this sparse attention approximation is stable iff:

» L(f,n) is monotonically decreasing with growing n.
o limy, 400 L(f,n) = 0.
3 INSIGHTS OVERVIEW

Definition 3.1. Denote W := WoW,- /v d € R¥*4. We define R := B? - |W||p.

We estimate the lower bound on the requirement for (e, k)-sparse softmax vector, proving the vanilla
attention computation is naturally sparse.

Theorem 3.2. Let R > 0 be defined as Definition Given sparsity integer k < n. Denote
T := exp(y/log(n(n — k)d/5)). Let S, be defined as Deﬁnition 0 € (0,0.1). If we choose

>n—k.

e > %Y then with a probability at least 1 — 6, for all i € [n], we have ‘86 (D;’ilAi’*)

n

Proof sketch of Theorem The complete proof is provided in Appendix [Djand Theorem[D.1] O
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We introduce the concept of attention collapse, which demonstrates the number of effective entries in
attention matrix provably decrease to 1 or some constant inevitably.

Theorem 3.3. Consider a fixed € with a very small value, 6 € (0,0.1). Then with a probability at
least 1 — 0, there is:

 Part 1. If R = o(+/log(n)), then we have lim,,_, oo |Sc(u)| > n — 1.

 Part 2. If R = O(\/log(n)), then we have lim,,_, o |Sc(u)| > O(1).
Proof sketch of Theorem[3.3] Refer to Theorem [D.2]for the detailed proof. O

We give the sufficient lower bound on the window size of stable sparse attention approximating exact
attention computation, Q(n%) for constant C' € (0, 1). This further indicates that sparse attention
can recover attention outputs from limited (n) entries while achieving a decreasing error.

Theorem 3.4. § € (0,0.1). For a constant C € (0, 1), we then denote f(n) := Q(n®), therefore,
with a probability at least 1 — 0, window size strategy k = f(n) is sufficient to solve SSAA(f) in

Definition[2.3]
Proof sketch of Theorem Please see Theorem [E. T} O

Meanwhile, we also confirm sparse attention approximation from o(log(n)) entries is not enough for
stability and extensibility since the lower bound on error will grow with increasing input length.

Theorem 3.5. § € (0,0.1). For a constant C € (0,1), we then denote f(n) := o(log(n)),
therefore, with a probability at least 1 — 6, window size strategy k = f(n) cannot solve SSAA(f) in

Definition

Proof sketch of Theorem Please refer to Theorem [E.2] for the formal version and corresponding
detailed proofs. O

Therefore, we suggest to use adaptive strategy k = o - n“, a > 0,C € (0, 1) for the window size of
sparse attention rather than the strategy that fixes the window size for any input. The former is proved
more efficient within higher approximation performance. We consider a dataset D := {X*} , with
dataset size N. For all ¢ € [IV], we use n; to denote the context length, such that X i e R"*4 Hence,
the difference of the computational complexities of fixed Top-k strategy and a dynamic (especially
O(n%)) strategy could be easily obtained in the Claim below.

Claim 3.6. We have:

* Part 1. Choosing the constant window size strategy k = p for some constant integer p > 0.
The computational complexity of a one-layer p-sparse attention to inference D = { X"}V is

@(pZZN:l ”z)

o Part 2. Choosing the constant window size strategy k = «-nC for some constant a, C>0.
The computational complexity of a one-layer p-sparse attention to inference D = {X ’}fv is

Oy nite).

Proof. Recall the computational complexity of Deﬁnitionis O(nk) for input X € R™*? and k
window size. We then take the summation for each X¢ € R"*%in D := { X} to obtain the results
of Part 1 and Part 2. O

Proposition 3.7. For any window size strategy k = p for some constant integer p > 0, there exist
a context-length adaptive strategy k = a - n® for some constant o, C > 0 that performs lower
approximating error.

Proof. Following Theorem and Theorem the conclusion of this proposition can be trivially
proved by plugging suitable choices of « and C. O
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A RELATED WORK

Sparse and Efficient Transformer. In the landscape of attention mechanisms, Vaswani et al.
introduced the transformative transformer model, revolutionizing NLP with its comprehensive self-
attention mechanism [Vaswani et al.| (2017)). Innovations |Child et al.|(2019); Lample et al.| (2019) in
sparse attention presented methods to reduce complexity, maintaining essential contextual information
while improving computational efficiency. The Reformer Kitaev et al.| (2020) utilized Locality
Sensitive Hashing to significantly cut down computational demands, enabling the processing of
lengthy sequences. Mongoose (Chen et al.| (2020) adapted sparsity patterns dynamically, optimizing
computation without losing robustness. |Sun et al.| (2021) introduced a learning-to-hash strategy
to generate sparse attention patterns, enhancing data-driven efficiency. HyperAttention |[Han et al.
(2023) refined attention approximation, balancing computational savings with accuracy. Longformer
Beltagy et al.|(2020) extended transformer capabilities to longer texts through a mix of global and
local attention mechanisms. The Performe |Choromanski et al.| (2020) offered a novel approximation
of softmax attention, reducing memory usage for long sequences. Big Bird Zaheer et al.| (2020)
combined global, local, and random attention strategies to surmount traditional transformer limitations
regarding sequence length.

Theoretical Approaches to Understanding LLLMs. There have been notable advancements in
the field of regression models, particularly with the exploration of diverse activation functions,
aiding in the comprehension and optimization of these models. The study of over-parameterized
neural networks, focusing on exponential and hyperbolic activation functions, has shed light on their
convergence traits and computational benefits [Brand et al.| (2023); |Song et al.| (2023a)); |Gao et al.
(2023c); |Deng et al.| (2023b); |Gao et al.[(2023b); [Song et al.|(2023b); |[Zandieh et al.| (2023)); | Alman &
Song| (2023 2024bfal); |Gao et al.|(2023a); Deng et al.|(2023c); Li et al.| (2023a)); |Chu et al.|(2024).
Enhancements in this area include the addition of regularization components and the innovation
of algorithms like the convergent approximation Newton method to improve performance|Li et al.
(2023b). Additionally, employing tensor methods to simplify regression models has facilitated
in-depth analyses concerning Lipschitz constants and time complexity |Gao et al.|(2023b); Deng et al.
(2023a)). Concurrently, there’s a burgeoning interest in optimization algorithms specifically crafted
for LLMs, with block gradient estimators being utilized for vast optimization challenges, significantly
reducing computational load |Cai et al.|(2021). Novel methods such as Direct Preference Optimization
are revolutionizing the tuning of LLMs by using human preference data, circumventing the need for
traditional reward models Rafailov et al.|(2023)). Progress in second-order optimizers is also notable,
offering more leniency in convergence proofs by relaxing the usual Lipschitz Hessian assumptions
Liu et al.|(2023a). Moreover, a series of studies focus on the intricacies of fine-tuning Malladi et al.
(2023a3b)); Panigrahi et al.| (2023). These theoretical developments collectively push the boundaries
of our understanding and optimization of LLMs, introducing new solutions to tackle challenges like
the non-strict Hessian Lipschitz conditions.

B PRELIMINARY

B.1 NOTATIONS
In this work, we use the following notations and definitions:

* For integer n, we use [n] to denote the set {1,...,n}.

e We use 1,, to denote all-1 vector in R".

* The ¢, norm of a vector  is denoted as ||z||,,, for examples, ||z||1 := D1 ||, [|z]2 :=
>, )2 and ||z || o = max; e[, 4.

* For a vector € R", exp(z) € R™ denotes a vector where whose i-th entry is exp(z;) for
all i € [n].

» For two vectors z,y € R", we denote (z,y) = > -, z;y; fori € [n].

* Given two vectors x,y € R", we denote x o y as a vector whose i-th entry is x;y; for all
i€ [n].

10
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* For a vector € R”, diag(x) € R™*" is defined as a diagonal matrix with its diagonal
entries given by diag(z); ; = x; for i = 1, ..., n, and all off-diagonal entries are 0.

* We use erf(x) to denote the error function erf(z) = % Jy exp(—t?)dt, and erf 71 is
denoted as the inverse function of erf(x).

e For any matrix A € R™*", we use A" to denote its transpose, we use ||A|r to
denote the Frobenius norm and ||A||. to denote its infinity norm, i.e., ||A|p =

(Zve[m] Zje[n] A127.j)1/2 and HAHOO = MaX;c[m],jen] ‘AZ,J|

e For i, 0 € R, we use N (i, 0?) to denote Gaussian distribution with expectation of x and

variance of 2.

» For a mean vector i € R? and a covariance matrix ¥ € R%*?, we use A (u, £2) to denote
the vector Gaussian distribution.

» We use E[-] to denote the expectation and Var[-] to denote the variance.
* We use I'(z) to denote the gamma function where I'(z) = [~ "~ exp(—t)dLt.

« For an integer k > 0, we use 3 to denote the Chi-squared distribution with k degrees of
freedom.

* Usually, we use C' > 1 to denote a sufficient large constant.

B.2 BASIC FACT FOR SOFTMAX

Fact B.1. For a vector x € R® and a scalar b € R, we have:

softmax(z) = softmax(x + b - 14)

B.3 BAsIC FACTS FOR CALCULATION

Fact B.2. For a,b > 1 and there exist a constant C' > 0 such that

Va+vb<CvVa+b

Fact B.3. For a sufficient large x € R (x > 55), we have

exp(y/log(x)) < Vo
B.4 PROBABILITY TOOLS

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in (Chernoff| (1952) below.

Lemma B.4 (Chernoff bound, Chernoff (1952)). Let X = Z?:l X, where X; = 1 with probability
pi and X; = 0 with probability 1 — p;, and all X; are independent. Let j1 = E[X| = >"""_| p;. Then
e Pr[X > (1+6)u] < exp(—d62u/3), V8 > 0;
o Pr[X < (1-0)u) <exp(—62u/1),V0 < 4§ < 1.

Next, we offer the lemma about Hoeffding bound as in /Hoeftding| (1994).

Lemma B.5 (Hoeffding bound, Hoeffding (1994))). Let X, - -, X,, denote n independent bounded
variables in [a;, b;] for a;,b; € R. Let X := Y. | X;, then we have

212

Yoy (bi —ai)?

We show the lemma of Bernstein inequality as [Bernstein|(1924).

Pr{| X — E[X]| > 1] < 2exp(— )

Lemma B.6 (Bernstein inequality, Bernstein|(1924)). Let X, --- , X,, denote n independent zero-
mean random variables. Suppose | X;| < M almost surely for all i. Then, for all positive t,

t2/2
> EXF] + Mt/3)

Pr[z X; > t] <exp(—
i=1

11
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Then, we give the Khintchine’s inequality in |Khintchine|(1923)); Haagerup| (1981) as follows:

Lemma B.7 (Khintchine’s inequality, [Khintchine| (1923)); Haagerup| (1981)). Let o1, , 0, be i.i.d
sign random variables, and let z1 - - - | z,, be real numbers. Then there are constants C' > 0 so that
forallt >0

Pr(| ) zioi| > t]1z]2] < exp(~Ct?)

i=1
We give Hason-wright inequality from Hanson & Wright (1971)); Rudelson & Vershynin/ (2013

below.

Lemma B.8 (Hason-wright inequality, [Hanson & Wright (1971); Rudelson & Vershynin|(2013)).
Let © € R™ denote a random vector with independent entries x; with E[x;] = 0 and |z;| < K Let A
be an n x n matrix. Then, for everyt > 0

Prflz" Az — E[z" Az]| > #] < 2exp(—cmin{t®/(K*|| %), t/(K?||Al)})

We state Lemma 1 on page 1325 of Laurent and Massart|Laurent & Massart| (2000).

Lemma B.9 (Lemma 1 on page 1325 of Laurent and Massart, [Laurent & Massart| (2000)). Let
X~X ,€2 be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and o* variance. Then

Pr[X — ko? > (2VEt + 2t)0?] < exp(—t)
Pr[X — ko? > 2Vkto?] < exp(—t)

Here, we provide a tail bound for sub-exponential distribution Foss et al.[(201 1.

Lemma B.10 (Tail bound for sub-exponential distribution, Foss et al.[(2011)). We say X € SE(0?, )
with parameters o > 0, o > 0, if

E[e*] < exp(A\26?/2),V|)| < 1/a.
Let X € SE(0?,«) and E[X] = u, then:
Pr[|X — p| > t] < exp(—0.5min{t*/o?t/a})
In the following, we show the helpful lemma of matrix Chernoff bound as in|Tropp| (2011); Lu et al.

(2013).

Lemma B.11 (Matrix Chernoff bound, |Tropp| (2011); |Lu et al.[|(2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d X d, and suppose that

max Apax(X) < B.

Xex
Sample {X1,- -, X, } uniformly at random from X without replacement. We define pimin and fimax
as follows:
Pomin =1 )\min(XIGEX(X))
s 7= A (X))
Then

Pr{Amin(>_ Xi) < (1= 0)ptmin] < d - exp(—8°pimin/B) for § € (0,1],

i=1

Pr{Amax(Y | Xi) > (14 0)ptmax] < d - exp(—6imax/(4B)) for § > 0.
i=1

12
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C PROBLEM DEFINITIONS

C.1 INPUT ASSUMPTION

Definition C.1. We consider for any input matrix to an attention network X € R™*% where integer
n denotes the input length and d denotes the dimension. We assume:

* Independent Entries. For any two entries X;, j, and X, ;, in matrix X, Vi, i2 € [n] and
J1,J2 € [d], they are independent.

» Bounded Entries. For failure probability 6 € (0,0.1). With a probability 1 — §, the entry
X, ; inmatrix X, Vi € [n] and j € [d], we have | X, ;| < B for some positive constant
B>0.

C.2 ATTENTION COMPUTATION
Definition C.2 (Attention computation). If the following conditions hold:

o Let Wo, Wi, Wy € R be denoted as Query, Key and Value projection matrices of
attention.

s Given an input X € R™*? that holds properties in Definition

* Define Query, Key and Value states matrices Q) == XWq, K = XWg,V = XWy €
RnXd.

e A:=exp(QK T /Vd) € R™*™,
* D :=diag(Al,) € R™*"
Then we have attention computation Attn(Q, K, V) € R™*? as follows:
Attn(Q, K, V) := D' AV

C.3 ¢-APPROXIMATED k-SPARSE SOFTMAX VECTOR

In order to describe the sparsity of the softmax, we define the following notation.
Definition C.3. For a vector u € R™ and € > 0, we define sparse set S.(u) as follows:

S.(u) == {z e [n] ‘ lug| < e}

Definition C.4 ((e, k)-sparsity). For a vector u € R"™, we say u is (e, k)-sparse if for a constant
e € (0,1), it holds that

|Se(u)| > n — k.

C.4 SPARSE ATTENTION

Definition C.5. For a vector u € R™. Given a sparsity integer k. Let S, be defined as Definition|C.3)|
for some error ¢ > 0. We define the top-k set T,(u) := {i € [n] | Sy, (u) > n — k}.

Definition C.6. If the following conditions hold:
» For a vector u € R".
* Given a sparsity integer k.
* Let 8¢ be defined as Definition for some error € > (.
* Denote a top-k set Tr,(u) := {i € [n] | Sy, (u) > n — k} as Definition|C.3]
Then we define
topk(u) := [u; - Lie (w)liein € R”

13
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We define the sparse attention computation as follows:
Definition C.7. If the following conditions hold:

o Let W, Wk, Wy € R4 be denoted as Query, Key and Value projection matrices of
attention.

* Given an input X € R™*? that holds properties in Definition

* Define Query, Key and Value states matrices QQ := XZWq, K := XWg,V := XWy €
RnXd.

A= exp(QK T /V/d) € R"*™,
Let topk be defined as Definition

* Define Agpar := [topk(Ay), topk(Az), ---, topk(An)]T € Rmxm,
* Dypar = diag(Asparln) € R™*™
. 5 €(0,0.1).

Let R > 0 be defined as Definition[C.9

The sparse attention computation SparseAttn(Q, K, V) € R"*? is given by:

SparseAttn(Q, K, V) := DL AoV € R™*4

spar
C.5 HELPFUL DEFINITIONS

We introduce the following algebraic lemmas to be used later.

Definition C.8. Let Query and Key projection matrices Wy, Wi € R4 be defined as Deﬁnition
We define

W = WoWg /Vd.
Definition C.9. If the following conditions hold:
o Let W € R*4 be define as Definition
Then for any i € [n], we define:
Ri= B2|W].

D ATTENTION SPARSITY

D.1 MAIN RESULT 1: ATTENTION SPARSITY WITH UPPER BOUND ON ERROR
Theorem D.1. If the following conditions hold:

o Let Wo, Wk, Wy € R4 be denoted as Query, Key and Value projection matrices of
attention.

o Given an input X € R™? that holds properties in Definition

* Define Query, Key and Value states matrices Q) :== XWq, K = XWg,V = XWy €
R”Xd.

e A:=exp(QK T /Vd) € R™*™,
D = diag(A1,) € R™*",

* Denote f3; :== Bdmax;, ¢|q) |E[>¢ W;

- X gl

1,72
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* Deﬁne r:.= [ﬁl : 1n7ﬁ2 : 1n7 e aﬂn : ]-n]T € Rmxn

A:=exp(QKT /Vd+T) € RM*™,

* D :=diag(Al,) € R™*",
5 € (0,0.1).

Let R > 0 be defined as Definition[C.9}

* Given sparsity integer k < n.

s Denote T := exp(+/log(n(n — k)d/9)).
Let S, be defined as Definition

O(R)
If we choose € > T

), then with a probability at least 1 — 6, we have

(D, An)| =

1,11

(D%, Ai)| =

11,81

n—k

Proof. Remark. We re-denote S, = S.(D; %, A;, ) in the statement, and iy € S..

11,11

Following Part 1 of Lemma|D.3] with a probability at least 1 — d;, we have

Ay in < exp(O(R) - v/log((n — £)d/51) ()

Following Part 3 of Lemma|[D.3] with a probability at least 1 — do, we have

Dhl“ < exp(O(R) - \/log(nd/d2))/n 2)
Now we combine Eq. () and Eq. (2), with a probability at least 1 — §; — da, we have
-1 -1
Dil,ilAil,iQ = DihilAil,iQ
< exp( -V/log((n —k)d/d1) + O(R log(nd/d2))/n

< exp(

O(R)

< exp(O(R) - /log((n — k)d/é,) +log(nd/52))/n
O(R) - \/og(n(n — k)d?/(6145)))/n
(O(R) - \/log(n(n — k)d/5))/n

< exp(y/log(n(n — k)/6))° /n

< TOWR) -1

where the first step follows from Fact[B} the second step follows from Eq. (T) and Eq. (2)), the third
step follows from Fact[B.2] the fourth step follows from simple algebras, the fifth step follows from
choosing §; = 62 = §/2, the sixth step follows from simple algebras, the last step follows from the
definition of 7. O

D.2 MAIN RESULT 2: ATTENTION COLLAPSE
Theorem D.2. [fthe following conditions hold:

o Let W, Wk, Wy € R*4 be denoted as Query, Key and Value projection matrices of
attention.

e Given an input X € R™*? that holds properties in Definition

* Define Query, Key and Value states matrices Q) :== XWq, K = XWg,V = XWy €
R™X d.

o A:=exp(QK " /Vd) € R™™,

15
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* D :=diag(41,) € R"*™.

* Denote (3; ;= Bdmax; ¢[q) |E[Z§i2:1 Wiy s - Xijall-
 Definel := (B -1, B2 1, -+, Bn - 1,]T € RPX7
« A:=exp(QKT/Vd+T) e RM™,

e D := diag(Al,) € R,

5 € (0,0.1).

Let R > 0 be defined as Definition|C.9|

* Assuming R = o(4/log(n)).

e Given sparsity integer k < n.

e Denote T := exp(y/log(n(n — k)d/s)).
s Let S, be defined as Definition|C.3]
For any € > 0, with probability at least 1 — §, we have:

lim |SE(DZ-_7¢1A1-)| =n-—1

n—-+oo
Proof. In order to choose k that meets the e-approximated sparsity, we have:

€ > exp (O(R) - /Tog(n - (n — k)d/é))

where this step follows from Theorem [D.T]

We obtain:

k <n—exp (O(bgl(iizn))) o

Hence, we have:

lim |S€(Di_i1Ai)\ > lim (n—k)
n—-+oo ’ n——+00
log?(e-n 1)

( ))) .

R2 nd

> lim exp (O( —

T n—+4oo

=n-—1

3

where the first step follows from Definition [C.3] the second step follows from Eq.(3)), the last step

follows from R = o(4/log(n)) and (D;;Ai, 1,) =1, then

max |S¢(D; [ A;)| =n— 1.

D.3 BOUNDING D!

Lemma D.3. If the following conditions hold:

o Let Wo, Wk, Wy € R4 be denoted as Query, Key and Value projection matrices of

attention.

s Given an input X € R™*? that holds properties in Definition

* Define Query, Key and Value states matrices Q) == XWq, K = XWg,V = XWy €

RnXd

16
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d
e Denote 3; :== Bdmalee[d] |E[Zj2:1 Wj1,j2 . Xi,jg”-
° Deﬁne .= [ﬁl . 1n7ﬁ2 . 1n7 e 7671 : ]-n]T S R

o A= exp(QK T /v/d+T) € R™™,

D := diag(A1,) € R™*",
5 € (0,0.1).
* Let R > 0 be defined as Definition|[C.9}

Then with a probability at least 1 — 6, we have
* Part I. Foriy,ig € [n]
exp(—O(R) - \/10g(d/3)) < A, s, < exp(O(R) - \/log(d/5))
* Part2. For i € [n|

n-exp(—O(R) - \/log(nd/d)) < 151'1,1'1 <n-exp(O(R) - v/log(nd/d))

* Part 2. For i € [n]

D;}il < exp(O(R) - y/log(nd/d))/n
Proof. Proof of Part 1. We have
|Ai1,i2 ‘ = eXp((QKT)il,iz)
< exp(O(R) - /log(d[9))
where the first step follows from the definition of A, the second step follows from Lemma [D.4]

Proof of Part 2. This proof follows from the union bound of Part 1 of this Lemma and the Definition
of D.

Proof of Part 3. This proof follows from the lower bound on D and simple algebras. O

91,81
D.4 CONCENTRATION ON QK "

Lemma D.4. If the following conditions hold:

o Let Wo, Wi, Wy € R4 be denoted as Query, Key and Value projection matrices of
attention.

s Given an input X € R™*? that holds properties in Definition

* Define Query, Key and Value states matrices Q) :== XWq, K = XWg,V = XWy €
RnXd.

o Let W € R4 pe define as Definition
» Denote C' > 1 as a sufficient large constant.
* 6 €(0,0.1).
* Let R > 0 be defined as Definition|[C.9}
* Foriy,iz € [n]

Then with a probability at least 1 — 6, we have

(QE )iy ia| < O(R) - /log(d/d) + B,

17
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Proof. We have:
|(QKT)i1,i2| = ‘(XWQWI—(FXT/\/Q)HJA
= ‘(XWXT)ihiz'

=X, WX,
d d
= ‘ Z Z Wj17j2 'Xi17j1Xi2,j2|
Jji=1j2=1
d d
< B| Z Z le»]é : Xi27j2‘
Ji=1j2=1

where the first step follows from @ := XWqg, K := XWk, the second step follows from Def-
inition [C.9] the third and fourth steps follow from simple algebras, the fifth step follows from
Definition[Cl

We then apply Hoeffding inequality (Lemma|[B.5) to each W
at least 1 — 4, we have:

- X, j,- Hence, with a probability

1,J2

d d
| Z Wi - Xig o — E[Z Wit gz - Xiz’sz < O(B) ) ||Wj1||2 ’ IOg(d/é)
Jj2=1 jo=1
since | X, j,| < B for any js € [d].
By triangle inequality, we have:
d d
| Z le»j'z : X7;27j2‘ < O(B) ' Hle HQ vV 1Og(d/5) + |E[Z le-,j2 : Xi27j2}| 4
J2=1 ja=1

‘We obtain:

d d d
By Y Wiy Xipjal < O(B?) - IWllr - v/1og(d/5) + ijflneaﬁg]UE[Z Wi+ Xia g ]|

J1=1j2=1 o
_ O(R) /R + 5.

where the first step follows from Eq E and Fact (Wllr = 251:1 |W;, |13), the second step
follows from Definition[C.9]and define

d

5., = Bd E Wi . - X, i
Bi, jrlnea[fi(]| [J; J1,J2 27]2”

O

Remark D.5. The formal results of Lemma in the appendix have slight differences with the
informal forms, in which we omit the additional terms of each upper bound since such terms are
trivially some constants. Fact[B.|shows any constant bias term added before the softmax function
will not change the output. We thus simplify the equations for tighter boundaries and more convenient
notation.

E SPARSE ATTENTION APPROXIMATION

E.1 MAIN RESULT 3: UPPER BOUND ON ERROR

Theorem E.1. If the following conditions hold:
* Let Query, Key and Value states matrices Q, K,V € R"*? be defined as Deﬁnition
e A:=exp(QK T /Vd) € R™™,
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D := diag(A1,,) € R™*"

Let Ty, be defined as Definition

Let topk be defined as Definition|C.6]

o Let S, be defined as Deﬁnition we omit S, (D;i1 A; ) fori e [n]toS.,.

. Deﬁne Aspar = [tOPk(Al*) tOpk(Az,*) NN topk(An7*)]T
. Dspar = diag(Aspar]-n) c Rnxn,
* 6€(0,0.1).

s Let R be defined as Definition|[C.9|
Then with a probability at least 1 — 6, we have
s Part 1. Choosing k = Q(n%) for C € (0,1), we have Cepror € (0,0):
| Dopar AsparV — DAV || < o(n™%error)

spar

* Part 2. Choosing k = o(log(n)) for C € (0, 1), we have Cerror € (0,C):
1D AsparV — DM AV || o < Q(nCerrer)

spar

Proof. We have
HD_l Aspar - D_lA”oo = ||l)_1 Aspar - D_lAspar + D_lAspar - D_lAHoo

spar spar

S ||-D_1 Aspar - -D_lAsparHoo + ||D_1Aspar - D_1A||oo

<(E 4 D) exp(O(R) - /ognd]5))
< - exp(O(R) - V/log(nd]5)) O

where the first step follows from simple algebras, the second step follows from triangle inequality, the
third step follows from Part 1 and Part 4 of Lemmal[E.3] the fourth step follows from simple algebras.

Part 1. Choosing k = Q(n?) for C € (0, 1), we have:

1D5 e Aspee — D™ Al < 1 - exp(O(R) - v/ o8 (0l /5))
< O(n_cerror)
where the first step follows from Eq. @), the second step follows from 0 < Ceppor < C.
Part 2. Choosing k = o(log(n)) for C' € (0, 1), we have:

D5 Aspar — D™ Allse < 1 - exp(O(R) -/ Tog(nd/9))
S Q(nCcrror)

where the first step follows from Eq. @), the second step follows from 0 < Copror- O]
E.2 LOWER BOUND ON ERROR
Theorem E.2. If the following conditions hold:

o Let Query, Key and Value states matrices Q, K,V € R™*? be defined as Deﬁnition

« A:=exp(QK T /Vd) € R™*™,

* D :=diag(41,) € R**"»
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Let Ty, be defined as Definition[C.3}
Let topk be defined as Definition|C.6)
Let S, be defined as Deﬁnition we omit S, (D;l-1 A; ) fori € [n] to S .

. DEﬁne Aspar = [topk(Al,*) tOpk(AQ’*) . tOpk(An’*)]T
. Dspar = diag(ASpar]-n) c Ran.
* 6€(0,0.1).

* Let R be defined as Definition[C.9}
* Choosing k = o(log(n))
Then with a probability at least 1 — 6, we have
DG Aspar = DM AllF > O(1)

spar

Proof. We have:

—1 —1 2
(D Aspar,il,ig -D Ail»iz)

spar,iy,i] 91,81

(% exp(—O(R) - \/@) - %GXP(O(R) : IOg(%d)))Q

( exp(~O(R) - | /log ("))

NE

HDil Aspar - D71A||% =

spar
1

o

oy
Il
-

2

-
(]

@
o
[
L
-
[V
m
A

+

11=14x€[n]/ Tk
= 1
> (O(——==))*
“2231 i2€Th n- O(IOg(n))
> 0(1)

where the first step follows from the definition of Frobenius norm ¢z, the second step follows from
plugging k = o(y/log(n)) and we have:

d /1 nd 1 nd d 1
(5 xp(-O(R) - log(75)) = 2 exblO(R) - log(3) 2 o i

and the last step follows from simple algebras. O

E.3 APPROXIMATING SOFTMAX FUNCTION
Lemma E.3. If the following conditions hold:
o Let Query, Key and Value states matrices Q, K,V € R"*? be defined as Definition
e A:=exp(QK T /Vd) € R,
e D :=diag(Al,) € R**"
* Let Ty, be defined as Definition|C.3]
* Let topk be defined as Definition
Let S, be defined as Deﬁnition we omit S, (D;’i1 A; ) fori € [n] to S .

* Define Aqpar := [topk(A1 ) topk(Az,) --- topk(An)*)]T.

* Dypar = diag(Agparly) € R™*™
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. 5€(0,0.1).
* Let R > 0 be defined as Definition|[C.9}

Then with a probability at least 1 — 6, we have

e Part 1.
1D A — D™ Al <~ - exp(O(R) -/ Tog(nd/3))
e Part 2.
| Dapar = Dlloo < (n — k) - exp(O(R) - /Tog(nd/5))
e Part 3.
1Dk~ Do < " E exp(O(R) - V0B ()
e Part 4.

—E  exp(O(R) - v/log(nd]3))

Proof. Before we begin the proof, we construct a toolkit as follows:

_ _ n
||D ; Aspar -D 1Aspar||oo S

spar

For z1 < exp(y/log(a/d1)) and z2 < exp(1/log(a/d2)), we have

x129 < exp(y/log(a/d1)) - exp(y/log(b/d2))
< exp(y/log(a/d1) + /log(b/65))
exp(Cy/log(a/61) + log(b/2))
exp(C'y/log(ab/d)) ©6)
where these steps follow from simple algebras, Factand choose §; = §5 = 0/2.
Proof of Part 1. This proof follows from Theorem andn — k <n.
Proof of Part 2. We have
||D8par - D”oo = ”ASParln - AlnHoo
=D o (D" Aparln = D71 AL |
<Dl - 107! Asparln = D™ Alnlloo

<Dl " exp(0(R) - Vioglmd®))
< (n— k) - xp(O(R) - iog(nd]3) - exp(O(R) - \/Iog(nd]5)
< (n—k)-exp(O(R) - \/log(nd/d))

where the first step follows from the definitions of Dgpar and D, the second step follows from simple
algebras, the third step follows from Cauchy-Schwarz inequality, the fourth step follows from Part 1
of this Lemma and the definition of Agp,,, the fifth step follows from Part 4 of Lemma @ the sixth
step follows from Eq. (6).
Proof of Part 3. We have

||D_1 - D_1||oo = ||D_1 Hoo : HD_1||00 ’ ||D5par - DHOO

spar spar

< ||D57p1arHoo : HD71||00 ’ (n - k) . GXp(O(R) . \/W)
= n&f -exp(O(R) - v/log(nd/3)) - exp(O(R) - v/log(nd/5))
<"k cxp(O(R) - /Togmd )

IN A
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where the first step follows from simple algebras, the second step follows from Part 2 of this Lemma,
the third step follows from Part 5 and Part 6 of Lemma|[E.4] the last step follows from Eq. (6).

Proof of Part 4. This proof follows from combining Part 2 of Lemma [E.4] and Part 3 of this
Lemma. O

E.4 HELPFUL BOUND TOOLKIT
Lemma E.4. [fthe following conditions hold:
o Let Query, Key and Value states matrices Q, K,V € R"*? be defined as Deﬁnition
o A:=exp(QK T /Vd) € R,
* D :=diag(Al,) € R**"»
* Let Ty, be defined as Definition
Let topk be defined as Definition
Let S, be defined as Deﬁnition we omit S, (D;i1 A ) fori € [n]to S .

« Define Aqpar = [topk(A1.) topk(As.) --- topk(An.)] .
* Dypar := diag(Agparly) € R™*™

5 € (0,0.1).

* Let R > 0 be defined as Definition|[C.9|

Then with a probability at least 1 — 6, we have
e Part 1. exp(—O(R)-/log(25Ed)) < A;, i, < exp(O(R)-y/log(252d)), Viy € [n], iz €
Se
s Part 2. exp(—O(R) - \/log(sd)) < Aj, 4, < exp(O(R) - \/log(%d)), Viy, iz € [n]
* Part3. kexp(—O(R)-\/log(5d)) < > i, c7. Airin < kexp(O(R)-/log(d)), Vix € [n]
s Part4. nexp(—O(R) - \/log(§d)) < D;, 4, < nexp(O(R) - +/log(%d)), Vi € [n]

 Part 5. Lexp(~O(R) - \/1og(2d)) < (T, er, Ail,h)% < Lexp(O(R) - \/log(Zd)),

Vi, € [n]
e Part 6. X exp(—O(R) - \/log(%d)) < D;}il < Lexp(O(R) - \/log(%d)), Viy € [n]

Proof. Proof of Part 1.

This proof follows from Eq. (I)).

Proof of Part 2.

This proof follows from Part 1 and Part 2 of Lemma[D.3]
Proof of Part 3.

This proof follows from Part 1 of this Lemma.

Proof of Part 4.

This proof follows from Part 2 of Lemma[D.3]

Proof of Part 5.

This proof follows from Part 3 of this Lemma.
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Proof of Part 6. This proof follows from Part 4 of this Lemma.
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