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ABSTRACT

In view of the widespread use of Gaussian processes (GPs) in machine learn-
ing models, generating random sample paths of GPs is crucial for many machine
learning applications. Sampling from a GP essentially requires generating high-
dimensional Gaussian random vectors, which is computationally challenging if a
direct method, such as the one based on Cholesky decomposition, is implemented.
We develop a scalable algorithm to sample random realizations of the prior and
the posterior of GP models with Matérn correlation functions. Unlike existing
scalable sampling algorithms, the proposed approach draws samples from the the-
oretical distributions exactly. The algorithm exploits a novel structure called the
kernel packets (KP), which gives an exact sparse representation of the dense co-
variance matrices. The proposed method is applicable for one-dimensional GPs,
and multi-dimensional GPs under some conditions such as separable kernels with
full grid designs. Via a series of experiments and comparisons with other recent
works, we demonstrate the efficiency and accuracy of the proposed method.

1 INTRODUCTION

Gaussian processes (GPs) have been widely used in statistical and machine learning applications
(Rasmussen, 2003; Cressie, 2015; Santner et al., 2003). The relevant areas and topics include re-
gression (O’Hagan, 1978; Bishop et al., 1995; Rasmussen, 2003; MacKay et al., 2003), classification
(Kuss et al., 2005; Nickisch & Rasmussen, 2008; Hensman et al., 2015), Bayesian networks (Neal,
2012), optimization (Srinivas et al., 2009), and so on. GP modeling proceeds by imposing a GP as
the prior of an underlying continuous function, which provides a flexible nonparametric framework
for prediction and inference problems. When the sample size is large, the basic framework for GP
regression suffers from the computational challenge of inverting large covariance matrices. A lot
of work has been done to address this issue. Recent advances in scalable GP regression include
Nyström approximation (Quinonero-Candela & Rasmussen, 2005; Titsias, 2009; Hensman et al.,
2013), random Fourier features (Rahimi & Recht, 2007), local approximation (Gramacy & Apley,
2015), structured kernel interpolation (Wilson & Nickisch, 2015), state-space formulation (Grig-
orievskiy et al., 2017; Nickisch et al., 2018), Vecchia approximation (Katzfuss & Guinness, 2021),
sparse representation (Chen et al., 2022; Ding et al., 2021), etc.

In this article, we focus on the sampling of random GP realizations. Such GPs can be either the
prior stochastic processes, or the posterior processes in GP regression. Generating random sample
paths of the GP prior or the posterior of the GP regression is crucial in machine learning areas
such as Bayesian Optimization (Snoek et al., 2012; Frazier, 2018a;b), reinforcement learning (Kuss
& Rasmussen, 2003; Engel et al., 2005; Grande et al., 2014), and inverse problems in uncertainty
quantification (Murray-Smith & Pearlmutter, 2004; Marzouk & Najm, 2009; Teckentrup, 2020).

To generate the function of a random GP sample, a common practice is to discretize the input space,
and the problem becomes the sampling of a high-dimensional multivariate normal vector. Sampling
high-dimensional multivariate normal vectors, however, is computationally challenging as well, as
we need to factorize the large covariance matrices. Despite the vast literature of the scalable GP
regression, the sampling methodologies are still underdeveloped.

Existing scalable sampling algorithms for GPs are scarce. A recent prominent work is done by
Wilson et al. (2020). They proposed an efficient sampling approach called decoupled sampling
by exploiting Matheron’s rule and combining Nyström approximation and random Fourier feature.
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They also generalized it to pathwise conditioning (Wilson et al., 2021) based on Matheron’s update,
which only needs the sampling from GP priors and is a powerful tool for both reasoning about and
working with GPs. Motivated by those work, Maddox et al. (2021) extended Matheron’s rule for
multi-task GPs and applied it to Bayesian optimization; Nguyen et al. (2021) proposed the first use
of such bounds to improve Gaussian process posterior sampling. It is worth noting that each of the
above methods enforces a certain approximation scheme to facilitate rapid computation, i.e., none
of these methods draws random samples from the theoretical Gaussian distributions exactly.

In this paper, we propose algorithms of sampling from GP priors and GP regression posteriors ex-
actly for one-dimension Matérn kernel with half integer smoothness ν, then we extend it to noiseless
data in multi-dimension. We introduce the kernel packet (KP) (Chen et al., 2022) as a major tool for
sampling and reduce the time complexity toO(ν3n). This produces a linear-time exact sampler if ν
is not too large. Specifically, our work makes the following contributions:

• We propose an exact sampling method for Gaussian processes with (product) Matérn cor-
relations on one-dimensional or multi-dimensional grid points. The computational time
grows linearly in the size of the grid points.

• We propose an exact and scalable sampler for the posterior Gaussian processes based on
one-dimensional data or multi-dimensional data on full grid designs.

• We demonstrate the value of the proposed algorithm in the Bayesian optimization and dy-
namical system problems.

2 BACKGROUND

This section covers the related background of the proposed method. Sections 2.1 and 2.2 introduce
GPs, GP regression, and the basic method of GP sampling. In section 2.3, we review a newly
introduced covariance matrix representation called the Kernel Packet (KP) (Chen et al., 2022), which
will help expedite the GP sampling.

2.1 GPS AND GP REGRESSION

A GP is a stochastic process whose finite-dimensional distributions are multivariate normal. The
probability law of a GP is uniquely determined by its mean function µ(·) and covariance function
K(·, ·), and we denote this GP as GP(µ(·),K(·, ·)).
Let f : X → R be an unknown function, X ⊆ Rd. Suppose the training set consists of n Gaussian
observations yi = f(xi) + ϵi with noise ϵi ∼ N (0, σ2

ϵ ). In GP regression, we impose the prior
f ∼ GP(µ(·),K(·, ·)).

Suppose that we have observed y =
(
y1, · · · , yn

)T
on n distinct points X = {xi}ni=1. The posterior

of f given the data is also a GP. Specifically, the posterior evaluation at m untried inputs X∗ =
{x∗

i }mi=1 follows f∗|y ∼ N (µ∗|n,K∗,∗|n) with (Williams & Rasmussen, 2006):

µ∗|n = µ∗ +K∗,n
[
Kn,n +

σ2
ϵ

σ2
In
]−1

(y − µn) , (1)

K∗,∗|n = σ2
(
K∗,∗ −K∗,n

[
Kn,n +

σ2
ϵ

σ2
In
]−1

Kn,∗

)
, (2)

where σ2 > 0 is the variance of GP, In is a n × n identity matrix, K∗,n = K(x∗,X) =(
K(X,x∗)

)T
= KT

n,∗ =
(
K(x∗,x1), · · · ,K(x∗,xn)

)
, Kn,n =

[
K(xi,xs)

]n
i,s=1

, K∗,∗ =[
K(x∗

i ,x
∗
s)
]m
i,s=1

, µn =
(
µ(x1), · · · , µ(xn)

)T
and µ∗ =

(
µ(x∗

1), · · · , µ(x∗
m)
)T

.

In this work, we focus on Matérn correlation functions. One-dimensional Matérn correlation func-
tions (Stein, 1999) are defined as

K(x, x′) =
21−ν

Γ(ν)

(√
2ν
|x− x′|

ω

)ν

Kν

(√
2ν
|x− x′|

ω

)
, (3)

for any x, x′ ∈ R, where σ2 > 0 is the variance, ν > 0 is the smoothness parameter, ω > 0 is the
lengthscale and Kν is the modified Bessel function of the second kind. GPs with Matérn correlations
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form a rich family with finite smoothness; their sample paths are ⌈ν−1⌉ times differentiable (Santner
et al., 2003). By virtue of its flexibility, Matérn family is deemed a popular choice of correlation
functions in spatial statistics (Diggle et al., 2003), geostatistics (Curriero, 2006; Pardo-Iguzquiza &
Chica-Olmo, 2008), image analysis (Zafari et al., 2020; Okhrin et al., 2020), and other applications.

A common choice of multi-dimensional correlation structure is the “separable” or “product” corre-
lations given by

K(x,x′) =

d∏
j=1

Kj(xj , x
′
j), (4)

for any x,x′ ∈ Rd where Kj is the one-dimensional Matérn correlation function for each j.
Although the product of Matérn correlations doesn’t have the same smoothness properties with
multi-dimensional Matérn correlations, the assumption of separability is used extensively in spatio-
temporal statistics (Gneiting et al., 2006; Genton, 2007; Constantinou et al., 2017) because it allows
for a simple construction of valid space-time parametric models and facilitates the computational
procedures for large datasets in inference and parameter estimation.

2.2 SAMPLING

The goal is to sample f(·) ∼ GP(µ(·),K(·, ·)). To achieve a finite representation, we discretize
the input space and consider the function values over a set of grid points Z = {zi}pi=1, and the
objective is to generate samples fp =

(
f(z1), · · · , f(zp)

)T
from multivariate normal distribution

N (µ(Z),K(Z,Z)) = N (µp,Kp,p). The standard sampling method of a multivariate normal dis-
tribution is as follows: 1) generate a vector of samples fp,0 whose entries are independent and
identically distributed normal, 2) employ the Cholesky decomposition (Golub & Van Loan, 2013)
to factorize the covariance matrix Kp,p as CpC

T
p = Kp,p, 3) generate the output sample fp as

fp ← Cpfp,0 + µp. (5)

Sampling a posterior GP can be done in a similar manner. Suppose we have observations y =(
y1, · · · , yn

)T
on n distinct points X = {xi}ni=1, where yi = f(xi) + ϵi with noise ϵi ∼ N (0, σ2

ϵ )
and f ∼ GP(µ(·),K(·, ·)). The goal is to generate posterior samples f∗|y at m test points X∗ =
{x∗

i }mi=1. Because the posterior samples f∗|y ∼ N (µ∗|n,K∗,∗|n) are also multivariate normal
distributed according to (1) and (2) in Section 2.1, we can do Cholesky decomposition C∗|nC

T
∗|n =

K∗,∗|n, and generate GP posterior sample as

f∗|y← C∗|nfn,0 + µ∗|n, (6)

where fn,0 ∼ N (0, In).

2.3 KERNEL PACKETS

In this section, we review the theory and methods of kernel packets by Chen et al. (2022). Suppose
K(·, ·) is a one-dimensional Matérn kernel defined in (3), and one-dimensional input points X is
ordered and distinct. Let K = span{K(·, xj)}nj=1. Then there exists a collection of linearly inde-

pendent functions {ϕi}ni=1 ⊂ K, such that each ϕi =
∑n

j=1 A
(i)
j K(x, xj) has a compact support.

Then covariance matrix Kn,n = K(X,X) is connected to a sparse matrix ϕ(X) in the following
way:

Kn,nAX = ϕ(X), (7)

where both AX and ϕ(X) are banded matrices, the (l, i)th entry of ϕ(X) is ϕi(xl). The matrix
AX consists of the coefficients to construct the KPs, and specifically, A(i)

j is the (j, i)th entry of
AX. In view of the sparse representation and the compact supportedness of ϕj , the bandwidth of
AX is (k− 1)/2, the bandwidth of ϕ(X) is (k− 3)/2, k := 2ν + 2, ν is the smoothness parameter
in (3). We defer the detailed algorithm to establish the factorization (7) to Appendix A.1 and the
connections to the state-space GP to Appendix A.3. Here we only emphasize that the algorithm to
find AX and ϕ(X) takes only O(ν3n) operations and O(νn) storage.
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Based on (7), we can substitute AX and ϕ(·) for K(·,X) in (1), (2) and rewrite the equations as
follows:

µ∗|n = µ∗ + ϕT (X∗)
[
ϕ(X) +

σ2
ϵ

σ2
AX

]−1
(y − µn) , (8)

K∗,∗|n = σ2
(
K∗,∗ − ϕT (X∗)

[
AT

Xϕ(X) +
σ2
ϵ

σ2
AT

XAX

]−1
ϕ(X∗)

)
, (9)

Because ϕ(X) and AX are both banded matrices, the summations ϕ(X) +
σ2
ϵ

σ2AX and σ2ϕ(X) +

σ2
ϵAX are also banded matrices. Therefore, the time complexity of matrix inversion via KPs is only
O(ν3n).

3 SAMPLING WITH KERNEL PACKETS

In this section, we present the main algorithms for sampling from Gaussian process priors and pos-
teriors based on the KP technique. We introduce the algorithms of sampling from one-dimensional
GP and multi-dimensional GP respectively in sections 3.1 and 3.2.

3.1 SAMPLING FROM ONE-DIMENSIONAL GPS

Consider one-dimensional GPs with Matérn correlations for half integer smoothness ν.

Sampling from the prior distribution For a set of grid points Z = {zi}pi=1, we first compute
the sparse matrices AZ and ϕ(Z) in (7). Now, instead of a direct Cholesky decomposition of the
covariance matrix Kp,p = K(Z,Z), we consider the Cholesky decomposition of the symmetric
positive definite matrix RZ := AT

Zϕ(Z) = AT
ZKp,pAZ. This shifting makes a significant dif-

ference: Kp,p is a dense matrix, and the Cholesky decomposition takes O(n3) time. In contrast,
RZ, as a multiplication of two banded matrices, is also a banded matrix with bandwidth of no
more than 2ν. It is well known that the Cholesky factor of a banded matrix is also banded, and the
computation can be done in O(ν3n) time. Suppose QZQ

T
Z = RZ, then multiply (AT

Z)
−1QZ

by a vector fp,0, which is standard multivariate normal distributed. It’s not hard to show that
(AT

Z)
−1QZfp,0 + µp ∼ N (µp,Kp,p). Hence, we obtain the samples which have same distribu-

tion with fp. In practical calculation, we may first compute the multiplication QZfp,0 then compute
(AT

Z)
−1
(
QZfp,0

)
to reduce the time complexity since both AZ and QZ are banded matrices. The

entire algorithm only costs O(ν3n) time and O(νn) storage. A summary is given in Algorithm 1.

Algorithm 1 Sampling from one-dimensional GP priors.
Input: Ordered input dataset Z defined in section 2.1

1: Compute banded matrices AZ and ϕ(Z) with respect to the input data Z
2: Obtain a banded matrix; RZ := AT

Zϕ(Z);
3: Apply Cholesky decomposition to RZ, get the lower triangular matrix QZ satisfying QZQ

T
Z =

RZ;
4: Generate samples fp,0 ∼ N (0, Ip);
5: Compute fkp := (AT

Z)
−1QZfp,0 + µp.

Output: fkp

Sampling from one-dimensional GP regression posteriors. This can be done by combining
the KP technique with the Matheron’s rule. The Matheron’s rule was popularized by Journel &
Huijbregts (1976) to geostatistics field. Recently Wilson et al. (2020) rediscovered and exploited it
to develop a GP posterior sampling approach. The Matheron’s rule is stated as follows. Let a and b
be jointly Gaussian random vectors. Then the random vector a, conditional on b = β, is equal in
distribution to

(a|b = β)
d
= a+Cov(a,b)Cov(b,b)−1(β − b), (10)

where Cov(a,b) is the covariance of (a,b).

4



Under review as a conference paper at ICLR 2023

By (10), the exact GP posteriors can be sampled by two jointly Gaussian random variables, and we
obtain

f∗|y
d
= f∗ +K∗,n

[
Kn,n +

σ2
ϵ

σ2
In
]−1

(y − fn − ϵ), (11)

where f∗ and fn are jointly Gaussian random variables from the prior distribution, noise variates ϵ ∼
N (0, σ2

ϵ In). Clearly, the joint distribution of (fn, f∗) follows the multivariate normal distribution as
follows:

(fn, f∗) ∼ N

([
µn

µ∗

]
,

[
Kn,n Kn,∗
K∗,n K∗,∗

])
. (12)

We may apply KP to (11) and get the following corollary:

f∗|y
d
= f∗ + ϕT (X∗)

[
ϕ(X) +

σ2
ϵ

σ2
AX

]−1

(y − fn − ϵ). (13)

Given that Algorithm 1 requires distinct and ordered data points, it’s reasonable to assume training
set X doesn’t coincide with test set X∗. Also, we can rearrange the combined set of the training
set X and test set X∗ to an ordered set and record the index of reordering. Next, we can utilize the
Algorithm 1 to draw a reordered vector in Rn+m from the GP prior and obtain jointly samples fn
and f∗ by recovering the reordered vector to the original sequence. Finally, we plug fn and f∗ into
formula (13) to calculate the posterior samples. It’s obvious the time complexity of this approach is
also O(ν3n) due to the sparsity of the matrices to be Cholesky decomposed and inverted.

3.2 SAMPLING FROM MULTI-DIMENSIONAL GPS

For multi-dimensional GPs, we suppose that the points X are given by a full grid, defined as XFG =
×d

j=1X
(j), where each X(j) is a set of one-dimensional data points, A × B denotes the Cartesian

product of sets A and B. Based on the separable structure defined in (4) and a full grid XFG, we
can transform the multi-dimensional problem to a one-dimensional problem since the correlation
matrix K(XFG,XFG) can be represented by Kronecker products (Henderson et al., 1983; Saatçi,
2012; Wilson & Nickisch, 2015) of matrices over each input dimension j:

K(XFG,XFG) =

d⊗
j=1

Kj(X
(j),X(j)). (14)

Prior To sample from GP priors over a full grid design ZFG = ×d
j=1Z

(j), it’s easy to compute

that tensor product
⊗d

j=1

(
A−T

Z(j)QZ(j)

)
is the Cholesky factor of the correlation matrix with a full

grid ZFG. For each dimension j, we can generate matrices AZ(j) , ϕ(Z(j)), and Cholesky factor
QZ(j) with respect to one-dimensional dataset Z(j). To get the GP prior samplings over full grids,
we need to apply the tensor product

⊗d
j=1

(
A−T

Z(j)QZ(j)

)
to fFGp,0 . More specifically, the samples

from GP priors can be computed via

fFGkp :=

d⊗
j=1

(
A−T

Z(j)QZ(j)

)
fFGp,0 + µFG

p ∼ N (µFG
p ,K(ZFG,ZFG)). (15)

Accordingly, on full grids, we only need to perform a for loop over dimensions, multiply banded
matrices in each dimension, and calculate a tensor product. The total method is alsoO(ν3

∏d
j=1 nj)

because we are also dealing with sparse matrices, here nj is the number of data points X(j).

Posterior With regard to GP posteriors, it’s impossible to employ the prior sampling scheme to
draw jointly distributed samples (fFGn , fFG∗ ) since we cannot order a sequence of multi-dimensional
data. We consider directly Cholesky factorizing the posterior correlation matrix KFG

∗,∗|n to obtain
CFG

∗|n, then use (6) to generate samples. The calculation of posterior mean µFG
∗|n and posterior vari-

ance KFG
∗,∗|n only costs O(ν3m

∏d
j=1 nj) time by using equations (25) and (26) in Appendix A.2.

Therefore the time complexity of the entire scheme requires O(ν3m3 +m
∏d

j=1 nj).
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Figure 1: Time and accuracy of different algorithms for sampling from one-dimensional GP priors
with Matérn 3/2. We denote our approach (KP) by blue dots, random Fourier features (RFF) by
orange stars, direct Cholesky decomposition by green crosses. Left: Logarithm of time taken to
generate a draw from GP priors, x-axis is the number of grid points p. Right: 2-Wasserstein distances
between priors and true distributions over ten points for three different cases {zi}10i=1, {zi}259i=250,
{zi}500i=491 when p = 500.

4 EXPERIMENTS

In this section, we will demonstrate the computational efficiency and accuracy of the proposed
sampling algorithm. We first generate samples from GP priors and posteriors with one-dimensional
space in section 4.1 and two-dimensional full grid designs in section 4.2. Then we consider the same
applications as in (Wilson et al., 2020) and perform our approach to two real problems in section 4.3.
For prior samplings, we use the random Fourier features (RFF) with 1024 features (Rahimi & Recht,
2007) and the Cholesky decomposition method as benchmarks. For posterior samplings, decou-
pled (Wilson et al., 2020) algorithm with exact Matheron’s update and the Cholesky decomposition
method are used as benchmarks. We consider Matérn correlations in (3) with lengthscale ω =

√
2ν,

smoothness ν = 3/2 and 5/2. In two-dimensional problems, we choose “separable” Matérn corre-
lations mentioned in Section 2.1 with the same correlations and same parameters ω =

√
2ν in each

dimension. We set the variance as σ2 = 1 for all experiments. We set seed value as 99 and perform
1000 replications for each experiment. All plots regarding ν = 3/2 are given in the main article and
these associated with ν = 5/2 are deferred to Appendix A.5.

4.1 ONE-DIMENSIONAL EXAMPLES

Prior Sampling We generate one-dimensional prior samples on uniformly distributed points Z =
{zi}pi=1 over interval [0, 10] with p = 10, 50, 100, 500, 1000, 5000, 10000. Left plots in Figure 1 and
Figure 7 show the time taken in sampling schemes for different algorithms over the different number
of points p, we can observe that KP algorithm costs much less than other algorithms for both Matérn
3/2 and Matérn 5/2 correlations especially when p = 5000, 10000. Also, the curves of Cholesky
decomposition are incomplete due to the limit of storage. To test the accuracy, we select three subsets
of size ten: {zi}10i=1, {zi}259i=250, {zi}500i=491 when p = 500 and compute the 2-Wasserstein distances
between empirical priors and true distributions over these three subsets (called Cases 1-3 thereafter).
The 2-Wasserstein distance measures the similarity of two distributions. Let f1 ∼ N (µ1,Σ1) and
f2 ∼ N (µ2,Σ2), the 2-Wasserstein distance between the Gaussian distributions f1, f2 on L2 norm
is given by (Dowson & Landau, 1982; Gelbrich, 1990; Mallasto & Feragen, 2017)

W2(f1, f2) :=
(
||µ1 − µ2||2 + tr

(
Σ1 +Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2

)) 1
2

. (16)

For the empirical distributions, the parameters are estimated from the replicated samples. From right
plots in Figure 1 and Figure 7, we can observe that KP algorithm outperforms RFF and Cholesky
method greatly in Case 1 and Case 3, which are boundary points of Z. It may be because of the
numerical precision that Cholesky method has the lower 2-Wasserstein distances in Case 3.

Posterior Sampling We investigate the performance of sampling over m = 1000 test points on
the one-dimensional test function, the shifted and dilated Gramacy & Lee function (Gramacy &
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Figure 2: Time and accuracy of different algorithms for sampling from one-dimensional GP poste-
riors with Matérn 3/2. We denote decoupled method by red triangles. Left: Logarithm of time taken
to generate a draw from GP posteriors over m = 1000 points, x-axis is the number of observations
n. Right: Logarithm of MSE over m = 1000 points.

Figure 3: Time and accuracy of different algorithms for sampling from GP priors over full grids
with Matérn 3/2. Left: Logarithm of time taken to generate a draw from GP priors. Right: 2-
Wasserstein distances between priors and true distributions over nine points for three different cases
×d

j=1{zi}3i=1, ×d
j=1{zi}17i=15,×d

j=1{zi}31i=29 when {zi}31i=1 = {−5 + 10 · 2−5, · · · , 5− 10 · 2−5}.

Lee, 2012) f(x) = sin(2πx + 5π)/(0.4x + 1) + (0.2x − 0.5)4 over the interval [0, 10] with n =
10, 50, 100, 500, 1000, 5000, 10000 respectively given σϵ = 10−3. Figure 2 and Figure 8 show the
time cost of posterior GP sampling and Mean Squared Error (MSE) between the posterior samplings
and the true function values with the above settings. It’s clear that KP consumes less time to achieve
better accuracy compared with decoupled approach and direct Cholesky decomposition method.
The performance curves of Cholesky factorization in Figure 2 and Figure 8 in Appendix A.5 are
incomplete, because the Cholesky decomposition function fails to work for such a huge sample size
and gives a runtime error.

4.2 TWO-DIMENSIONAL EXAMPLES

Prior Sampling We generate prior samples over level-η full grid design: ZFG
η = ×d

j=1{−5 +

10 · 2−η,−5 + 2 · 10 · 2−η, . . . , 5 − 10 · 2−η} with η = 3, 4, 5, 6 and d = 2. Likewise, we use
2-Wasserstein distances defined in (16) to evaluate the accuracy of prior samplings in three cases,
×d

j=1{zi}3i=1, ×d
j=1{zi}17i=15,×d

j=1{zi}31i=29 when {zi}31i=1 = {−5 + 10 · 2−5, · · · , 5 − 10 · 2−5}.
Left plots in Figure 3 and Figure 9 in Appendix A.5 show that KP takes less time than RFF and the
Cholesky method especially for 212 grid points. Right plots in Figures 3 and Figure 9 show that KP
has higher accuracy than RFF for both Matérn 3/2 and 5/2 correlations but has lower accuracy than
the Cholesky method for Matérn 5/2 correlations.

Posterior Sampling We choose the Griewank function (Griewank, 1981)

f(x) =

d∑
i=1

x2
i

4000
+

d∏
i=1

cos(
xi√
i
) + 1, x ∈ (−5, 5)d
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Figure 4: Time and accuracy of different algorithms for sampling from GP posteriors over full grids
with Matérn 3/2. Left: Logarithm of time taken to generate a draw from GP posteriors over 1024
points. Right: Logarithm of MSE over 1024 points.

as our test function and level-η full grid design: XFG
η = ×d

j=1{−5+10·2−η,−5+2·10·2−η, . . . , 5−
10 · 2−η} with η = 3, 4, · · · , 9 and d = 2 as our design of experiment. We then investigate the av-
erage computational time and MSE over m = 1024 random test points for each sampling method.
Figure 4 and Figure 10 in Appendix A.5 illustrate the performance of different sampling strate-
gies, we can observe that both direct Cholesky decomposition and decoupled algorithm can only
generate posterior samples from at most 212 observations due to the limit of storage, however, KP
algorithm can sample from 218 observations because the space complexity of KP-based computation
only requires O(νn). Although the accuracy of the KP method is lower than the direct Cholesky
decomposition method and decoupled algorithm, it is still of high accuracy and the time cost is in a
much shorter period of time compared with other algorithms.

4.3 APPLICATIONS

Thompson Sampling Thompson Sampling (TS) (Thompson, 1933) is a classical strategy for
decision-making by selecting actions x ∈ X that minimize a black-box function f : X → R.
In round t, TS selects xt+1 ∈ argminx∈X (f |y)(x), y is the observation set. Upon finding the
minimizer, we may obtain yt+1 by evaluating at xt+1, and then add (xt+1, yt+1) to the training set.

In this experiment, we consider a one-dimensional cut of the Ackley function (Ackley, 2012)

f(x) = −20 exp{−0.2 ·
√
0.5 · x2} − exp{−0.5(cos(2πx) + 1)}+ exp{1}+ 20. (17)

The goal of this experiment is to find the global minimizer of function in (17). We start with k =
2ν + 2 samples before the optimization, then at each round of TS, we draw a posterior sample f |y
on 1000 uniformly distributed points over the interval [−5, 5] given the observation set. Next, we
pick the smallest posterior sample at this round and add it to the training set, and repeat the above
process. After some steps, we are able to get closer to the global minimum. In Figure 5, we compare
the logarithm of total regret of different sampling algorithms, both the proposed approach (KP) and
the decoupled method can find the global minimum within 15 rounds, which outperform the direct
Cholesky factorization sampling scheme.

Simulating Dynamical Systems Gaussian process posteriors are also commonly used in dynam-
ical systems when we don’t have sufficient data. Consider a one-dimensional ordinary differential
equation

x′(s) = f(s, x(s)), (18)
we can discretize the system’s equation (18) to a difference equation in the following formula by
Euler method (Butcher, 2016),

yt = xt+1 − xt = τf(st, xt), (19)

where τ is the fixed step size. We aim to simulate the state trajectories of this dynamical system.
First, we set an initial point x0, then at iteration t, we draw a posterior GP sampling from the
conditional distribution p(yt|Dt−1), where Dt−1 denotes the set of the data {(xi, yi)}ni=1 and the
current trajectory {(xj , yj)}t−1

j=1. In our implement, we choose the model as f(s, x(s)) = 0.5x −

8
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Figure 5: Logarithm of regret of Thompson sampling methods when optimizing Ackley function
with Matérn 3/2 (left) and Matérn 5/2 (right).

0.05x3 with step size τ = 0.25 and initial point x0 = −4.5. The training set was generated by
evaluating (19) for n = 1000 points {xi}ni=1 uniformly from the interval [−5, 5]. Variations yt in
each step were simulated by independent Matérn 3/2 GPs with ω =

√
3. Figure 6 demonstrates the

state trajectories of each algorithm for T = 480 steps, time cost in each iteration, and logarithm of
MSE between xt obtained from GP-based simulations and xt obtained by directly performing the
Euler method in (19) at each iteration t. The left plot in Figure 6 shows that the KP algorithm can
accurately characterize state trajectories of this dynamical system. The middle and right plots in
Figure 6 indicate that the KP algorithm takes much less time and yields high accuracy in each step.
It achieves nearly the same performance as the decoupled method and outperforms the Cholesky
decomposition method.

Figure 6: Simulations of an ordinary differential equation. Left: Trajectories generated via different
algorithms. Middle: Time cost at each iteration. Right: Logarithm of MSE between simulations and
ground truth state trajectories at each iteration.

5 DISCUSSION

In this work, we propose a scalable and exact algorithm for one-dimensional Gaussian process sam-
pling with Matérn correlations for half-integer smoothness ν, which only requires O(ν3n) time and
O(νn) space. The proposed method can be extended to some multi-dimensional problems such
as noiseless full grid designs by using tensor product techniques. If the design is not grid-based,
the proposed algorithm is not applicable, we may use the method in (Ding et al., 2020) to devise
approximation algorithms for sampling.

While the proposed method is theoretically exact and scalable algorithm, we observe some nu-
merical stability issues (see Appendix A.4) in our experiments. This explains why sometimes the
proposed method is not as accurate as the Cholesky decomposition method. Improvements and
extensions of the proposed algorithm to overcome the stability issues and accommodate general
multi-dimensional observations will be considered in a future work.

9
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A APPENDIX

A.1 CONSTRUCTION OF BANDED MATRICES IN (7)

Intermediate KPs Let a = (a1, ..., ak)
T be a vector with a1 < · · · < ak, then intermediate KPs

are defined as

ϕa(x) :=

k∑
j=1

AjK(x, aj) (20)

and the coefficients Aj’s can be obtained by solving the (k − 1)× k linear system

k∑
j=1

Aja
l
j exp{δcaj} = 0, (21)

with l = 0, . . . , (k − 3)/2 and δ = ±1.

One-sided KPs As before, let a = (a1, ..., as)
T be a vector with a1 < · · · < as, one-sided KP is

given by

ϕa(x) :=

s∑
j=1

AjK(x, aj), (22)

with (k + 1)/2 ≤ s ≤ k − 1. For right-sided KPs, we can get coefficients Aj’s by solving

s∑
j=1

Aja
l
j exp{−caj} = 0,

s∑
j=1

Aja
r
j exp{caj} = 0, (23)

where l = 0, . . . , (k − 3)/2 and the second term of equation 23 comprises auxiliary equations for
the case s ≥ (k + 3)/2 with r = 0, . . . , s − (k + 3)/2. Similar to equation 21, equation 23 is
an (s − 1) × s linear system. Left-sided KPs are constructed similarly by solving the following
equations:

s∑
j=1

Aja
l
j exp{caj} = 0,

s∑
j=1

Aja
r
j exp{−caj} = 0, (24)

where l = 0, . . . , (k − 3)/2 and the second term comprises auxiliary equations for the case s ≥
(k + 3)/2 with r = 0, . . . , s− (k + 3)/2.

KP Basis Let X = {xi}ni=1 be the one-dimensional input data satisfying x1 < · · · < xn, and K
a Matérn correlation function with a half-integer smoothness ν. Suppose n ≥ k := 2ν + 2. We can
construct the following n functions, as a subset of linear space K := span{K(·, xj)}nj=1:

1. ϕ1, ϕ2, . . . , ϕ(k−1)/2, defined as left-sided KPs ϕ(x1,...,x(k+1)/2), ϕ(x1,...,x(k+1)/2+1), . . . ,
ϕ(x1,...,xk−1),

2. ϕ(k+1)/2, ϕ(k+1)/2+1, . . . , ϕn−(k−1)/2, defined as KPs ϕ(x1,...,xk), ϕ(x2,...,xk+1), . . . ,
ϕ(xn−k+1,...,xn),

3. ϕn−(k−3)/2, . . . , ϕn−1, ϕn, defined as right-sided KPs ϕ(xn−k+2,...,xn), . . . ,
ϕ(xn−(k−1)/2−1,...,xn), ϕ(xn−(k−1)/2,...,xn).

Here functions {ϕj}nj=1 are linearly independent in K, together with the fact that the dimension of
K is n, implies that {ϕj}nj=1 forms a basis for K, referred to as the KP basis.

13
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In equation 7, the (l, j)th entry of ϕ(X) is ϕj(xl). In view of the compact supportedness of ϕj ,
ϕ(X) is a banded matrix with bandwidth (k − 3)/2:

ϕ(X) =



. . .

. . . ϕj− k−3
2
(xj−2 k−3

2
)

. . .
...

. . .
ϕj− k−3

2
(xj) · · · ϕj+ k−3

2
(xj)

. . .
...

. . .

ϕj+ k−3
2
(xj+2 k−3

2
)

. . .

. . .


.

The matrix of AX consists of the coefficients to construct the KPs. AX is a banded matrix with
bandwidth (k − 1)/2:

AX =



. . .

. . . Aj−2 k−1
2 ,j− k−1

2

. . .
...

. . .
Aj,j− k−1

2
· · · Aj,j+ k−1

2

. . .
...

. . .

Aj+2 k−1
2 ,j+ k−1

2

. . .

. . .


.

A.2 SAMPLING FROM MULTI-DIMENSIONAL GP POSTERIORS

Combine (1) and (2) with the properties of the Kronecker product, the posterior mean and variance
for a training set {XFG,yFG} with full grid designs XFG = ×d

j=1X
(j) can be computed via the

following equations:

µFG
∗|n = µFG

∗ +K∗,n

d⊗
j=1

(
AX(j)ϕ(X(j))−1

) (
yFG − µFG

n

)
, (25)

KFG
∗,∗|n = σ2

K∗,∗ −K∗,n

d⊗
j=1

(
AX(j)ϕ(X(j))−1

)
Kn,∗

 . (26)

A.3 KERNEL PACKETS AND STATE-SPACE

Despite kernel packets (Chen et al., 2022) and state-space formulation (Grigorievskiy et al., 2017)
can train one-dimensional Gaussian process regression with Matérn correlations exactly in linear
time, there is no obvious clue to establish any mathematical connections between these methods. It is
worth noting that the state-space approach is a sequential algorithm, which needs significantly more
efforts to implement parallel computing; in contrast, the kernel packets approach can be paralleled
in a trivial way. Besides, like most other supervised learning algorithms, the kernel packets method
is able to separate the learning task into two independent steps: training and prediction, and the
computational time for each prediction point is only O(1) when the inputs are uniformly spaced.
However, the state-space formulation cannot make this separation (Grigorievskiy et al., 2017), and
users have to either provide the prediction points during the training step, or costO(n) time for each
prediction point.
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Figure 7: Time and accuracy of different algorithms for sampling from one-dimensional GP priors
with Matérn 5/2. Left: Logarithm of time taken to generate a draw from GP priors, x-axis is the
number of grid points p. Right: 2-Wasserstein distances between priors and true distributions over
ten points for three different cases {zi}10i=1, {zi}259i=250, {zi}500i=491 when p = 500.

Figure 8: Time and accuracy of different algorithms for sampling from one-dimensional GP poste-
riors with Matérn 5/2. Left: Logarithm of time taken to generate a draw from GP posteriors over
m = 1000 points, x-axis is the number of observations n. Right: Logarithm of MSE over m = 1000
points.

A.4 NUMERICAL INSTABILITY

In real computation, the matrix RZ in Algorithm 1 may not be numerically symmetric positive-
definite when the distances between the input points Z are very small. Since each column of the
matrix AZ is obtained by solving a null space, each column of AZ can be up to a scalar, more work
needs to be done to enhance the numerical stability of the algorithm.

A.5 FIGURES

Figure 7 and Figure 8 show the performance of one-dimensional examples with Matérn 5/2 in section
4.1, Figure 9 and Figure 10 show the performance of two-dimensional examples with Matérn 5/2 in
section 4.2.

15



Under review as a conference paper at ICLR 2023

Figure 9: Time and accuracy of different algorithms for sampling from GP priors over full grids
with Matérn 5/2. Left: Logarithm of time taken to generate a draw from GP priors. Right: 2-
Wasserstein distances between priors and true distributions over nine points for three different cases
×d

j=1{zi}3i=1, ×d
j=1{zi}17i=15,×d

j=1{zi}31i=29 when {zi}31i=1 = {−5 + 10 · 2−5, · · · , 5− 10 · 2−5}.

Figure 10: Time and accuracy of different algorithms for sampling from GP posteriors over full
grids with Matérn 5/2. Left: Logarithm of time taken to generate a draw from GP posteriors over
1024 points. Right: Logarithm of MSE over 1024 points.
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