
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW SPARSE ATTENTION APPROXIMATES EXACT
ATTENTION?YOUR ATTENTION IS NATURALLY nC -
SPARSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Attention is a technique that approximates standard attention computation
with sub-quadratic complexity. This is achieved by selectively ignoring smaller
entries in the attention matrix during the softmax function computation. Variations
of this technique, such as pruning KV cache, sparsity-based fast attention, and
Sparse Transformer, have been extensively utilized for efficient Large Language
Models (LLMs) deployment. Despite its widespread use, a theoretical understand-
ing of the conditions under which sparse attention performs on par with traditional
attention remains elusive. This work aims to bridge this gap by examining the
inherent sparsity of standard attention processes. Our theoretical framework
reveals several brand-new key insights:

• Attention is nC-sparse, implying that considering only the largest Ω(nC)
entries out of all n entries is sufficient for sparse attention to approximate
the exact attention matrix with decreasing loss. Here, n represents the input
length and C ∈ (0, 1) is a constant.

• Stable o(log(n))-sparse attention, which approximates attention computation
with log(n) or fewer entries, may not be feasible since the error will persist at
a minimum of O(1).

• An adaptive strategy (α ·nC , α ∈ R) for the window size of efficient attention
methods rather than a fixed one is guaranteed to perform more accurately and
efficiently in a task for inference on flexible context lengths.

1 INTRODUCTION

Large Language Models (LLMs) Vaswani et al. (2017); Radford et al. (2018); Devlin et al. (2018);
Radford et al. (2019); Brown et al. (2020); Chowdhery et al. (2022); Zhang et al. (2022); ChatGPT
(2022) have emerged as a cornerstone of contemporary artificial intelligence, exhibiting remarkable
capabilities across a plethora of AI domains. Their prowess is grounded in their ability to comprehend
and generate human language with a level of sophistication that is unprecedented. This has catalyzed
transformative applications in natural language processing, including machine translation He et al.
(2021), content creation ChatGPT (2022); OpenAI (2023), and beyond, underscoring the profound
impact of LLMs on the field of AI.

However, the architectural backbone of these models, particularly those built on the transformer
framework Vaswani et al. (2017), presents a significant challenge: computational efficiency Tay
et al. (2022). The essence of the transformer architecture, the Attention mechanism, necessitates
a computational and memory complexity of O(n2), where n represents the sequence length. This
quadratic dependency limits the scalability of LLMs, especially as we venture into processing longer
sequences or expanding model capacities.

In an effort to mitigate this bottleneck, the AI research community has pivoted towards innovative
solutions, one of which is sparse attention Child et al. (2019); Correia et al. (2019). Sparse attention
mechanisms aim to approximate the results of the full attention computation by selectively focusing
on a subset of the input data points. This is typically achieved by omitting certain interactions in
the Query and Key multiplications within the attention mechanism, thereby inducing sparsity in the
attention matrix. In order to arrive at the goal of preserving the model’s performance while alleviating

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the computational and memory demands, prior works, including pruning KV cache, sparsity-based
fast attention, and sparse transformer modeling, demonstrate outstanding efficiencies with O(n1+o(1))
(sub-quadratic) complexity and sub-linear memory cache with competitive performance compared
with standard attention across various tasks Liu et al. (2023b); Zhang et al. (2024); Kacham et al.
(2023); Addanki et al. (2023); Lee et al. (2024); Xiong et al. (2021); Zandieh et al. (2023); Alman &
Song (2023; 2024b;a); Han et al. (2023).

Despite these advancements, the theoretical underpinnings of sparse attention mechanisms and their
implications on model performance and behavior remain an area of active inquiry. In detail, it’s not
clear when and when not sparse attention can approximate standard attention with a stable error.
Also, the sparsity that attention naturally processes, which we call attention sparsity, lacks a strict
confirmation of its existence and measurement. Especially, we would like to ask:

How Sparse Attention Approximates Exact Attention?

Our Contributions. In this work, we explore the theory of the sparse attention computation problem.
Particularly, we first provide a analysis framework that first theoretically confirms the sparsity appears
in standard attention. In detailed, our analysis describes the relationships between attention sparsity
and input boundary, weights of attention networks and context length. Therefore, we derive several
incremental insights based on this framework.

2 PRELIMINARY

Assumption. In this work, we consider one-layer self-attention computation both in standard form
and sparsity-based approximate form. To begin with, we give the assumption of the input matrix
of attention computation, denoted as X ∈ Rn×d where n is the context length and d stands the
dimension, as follows (refer to Definition C.1 for the formal and detailed version of assumption):

• Independent Entries. For any two entries Xi1,j1 and Xi2,j2 in matrix X , ∀i1, i2 ∈ [n] and
j1, j2 ∈ [d], they are independent.

• Bounded Entries. For failure probability δ ∈ (0, 0.1). With a probability 1− δ, the entry
Xi,j in matrix X , ∀i ∈ [n] and j ∈ [d], we have |Xi,j | ≤ B for some positive constant
B > 0.

Attention Computation. Hence, we are about to introduce the standard attention computation, which
occupies the main time and space complexity O(n2) in LLMs inference. First, we denote the weights
of query, key and value projection as WQ,WK ,WV ∈ Rd×d. Thus, we let query, key and value state
matrices be computed by Q := XWQ,K := XWK , V := XWV ∈ Rn×d. We state the following
definition:
Definition 2.1 (Attention computation). Given Query, Key and Value states matrices Q,K, V ∈
Rn×d. We then define A := exp(QK⊤/

√
d), D := diag(A1n) ∈ Rn×n. The attention computation

Attn(Q,K, V) ∈ Rn×d is given by: Attn(Q,K, V) := D−1AV ∈ Rn×d. Specially, we denote
D−1 = diag(1/(A1n)) ∈ Rn×n.

Attention Sparsity. In Definition 2.1, D−1A ∈ Rn×n represents the attention matrix, indicating how
much the model focuses on each vector. In much of the sparse attention literature, D−1A is assumed
to be sufficiently sparse, allowing sparsity-based efficient attention methods to disregard some zero
entries in order to achieve a balance between accuracy and efficiency. In this paper, we introduce
a threshold, denoted as ϵ, and define attention sparsity as the number of entries in each row of
D−1A ∈ Rn that are smaller than ϵ. Specifically, for a softmax vector u ∈ Rn, if there are at least
n − k entries in u that are not greater than ϵ for all integers k ∈ [n], we say that u is (ϵ, k)-sparse.
Since ϵ is intended to be a very small value, we will simply refer to u as being k-sparse. The formal
definition is provided below:
Definition 2.2 ((ϵ, k)-sparsity). For a vector u ∈ Rn and error ϵ > 0, we define sparse set Sϵ(u)
as: Sϵ(u) := {i ∈ [n] | |ui| ≤ ϵ}. Hence, we say u is at least (ϵ, k)-sparse when it holds that
|Sϵ(u)| ≥ n− k.

Problem Definition I: Estimating ϵ. In practical implementations, establishing a clear relationship
between ϵ and the sparsity k proves to be challenging. Therefore, we first analyze how to estimate a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

boundary for ϵ based on a given sparsity integer k ∈ [n]. Naively, given k, we would like to find a
guaranteed value for ϵ that satisfies |Sϵ(u)| ≥ n− k. Address this problem will enable us to assess
the loss associated with approximating standard attention using sparse attention, ultimately guiding us
in finding the optimal trade-off between ϵ (where lower values yield greater accuracy) and k (where
lower values lead to higher efficiency).

Sparse Attention and Approximation. Here we state an ideal mathematical definition for the sparse
attention in this paper. Initially, we define a set, Tk(u), to filter out the greatest k entries in a vector
u ∈ Rn. The integer k ∈ [1, n] is also called window size in some sparse attention works.
Definition 2.3. For a vector u ∈ Rn, given a sparsity integer k, we denote a top-k set Tk(u) := {i ∈
[n] | Sui

(u) ≥ n− k}, then we define vector topk(u) := [u1 · 11∈Tk(u), · · · , un · 1n∈Tk(u)]
⊤ ∈ Rn.

Note that 1i∈Tk(u) is an indicator where when i ∈ Tk(u), it equals 1, otherwise, 0. We utilize topk(u)
to compute a sparsity-based approximating version of A = exp(QK⊤) in Definition 2.1, we denote
it Aspar. Accordingly, we provide a universal version for all sparsity-based attention as follows:
Definition 2.4 (Sparse attention). Given Query, Key and Value state matrices Q,K, V ∈
Rn×d. We then define A := exp(QK⊤/

√
d) ∈ Rn×n. Especially, we define Aspar :=

[topk(A1,∗), · · · , topk(An,∗)]
⊤, Dspar := diag(Aspar1n) ∈ Rn×n. The sparse attention com-

putation SparseAttn(Q,K, V) ∈ Rn×d is given by:

SparseAttn(Q,K, V) := D−1
sparAsparV ∈ Rn×d

Specially, we denote D−1
spar = diag(1/(Aspar1n)) ∈ Rn×n.

It should be noted that directly accessing top k entries in the attention matrix without any extra
computational cost is overly ideal for efficient LLMs in real-world cases. Prior works usually utilize
some additional approximate algorithm to meet this condition, e.g. Locality-Sensitive Hashing (LSH)
for retrieving larger query-key pairs, but this also brings more approximating errors. We only focus on
the part of approximating attention computation in this study and leave the part of pre-approximating
top-k entries in D−1A as a future direction.

Problem Definition II: Sparse Attention Approximation. The variations of sparse attention,
including pruning KV Cache Liu et al. (2021); Xiao et al. (2023) and sparsity-based attention Kitaev
et al. (2020); Zandieh et al. (2023); Han et al. (2023), focus on solving the approximation of the
attention matrix, where we call it sparse attention approximation. In particular, we emphasize the
importance of stable sparse attention approximation, which directly affects the extensibility of sparse
attention under long context scenes. We denote f : N+ → N+ as the strategy to choose a suitable
window size due to different input lengths. Hence, we give:
Definition 2.5 (Stable sparse attention approximation SSAA(f)). For some strategy f : N+ → N+

to choose the sparsity k = f(n) in sparse attention (Definition 2.4), the problem of stable sparse
attention approximation SSAA(f) is to solve: L(f, n) = ∥D−1

sparAspar − D−1A∥p, where ∥ · ∥p
denotes some norm. We say this sparse attention approximation is stable iff:

• L(f, n) is monotonically decreasing with growing n.

• limn→+∞ L(f, n) = 0.

3 INSIGHTS OVERVIEW

Definition 3.1. Denote W := WQW
⊤
K/

√
d ∈ Rd×d. We define R := B2 · ∥W∥F .

We estimate the lower bound on the requirement for (ϵ, k)-sparse softmax vector, proving the vanilla
attention computation is naturally sparse.
Theorem 3.2. Let R ≥ 0 be defined as Definition 3.1. Given sparsity integer k ≤ n. Denote
T := exp(

√
log(n(n− k)d/δ)). Let Sϵ be defined as Definition 2.2. δ ∈ (0, 0.1). If we choose

ϵ ≥ TO(R)

n , then with a probability at least 1− δ, for all i ∈ [n], we have
∣∣∣Sϵ(D

−1
i,i Ai,∗)

∣∣∣ ≥ n− k.

Proof sketch of Theorem 3.2. The complete proof is provided in Appendix D and Theorem D.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We introduce the concept of attention collapse, which demonstrates the number of effective entries in
attention matrix provably decrease to 1 or some constant inevitably.

Theorem 3.3. Consider a fixed ϵ with a very small value, δ ∈ (0, 0.1). Then with a probability at
least 1− δ, there is:

• Part 1. If R = o(
√
log(n)), then we have limn→+∞ |Sϵ(u)| ≥ n− 1.

• Part 2. If R = O(
√

log(n)), then we have limn→+∞ |Sϵ(u)| ≥ O(1).

Proof sketch of Theorem 3.3. Refer to Theorem D.2 for the detailed proof.

We give the sufficient lower bound on the window size of stable sparse attention approximating exact
attention computation, Ω(nC) for constant C ∈ (0, 1). This further indicates that sparse attention
can recover attention outputs from limited Ω(nC) entries while achieving a decreasing error.

Theorem 3.4. δ ∈ (0, 0.1). For a constant C ∈ (0, 1), we then denote f(n) := Ω(nC), therefore,
with a probability at least 1 − δ, window size strategy k = f(n) is sufficient to solve SSAA(f) in
Definition 2.5.

Proof sketch of Theorem 3.4. Please see Theorem E.1.

Meanwhile, we also confirm sparse attention approximation from o(log(n)) entries is not enough for
stability and extensibility since the lower bound on error will grow with increasing input length.

Theorem 3.5. δ ∈ (0, 0.1). For a constant C ∈ (0, 1), we then denote f(n) := o(log(n)),
therefore, with a probability at least 1− δ, window size strategy k = f(n) cannot solve SSAA(f) in
Definition 2.5.

Proof sketch of Theorem 3.5. Please refer to Theorem E.2 for the formal version and corresponding
detailed proofs.

Therefore, we suggest to use adaptive strategy k = α · nC , α > 0, C ∈ (0, 1) for the window size of
sparse attention rather than the strategy that fixes the window size for any input. The former is proved
more efficient within higher approximation performance. We consider a dataset D := {Xi}Ni=1 with
dataset size N . For all i ∈ [N], we use ni to denote the context length, such that Xi ∈ Rni×d. Hence,
the difference of the computational complexities of fixed Top-k strategy and a dynamic (especially
O(nC)) strategy could be easily obtained in the Claim below.

Claim 3.6. We have:

• Part 1. Choosing the constant window size strategy k = p for some constant integer p > 0.
The computational complexity of a one-layer p-sparse attention to inference D = {Xi}Ni is
Θ(p

∑N
i=1 ni).

• Part 2. Choosing the constant window size strategy k = α ·nC for some constant α,C > 0.
The computational complexity of a one-layer p-sparse attention to inference D = {Xi}Ni is
Θ(α

∑N
i=1 n

1+C
i).

Proof. Recall the computational complexity of Definition 2.4 is O(nk) for input X ∈ Rn×d and k
window size. We then take the summation for each Xi ∈ Rni×d in D := {Xi}Ni to obtain the results
of Part 1 and Part 2.

Proposition 3.7. For any window size strategy k = p for some constant integer p > 0, there exist
a context-length adaptive strategy k = α · nC for some constant α,C > 0 that performs lower
approximating error.

Proof. Following Theorem 3.4 and Theorem 3.5, the conclusion of this proposition can be trivially
proved by plugging suitable choices of α and C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Addanki, R., Li, C., Song, Z., and Yang, C. One pass streaming algorithm for super long token
attention approximation in sublinear space. arXiv preprint arXiv:2311.14652, 2023.

Alman, J. and Song, Z. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2023.

Alman, J. and Song, Z. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Alman, J. and Song, Z. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. In The Twelfth International Conference on Learning Repre-
sentations (ICLR), 2024b. URL https://openreview.net/forum?id=v0zNCwwkaV.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bernstein, S. On a modification of chebyshev’s inequality and of the error formula of laplace. Ann.
Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Brand, J. v. d., Song, Z., and Zhou, T. Algorithm and hardness for dynamic attention maintenance in
large language models. arXiv preprint arXiv:2304.02207, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Cai, H., Lou, Y., Mckenzie, D., and Yin, W. A zeroth-order block coordinate descent algorithm for
huge-scale black-box optimization. arXiv preprint arXiv:2102.10707, 2021.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song, Z., Shrivastava, A., and Re, C. Mongoose:
A learnable lsh framework for efficient neural network training. In International Conference on
Learning Representations, 2020.

Chernoff, H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J., Mohiuddin, A., Kaiser, L., et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Chu, T., Song, Z., and Yang, C. How to protect copyright data in optimization of large language
models? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
17871–17879, 2024.

Correia, G. M., Niculae, V., and Martins, A. F. Adaptively sparse transformers. arXiv preprint
arXiv:1909.00015, 2019.

Deng, Y., Li, Z., Mahadevan, S., and Song, Z. Zero-th order algorithm for softmax attention
optimization. arXiv preprint arXiv:2307.08352, 2023a.

Deng, Y., Mahadevan, S., and Song, Z. Randomized and deterministic attention sparsification
algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397, 2023b.

5

https://openreview.net/forum?id=v0zNCwwkaV
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Deng, Y., Song, Z., Xie, S., and Yang, C. Unmasking transformers: A theoretical approach to data
recovery via attention weights. arXiv preprint arXiv:2310.12462, 2023c.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Foss, S., Korshunov, D., Zachary, S., et al. An introduction to heavy-tailed and subexponential
distributions, volume 6. Springer, 2011.

Gao, Y., Song, Z., Wang, W., and Yin, J. A fast optimization view: Reformulating single layer
attention in llm based on tensor and svm trick, and solving it in matrix multiplication time. arXiv
preprint arXiv:2309.07418, 2023a.

Gao, Y., Song, Z., and Xie, S. In-context learning for attention scheme: from single softmax
regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023b.

Gao, Y., Song, Z., and Yin, J. Gradientcoin: A peer-to-peer decentralized large language models.
arXiv preprint arXiv:2308.10502, 2023c.

Haagerup, U. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231–283,
1981.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff, D. P., and Zandieh, A. Hyperattention:
Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869, 2023.

Hanson, D. L. and Wright, F. T. A bound on tail probabilities for quadratic forms in independent
random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

He, W., Wu, Y., and Li, X. Attention mechanism for neural machine translation: A survey. In 2021
IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), volume 5, pp. 1485–1489. IEEE, 2021.

Hoeffding, W. Probability inequalities for sums of bounded random variables. The collected works of
Wassily Hoeffding, pp. 409–426, 1994.

Kacham, P., Mirrokni, V., and Zhong, P. Polysketchformer: Fast transformers via sketches for
polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Khintchine, A. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

Lample, G., Sablayrolles, A., Ranzato, M., Denoyer, L., and Jégou, H. Large memory layers with
product keys. Advances in Neural Information Processing Systems, 32, 2019.

Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. Annals
of statistics, pp. 1302–1338, 2000.

Lee, S., Lee, H., and Shin, D. Proxyformer: Nyström-based linear transformer with trainable
proxy tokens. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
13418–13426, 2024.

Li, C., Song, Z., Wang, W., and Yang, C. A theoretical insight into attack and defense of gradient
leakage in transformer. arXiv preprint arXiv:2311.13624, 2023a.

Li, Z., Song, Z., and Zhou, T. Solving regularized exp, cosh and sinh regression problems. arXiv
preprint, 2303.15725, 2023b.

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. Sophia: A scalable stochastic second-order optimizer
for language model pre-training. arXiv preprint arXiv:2305.14342, 2023a.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin transformer: Hierar-
chical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 10012–10022, 2021.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z., Shrivastava, A., Zhang, C., Tian, Y., Re, C.,
et al. Deja vu: Contextual sparsity for efficient llms at inference time. In International Conference
on Machine Learning, pp. 22137–22176. PMLR, 2023b.

Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. Faster ridge regression via the subsampled randomized
hadamard transform. Advances in neural information processing systems, 26, 2013.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D., Chen, D., and Arora, S. Fine-tuning
language models with just forward passes. arXiv preprint arXiv:2305.17333, 2023a.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A kernel-based view of language model
fine-tuning. In International Conference on Machine Learning, pp. 23610–23641. PMLR, 2023b.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Panigrahi, A., Saunshi, N., Zhao, H., and Arora, S. Task-specific skill localization in fine-tuned
language models. arXiv preprint arXiv:2302.06600, 2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. Improving language understanding by
generative pre-training. ., 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., D.Manning, C., and Finn, C. Direct preference
optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290,
2023.

Rudelson, M. and Vershynin, R. Hanson-wright inequality and sub-gaussian concentration. 2013.

Song, Z., Wang, W., and Yin, J. A unified scheme of resnet and softmax. arXiv preprint
arXiv:2309.13482, 2023a.

Song, Z., Yin, J., and Zhang, L. Solving attention kernel regression problem via pre-conditioner.
arXiv preprint arXiv:2308.14304, 2023b.

Sun, Z., Yang, Y., and Yoo, S. Sparse attention with learning to hash. In International Conference on
Learning Representations, 2021.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient transformers: A survey. ACM Computing
Surveys, 55(6):1–28, 2022.

Tropp, J. A. Improved analysis of the subsampled randomized hadamard transform. Advances in
Adaptive Data Analysis, 3(01n02):115–126, 2011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Efficient streaming language models with
attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., and Singh, V. Nyströmformer: A
nyström-based algorithm for approximating self-attention. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 14138–14148, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula,
A., Wang, Q., Yang, L., et al. Big bird: Transformers for longer sequences. Advances in neural
information processing systems, 33:17283–17297, 2020.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Zandieh, A., Han, I., Daliri, M., and Karbasi, A. Kdeformer: Accelerating transformers via kernel
density estimation. In International Conference on Machine Learning, pp. 40605–40623. PMLR,
2023.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X., Lin,
X. V., et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R., Song, Z., Tian, Y., Ré, C., Barrett,
C., et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models.
Advances in Neural Information Processing Systems, 36, 2024.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 Preliminary 2

3 Insights Overview 3

A Related Work 10

B Preliminary 10

B.1 Notations . 10

B.2 Basic Fact for Softmax . 11

B.3 Basic Facts for Calculation . 11

B.4 Probability Tools . 11

C Problem Definitions 13

C.1 Input Assumption . 13

C.2 Attention Computation . 13

C.3 ϵ-Approximated k-Sparse Softmax Vector . 13

C.4 Sparse Attention . 13

C.5 Helpful Definitions . 14

D Attention Sparsity 14

D.1 Main Result 1: Attention Sparsity with Upper Bound on Error 14

D.2 Main Result 2: Attention Collapse . 15

D.3 Bounding D−1 . 16

D.4 Concentration on QK⊤ . 17

E Sparse Attention Approximation 18

E.1 Main Result 3: Upper Bound on Error . 18

E.2 Lower Bound on Error . 19

E.3 Approximating Softmax Function . 20

E.4 Helpful Bound Toolkit . 22

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A RELATED WORK

Sparse and Efficient Transformer. In the landscape of attention mechanisms, Vaswani et al.
introduced the transformative transformer model, revolutionizing NLP with its comprehensive self-
attention mechanism Vaswani et al. (2017). Innovations Child et al. (2019); Lample et al. (2019) in
sparse attention presented methods to reduce complexity, maintaining essential contextual information
while improving computational efficiency. The Reformer Kitaev et al. (2020) utilized Locality
Sensitive Hashing to significantly cut down computational demands, enabling the processing of
lengthy sequences. Mongoose Chen et al. (2020) adapted sparsity patterns dynamically, optimizing
computation without losing robustness. Sun et al. (2021) introduced a learning-to-hash strategy
to generate sparse attention patterns, enhancing data-driven efficiency. HyperAttention Han et al.
(2023) refined attention approximation, balancing computational savings with accuracy. Longformer
Beltagy et al. (2020) extended transformer capabilities to longer texts through a mix of global and
local attention mechanisms. The Performe Choromanski et al. (2020) offered a novel approximation
of softmax attention, reducing memory usage for long sequences. Big Bird Zaheer et al. (2020)
combined global, local, and random attention strategies to surmount traditional transformer limitations
regarding sequence length.

Theoretical Approaches to Understanding LLMs. There have been notable advancements in
the field of regression models, particularly with the exploration of diverse activation functions,
aiding in the comprehension and optimization of these models. The study of over-parameterized
neural networks, focusing on exponential and hyperbolic activation functions, has shed light on their
convergence traits and computational benefits Brand et al. (2023); Song et al. (2023a); Gao et al.
(2023c); Deng et al. (2023b); Gao et al. (2023b); Song et al. (2023b); Zandieh et al. (2023); Alman &
Song (2023; 2024b;a); Gao et al. (2023a); Deng et al. (2023c); Li et al. (2023a); Chu et al. (2024).
Enhancements in this area include the addition of regularization components and the innovation
of algorithms like the convergent approximation Newton method to improve performance Li et al.
(2023b). Additionally, employing tensor methods to simplify regression models has facilitated
in-depth analyses concerning Lipschitz constants and time complexity Gao et al. (2023b); Deng et al.
(2023a). Concurrently, there’s a burgeoning interest in optimization algorithms specifically crafted
for LLMs, with block gradient estimators being utilized for vast optimization challenges, significantly
reducing computational load Cai et al. (2021). Novel methods such as Direct Preference Optimization
are revolutionizing the tuning of LLMs by using human preference data, circumventing the need for
traditional reward models Rafailov et al. (2023). Progress in second-order optimizers is also notable,
offering more leniency in convergence proofs by relaxing the usual Lipschitz Hessian assumptions
Liu et al. (2023a). Moreover, a series of studies focus on the intricacies of fine-tuning Malladi et al.
(2023a;b); Panigrahi et al. (2023). These theoretical developments collectively push the boundaries
of our understanding and optimization of LLMs, introducing new solutions to tackle challenges like
the non-strict Hessian Lipschitz conditions.

B PRELIMINARY

B.1 NOTATIONS

In this work, we use the following notations and definitions:

• For integer n, we use [n] to denote the set {1, . . . , n}.

• We use 1n to denote all-1 vector in Rn.

• The ℓp norm of a vector x is denoted as ∥x∥p, for examples, ∥x∥1 :=
∑n

i=1 |xi|, ∥x∥2 :=

(
∑n

i=1 x
2
i)

1/2 and ∥x∥∞ := maxi∈[n] |xi|.

• For a vector x ∈ Rn, exp(x) ∈ Rn denotes a vector where whose i-th entry is exp(xi) for
all i ∈ [n].

• For two vectors x, y ∈ Rn, we denote ⟨x, y⟩ =
∑n

i=1 xiyi for i ∈ [n].

• Given two vectors x, y ∈ Rn, we denote x ◦ y as a vector whose i-th entry is xiyi for all
i ∈ [n].

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

• For a vector x ∈ Rn, diag(x) ∈ Rn×n is defined as a diagonal matrix with its diagonal
entries given by diag(x)i,i = xi for i = 1, ..., n, and all off-diagonal entries are 0.

• We use erf(x) to denote the error function erf(x) = 2√
π

∫ x

0
exp(−t2)dt, and erf−1 is

denoted as the inverse function of erf(x).
• For any matrix A ∈ Rm×n, we use A⊤ to denote its transpose, we use ∥A∥F to

denote the Frobenius norm and ∥A∥∞ to denote its infinity norm, i.e., ∥A∥F :=
(
∑

i∈[m]

∑
j∈[n] A

2
i,j)

1/2 and ∥A∥∞ = maxi∈[m],j∈[n] |Ai,j |.

• For µ, σ ∈ R, we use N (µ, σ2) to denote Gaussian distribution with expectation of µ and
variance of σ2.

• For a mean vector µ ∈ Rd and a covariance matrix Σ ∈ Rd×d, we use N (µ,Σ2) to denote
the vector Gaussian distribution.

• We use E[·] to denote the expectation and Var[·] to denote the variance.

• We use Γ(x) to denote the gamma function where Γ(x) =
∫∞
0

tz−1 exp(−t)dt.

• For an integer k > 0, we use χ2
k to denote the Chi-squared distribution with k degrees of

freedom.
• Usually, we use C ≥ 1 to denote a sufficient large constant.

B.2 BASIC FACT FOR SOFTMAX

Fact B.1. For a vector x ∈ Rd and a scalar b ∈ R, we have:

softmax(x) = softmax(x+ b · 1d)

B.3 BASIC FACTS FOR CALCULATION

Fact B.2. For a, b ≥ 1 and there exist a constant C ≥ 0 such that
√
a+

√
b ≤ C

√
a+ b

Fact B.3. For a sufficient large x ∈ R (x ≥ 55), we have

exp(
√
log(x)) ≤

√
x

B.4 PROBABILITY TOOLS

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in Chernoff (1952) below.
Lemma B.4 (Chernoff bound, Chernoff (1952)). Let X =

∑n
i=1 Xi, where Xi = 1 with probability

pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in Hoeffding (1994).
Lemma B.5 (Hoeffding bound, Hoeffding (1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as Bernstein (1924).
Lemma B.6 (Bernstein inequality, Bernstein (1924)). Let X1, · · · , Xn denote n independent zero-
mean random variables. Suppose |Xi| ≤ M almost surely for all i. Then, for all positive t,

Pr[

n∑
i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Then, we give the Khintchine’s inequality in Khintchine (1923); Haagerup (1981) as follows:

Lemma B.7 (Khintchine’s inequality, Khintchine (1923); Haagerup (1981)). Let σ1, · · · , σn be i.i.d
sign random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that
for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2)

We give Hason-wright inequality from Hanson & Wright (1971); Rudelson & Vershynin (2013)
below.

Lemma B.8 (Hason-wright inequality, Hanson & Wright (1971); Rudelson & Vershynin (2013)).
Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A
be an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)})

We state Lemma 1 on page 1325 of Laurent and Massart Laurent & Massart (2000).

Lemma B.9 (Lemma 1 on page 1325 of Laurent and Massart, Laurent & Massart (2000)). Let
X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t)

Here, we provide a tail bound for sub-exponential distribution Foss et al. (2011).

Lemma B.10 (Tail bound for sub-exponential distribution, Foss et al. (2011)). We say X ∈ SE(σ2, α)
with parameters σ > 0, α > 0, if

E[eλX] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α})

In the following, we show the helpful lemma of matrix Chernoff bound as in Tropp (2011); Lu et al.
(2013).

Lemma B.11 (Matrix Chernoff bound, Tropp (2011); Lu et al. (2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax

as follows:

µmin := n · λmin(E
X∈X

(X))

µmax := n · λmax(E
X∈X

(X)).

Then

Pr[λmin(

n∑
i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑
i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C PROBLEM DEFINITIONS

C.1 INPUT ASSUMPTION

Definition C.1. We consider for any input matrix to an attention network X ∈ Rn×d where integer
n denotes the input length and d denotes the dimension. We assume:

• Independent Entries. For any two entries Xi1,j1 and Xi2,j2 in matrix X , ∀i1, i2 ∈ [n] and
j1, j2 ∈ [d], they are independent.

• Bounded Entries. For failure probability δ ∈ (0, 0.1). With a probability 1− δ, the entry
Xi,j in matrix X , ∀i ∈ [n] and j ∈ [d], we have |Xi,j | ≤ B for some positive constant
B > 0.

C.2 ATTENTION COMPUTATION

Definition C.2 (Attention computation). If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XWQ,K := XWK , V := XWV ∈
Rn×d.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• D := diag(A1n) ∈ Rn×n.

Then we have attention computation Attn(Q,K, V) ∈ Rn×d as follows:

Attn(Q,K, V) := D−1AV

C.3 ϵ-APPROXIMATED k-SPARSE SOFTMAX VECTOR

In order to describe the sparsity of the softmax, we define the following notation.
Definition C.3. For a vector u ∈ Rn and ϵ ≥ 0, we define sparse set Sϵ(u) as follows:

Sϵ(u) :=
{
i ∈ [n]

∣∣∣ |ui| ≤ ϵ
}

Definition C.4 ((ϵ, k)-sparsity). For a vector u ∈ Rn, we say u is (ϵ, k)-sparse if for a constant
ϵ ∈ (0, 1), it holds that

|Sϵ(u)| ≥ n− k.

C.4 SPARSE ATTENTION

Definition C.5. For a vector u ∈ Rn. Given a sparsity integer k. Let Sϵ be defined as Definition C.3
for some error ϵ > 0. We define the top-k set Tk(u) := {i ∈ [n] | Sui

(u) ≥ n− k}.
Definition C.6. If the following conditions hold:

• For a vector u ∈ Rn.

• Given a sparsity integer k.

• Let Sϵ be defined as Definition C.3 for some error ϵ > 0.

• Denote a top-k set Tk(u) := {i ∈ [n] | Sui
(u) ≥ n− k} as Definition C.5.

Then we define

topk(u) := [ui · 1i∈Tk(u)]i∈[n] ∈ Rn

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We define the sparse attention computation as follows:
Definition C.7. If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XZWQ,K := XWK , V := XWV ∈
Rn×d.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• Let topk be defined as Definition C.6.

• Define Aspar := [topk(A1), topk(A2), · · · , topk(An)]
⊤ ∈ Rn×n.

• Dspar := diag(Aspar1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

The sparse attention computation SparseAttn(Q,K, V) ∈ Rn×d is given by:

SparseAttn(Q,K, V) := D−1
sparAsparV ∈ Rn×d

C.5 HELPFUL DEFINITIONS

We introduce the following algebraic lemmas to be used later.
Definition C.8. Let Query and Key projection matrices WQ,WK ∈ Rd×d be defined as Definition C.2.
We define

W := WQW
⊤
K/

√
d.

Definition C.9. If the following conditions hold:

• Let W ∈ Rd×d be define as Definition C.8.

Then for any i ∈ [n], we define:

R := B2∥W∥F .

D ATTENTION SPARSITY

D.1 MAIN RESULT 1: ATTENTION SPARSITY WITH UPPER BOUND ON ERROR

Theorem D.1. If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XWQ,K := XWK , V := XWV ∈
Rn×d.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• D := diag(A1n) ∈ Rn×n.

• Denote βi := Bdmaxj1∈[d] |E[
∑d

j2=1 Wj1,j2 ·Xi,j2]|.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Define Γ := [β1 · 1n, β2 · 1n, · · · , βn · 1n]
⊤ ∈ Rn×n

• Ã := exp(QK⊤/
√
d+ Γ) ∈ Rn×n.

• D̃ := diag(Ã1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

• Given sparsity integer k ≤ n.

• Denote T := exp(
√
log(n(n− k)d/δ)).

• Let Sϵ be defined as Definition C.3.

If we choose ϵ ≥ TO(R)

n), then with a probability at least 1− δ, we have∣∣∣Sϵ(D
−1
i1,i1

Ai1)
∣∣∣ = ∣∣∣Sϵ(D̃

−1
i1,i1

Ãi1)
∣∣∣ ≥ n− k

Proof. Remark. We re-denote Sϵ = Sϵ(D
−1
i1,i1

Ai1,∗) in the statement, and i2 ∈ Sϵ.

Following Part 1 of Lemma D.3, with a probability at least 1− δ1, we have

Ãi1,i2 ≤ exp(O(R) ·
√

log((n− k)d/δ1)) (1)

Following Part 3 of Lemma D.3, with a probability at least 1− δ2, we have

D̃−1
i1,i1

≤ exp(O(R) ·
√
log(nd/δ2))/n (2)

Now we combine Eq. (1) and Eq. (2), with a probability at least 1− δ1 − δ2, we have

D−1
i1,i1

Ai1,i2 = D̃−1
i1,i1

Ãi1,i2

≤ exp(O(R) ·
√
log((n− k)d/δ1) +O(R) ·

√
log(nd/δ2))/n

≤ exp(O(R) ·
√

log((n− k)d/δ1) + log(nd/δ2))/n

≤ exp(O(R) ·
√
log(n(n− k)d2/(δ1δ2)))/n

≤ exp(O(R) ·
√

log(n(n− k)d/δ))/n

≤ exp(
√
log(n(n− k)/δ))O(R)/n

≤ TO(R) · n−1

where the first step follows from Fact B.1, the second step follows from Eq. (1) and Eq. (2), the third
step follows from Fact B.2, the fourth step follows from simple algebras, the fifth step follows from
choosing δ1 = δ2 = δ/2, the sixth step follows from simple algebras, the last step follows from the
definition of T .

D.2 MAIN RESULT 2: ATTENTION COLLAPSE

Theorem D.2. If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XWQ,K := XWK , V := XWV ∈
Rn×d.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• D := diag(A1n) ∈ Rn×n.

• Denote βi := Bdmaxj1∈[d] |E[
∑d

j2=1 Wj1,j2 ·Xi,j2]|.

• Define Γ := [β1 · 1n, β2 · 1n, · · · , βn · 1n]
⊤ ∈ Rn×n

• Ã := exp(QK⊤/
√
d+ Γ) ∈ Rn×n.

• D̃ := diag(Ã1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

• Assuming R = o(
√

log(n)).

• Given sparsity integer k ≤ n.

• Denote T := exp(
√
log(n(n− k)d/δ)).

• Let Sϵ be defined as Definition C.3.

For any ϵ > 0, with probability at least 1− δ, we have:

lim
n→+∞

|Sϵ(D
−1
i,i Ai)| = n− 1

Proof. In order to choose k that meets the ϵ-approximated sparsity, we have:

ϵ ≥ exp
(
O(R) ·

√
log(n · (n− k)d/δ)

)
where this step follows from Theorem D.1.

We obtain:

k ≤ n− exp
(
O(

log2(ϵ · n)
R2

)
)
· δ

nd
(3)

Hence, we have:

lim
n→+∞

|Sϵ(D
−1
i,i Ai)| ≥ lim

n→+∞
(n− k)

≥ lim
n→+∞

exp
(
O(

log2(ϵ · n)
R2

)
)
· δ

nd

= n− 1

where the first step follows from Definition C.3, the second step follows from Eq.(3), the last step
follows from R = o(

√
log(n)) and ⟨D−1

i,i Ai,1n⟩ = 1, then

max |Sϵ(D
−1
i,i Ai)| = n− 1.

D.3 BOUNDING D−1

Lemma D.3. If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XWQ,K := XWK , V := XWV ∈
Rn×d.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Denote βi := Bdmaxj1∈[d] |E[
∑d

j2=1 Wj1,j2 ·Xi,j2]|.

• Define Γ := [β1 · 1n, β2 · 1n, · · · , βn · 1n]
⊤ ∈ Rn×n

• Ã := exp(QK⊤/
√
d+ Γ) ∈ Rn×n.

• D̃ := diag(Ã1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

Then with a probability at least 1− δ, we have

• Part 1. For i1, i2 ∈ [n]

exp(−O(R) ·
√
log(d/δ)) ≤ Ãi1,i2 ≤ exp(O(R) ·

√
log(d/δ))

• Part 2. For i1 ∈ [n]

n · exp(−O(R) ·
√
log(nd/δ)) ≤ D̃i1,i1 ≤ n · exp(O(R) ·

√
log(nd/δ))

• Part 2. For i1 ∈ [n]

D̃−1
i1,i1

≤ exp(O(R) ·
√

log(nd/δ))/n

Proof. Proof of Part 1. We have

|Ãi1,i2 | = exp((QK⊤)i1,i2)

≤ exp(O(R) ·
√

log(d/δ))

where the first step follows from the definition of A, the second step follows from Lemma D.4.

Proof of Part 2. This proof follows from the union bound of Part 1 of this Lemma and the Definition
of D.

Proof of Part 3. This proof follows from the lower bound on Di1,i1 and simple algebras.

D.4 CONCENTRATION ON QK⊤

Lemma D.4. If the following conditions hold:

• Let WQ,WK ,WV ∈ Rd×d be denoted as Query, Key and Value projection matrices of
attention.

• Given an input X ∈ Rn×d that holds properties in Definition C.1.

• Define Query, Key and Value states matrices Q := XWQ,K := XWK , V := XWV ∈
Rn×d.

• Let W ∈ Rd×d be define as Definition C.8.

• Denote C ≥ 1 as a sufficient large constant.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

• For i1, i2 ∈ [n]

Then with a probability at least 1− δ, we have

|(QK⊤)i1,i2 | ≤ O(R) ·
√
log(d/δ) + βi2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. We have:

|(QK⊤)i1,i2 | = |(XWQW
⊤
KX⊤/

√
d)i1,i2 |

= |(XWX⊤)i1,i2 |
= |X⊤

i1WXi2 |

= |
d∑

j1=1

d∑
j2=1

Wj1,j2 ·Xi1,j1Xi2,j2 |

≤ B|
d∑

j1=1

d∑
j2=1

Wj1,j2 ·Xi2,j2 |

where the first step follows from Q := XWQ,K := XWK , the second step follows from Def-
inition C.9, the third and fourth steps follow from simple algebras, the fifth step follows from
Definition C.1.

We then apply Hoeffding inequality (Lemma B.5) to each Wj1,j2 ·Xi2,j2 . Hence, with a probability
at least 1− δ, we have:

|
d∑

j2=1

Wj1,j2 ·Xi2,j2 − E[
d∑

j2=1

Wj1,j2 ·Xi2,j2]| ≤ O(B) · ∥Wj1∥2 ·
√
log(d/δ)

since |Xi2,j2 | ≤ B for any j2 ∈ [d].

By triangle inequality, we have:

|
d∑

j2=1

Wj1,j2 ·Xi2,j2 | ≤ O(B) · ∥Wj1∥2 ·
√

log(d/δ) + |E[
d∑

j2=1

Wj1,j2 ·Xi2,j2]| (4)

We obtain:

B|
d∑

j1=1

d∑
j2=1

Wj1,j2 ·Xi2,j2 | ≤ O(B2) · ∥W∥F ·
√

log(d/δ) +Bd max
j1∈[d]

|E[
d∑

j2=1

Wj1,j2 ·Xi2,j2]|

= O(R) ·
√

log(d/δ) + βi2

where the first step follows from Eq 4 and Fact B.2 (∥W∥F =
∑d

j1=1 ∥Wj1∥22), the second step
follows from Definition C.9 and define

βi2 := Bd max
j1∈[d]

|E[
d∑

j2=1

Wj1,j2 ·Xi2,j2]|

Remark D.5. The formal results of Lemma D.4 in the appendix have slight differences with the
informal forms, in which we omit the additional terms of each upper bound since such terms are
trivially some constants. Fact B.1 shows any constant bias term added before the softmax function
will not change the output. We thus simplify the equations for tighter boundaries and more convenient
notation.

E SPARSE ATTENTION APPROXIMATION

E.1 MAIN RESULT 3: UPPER BOUND ON ERROR

Theorem E.1. If the following conditions hold:

• Let Query, Key and Value states matrices Q,K, V ∈ Rn×d be defined as Definition C.2.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• D := diag(A1n) ∈ Rn×n

• Let Tk be defined as Definition C.5.

• Let topk be defined as Definition C.6.

• Let Sϵ be defined as Definition C.3, we omit Sϵ(D
−1
i,i Ai,∗) for i ∈ [n] to Sϵ,i.

• Define Aspar := [topk(A1,∗) topk(A2,∗) · · · topk(An,∗)]
⊤.

• Dspar := diag(Aspar1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R be defined as Definition C.9.

Then with a probability at least 1− δ, we have

• Part 1. Choosing k = Ω(nC) for C ∈ (0, 1), we have Cerror ∈ (0, C):

∥D−1
sparAsparV −D−1AV ∥∞ ≤ o(n−Cerror)

• Part 2. Choosing k = o(log(n)) for C ∈ (0, 1), we have Cerror ∈ (0, C):

∥D−1
sparAsparV −D−1AV ∥∞ ≤ Ω(nCerror)

Proof. We have

∥D−1
sparAspar −D−1A∥∞ = ∥D−1

sparAspar −D−1Aspar +D−1Aspar −D−1A∥∞
≤ ∥D−1

sparAspar −D−1Aspar∥∞ + ∥D−1Aspar −D−1A∥∞

≤ (
n− k

nk
+

1

n
) · exp(O(R) ·

√
log(nd/δ))

≤ 1

k
· exp(O(R) ·

√
log(nd/δ)) (5)

where the first step follows from simple algebras, the second step follows from triangle inequality, the
third step follows from Part 1 and Part 4 of Lemma E.3, the fourth step follows from simple algebras.

Part 1. Choosing k = Ω(nC) for C ∈ (0, 1), we have:

∥D−1
sparAspar −D−1A∥∞ ≤ 1

k
· exp(O(R) ·

√
log(nd/δ))

≤ o(n−Cerror)

where the first step follows from Eq. (5), the second step follows from 0 < Cerror < C.

Part 2. Choosing k = o(log(n)) for C ∈ (0, 1), we have:

∥D−1
sparAspar −D−1A∥∞ ≤ 1

k
· exp(O(R) ·

√
log(nd/δ))

≤ Ω(nCerror)

where the first step follows from Eq. (5), the second step follows from 0 < Cerror.

E.2 LOWER BOUND ON ERROR

Theorem E.2. If the following conditions hold:

• Let Query, Key and Value states matrices Q,K, V ∈ Rn×d be defined as Definition C.2.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• D := diag(A1n) ∈ Rn×n

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Let Tk be defined as Definition C.5.

• Let topk be defined as Definition C.6.

• Let Sϵ be defined as Definition C.3, we omit Sϵ(D
−1
i,i Ai,∗) for i ∈ [n] to Sϵ,i.

• Define Aspar := [topk(A1,∗) topk(A2,∗) · · · topk(An,∗)]
⊤.

• Dspar := diag(Aspar1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R be defined as Definition C.9.

• Choosing k = o(log(n))

Then with a probability at least 1− δ, we have

∥D−1
sparAspar −D−1A∥F ≥ O(1)

Proof. We have:

∥D−1
sparAspar −D−1A∥2F =

n∑
i1=1

n∑
i2=1

(D−1
spar,i1,i1

Aspar,i1,i2 −D−1
i1,i1

Ai1,i2)
2

≥
n∑

i1=1

∑
i2∈Tk

(
1

k
exp(−O(R) ·

√
log(

nd

δ
))− 1

n
exp(O(R) ·

√
log(

nd

δ
)))2

+

n∑
i1=1

∑
i2∈[n]/Tk

(
1

n
exp(−O(R) ·

√
log(

nd

δ
)))2

≥
n∑

i1=1

∑
i2∈Tk

(O(
1√

n · o(log(n))
))2

≥ O(1)

where the first step follows from the definition of Frobenius norm ℓF , the second step follows from
plugging k = o(

√
log(n)) and we have:

d

dn

(1
k
exp(−O(R) ·

√
log(

nd

δ
))− 1

n
exp(O(R) ·

√
log(

nd

δ
))
)
≥ d

dn

1√
n · o(log(n))

,

and the last step follows from simple algebras.

E.3 APPROXIMATING SOFTMAX FUNCTION

Lemma E.3. If the following conditions hold:

• Let Query, Key and Value states matrices Q,K, V ∈ Rn×d be defined as Definition C.2.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• D := diag(A1n) ∈ Rn×n

• Let Tk be defined as Definition C.5.

• Let topk be defined as Definition C.6.

• Let Sϵ be defined as Definition C.3, we omit Sϵ(D
−1
i,i Ai,∗) for i ∈ [n] to Sϵ,i.

• Define Aspar := [topk(A1,∗) topk(A2,∗) · · · topk(An,∗)]
⊤.

• Dspar := diag(Aspar1n) ∈ Rn×n.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

Then with a probability at least 1− δ, we have

• Part 1.

∥D−1Aspar −D−1A∥∞ ≤ 1

n
· exp(O(R) ·

√
log(nd/δ))

• Part 2.

∥Dspar −D∥∞ ≤ (n− k) · exp(O(R) ·
√
log(nd/δ))

• Part 3.

∥D−1
spar −D−1∥∞ ≤ n− k

nk
· exp(O(R) ·

√
log(nd/δ))

• Part 4.

∥D−1
sparAspar −D−1Aspar∥∞ ≤ n− k

nk
· exp(O(R) ·

√
log(nd/δ))

Proof. Before we begin the proof, we construct a toolkit as follows:

For x1 ≤ exp(
√
log(a/δ1)) and x2 ≤ exp(

√
log(a/δ2)), we have

x1x2 ≤ exp(
√
log(a/δ1)) · exp(

√
log(b/δ2))

≤ exp(
√
log(a/δ1) +

√
log(b/δ2))

≤ exp(C
√
log(a/δ1) + log(b/δ2))

≤ exp(C
√
log(ab/δ)) (6)

where these steps follow from simple algebras, Fact B.3 and choose δ1 = δ2 = δ/2.

Proof of Part 1. This proof follows from Theorem D.1 and n− k ≤ n.

Proof of Part 2. We have

∥Dspar −D∥∞ = ∥Aspar1n −A1n∥∞
= ∥D ◦ (D−1Aspar1n −D−1A1n)∥∞
≤ ∥D∥∞ · ∥D−1Aspar1n −D−1A1n∥∞

≤ ∥D∥∞ · n− k

n
· exp(O(R) ·

√
log(nd/δ))

≤ (n− k) · exp(O(R) ·
√

log(nd/δ)) · exp(O(R) ·
√
log(nd/δ))

≤ (n− k) · exp(O(R) ·
√

log(nd/δ))

where the first step follows from the definitions of Dspar and D, the second step follows from simple
algebras, the third step follows from Cauchy-Schwarz inequality, the fourth step follows from Part 1
of this Lemma and the definition of Aspar, the fifth step follows from Part 4 of Lemma E.4, the sixth
step follows from Eq. (6).

Proof of Part 3. We have

∥D−1
spar −D−1∥∞ = ∥D−1

spar∥∞ · ∥D−1∥∞ · ∥Dspar −D∥∞
≤ ∥D−1

spar∥∞ · ∥D−1∥∞ · (n− k) · exp(O(R) ·
√

log(nd/δ))

≤ n− k

nk
· exp(O(R) ·

√
log(nd/δ)) · exp(O(R) ·

√
log(nd/δ))

≤ n− k

nk
· exp(O(R) ·

√
log(nd/δ))

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where the first step follows from simple algebras, the second step follows from Part 2 of this Lemma,
the third step follows from Part 5 and Part 6 of Lemma E.4, the last step follows from Eq. (6).

Proof of Part 4. This proof follows from combining Part 2 of Lemma E.4 and Part 3 of this
Lemma.

E.4 HELPFUL BOUND TOOLKIT

Lemma E.4. If the following conditions hold:

• Let Query, Key and Value states matrices Q,K, V ∈ Rn×d be defined as Definition C.2.

• A := exp(QK⊤/
√
d) ∈ Rn×n.

• D := diag(A1n) ∈ Rn×n

• Let Tk be defined as Definition C.5.

• Let topk be defined as Definition C.6.

• Let Sϵ be defined as Definition C.3, we omit Sϵ(D
−1
i,i Ai,∗) for i ∈ [n] to Sϵ,i.

• Define Aspar := [topk(A1,∗) topk(A2,∗) · · · topk(An,∗)]
⊤.

• Dspar := diag(Aspar1n) ∈ Rn×n.

• δ ∈ (0, 0.1).

• Let R ≥ 0 be defined as Definition C.9.

Then with a probability at least 1− δ, we have

• Part 1. exp(−O(R) ·
√

log(n−k
δ d)) ≤ Ai1,i2 ≤ exp(O(R) ·

√
log(n−k

δ d)), ∀i1 ∈ [n], i2 ∈
Sϵ

• Part 2. exp(−O(R) ·
√

log(nδ d)) ≤ Ai1,i2 ≤ exp(O(R) ·
√

log(nδ d)), ∀i1, i2 ∈ [n]

• Part 3. k exp(−O(R)·
√
log(nδ d)) ≤

∑
i2∈Tk

Ai1,i2 ≤ k exp(O(R)·
√
log(nδ d)), ∀i1 ∈ [n]

• Part 4. n exp(−O(R) ·
√
log(nδ d)) ≤ Di1,i1 ≤ n exp(O(R) ·

√
log(nδ d)), ∀i1 ∈ [n]

• Part 5. 1
k exp(−O(R) ·

√
log(nδ d)) ≤

(∑
i2∈Tk

Ai1,i2

)−1

≤ 1
k exp(O(R) ·

√
log(nδ d)),

∀i1 ∈ [n]

• Part 6. 1
n exp(−O(R) ·

√
log(nδ d)) ≤ D−1

i1,i1
≤ 1

n exp(O(R) ·
√

log(nδ d)), ∀i1 ∈ [n]

Proof. Proof of Part 1.

This proof follows from Eq. (1).

Proof of Part 2.

This proof follows from Part 1 and Part 2 of Lemma D.3.

Proof of Part 3.

This proof follows from Part 1 of this Lemma.

Proof of Part 4.

This proof follows from Part 2 of Lemma D.3.

Proof of Part 5.

This proof follows from Part 3 of this Lemma.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof of Part 6. This proof follows from Part 4 of this Lemma.

23

	Introduction
	Preliminary
	Insights Overview
	Related Work
	Preliminary
	Notations
	Basic Fact for Softmax
	Basic Facts for Calculation
	Probability Tools

	Problem Definitions
	Input Assumption
	Attention Computation
	-Approximated -Sparse Softmax Vector
	Sparse Attention
	Helpful Definitions

	Attention Sparsity
	Main Result 1: Attention Sparsity with Upper Bound on Error
	Main Result 2: Attention Collapse
	Bounding
	Concentration on

	Sparse Attention Approximation
	Main Result 3: Upper Bound on Error
	Lower Bound on Error
	Approximating Softmax Function
	Helpful Bound Toolkit

