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Abstract

Multi-compartment Hodgkin-Huxley models are biophysical models of how electri-
cal signals propagate throughout a neuron, and they form the basis of our knowledge
of neural computation at the cellular level. However, these models have many
free parameters that must be estimated for each cell, and existing fitting methods
rely on intracellular voltage measurements that are highly challenging to obtain
in vivo. Recent advances in neural recording technology with high-density probes
and arrays enable dense sampling of extracellular voltage from many sites sur-
rounding a neuron, allowing indirect measurement of many compartments of a cell
simultaneously. Here, we propose a method for inferring the underlying membrane
voltage, biophysical parameters, and the neuron’s position relative to the probe,
using extracellular measurements alone. We use an Extended Kalman Filter to
infer membrane voltage and channel states using efficient, differentiable simulators.
Then, we learn the model parameters by maximizing the marginal likelihood using
gradient-based methods. We demonstrate the performance of this approach using
simulated data and real neuron morphologies.

1 Introduction

Biological neurons are equipped with a wide range of biophysical mechanisms that contribute to
information processing [1-3] and to the brain’s robustness to environmental perturbations [4, 5].
Multi-compartment Hodgkin-Huxley models provide a principled framework for studying biophysical
mechanisms of neurons [6, 7]. Multi-compartment models treat neurons as connected electrical
compartments, allowing simulation of how voltage signals propagate throughout a cell as ion channels
open and close. A central limitation for building multi-compartment models—and for understanding
biophysical mechanisms in neurons—is the lack of experimental techniques to precisely measure
the biophysical parameters of these models. As such, these parameters must be inferred from
recordings of the activity of neurons [8—11]. Typically, these recordings are made from within a
neuron using intracellular measurements such as patch-clamp electrophysiology, which enables
precise recordings of voltage dynamics in the soma [12, 13] and, for large neurons, in dendrites [14].
However, intracellular methods are technically challenging, and only provide voltage signals from a
very small number of locations within a neuron (typically, only from the soma) [15].
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Figure 1: Our goal: Inferring biophysical properties of single neurons from dense extracellular
measurements: We want to identify key biophysical properties—maximum membrane conductances
of ion channels and the cell’s relative position to the probe (left, blue) from extracellular voltage
traces recorded from multiple sites along the probe (right), capturing the neuron’s activity over time.

Recent advances in neural recording technologies have opened new possibilities for studying neuron
biophysics in vivo. High-density silicon probes such as the Neuropixel Ultra [16] can record
extracellular voltage traces across hundreds of closely spaced electrodes. These signals, which reflect
the transmembrane currents generated by nearby neurons, are traditionally used for spike detection
and sorting—identifying when and where neurons fire spikes [17, 18].

While effective for tracking population activity, this approach treats spikes as discrete events and
ignores the exquisite biophysical details of neurons [19].

In this work, we revisit the extracellular signal, not just as a source of discrete spike times, but as a rich,
spatially structured observation from which we can infer biophysical properties of individual neurons.
This is made possible by three key developments: (1) high-density probes and 2D arrays that allow us
to sample extracellular voltage at many sites around a cell to triangulate its position and morphology;
(2) differentiable simulators like JAXLEY [20] that enable fast, hardware-accelerated simulation of
complex biophysical models and gradient-based parameter optimization; and (3) scalable state-space
inference frameworks such as DYNAMAX [21], which allow efficient state inference and parameter
estimation in high-dimensional, nonlinear dynamical systems.

We leverage these developments to provide a statistical approach for inferring the parameters of
multi-compartment biophysical models from extracellular observations: We extend classical multi-
compartment Hodgkin—Huxley models to include a biophysical model of extracellular potentials. We
then use an Extended Kalman Filter (EKF) [22] to infer latent neuronal states—such as membrane
voltages and gating variables—from observed extracellular signals and we improve the computational
efficiency with diagonal and block-diagonal approximations to the filtering covariance. To estimate
model parameters, including ion channel densities and the neuron’s spatial position relative to the
probe, we maximize the marginal likelihood using gradient-based optimization.

We first demonstrate that our method can successfully infer membrane properties and cell locations
in simplified neuron models, and that the use of an EKF largely improves the method’s robustness to
model misspecification. We then apply our method to synthetic extracellular data generated from
real neuron morphologies and demonstrate that the method can scale to morphologies with more
than a hundred compartments. Overall, our results suggest that the combination of differentiable
simulation and state-space modeling makes it possible to estimate biophysical properties across the
entire morphology of a neuron based only on extracellular voltage recordings.

2 Biophysical Modeling of Neurons

2.1 Modeling Action Potentials with Hodgkin—-Huxley Dynamics

The multi-compartment Hodgkin—Huxley model (HH) describes how ion channels shape the mem-
brane potential across branches of a neuron. Each compartment represents a small component of
the cell with its own voltage, capacitance, and set of ion channels. Let V() denote the membrane



potential of compartment i, with surface area S(¥) and specific membrane capacitance C,,. Each
compartment has a set of ion channels, C, and each channel ¢ € C is characterized by a maximum
(@) (@

conductance g ’, reversal potential E., and a time-varying state Ac’. A nonlinear activation function,

ac()\Ei)) € [0, 1], specifies the fraction of the maximum current that can flow through the channel, as
a function of its state. The voltage dynamics for compartment ¢ are given by,
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where Ie(,fl) is the external current applied to compartment 4, and g(*7) is the axial conductance

coupling compartment ¢ to its neighbor j. The total transmembrane current in compartment ¢ is

denoted by I5?) and is the sum of the ionic current I( SO M ce 9e” ac(A AU ))(V(Z) — E.) and the
capacitive current Ic(ap s, d‘g; ) [23]. For instance, in the 0r1g1nal single compartment HH
model with sodium, potassium, and leak channels, the total current is,
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Here, for example, the states of the sodium channel are A, = (m, h) € [0, 1]? and the activation

function is an,(Ana) = m3h. The gating variables evolve according to first-order kinetics dé\t' =
ac(V)(1—=Ae) — Be(V)Ae, where (V') and S.(V) are voltage-dependent rate functions that control
the opening and closing transitions of the ion channel. Specific forms for the o and S functions are
available in Dayan and Abbott [24], e.g. Importantly, note that by eq. (1), the ionic current and the

capacitive current cancel out to give the following expression of the transmembrane current:

I = Ie(Zt) + 8@ Zg(m)(v(j) —v®). (3)

i
2.2 Modeling Extracellular Voltage Measurements

Extracellular voltages reflect the collective activity of nearby neurons. While the physics of extracel-
lular recordings are well understood [25, 26], our work is, to our knowledge, the first to leverage this
framework for fitting multi-compartment HH models to extracellular measurements. Let ¢ denote
the extracellular potential measured by a fixed site on a recording probe. We treat each compartment
as a point source of transmembrane current located at its center and denote r; the distance from
the recording site to compartment 7 of a neuron. It follows from Coulomb’s law that the measured
extracellular voltage is,

“

In words, the observed potential @ is proportional to the sum of transmembrane currents from nearby
compartments, weighted by the inverse of the distance to the compartment. Importantly, it follows
from eq. (3) and (4) that the extracellular voltages at time ¢ are simply linear functions of the
membrane voltages at time ¢.

3 State Inference and Parameter Estimation

We aim to infer the membrane potential and channel states and to estimate the biophysical and
structural parameters of a neuron from noisy extracellular voltage traces. We can achieve both goals
by casting the multi-compartment HH model as a state space model (SSM) with nonlinear dynamics.
However, the nature and scale of these models present unique challenges, which we address below.

3.1 State Space Model Formulation

A state space model (SSM) is a latent variable model with latent states z;.7, observations yi.r,
and parameters 6. In a Markovian SSM, latent states evolve according to a dynamics distribution,



p(z¢ | z¢—1;0), and they give rise to observations via an emission distribution p(y; | z:; #). There
are a host of well-established techniques for state inference and parameter estimation in such
models [22, 21], depending on the nature of the dynamics and emission distributions.

In our case, the model parameters, ¢, may include the maximum conductances of various ion
channels as well as parameters governing the neuron’s spatial configuration relative to the recording
probe. The latent states consist of the voltages and channel states for each compartment, z; =

v, .. v, {Agl)}cecl, ce {)\EN)}CecN]. To model the state dynamics, we use an Euler
discretization of the multi-compartment HH differential equations (see eq. (1)),
ziy1 ~ N (fo(2e,t), At Zayn), (5)

where fg(z,t) is the deterministic update function derived from the ODEs above, and 34y, is a
diagonal covariance matrix with entries from {c2, 02, .}. This Gaussian noise is intended to account
for model uncertainty, such as missing ion channels or misspecified channel dynamics, which we will
consider in the results section.

We assume that the only source of stochasticity in the emission process is measurement noise. Let
y: € RM denote the observed extracellular potential at time ¢ across M recording sites. It is modeled
as,
2
ye ~ N(h9 (Zt)a UobsI)7 (6)

where hg(z) is the predicted extracellular voltage from eq. (4) and o2, is the observation noise

variance. Since hy(z;) only depends on z;, the emission model is conditionally independent of
previous states given the current latent state.

3.2 Scaling the Extended Kalman Filter to Large Biophysical Models

Since the dynamics are nonlinear, there is no closed-form solution for the filtering distribution
po(z1:¢t | ¥1:+)- To address this challenge, we use the extended Kalman filter (EKF), which linearizes
the dynamics and emission functions via first-order Taylor expansions [22]. This linear approximation
enables recursive estimation of the latent states, and it also provides an estimate of the marginal
likelihood py(y1.7) for parameter estimation.

Biologically realistic neuron models often contain dozens or even hundreds of compartments, leading
to latent state dimensions in the hundreds or thousands. The standard EKF maintains an estimate
of the full state covariance matrix, and updating the filtering distribution requires solving a linear
system with this matrix. Since this computation scales cubically with the number of states, it becomes
computationally infeasible to apply standard EKF formulations to full-scale neuronal models. To
overcome this challenge, we develop two scalable EKF variants for biophysical neuron model fitting.

Diagonal approximation Our first scalable variant adopts a diagonal approximation of the posterior
covariance, inspired by Chang et al. [27], while exploiting the sparsity inherent in multi-compartment
HH dynamics. Specifically, we approximate the EKF filtering distribution p;(z) = N (z; pt;, 3y/¢)
with a diagonal Gaussian ¢;(z) = N(z; fi;, Xy;) where 3, and i, are chosen to minimize the
divergence KL(g; || pt). As shown by Chang et al. [27], this minimization admits a closed-form
solution: the optimal diagonal Gaussian approximation g; matches the marginal means and precisions
(inverse variances) of p;. This leads to efficient recursive updates that preserve the EKF structure while
requiring only diagonal storage—reducing memory cost from O(d?) to O(d) for a d-dimensional
state.

In practice, this approximation requires evaluating only the diagonal elements of two matrices:
() H/ R, 'H;, where H; = J ac(hg)(fty);—1 ) is the Jacobian of the emission model and R; = 02T

—1 .
te—10 with

is the observation noise covariance; and (ii) the predicted precision X
T
Y1 = FeX 1 Fy +Qq,

where F; = Jac(fg)(#4);—1) is the Jacobian of the dynamics and Q; = At Xy, is the dynamics
covariance (cf. Appendix B).

The diagonal of H R; "H; can be computed in linear time with respect to the number of states
[27]. Furthermore, because the measurement model maps the membrane voltages to extracellular



voltages through a fixed linear operator (eq. (3) and (4)), HtT R, 'H, is time-invariant, allowing
its diagonal to be computed once and reused throughout filtering. The remaining challenge lies in
efficiently computing diag(E;‘t{l). To simplify calculations, we make the additional assumption
that 3, is diagonal, reducing the problem to computing diag(3;;_;). Here, we exploit the
sparsity pattern of F;, which follows directly from the local coupling structure of the HH equations.
While voltage updates may depend on all other states due to the implicit Euler solver used in JAXLEY
[20], gating variables typically depend only on their own previous value and the voltage of their
corresponding compartment. This sparsity enables linear-time computation of diag(Et_‘tl_l). In
practice, we compute F, efficiently using the SPARSEJAC library [28], which constructs Jacobians
directly from sparsity patterns without instantiating the full dense matrix.

When is the diagonal approximation reasonable? We assume that the initial filtered covariance matrix
3y is diagonal. The EKF covariance update is:

—1
S = (2;‘,}71 + HtTRt_lHt> .

The procedure we described is equivalent to performing this update step with both 33;; _; and
H, R, 'H, diagonal. Is this valid?

In Appendix B, we show that for well-behaved HH kinetics—smooth transition rates, small integration
steps, and not too frequent spiking—the dynamics Jacobian is dominated by its diagonal. Under these
conditions, a diagonal prior covariance and dynamics covariance yield an approximately diagonal
predicted covariance ;.

The tighter constraint arises from the emission model. The time-invariance matrix H, R; 'H,
reflects how strongly electrode signals overlap across compartments. When a neuron is discretized
into many compartments and the electrodes are densely packed around it—as in Neuropixels or
similar high-density probes—its off-diagonal entries can become large, and approximating it by a
diagonal can severely degrade performance (cf. Appendix B for a complete derivation). Thus, the
diagonal EKF appears best suited for electrode configurations in which each sensor predominantly
captures activity from only a few nearby compartments.

Block-diagonal approximation The diagonal EKF procedure described above assumes
H, R; 'H; to be diagonal. When this assumption fails, the true update step no longer preserves
diagonality even for well-behaved HH models; enforcing it by truncation discards key aspects of the
geometry of the problem and harms accuracy.

To avoid this loss, we introduce a more structured approximation that remains consistent under EKF
updates. Since the emission model depends only on voltages, H R, 'H, is block-diagonal, with
a single nonzero block corresponding to the voltage dimensions. This motivates a block-diagonal
covariance structure, where the EKF predicted and filtered covariances consist of a dense voltage
block and diagonal blocks for all remaining (gating) states. Concretely, let the first K dimensions of
the latent state vector correspond to compartment voltages and the remaining ones to gating variables.
At each time step ¢, we assume that both the predicted and filtered covariance matrices take the form

vV
t] * 0

0 diag(a'fl*)l ’ x€{t=1,t},

where Ef‘”* € RE*K denotes the dense voltage—voltage covariance block, and af‘ , collects the

gating variances. We refer to this family of matrices as the BD(K ) family (block-diagonal with K
compartments).

We can prove that if the dynamics Jacobian F; is BD(X'), then the BD(K') family is closed under the
EKF prediction and update: if the initial covariance matrix 3, is BD(K), then subsequent predicted
and filtered covariances remain BD(K) (cf. Proposition 1). As with the diagonal approximation,
assuming a BD(K) structure for the Jacobian is reasonable for well-behaved HH models.

Et\* =

Computationally, the EKF update step with BD(K) covariances reduces to (i) a K x K solve for the
voltage block—since the measurement Jacobian H; has support only on voltages—and (ii) element-
wise variance updates for the diagonal gating blocks (cf. proof of Proposition 1). The prediction step
similarly preserves structure by propagating Effl‘t_l through the voltage—voltage sub-Jacobian and
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Figure 2: Validation on simple morphologies. Panels A—C show results for a single-branch cell. A:
Estimated gk over training iterations for three random initializations (mean +/- 1 sd). B: Distribution
of inferred g1, under different observation noise levels oops (colored dashed lines indicate the mean).
C: Distribution of inferred gn, for o4,s = 1 £V for various inference methods (orange lines indicate
the means). Panels D-F show results for a model with twelve compartments. D: A multi-branch
neuron and two sets of voltage recording electrodes (red and purple). The EKF correctly identifies
the true location of the neuron (EKF in blue, true locations as black lines). E: Conductances inferred
across 40 datasets simulated with oops = 1 £V via EKF for the 3rd branch of the cell. F: Recovery of
membrane voltages for EKF and diagEKF in a compartment of the 3rd branch, averaged over the 40
aforementioned datasets.

updating gating variances via their local Jacobians, yielding overall complexity O(K? + d) instead
of O(d?) for a d-dimensional state (cf. proof of Proposition 1).

4 Validation on simple morphologies

4.1 Validation on single-branch neuron model

We first validated our method on a simple synthetic neuron: a 10-compartment branch with sodium
and potassium HH channels (Appendix E.1). We initially assumed that the biophysical model was
correctly specified and that the dynamics were fully deterministic. We stimulated the cell with
constant current and recorded extracellular voltages from a single electrode placed 5 ym from the
soma. The goal was to infer maximum conductances assuming that the cell’s position was known. We
simulated 40 recordings corrupted by Gaussian noise (o = 1 ;#V) and initialized conductances within
biologically plausible ranges. EKF-based inference accurately recovered the true parameters across
random seeds, with negligible bias and variance (fig. 2A), supporting the validity of our approach.

Next, we assessed the effect of observation noise. Neuropixels Ultra probes exhibit RMS noise levels
around 7.4V in saline and approximately 9.4,V in vivo [16]. Moreover, in practice we expect
voltage traces to be corrupted by currents from other nearby neurons, which our model treats as noise
as well. Fixing the cell-probe distance at 5um, we simulated 40 noisy EAPs at three increasing noise
levels, ranging from 1V to 30 V. As expected, we found that higher noise leads to higher variance
in the parameter estimates (fig. 2B). Nevertheless, estimates remained very close to the ground truth
even at 304V RMS, which represents a challenging, high-noise regime (fig. E.3).

We also examined the effect of increasing the distance between the cell and the recording site. Since
extracellular voltage scales proportionally with 1/, the signal-to-noise ratio declined with distance.



In line with this intuition, we found that larger distance between cell and recording site leads to higher
variance in the estimate of membrane conductances (fig. E.1B).

Finally, we compared multiple inference approaches—standard EKF, diagonal EKF, block-diagonal
EKF, and direct mean-squared-error (MSE) minimization as used in the original JAXLEY paper [20].
The MSE baseline replaces the probabilistic objective with deterministic dynamics and directly
minimizes the squared error between observed and predicted extracellular potentials. Using the same
setup (5 pm distance, 1 ©V observation noise) and fitting the same 40 random traces, we found that
the standard EKF, block-diagonal EKF, and MSE approaches achieved nearly identical estimates
(fig. 2C). This confirms that the local linearization in the EKF introduces negligible bias and that the
block-diagonal approximation provides an excellent surrogate for the full covariance in HH models.
The diagonal EKF exhibited slightly higher bias but its voltage reconstructions remain highly accurate
(fig. E.2). This is consistent with our analysis in Appendix B: only the first compartment lies near
the electrode, and it has a single neighboring compartment, leading to minimal cross-visibility and
making a diagonal covariance approximation efficient.

4.2 Validation on a multi-branch neuron model

We next evaluated our method on a more realistic multi-branch setting, assuming a correctly specified
biophysical model and fully deterministic dynamics. Using JAXLEY, we simulated a synthetic neuron
with three branches, each divided into four compartments (twelve in total), containing standard HH
ion channels. The maximum conductances varied independently across branches, yielding nine
biophysical parameters to infer. Details of the setup are provided in Appendix E.2. Unlike the
single-branch case, we did not assume full knowledge of the cell’s spatial configuration: while branch
number, connectivity, lengths, and radii were known, the 3D coordinates of branch endpoints were
treated as unknown, introducing 18 additional geometric parameters for a total of 27.

A central question is whether these spatial locations are identifiable from extracellular recordings.
With electrodes confined to a single plane (e.g., a Neuropixel probe), mirror reflections of the neuron
across the plane produce identical extracellular voltages (cf. Appendix D). To account for this
unidentifiability, we simulated recordings from two separate probe positions, ensuring that the sets of
recording sites did not lie in the same plane (fig. 2D, red and purple). We also ensured that the sites
span the entire neuron to capture signal from all branches.

We fixed the observation noise to 1V and generated 40 sets of extracellular voltage recordings.
To initialize parameters, we optimized from multiple random starting points on one dataset and
retained the best solution (highest marginal log-likelihood), which we then reused across all runs.
In this setting, the EKF consistently recovered the 3D compartment locations (fig. 2D, blue vs
black), conductances (fig. 2E), and membrane voltages (fig. 2F), demonstrating the robustness and
accuracy of biophysical and geometric inference in multi-compartment neuron models with unknown
locations and membrane conductances. The diagonal EKF exhibited somewhat larger bias in the
recovered conductances compared with the single-branch case (fig. E.6), but the voltage traces
remained accurate up to small shifts (fig. 2F), and the compartment positions were inferred correctly
(fig. E.8). In this multi-branch geometry, compartments are long enough that most electrodes are
close to only a single compartment, and each compartment has very few neighbors, which together
limit cross-compartment measurement interactions and explains why the diagonal approximation still
yields informative reconstructions (cf. Appendix B).

4.3 Robustness to model misspecification

In experimental settings, the true underlying biophysical dynamics of a neuron are rarely known
with certainty. To evaluate the robustness of our approach under such model misspecification, we
conducted experiments where the ground truth and inference models differ in their ion channel
composition and dynamics. The detailed experimental setup and additional figures can be found in
Appendix E.3.

Omitted Ion Channels In our first experiment, we generated synthetic data from a single-branch
cell containing both classical HH channels and two additional conductances: an M-type potassium
current and a calcium current. During inference, we deliberately used a simplified model containing
only the HH channels, omitting the additional ones (fig. 3A).
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Figure 3: Robustness to model misspecification. Two types of channel misspecification are
presented. A: missing channels (M-type K™ and CaL). B: Incorrect gating dynamics for present
channels. In both panels, recovered membrane voltage traces using MSE minimization and EKF are
shown. EKF provides accurate voltage estimates despite misspecified channel models, whereas MSE
minimization fails.

Since we allow for dynamics noise in our model with process noise, we were able to accurately
recover the underlying membrane voltage, despite this substantial misspecification. In contrast, naive
fitting via mean squared error (MSE) minimization failed to capture the dynamics, yielding voltage
estimates that diverged substantially from the ground truth. This result highlights the importance of
allowing for uncertainty in the state evolution, using our EKF-based approach.

Perturbed Gating Dynamics We next evaluated the effect of incorrect gating kinetics. Here, we
retained the correct channel types in the inference model but perturbed the rate constants « (V') and
B(V') used in gating variable dynamics, simulating errors in channel parameter specification (fig. 3B).
Once again, EKF-based inference provided significantly more accurate estimates of both membrane
voltage and channel states compared to MSE minimization. These results suggest that our approach
can tolerate moderate misspecification in gating dynamics. Together, these experiments demonstrate
that EKF-based inference, combined with stochastic modeling of dynamics, confers robustness to
common forms of model misspecification.

S Application to real morphologies

Having established the method’s efficiency in controlled settings, we next apply it to morphologically
detailed neuron models derived from real reconstructions, including a retinal ganglion cell (RGC)
and a CA1 pyramidal neuron.

5.1 Application to 2D retinal ganglion cell

We applied our method to a morphologically detailed model of a retinal ganglion cell (RGC),
replicating conditions typical of in vitro studies using planar multi-electrode arrays (MEAs) [29]. In
these setups, retinal tissue is placed ganglion-side down on the MEA, enabling simultaneous current
injection and extracellular voltage recording from hundreds of electrodes (fig. 4A). We adopted a
reconstructed RGC morphology from Vilkhu et al. [29], consisting of a soma and a complex dendritic
arbor discretized into 122 compartments. The membrane model includes modified HH sodium and
potassium channels with non-standard kinetics. We assumed shared maximum conductances across
all dendritic compartments, yielding a total of six parameters to estimate [29]. For details of the
model, see Appendix F.

Here, we assumed the spatial location of the neuron to be known and constrained to a 2D plane, as
is typical in retinal MEA experiments [30, 31, 29]. Extracellular voltages were recorded using a
simulated MEA with 30pm pitch, matching the geometry of the original 512-electrode array. To
reduce computation, we used a subset of 10 electrodes spanning the entire neuron.

Given the high dimensionality of the latent state space (d = 610), we used our scalable EKF variants
for efficient inference. Notably, the diagonal EKF performed poorly: assuming diagonal covariances,
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Figure 4: Inference of retinal ganglion cell (RGC) properties given multi-electrode array (MEA)
recordings. A: RGC cell geometry and electrode layout. Darker shaded MEA sites match the
voltage traces shown in panel B. B: Simulated extracellular recordings at ten sites for noise level
oobs = 0.5 V. C: Marginal log-likelihood during optimization for diagonal EKF. D: The heatmap
of the voltage block of H"H (log scale) shows that the diagonal approximation is expected to
fail. E: Marginal log-likelihood for block-diagonal EKF. F: Fitted voltage traces in the soma. The
block-diagonal EKF infers the voltages accurately while the diagonal EKF fails.

the marginal log-likelihood diverged from its value at the true parameters, indicating severe model
mismatch (fig. 4C). The reconstructed voltage traces were also inaccurate, failing to reproduce the true
dynamics (fig. 4F). This is precisely the failure mode predicted in Section 3.2: since each electrode
records signal from many close compartments, H " H cannot be diagonal (fig. 4D). In contrast, the
block-diagonal EKF converged to the true marginal likelihood (fig. 4E) and accurately reconstructed
both the membrane voltage traces (fig. 4F) and the underlying conductances (fig. F.1).

5.2 Application to CA1 hippocampal pyramidal cell

Finally, we applied our approach to a morphologically detailed model of a rat CA1 hippocampal
pyramidal neuron, based on the C10 model introduced by Cutsuridis et al. [32]. This model has been
used in prior computational studies to examine hippocampal circuit function and memory encoding,
capturing the integration and propagation of signals across dendritic and axonal compartments
[32, 33]. We recreated the full morphology of the C10 cell, including the soma, axon, basal dendrites,
and apical dendrites (fig. SA). The cell contained region-specific HH-type channels with subcellularly
varying conductances and gating kinetics [32, 34, 35], yielding 24 maximum conductances to infer.
Extracellular signals were recorded with a simulated Neuropixel Ultra probe replicating the real
probe’s geometry. To account for unknown spatial position, we added six rigid-body parameters
(rotation and translation), for a total of 30 parameters. Further experimental details and figures
are provided in Appendix G. Following Carnevale and Hines [7], the cell was discretized into 60
compartments, resulting in a latent state of dimension 360. We ran the block-diagonal EKF with over
100 restarts and retained the solution with the highest final marginal log-likelihood (fig. 5B).

Our method successfully recovers the neuron’s spatial configuration (fig. 5A, black vs. blue), and
accurately reconstructs membrane voltage (fig. 5D). It also recovers some of the maximum conduc-
tances, though not all (fig. 5C). This outcome is consistent with a well-documented phenomenon in
conductance-based neuron models: parameter degeneracy, where multiple combinations of channel
conductances can yield virtually indistinguishable voltage dynamics [36, 37]. Despite this, our
method reliably recovers the neuron’s functional dynamics and spatial structure, demonstrating that
biophysical and geometric inference from high-density extracellular recordings is feasible in realistic,
large-scale neuron models.
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Figure 5: Inference of membrane properties and locations of a C10 model of a pyramidal cell.
A: Pyramidal cell placed near a Neuropixel Ultra probe. Estimated compartment locations closely
match true cell position. B: Marginal log-likelihood during optimization, converging to the ground
truth value. C: Inferred conductances g, and gy, in selected dendritic compartments. D: Recovered
membrane voltage traces in dendrites of the stratum radiatum (left) and lacunosum-moleculare (right).

6 Conclusions, Limitations, and Future Work

Summary We presented an approach for identifying detailed biophysical neuron models from
high-density extracellular voltage recordings. Our method recovers not only membrane conductances
but also the spatial position of a neuron relative to the recording probe, solely from extracellular data.
We further developed a state-inference and parameter-estimation framework based on an Extended
Kalman Filter (EKF), which provides robustness to model misspecification and accurate inference
even when the assumed dynamics deviate from the true underlying system.

Limitations and Future Work A limitation of the EKF for parameter estimation is its computa-
tional cost: even with diagonal or block-diagonal approximations, it remains more expensive than
MSE minimization, particularly for large models. Additionally, EKF approximations may bias pa-
rameter recovery: while the block-diagonal EKF recovered parameters accurately in our evaluations,
the diagonal approximation was less reliable in certain cell-probe geometries. Moreover, biophysical
models often exhibit parameter degeneracy, where different conductance combinations yield similar
voltage dynamics, limiting identifiability even when predictions fit the data well.

Finally, while our results demonstrate the feasibility of biophysical inference from extracellular
recordings at the single-cell level in idealized settings, extending this framework to real in vivo
conditions remains a significant challenge. Real recordings involve complex networks of interacting
neurons. A natural next step is to move beyond isolated cells and model local neural populations
surrounding the probe. Given knowledge of the targeted brain region, one could incorporate priors on
network structure and cell types informed by anatomical and physiological studies, enabling more
comprehensive modeling of in vivo extracellular signals.

Conclusion Overall, our method—based on a combination of state-space modeling and differ-
entiable simulation—opens up possibilities to estimate properties across the entire morphologies
of neurons from extracellular signals alone. This approach will enable new analysis of how cells
generate action potentials and open new avenues for studying the biophysical contributions to neural
computation.
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A Resources

All simulations and inference experiments were conducted using four open-source Python libraries:

* JAX (version 0.4.31, Apache License 2.0): A high-performance numerical computing
library based on XLA, providing composable function transformations and GPU/TPU
support. Available at: https://github.com/google/jax.

e JAXLEY [20] (version 0.7.0, Apache License 2.0): A differentiable simulator for multi-
compartment Hodgkin—Huxley models, supporting GPU acceleration, just-in-time compi-
lation, and gradient-based parameter optimization. Available at: https://github. com/
jaxleyverse/jaxley.

* DYNAMAX [21] (version 0.1.4, MIT License): A library for state-space modeling and
inference, used here for implementing the Extended Kalman Filter (EKF) and its (block)
diagonal approximation. Available at: https://github.com/probml/dynamax.

* SPARSEJAC [28] (version 0.2.0, MIT License): A library for efficient sparse Jacobian
computation using graph coloring and automatic differentiation. Available at: https:
//github.com/mfschubert/sparsejac.

For experiments on large-scale neuron models (e.g., the retinal ganglion cell and C10 model of a
pyramidal neuron), we used an NVIDIA H100 GPU. All other experiments were run on a MacBook
Pro with an Apple M1 Pro (8-core CPU, 16 GB RAM) running macOS 13.4.

All code used for inference, cell and voltage simulation, and the experiments presented in this paper
is available at: https://github.com/ianctanoh/eap-fit-hh.

B Validity of the Diagonal EKF

The true update step of the EKF is:

-1
Soe= (St + HIRHY) 7)
The procedure described by Chang et al. [27] matches the diagonals of the precision matrices:

diag(,)) = diag(Z;, ) + diag(H, Ry 'Hy). (8)
Since the filtered covariances are assumed to be diagonal, this amounts to:

-1
diag(%,),) = (diag(zt—lj_l) + diag(H, R;1Ht)) . ©9)

Their procedure is therefore equivalent to the standard EKF (7) with a diagonal predicted precision
matrix Et_‘tl_l and a diagonal measurement information matrix H, R; *H,.

In their work, Chang et al. [27] assume that F'; = I. This drastically simplifies the computation of
diag(E;Itlil) since 3;; 1 = X;_1);—1 + Q¢ and both Q; and 3;_|;_; are assumed to be diagonal.

This trivial Jacobian assumption is not realistic in our case. But to simplify calculations, we assume
. . . -1 . _

that 3, _; is diagonal, so that diag(2;, ;) = diag(E¢);—1) L

Our procedure becomes equivalent to the standard EKF with a diagonal predicted covariance matrix

3l¢|¢—1 and a diagonal measurement information matrix HtT R, 'H,.

Hence, the validity of our diagonal EKF method relies jointly on the dynamics model (through 33, _1)
and the emission model (through H R; *H,). We discuss each in turn.
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A diagonal approximation of 3;;,_, is reasonable for well-behaved HH models

The predicted covariance verifies
Siio1 = Fe 1 F + Qu, (10)

where F; = Jac(fp)(p¢—1)¢—1) and Q is the dynamics covariance. Assume that both 3;_;; and
Q. are diagonal. The question becomes: What is the structure of FtZ]t_”t_lFtT ?

Structure of F,. In multi-compartment Hodgkin—Huxley models, each compartment voltage depends
on its own state and on voltages of neighboring compartments, while each gating variable depends
only on its own previous value and the voltage of its corresponding compartment. Ordering the latent
state as

Z; = [Vtv ggl)v g§2)7 R gEL)]v
the Jacobian has the block-arrow structure
_ A, B%l) B§2) . BEL)—
c p® o ... 0

F,=|Cc?® o D?

c” o 0 - D]
Here A, encodes voltage—voltage coupling, Bgé) and CEZ) capture voltage—gate interactions, and

Dﬁ‘f) govern gate self-dynamics. In biophysical HH models, Cg) and Dﬁ‘f) are diagonal, and ng)
are nearly diagonal (apart from weak solver-induced mixing). We assume that these off-diagonal
elements are negligible and consider in the following that B,EZ) are diagonal. The main source of
non-diagonality lies in A, through axial coupling between compartments.

Magnitude of cross-derivatives. We examine the relative size of the partial derivatives that make
up F;. In the Hodgkin—Huxley model, these correspond to four types of dependencies: (i) gating
variable on voltage (Ox:1/0V;), (ii) gating variable on gating variable (041 /0xy), (iii) voltage on
gating variable (0V;y1/0x;), and (iv) voltage on voltage. We analyze each in turn.

(i) Gate with respect to voltage. Consider a generic gating variable  governed by
i =a(V)(1-a)-B(V)z,

where a(V') and 3(V') are voltage-dependent transition rates. The exponential-Euler update gives:

Toi1 = Too(Vy) + (24 — 200 (V) e 2TV, (11)
with (V) .
=) =swmyrsry ") T amy ey

Differentiating x,; with respect to V; gives:

5$t+1
Vi

=2l (Vi) (1 — e 27V)) 4 (34 — 2o (Vi) K (V2),

where k(V;) = e=2t/7(V)) 1t follows that (using the chain rule on k):

o' (Vi)B(Ve) — a(Vi) ' (Vi)

O T BE - F) = —Ar( (V) + BV e eI,

v (Vi) =

Applying the triangle inequality and using that |z; — x| < 1 (since = € [0, 1]) yields the bound

1 — e_At(o‘"Fﬂ)

+ Afe D) |
a+p

< (o] +18') [
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For small At, with moderate and smooth transition rates «, f3, this is of order O(At), confirming that
voltage-to-gate sensitivities are small under typical HH kinetics.

(ii) Gate self-derivative. It follows directly from eq. (11) that:

041 _ e~ At (V)8 ¢ (0, 1]
amt ’ Y

soitis O(1) and typically much larger than the cross term 9x41/0V; when At is small and |o/|, | 5'|
are moderate.

(iii) Voltage with respect to gate. Next, consider the effect of a gating variable x; on the voltage
update. In practice, JAXLEY uses an implicit solver. Here for the sake of clarity, we assume an
explicit Euler step. For a fixed compartment, it can be written as:

At [Toe
Cm | S

Vigr = Vi + > geac(t) (Vi = Eo) + Gax(Vi) |, (12)

where a.(t) is the activation of channel c. For the channel ¢* corresponding to gate z;, the only
dependence is through a.« (), giving

oV At
a;—l_l = —a gex aé* (LIJt) (Vrt — Ec*)-

In practice, a.-(v;) = Cx¥ with k € {1,...,4} and C, z; € [0, 1]. Indeed recall that the activation
is a product of gating variables (between 0 and 1) to some integer power. Then |a’. (x;)| < kC < k.
Thus,

]Wt“ <k Atge |V — Ee|.
(9.’1?,5

With At = 0.025 ms, g~ <1 S/cm?, and |Vi — Ec+| < 100 mV, these terms are the dominant
off-diagonal contribution to F'; becoming large primarily during spikes. Provided that spikes do not
occur at high frequency throughout the cell, these contributions remain intermittent and should not
overwhelm the diagonal structure of F';.

(iv) Voltage with respect to voltage. In eq. (12), the voltage of compartment ¢ is coupled to the voltage
of its neighboring compartments via the axial conductance term:

GV = g™ (v =),

jri

It follows that

A {1 + e[ Eegeact) = Xy g™, =i,

v AL g, j#i

Thus, diagonal entries are O(1) (since the activations |a.(t)| < 1), while off-diagonal ones scale as
O(At).

What conditions justify the diagonal approximation? The diagonal approximation is appropriate
when the state transition Jacobian does not introduce significant cross-coupling among state variables.
Based on the previous analysis, this occurs when:

* the gating rate functions «, 8 and their derivatives remain bounded over the relevant voltage
range, such that their contributions scale with At.

* the neuron does not generate action potentials at excessively high frequency, ensuring that
the sensitivity of the voltages to the state variables, OV} /Ox, does not remain persistently
large.
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Figure B.1: Rate functions (left) and their derivatives (right) over plausible values of the
membrane voltage for the standard HH model [6]. The rate functions and their derivatives are
bounded.

Models satisfying these criteria are referred to as well-behaved for the purposes of this approximation.

The first property is typically satisfied by standard Hodgkin—Huxley parameterizations: the rates
and their derivatives are moderate in magnitude, and selecting At sufficiently small ensures that the
off-diagonal contributions to the predicted covariance remain negligible (see fig. B.1).

In contrast, frequent spiking leads to Jacobian elements OV, 1/0x; that are large relative to the
diagonal terms, which makes the diagonal approximation unreliable. Even at lower firing rates,
these terms are often smaller but not always negligible (fig. B.2). If these sensitivities become too
large, one practical mitigation strategy is to assign very small process and initial variances to the
gating variables (i.e., very small entries of Q, and 3 corresponding to gating variables). In the EKF
prediction step, the covariance update is given by

Si—1 = Fe S F +Qy,

where 3;_,,_; = diag(s1,...,sq4) is the current covariance. The off-diagonal terms in 3,,_;
arise from products of the form F. ;.s,F; ;i for ¢ # j. Reducing the diagonal entries s;, that
correspond to gating states directly suppresses these cross-coupling contributions, thereby preventing
large off-diagonal growth in the predicted covariance and maintaining the validity of the diagonal
approximation. This adjustment effectively treats gating dynamics as quasi-deterministic, while
retaining voltage-level stochasticity that can still capture uncertainty from injected current or ion
channel composition.

The validity of the diagonal EKF now heavily relies on the emission model, and more specifically on
whether a diagonal approximation can be made for H, R; ' H.

Diagonality of H/ R, 'H,

In our work, we assumed whitened observation noise, Ry = 0 I, so diagonality depends solely on

H/ H;. Let the first K state dimensions correspond to compartment voltages and the remainder to
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Figure B.2: Structure of the dynamics Jacobian for a 100-compartment HH cable (At = 0.025
ms). A: Simulated membrane voltages for a high-frequency spiking regime (top) and a low-frequency
regime (bottom). B: Square-root—scaled heatmaps of the dynamics Jacobian averaged over time
in both regimes. Consistent with our analysis, gate-to-voltage (Ox¢41/0V;) and voltage-neighbor
(av;(ﬁl / 8Vtu )) couplings remain weak relative to the diagonal terms. The main distinction between
regimes is that voltage-to-gate sensitivities (0V;1/0x;) increase substantially during high-frequency
spiking, overwhelming the diagonal entries. In the low-frequency regime, these cross-derivatives
tend to remain smaller than the diagonal but they are not trivially negligible.

gating variables. Since observations depend only on voltages,
H,=[HY 0], HYeRMxK
so that

H)THY 0
H:Ht _ |:( t) t :| .
0 0
Crucially, extracellular potentials are linear in membrane voltages (cf. eq. (4)). Because this mapping
is static, H? = H for all t. The diagonality of (H") H? therefore depends only on the spatial
arrangement of electrodes and compartments.

Let’s analyze the structure of H". Recall that the transmembrane current in compartment ¢ is

10 =19 4+ 50 Zg(m) —v®),
gt
and electrode m measures N
K
B =3 fmlv(n)’
i=1

where r,,; is the electrode—compartment distance and x depends on properties of the extracellular
medium. Differentiating yields the “self + neighbors” structure:

_ _75(3) Zg(Lk) + Z (5:3)

k~j i le

Define the inverse—distance matrix R € RM*N with R,,,; = & /Tmi» a diagonal matrix D with
Dj; = S Zg(j,k)7
kg
and an axial coupling matrix G with

o S0 glisd) 4~ g,
710, otherwise.

18



Then
H' = R(G — D), (H")'H” = (G - D)"W(G — D),
where W := RTR.

Let C' := G — D and denote its entries by c,;; the support of column ¢ is the local neighborhood
S; ={i} U{k: k ~i}. Then

[(Hv)THv]ij — Z Z Cpi Cqj Whpq-
peS; QGS,‘

The electrode Gram matrix is
2

M K
Wpq = Z . (13)

T"mpT'mq

m=1

Using (13), W,, becomes large when electrodes are simultaneously close to compartments p and q.
Therefore,
()T

grows when both neighborhoods S; and S; lie within the sensitive region of multiple electrodes. This
regime is typical for high-density probes such as Neuropixels or MEAs, where many electrodes lie
close to many compartments, yielding strong off-diagonal structure in (H?) " H" and limiting the
accuracy of the diagonal EKF (cf. Section 5.1).

When is H* T H" diagonal? When no electrode is simultaneously close to two different compartments,
W is approximately diagonal and

T ~ e
c; Wey =~ E Cpi Cpj Wpp-
pES,-ﬂSj

If the overlap .S; N S} is small, the off-diagonal terms remain strongly attenuated. In this regime,

(H?) TH" is close to diagonal, and a diagonal EKF update accurately captures the dynamics covari-
ance.

A concrete example is a linear branch with /N compartments of length L, and N electrodes placed so
that electrode ¢ lies at distance [ < L from compartment ¢. Each electrode then primarily measures
one compartment, yielding nearly diagonal W. Since a linear cable has minimal neighborhood
overlap (S; N S; = Q unless j = i & 1), (H") "H" becomes tridiagonal with dominant diagonal
entries. This setting aligns with our single-branch experiment and explains why the diagonal EKF
performs well there (Section 4.1).

A similar argument applies in the multi-branch example (Section 4.2). The compartments in each
branch are sufficiently long that electrodes are rarely simultaneously close to two distinct compart-
ments. As a result, W remains approximately diagonal, and (H") " H" preserves a near-tridiagonal
structure, with the only substantial off-diagonal contributions occurring near the branch point where
neighborhood overlap increases. Although the diagonal approximation is less accurate than in the
single-branch case, our results show that it still achieves good reconstruction performance in this
geometry.

Takeaway. When the model is well-behaved in the sense defined above—small integration steps,
bounded gating kinetics, sufficiently low spiking frequency so that voltage-to-gate sensitivities
do not dominate—the state transition Jacobian F is close to diagonal, and therefore Em_l =

F, Et,ut,lFtT + Q: remains approximately diagonal. However, the problem geometry may cause

H, R; 'H; to deviate strongly from diagonality, which can undermine the validity of a diagonal
filtered covariance approximation.

C Mathematical details of the Block-Diagonal EKF

C.1 Definition and closedness

We now describe the EKF when covariances are constrained to a block-diagonal form. We assume
that the first K latent dimensions correspond to compartment voltages and the remaining ones to
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gating variables. At each time step ¢, we assume that both predicted and filtered covariances take the

form
Ef“"* 0

=10 diag(o?,)]

* € {t—1,t},

where Z”‘J* € REXK j5 dense and o‘f‘ , contains the gating variances. We denote this family of
matrices by BD(K).
Proposition 1 (Closedness of the BD(K) family). Assume that for all t:

1. The dynamics covariance Q is BD(K).

2. The dynamics Jacobian F, is BD(K).

If 3o is BD(K), then both predicted and filtered covariances remain BD(K ) for all subsequent time
steps.

Proof of Proposition 1. Writing z; = [v; g, assume X _1);_; is BD(K):

vV 0
> I R
t—1[t—1 |: 0 diag(”?—ut—ﬂ] .

Under Assumptions 1-2, F; = blkdiag(A;,diag(d;)) and Q; share this structure. The EKF
prediction 3,y = FtZt,”t,lFtT + Q; then yields

= _ Atzle‘t—lAtT + Q%)’U 0
tltfl - 0 dlag(d? ® Uf_llt_l + q?) .

For the update step, we use the identity:

_ _ -1
= (5, +HIRH,)
Now,
vv_ 0 ( vv_ )—1 0
| -1 -1 _ tlt—1
Deje—1 = [ 0 diag(oftl)} = Et\t—l - [ 0 diag ((o-flt_l)l)] ’
Since H; = [H} 0],
H/R;'H, = {Jg O] 30 .= H R, H
+ + t — 0 0l t t t t-
Therefore the sum inside the inverse is block diagonal,
VU —1 v
1 T —1 _ ( t|t—1) +Jt 0
Y tH R Hy = [ 0 diag ((af‘t_l)’l) ’
and inverting yields
VU — v -1
X = (( tlt*l) 1 +Jt) . 0 .
0 d1ag(0't2‘t_1)

Hence both predicted and filtered covariances remain BD(XK). Note that only the voltage block is
updated.

Let’s derive the update for the filtered mean. We use:

Hije = Myje—1 + Bt H/R;' (yt - ht(:u’t|t—1))'
Let the residual be
r =yt — ht(ﬂtn—l)-
Since H, = [H} 0] and
£t 0

Zge =1 diag(aflt_l)’

vTp—1
H/R;'r, = {Ht lg‘t rt]

9
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we obtain the block update

= [ o [P ] _ s SR
| Hije—1 0 Hyjg—q

Thus only the first K states (the voltages) are updated; the gating variables remain unchanged, which
is consistent with the observation depending solely on the voltage block.

O

This structure reduces the EKF complexity from O(d?) time and O(d?) memory to O(K?® + d) and
O(K? + d), respectively, a major gain since K < d in typical large neuron models.

C.2 Validity of the block-diagonal approximation

We now discuss the assumptions of Proposition 1.

Assumption 1 (BD(K) process noise). In our setting, process noise is injected independently per
compartment and gating variable, so Q; is naturally BD(K) since it is diagonal.

Assumption 2 (BD(K ) Jacobian). The exact Jacobian is not strictly BD(K) but has the arrow-shaped
form

- At Bgl) B§2) L. BEL)—
c o o ... 0

F=|C” o D ... 0 |, (14)
c” o o .. DV

where A, captures voltage—voltage coupling and the other blocks represent voltage—gate interactions
and self-dynamics. Under the BD(K') approximation, we set

B =c” =0, v,

yielding
F; = blkdiag(A;,D{",...,D!*), D" diagonal.

This corresponds to neglecting cross-sensitivities between voltages and gates, i.e. assuming
OViq1/0x,~0 and Ox41/0V; =0 for each gate x.

As established in Appendix B, the gate-to-voltage terms (Ox;y1/0V;) are negligible under well-
behaved HH dynamics. Voltage-to-gate sensitivities (0V;1/0x+) grow primarily during frequent
spiking activity and can become significant in those regimes, although they often remain manageable
when spiking rates are low. When these terms become problematic, the same mitigation strategy used
for the diagonal approximation applies: assigning very small process and initial variances to gating
states suppresses their contribution to the predicted covariance.

Under these conditions, a block-diagonal covariance structure remains reasonable while still support-
ing dense inter-compartmental voltage coupling through A ;.

D Unidentifiability of 3D compartment locations

In this section, we show that when inferring a neuron’s spatial position from extracellular recordings,
the geometry of the recording sites can impose inherent unidentifiability in the recovered compartment
locations.

Our multi-compartment model represents the neuron as a collection of compartments, each treated as
a point source of transmembrane current located at its center. Hence, estimating a neuron’s spatial
configuration reduces to estimating the 3D positions of its compartments. According to eq. (4), the
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extracellular potential measured at a given electrode depends only on the transmembrane currents
and the inverse distance to each compartment. Therefore, if the distances between each compartment
and all electrodes remain unchanged, the resulting extracellular signals will be identical.

We first consider the case where all electrodes lie on a single line (fig. D.1A). Fix a single compartment
at some position in 3D space (black). The set of all locations that preserve its distance to a given site
is a sphere. The intersection of these spheres—corresponding to multiple sites aligned on a line—is
a circle. Thus, any position on this circle (blue dashed circle) yields the same set of distances (and
hence the same extracellular potentials), rendering the compartment’s position unidentifiable up to a
rotation around the axis defined by the recording sites.

Next, suppose the electrodes lie on two parallel lines, forming a planar grid (fig. D.1B). In this case,
for a given compartment (black), the set of equidistant locations from the first line of sites lies on
a circle (blue), and similarly for the second line (green). The only positions that simultaneously
preserve distances to both sets of sites lie at the intersection of these two circles. This intersection
consists of exactly two points: the true location of the compartment and its mirror reflection across
the plane defined by the electrodes (grey).

This ambiguity persists even with more than two lines of electrodes, as long as they all lie in the
same plane. For example, fig. D.1C shows three parallel lines of recording sites in a planar grid,
viewed from above. The mirror-reflected location remains the only position (besides the true one)
that produces identical distances to all recording sites.

In general, if all electrodes lie in a 2D plane (e.g., z = 0), then for any compartment, the reflection
of its true location across this plane yields the same distances to all electrodes. Consequently, the
extracellular voltages at all sites are unchanged. This holds independently of the number or spacing of
electrodes and applies to all compartments of a multi-compartment model. Therefore, in the absence
of additional constraints, the entire neuron morphology is identifiable only up to reflections of its
compartments across the recording plane.

This ambiguity can be partially mitigated by incorporating structural constraints or prior knowledge
about the neuron. For example, if the cell is known to consist of a single linear branch, then the
configuration of all compartments is restricted to lie along a line. In this case, the full morphology is
only ambiguous up to a reflection of that line across the recording plane—substantially reducing the
space of indistinguishable configurations. Similarly, if the compartmental connectivity is known (i.e.,
which compartments are connected to each other and in what topology), then only configurations that
preserve both the pairwise distances to electrodes and the known connectivity are allowed. While this
does not fully resolve the mirror symmetry, it rules out arbitrary spatial rearrangements. Finally, full
identifiability can be achieved by breaking the planar symmetry of the recording sites. For example,
recordings from two probes placed at different depths or orientations—such that their electrodes do
not lie in the same plane—remove the reflection ambiguity and enable unique localization of each
compartment in 3D space.

E Additional Details and Figures for Section 4

This section provides additional experimental details, biophysical parameters, and figures related to
the validation experiments presented in Section 4.

The extracellular resistivity was assumed to be homogeneous and equal to 300 2 - cm, and the specific
membrane capacitance was fixed to C,,, = 1 uF/cm? across all compartments. While we assume
homogeneous extracellular resistivity, this simplification neglects known spatial variability [25],
which could be addressed in future work. Extracellular voltages were recorded at a sampling rate of
40kHz.

All voltages and channel states were initialized at their steady-state values at rest, and thus we
assumed the initial state to be known in the EKF. We set the initial covariance matrix of the EKF to
3o = 0.11. Observation noise was also assumed to be known, as commercial devices that record
extracellular potentials typically provide noise specifications [16, 38].

In Sections 4.1 and 4.2, where the state dynamics were well-specified and deterministic, we
fixed the standard deviation of the membrane potentials and channel states to small values:
o, = 0.0001 mV/ms'/2, and oge = 0.00001 ms—/? (same for all the channels) for all com-
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Figure D.1: Unidentifiability of the positions. A: The distance between the compartment (black)
and each electrode (blue) is unchanged as it moves along the blue dashed circle. It follows that
any position of the compartment on the circle yields the same observations at all the electrodes. B:
Compartment’s distance to each blue (resp. green) electrode is unchanged as it moves along the blue
(resp. green) dashed circle. Hence, the grey location is the only other position that yields the same
observations as the black one at all electrodes. C: Panel B viewed from above with now three parallel
lines containing electrodes (green, blue, orange ones). Since all the electrodes lie in a 2D-plane
(z = 0), the only position that yields the same observations as the true location at each electrode is
the true location’s reflection with respect to the plane z = 0.
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Figure E.1: Validation on synthetic single-branch. A: Distributions of inferred maximum conduc-
tances under different observation noise levels oy, (colored dashed lines indicate the means). B:
Distributions of inferred maximum conductances for different cell-probe distances (colored dashed
lines indicate the means). C: Distributions of inferred maximum conductances for various inference
methods with s = 1 #V and d = 5um (orange lines indicate the means).

partments. These values ensured numerical stability while avoiding degenerate gradients during
optimization.
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Figure E.2: Recovery of membrane voltage with diagonal EKF in the single-branch model for
compartments 1 (left), 5 (center) and 10 (right). The mean and standard deviation are estimated by
considering 40 randomly simulated datasets at fixed observation noise oq,s = 1V. Despite a small
bias in the estimation of the parameters, the voltage traces are still reconstructed accurately.

Na K Leak
Maximum conductance (S/cm?) 0.12 0.02 0.003
Reversal potential (mV) 53.0 —-107.0 —88.5188

Table 1: Biophysical parameters of the single-branch model.
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Figure E.3: Extracellular voltage traces simulated for different noise levels in the single-branch
model. A: o, = 1V, B: 05,5 = 10V, C: 045 = 30uV represents a challenging noise regime.
The electrode is 5um away from the cell.

E.1 Validation on single-branch model

We evaluated a single-branch cell model as a baseline for benchmarking. This branch consists of 10
cylindrical compartments of length 24 ym and radius 2 um, equipped with standard Hodgkin—Huxley
(HH) sodium, potassium, and leak channels [6]. The maximum conductances and reversal potentials
are provided in Table 1. A constant current of amplitude 1.5 nA was injected for 20 ms.

As the neuron—electrode distance increased, the signal-to-noise ratio (SNR) decreased, resulting in
higher bias and variance in inferred conductances (fig. E.1B). At short distances with high SNR,
we observed that MSE minimization, standard EKF and block-diagonal EKF yielded comparable
estimates, indicating that EKF’s linearization introduced minimal error and confirming the validity of
the block-diagonal approximation (fig. E.1C). The diagonal EKF introduces a slightly larger bias,
but its voltage reconstructions remain highly accurate (fig. E.2). This is consistent with our analysis
in Appendix B: only the first (soma) compartment lies near the electrode, with all others much
farther away, so cross-visibility is minimal and a diagonal covariance approximation is sufficient. As
observation noise increased, estimation accuracy declined (fig. E.1A), but even at 30 xtV RMS—a
challenging noise regime (fig. E.3C)—estimates remained close to the ground truth. Notably, the
induced variance on the reconstructed voltage traces is small (fig. E.4), indicating robustness even
under challenging conditions.
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Figure E.4: Recovery of membrane voltage for different observation noise levels in the single-
branch model. The mean and standard deviation are estimated by considering 40 datasets simulated
at fixed observation noise. Even in challenging noise regimes (o5 = 3014V), the induced variance
on the voltage trace reconstruction is negligible.

Na K Leak

Reversal potential (mV) 53.0 —107.0 —88.5188

Table 2: Reversal potentials used in the multi-branch neuron model.

Branch gn. gk JLeak  Length

1 0.12  0.02 0.0003 24.0
2 0.08 0.03 0.0004 50.0
3 0.10  0.008 0.0001 50.0

Table 3: Maximum conductances (in S/cm?) and branch lengths (in zm) in the multi-branch neuron
model.

E.2 Validation on multi-branch neuron model

We also evaluated a multi-branch neuron model to test conductance and geometry inference. The
model consists of three branches, each discretized into four cylindrical compartments of radius
2 pm, for a total of 12 compartments. Each compartment contains standard Hodgkin-Huxley sodium,
potassium, and leak channels [6]. Reversal potentials are shared across all branches (Table 2), while
conductances and lengths vary by branch (Table 3). The axial resistivity was set to 150 2 - cm. A
current of 2 nA was injected in the first compartment of branch 1 (soma) for 20 ms.

With EKE, all the maximum conductances were inferred accurately for all 40 datasets simulated with
oops = 1V (fig. E.5).

With the diagonal EKF, the recovered conductances exhibit a more pronounced bias than in the single-
branch case, particularly in branches 2 and 3 (fig. E.0), although the voltage traces remain accurate
up to small shifts in these branches (fig. E.7), and the compartment center locations were inferred
correctly (fig. E.8). In this multi-branch configuration, the diagonal approximation retains decent
accuracy because, despite the relatively dense electrode layout, the long-compartment geometry
reduces instances where electrodes are simultaneously close to distinct compartments. Since each
compartment only has two neighbors (except at the branching node), this limits off-diagonal measure-
ment coupling. As detailed in Appendix B, this geometry ensures that most of the off-diagonal entries
of (H") " H" remain significantly smaller than terms near the diagonal (fig. E.9). Consequently, the
diagonal approximation introduces some bias but continues to provide useful and stable inference.

E.3 Robustness to Model Misspecification

In the main text, we considered two forms of model misspecification: missing ion channels and
incorrect gating kinetics.
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Figure E.5: Validation of the EKF on a synthetic multi-branch neuron. The maximum conduc-

tances gr,, gk and gn, were inferred accurately for all the branches, across 40 datasets simulated with
Tobs = 1 V.
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Figure E.6: Inferred parameters using the diagonal EKF on a synthetic multi-branch neuron.
We show results across 40 datasets simulated with o,s = 1 V. The recovered conductances exhibit
a more pronounced bias than in the single-branch case, particularly in branches 2 and 3.

Omitted Ion Channels. To test robustness to missing channels, we simulated data from a single-
branch model (Iength 30um, radius 1pm) containing M-type potassium (KM) and L-type calcium
(CaL) channels (Table 5) in addition to Hodgkin-Huxley (HH) channels (Table 4). Inference was
performed using a model containing only the HH channels. A constant current was injected for
20 ms. Extracellular voltages were recorded at ten electrodes with a noise level of g,5s = 0.1 uV.
Biophysical parameters for the simulation model are shown in Table 6.

During EKF inference, we fixed the standard deviation of the channel states to ogue =
0.00001 ms~'/2 (same for all the channels) and treated o, as a free parameter to capture voltage
uncertainty due to model mismatch. We performed hyperparameter sweeps over learning rates and
initial values of the parameters, selecting the configuration with the highest marginal log-likelihood.

For MSE-based optimization, we used Adam [39] and reported the result with the lowest final MSE.
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Figure E.7: Reconstructed voltage for first (top) and last (bottom) compartment of branch 1
(left), 2 (middle) and 3 (right) using the diagonal EKF on a synthetic multi-branch neuron.
Voltage traces are averaged over 40 randomly simulated datasets with oo, = 1uV. Although
conductance estimates exhibit noticeable bias, the reconstructed voltages remain accurate up to small
shifts, consistent with a regime in which the diagonal approximation remains adequate.
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Figure E.8: Diagonal EKF accurately recovers compartment center locations. Estimated 3D
positions are averaged over 40 randomly simulated datasets with os = 1p4V. Although conductance
estimates exhibit noticeable bias, the reconstructed compartment locations remain accurate, consistent
with a regime in which the diagonal approximation remains adequate.

Perturbed Gating Dynamics. To evaluate robustness to incorrect kinetics, we generated data using
gating functions from a retinal ganglion cell (RGC) model (Table 8) and performed inference using
the original Hodgkin-Huxley kinetics [6]. The neuron was a single cylindrical cable (Iength 24 pm,
radius 2 pm), discretized into four compartments. A constant current was injected into the first
compartment (soma) for 20 ms. Extracellular voltages were recorded at 10 different locations with
noise level o5 = 0.1 V. Biophysical parameters for the simulation model are shown in Table 7.

During EKF inference, we treated the voltage standard deviation o, and channel noise levels
0K, ONa, OLeak aS learnable parameters. While only the sodium and potassium kinetics are misspeci-
fied, we allowed separate noise levels for each channel type to provide flexibility in how uncertainty
is accounted for. We also used the same o, 0k, ONa, OLeak across all compartments, though future
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Figure E.9: Heatmap (in log scale) of H” " H", the voltage block of H " H. The largest coefficients
occur between adjacent compartments and at branch points, yielding an approximately tridiagonal
structure. Off-diagonal entries corresponding to distant compartments are substantially smaller,
reflecting the long-compartment morphology, where few electrodes are simultaneously close to two
non-neighboring compartments. This structure helps explain why the diagonal approximation remains
reasonably effective in this setting.

Sodium (Na*) Potassium (K*)
0.32(V +47) 0.032(V + 45)

Um = T —(vianya T T om(vas)/5

5 - 0.28(V + 20) B — 0.5e-(V+50)/10

T (VH20)/5 _q
ap = 0.128 e~ (V+43)/18

B 4
B = 1+ e-(V+20)/5

Table 4: Rate functions for sodium (Na*) and potassium (K*) channels used in the single-branch
model for the missing channel experiment.

M-type K* (KM) L-type Ca?* (CaL)

1 V+27

Poo =7 T e-0.1(V+35) Qq = 0'0551 — o—(V+27)/38
4000

- 3.3 ¢0-05(V+35) 4 —0.05(V+35)

T Bq = 0.94 = (VHTO/IT

o, = 0.000457 e~ (V+13)/50

~0.0065
Br = 14 e—(V+15)/28

Table 5: Rate functions for M-type potassium (KM) and L-type calcium (CaL) channels used in the
single-branch model for the missing channel experiment.

work could consider compartment-specific noise parameters. As before, we performed grid search
over learning rates and initializations, selecting the result with the highest marginal log-likelihood.

For MSE optimization, we used Adam and selected the result with the lowest MSE.

The EKF smoothed posterior mean of the voltage recovers the true voltage trace in each of the four
compartments, whereas MSE minimization fails (fig. E.10).
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Na K Leak KM CalL

Maximum conductance (S/cm?) 0.05 0.005 0.0001 0.000004 0.0001

Reversal potential (mV) 50.0 —-90.0 —-70.0 —90.0 120

Table 6: Biophysical parameters for the single-branch neuron model used in the missing channel
experiment.

Na K Leak
Maximum conductance (S/cm?)  0.12 0.02 0.003
Reversal potential (mV) 53.0 —107.0 —88.5188

Table 7: Biophysical parameters for the single-branch neuron model used for the kinetic mismatch
experiment.
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Figure E.10: Robustness to misspecified channel kinetics. The EKF smoothed posterior mean of the
voltage recovers the true voltage trace in each of the four compartments, whereas MSE minimization
fails.

F Retinal Ganglion Cell (RGC) Model

We use a morphologically detailed model of a retinal ganglion cell (RGC), based on a reconstruction
from Vilkhu et al. [29]. The morphology was originally provided as a NEURON .hoc file,! which
we converted to SWC format for compatibility with JAXLEY. The model includes the full soma and
dendritic arbor, and was discretized into 122 compartments, assigning one compartment per branch.

The ion channel model consists of Hodgkin—Huxley (HH) conductances: fast sodium, delayed-rectifier
potassium, and leak channels. Voltage-dependent rate constants are listed in Table 8, and channel
reversal potentials in Table 9. Region-specific maximum conductances for soma and dendrites are
given in Table 10. All values were taken directly from Vilkhu et al. [29], with a minor adjustment to
the leak reversal potential to ensure resting membrane potentials near —65 mV across compartments.

"https://github.com/ramanvilkhu/rgc_simulation_multielectrode
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Sodium (Na*) Potassium (K*)

~ 2.795(V + 35) ~0.09575(V + 37)
Am = T S(vassy/i0 M T T o—(vsn)/10

Bm = 90.83 ¢~ (V+60)/20 3 — 1 915 ¢~ (V+47)/80

ap = 1.817 e~ (V+52)/20

B 27.25
Bn = 1+ e—(V+22)/10

Table 8: Rate functions in the RGC model.

Na K Leak

Reversal potential (mV) 60.60 —101.34 —67.1469

Table 9: Reversal potential for ion channels in the RGC model.

9Na gK JLeak
Dendrites 0.06 0.035 0.0001
Soma 0.06 0.035 0.0001

Table 10: Maximum conductances in the RGC model (in S/cm?).

Note that Vilkhu et al. [29] also consider two additional channels (a calcium channel and a calcium-
gated potassium channel), which we neglected in this experiment. Including these channels could be
the subject of future work.

The axial resistivity was 143.2 €2 - cm, the membrane capacitance was 1 uF/cm? across all compart-
ments, and the extracellular resistivity was 1000 €2 - cm.

To generate synthetic extracellular recordings, we applied a constant somatic current injection for
10 ms. Voltage recordings were simulated using a synthetic planar multi-electrode array (MEA) with
a sampling rate of 40 kHz.

We fit this model using our diagEKF and block-diagEKF implementations. All voltages and channel
states were initialized at their steady-state values at rest, and thus we assumed the initial state
to be known. We set the initial covariance matrix to 3y = 0.1I. Observation noise was also
assumed to be known, as commercial devices that record extracellular potentials typically provide
noise specifications [16, 38]. Since the state dynamics were well-specified and deterministic, we
fixed the standard deviation of the membrane potentials and channel states to small values: o, =
0.001 mV/ms/2, and oyye = 0.0001 ms~'/2 (same for all the channels) for all compartments.
These values ensured numerical stability while avoiding degenerate gradients during optimization.

We optimized conductance parameters using the Adam optimizer. We tried multiple learning rates
and initialized values uniformly at random within the bounds shown in Table 11. We ran over 100
random initializations with different seeds and selected the result that achieved the highest marginal
log-likelihood.

With the block-diagonal EKF, all maximum conductances were accurately inferred (F.1) and the
voltage traces faithfully reconstructed across the cell (F.2).
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Region gL 9INa 9K
Soma [0.0001, 0.005] [0.05,0.1] [0.01,0.05]
Dendrite  [0.0001, 0.005] [0.05,0.1] [0.01, 0.05]

Table 11: Initialization bounds for the maximum conductances in the RGC model (in S/cm?).
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Figure F.1: Inference of retinal ganglion cell (RGC) properties given multi-electrode array
(MEA) recordings (block-diagonal EKF). Estimation of all the maximum conductances at noise

level ogps = 0.1 V.
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Figure F.2: Membrane voltage recovery for the RGC model in six compartments (bloc-diagonal
EKF). A: soma, B: compartment 31, C: compartment 61, D: compartment 91, E: compartment 106,
F: compartment 122. The ordering of the compartments is determined by the SWC file.

31



N S
\ LM-M
e

RadDist
RadMed
RadProx
Soma
OriProx
/ \OriDist

axon

Figure G.1: Morphology of the C10 model. LM-t: lacunosum moleculare (thin), LM-M: lacunosum
moleculare (medium), LM-T: lacunosum moleculare (thick), RadDist: radiatum distal, RadMed:
radiatum medial, RadProx: radiatum proximal, OriProx: oriens proximal, OriDist: oriens distal.

G CA1 Pyramidal Neuron (C10 Model)

We use the C10 model of a CA1 pyramidal neuron, originally developed by Cutsuridis et al. [32].
The morphology is provided as a NEURON .hoc file,”, which we converted to SWC format for
compatibility with JAXLEY. This file specifies the full 3D morphology, including the diameters and
lengths of all the branches (Table 14). As shown in fig. G.1, the neuron is divided into 15 anatomical
sections.

Following Cutsuridis et al. [32], we applied the compartmentalization heuristic of Carnevale and
Hines [7] to determine the number of compartments per section. Specifically, a section of length L is

discretized into ) I
N=|-—F+4+09])|-2+1
Lz <0.1->\f(100) i >J b

where the frequency-dependent electrotonic length is defined as A (f) = L/ ﬁ%, with d the

2
diameter, R, the axial resistivity, and C,, the specific membrane capacitance. This yields a total of
60 compartments.

Each compartment contains Hodgkin—Huxley (HH) conductances: sodium, potassium, and leak. The
sodium current, however, uses a three-gate formulation with gating vector Ax, = (m, h, s) € [0, 1]3.
The total transmembrane current released by a compartment is given by:

I = gnam?hs(V — Bxa) + gg n*(V — Ex) + gu(V — Ep). (15)

Moreover, unlike the canonical HH model, the gating kinetics vary across anatomical regions [40].
Gating variables evolve according to first-order kinetics:

d\
o=
The steady-state functions Ao (V) and time constants 7, (V') for m, h, and n vary by region and are
listed in Table 12.

(V) Ao (V) = A

The third gating variable — s — models sodium attenuation. Its dynamics are consistent across regions
except for a region-specific attenuation factor Na_att € [0, 1]. The expressions for s (V') and 75(V)
at fixed Na_att are given at temperature 7" = 34°C (Table 13).

’https://github.com/tomko-neuron/HippoUnit/tree/master/Cutsuridis_CA1_2010
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Soma/Axon T + e R ] + e
Tm = 0.05 ms 7, = 1.0 ms Tp = 3.5 ms
1 L 1 1
m - T = — n e —
Dendrite ToageT T 14T I
Tm = 0.05 ms 75, = 0.5 ms T, = 2.2 ms

Table 12: Steady-state functions and time constants for gates m, h, and n in the C10 model.

S Formula

1 + Na_att - ¢(V+60)/2
1+ e(V+60)/2
60.0854(V+60)
(V) max (0.0003(1 1 0-427(VF60))’ 3'0)

S00(V)

Table 13: Kinetics of sodium attenuation gate s as a function of attenuation factor Na_att in the C10
model.

Section  Diameter (um) Length (um) Na_att

Soma 10 10 0.8
Axon 1 150 1.0
RadProx 4 100 0.5
RadMed 3 100 0.5
RadDist 2 200 0.5
OriProx 2 100 1.0
OriDist 1.5 200 1.0
LM-T 2 100 0.5
LM-M 1.5 100 0.5
LM-t 1 50 0.5

Table 14: Detailed morphology of the C10 model and sodium channel attenuation (Na_att) per
section.

Na K Leak

Reversal potential (mV) 50.0 —80.0 —123.0

Table 15: Reversal potential in the C10 model.

The attenuation factor Na_att is defined per section based on Migliore et al. [35] (Table 14).

Reversal potentials follow Cutsuridis et al. [32], with a small adjustment to ET, to enforce a resting
potential near —70 mV across compartments (Table 15).

The maximum conductances for each region were taken directly from Cutsuridis et al. [32] (Table 16).

We used the following physiological constants: axial resistivity R, = 150 €2 - cm, specific membrane
capacitance C,,, = 1 uF/cm?, and extracellular resistivity pexy = 300 - cm. While we assume
homogeneous extracellular resistivity, this simplification neglects known spatial variability [25],
which could be addressed in future work. Note that Cutsuridis et al. [32] also consider additional
channels, which we neglected here. Including them in our model could also be the subject of future
experiments.
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Region Jr JNa gK
Soma 0.0002 0.007 0.0014
Axon 0.000005 0.1 0.02
OriProx  0.000005 0.007 0.000868
OriDist ~ 0.000005 0.007 0.000868
RadProx  0.000005 0.007 0.000868
RadMed 0.000005 0.007 0.000868
RadDist  0.000005 0.007 0.000868
LM 0.000005 0.007  0.000868

Table 16: Maximum conductances in the C10 model (in S/cm?).

Region gL JNa 9K

Soma [le-4,4e-4] [0.003,0.015] [0.001, 0.005]
Axon [le-6, 1e-5] [0.08, 0.12] [0.015, 0.03]
Dendrite [le-6, 1e-5] [0.003, 0.015] [0.0005, 0.002]

Table 17: Initialization bounds for the maximum conductances in the C10 model (in S/cm?).

Synthetic extracellular recordings were generated by injecting a constant current into the soma for
30 ms. Voltage traces were simulated using a synthetic Neuropixel Ultra probe at a 40 kHz sampling
rate, with noise standard deviation o, = 0.1 V.

The true location of the cell was generated by applying a rigid-body transformation—consisting of a
3D rotation and translation—to the positions of the compartment centers defined via the SWC file.
The geometric parameters thus included three rotation angles (one for each axis), applied to the base
positions of the compartment centers obtained from the SWC file, and a 3D translation vector applied
to the base position of the soma compartment.

We fit this model using the block-diagonal EKF. All voltages and channel states were initialized at
their steady-state values at rest, and thus we assumed the initial state to be known. We set the initial
covariance matrix to Xy = 0.1I. Observation noise was also assumed to be known, as commercial
devices that record extracellular potentials typically provide noise specifications [16, 38]. Since the
state dynamics were well-specified and deterministic, we fixed the standard deviation of the membrane
potentials and channel states to small values: o, = 0.001 mV /ms'/2, and oy = 0.0001 ms—*/2
(same for all the channels) for all compartments. These values ensured numerical stability while
avoiding degenerate gradients during optimization.

We optimized maximum conductances and geometric parameters using the Adam optimizer. We tried
multiple learning rates and initialized the maximum conductances uniformly at random within the
bounds shown in Table 17. The rotation angles were initialized uniformly on [0, 27), and translations
were initialized to place the soma near its true location. We chose this initialization to reduce the
risk of converging to a mirror-reflected solution, which produces identical extracellular signals when
using a planar probe (see Section D). We ran 100 random initializations with different seeds and
selected the result that achieved the highest marginal log-likelihood.

Although the marginal log-likelihood converged to its true value after a few hundred iterations
(fig. G.3F), and both the voltage traces (fig. G.3A-E) and compartment positions (fig. 5A) were
accurately recovered across the cell, some maximum conductances did not converge to their true
values or even continued to fluctuate (fig. G.2) —reflecting the well-known degeneracy in conductance-
based neuron models, where multiple parameter combinations can produce nearly identical voltage
dynamics.

H DiagEKEF vs. EKF runtime

We compare the computational efficiency of the standard Extended Kalman Filter (EKF) and our
sparse diagonal approximation (DiagEKF). To isolate performance differences, we consider a simpli-
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Figure G.2: Inference of the maximum conductances of the C10 model in all the regions. A:
Soma, B: Axon, C: OriProx, D: OriDist, E: RadProx, F: RadMed, G: RadDist, H: LM. While several
maximum conductances converged to their true values, many were still fluctuating.

fied neuron model: a 24 pym cable equipped with standard Hodgkin—Huxley channels [6]. A constant
current is injected for 20 ms, and extracellular voltage is recorded at a single electrode at a 40 kHz
sampling rate.

The neuron is discretized into N compartments, with N € {1, 10, 20, 50, 100,200}. As N increases,
the number of state variables (membrane voltages and gating variables) grows proportionally. Impor-
tantly, the gating dynamics in these models are highly local: each variable typically depends only on
its own previous value and the voltage of its corresponding compartment. As a result, the Jacobian of
the dynamics function quickly becomes very sparse when the number of states increases (fig. H.1A).

To evaluate performance, we ran both EKF and DiagEKF for 500 iterations on an NVIDIA H100
GPU for each value of V. As shown in fig. H.1B, DiagEKF achieves approximately 2x speedup
over the dense EKF in high-dimensional settings. This highlights the computational advantage of our
diagonal approximation in large biophysical neuron models.
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Figure G.3: Recovery of the membrane voltage in different regions of the pyramidal cell. A:
Soma, B: Axon, C: RadDist, D: OriDist, E: LM. F: Marginal log-likelihood trace during optimization.
Despite some maximum conductances failing to converge to their true values, the membrane voltage
was recovered accurately across the cell and the marginal log-likelihood converged to its true value,
reflecting the well-known degeneracy in conductance-based neuron models.
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Figure H.1: Computational efficiency of our diagonal approximation to the EKF filtering
distribution A: Sparsity of the Jacobian of the dynamics function over state dimension. Especially
large biophysical models are sparse, suggesting that sparse approximations to the filtering covariance
could provide accurate but efficient inference. B: Average runtime over 500 updates for the EKF
and sparse diagEKF versus state dimension for a 20ms time horizon. The EKF with diagonal
approximation is twice as fast as EKF with a dense covariance for large models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction clearly describe the contribu-
tions: a method to fit multi-compartment Hodgkin—Huxley models using only extracellular
voltage data, leveraging differentiable simulation and an Extended Kalman Filter (EKF).
These claims are validated through simulated experiments and applications to realistic
morphologies.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of EKF-based inference (e.g., computational cost, approxima-
tion biases) and the challenge of applying this framework in vivo are explicitly discussed in
the “Conclusions, Limitations, and Future Work™ section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the approximations made (diagonal, block-diagonal) are rigorously justified
in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the neuron models, simulation tools
(JAXLEY, DYNAMAX), experimental setups (e.g., number of compartments, observation
noise levels), and inference methods, enabling reproduction of results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available morphology datasets and the open-source
JAXLEY and DYNAMAX frameworks. We plan to release our code, and experiment instruc-
tions are detailed in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies architectures, noise levels, dataset generation, probe ge-
ometries, and inference procedures (e.g., optimizer, restarts), in the main text and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper includes distributions over repeated simulations and multiple
optimization runs and reports 1-sigma confidence intervals on inferred posterior voltage
traces (see Fig. 3).
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides information about computational efficiency and scalability
of the EKF-based inference, including runtime for large models. Details on compute time
and scaling behavior are provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research involves no human or animal subjects, uses synthetic or previously
published morphological data. The societal impacts are minimal and in line with ethical Al
development.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is primarily foundational neuroscience research using synthetic
data. Potential downstream impacts are not immediate, and the scope of application remains
preclinical.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk models or sensitive datasets were released. All simulations were
performed using synthetic or publicly available data.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

Justification: We use two open-source codebases: JAXLEY (Apache 2.0 License) and DYNA-
MAX (MIT License), both of which are properly cited in the paper. Morphological data for
the retinal ganglion cell and pyramidal neuron models are taken from previously published
studies [? ? ] and are cited accordingly. The licenses and terms of use for all codebases are
respected, and we plan to include URLSs and license details in the supplementary material.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release scripts, simulation configurations, and experiment data with
documentation, including parameter settings and model variants used in the study, as part of
the final submission or camera-ready version.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human or animal data collection was performed.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human or animal data collection was performed.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Any LLM usage was strictly for grammar checking and figure caption refine-
ment, with no impact on scientific content or methodology.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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