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ABSTRACT

Training large language models (LLMs) with reinforcement learning (RL) meth-
ods such as PPO and GRPO commonly relies on ratio clipping to stabilise up-
dates. While effective at preventing instability, clipping discards information and
introduces gradient discontinuities. We propose Probability Smoothing Policy Op-
timisation (PSPO), which smooths the current policy’s probabilities toward the
old (behaviour) policy before computing the importance ratio, analogous to label
smoothing. Unlike clipping, PSPO preserves gradient signal, while interpolation
toward the old policy creates a soft trust region that discourages large, destabilis-
ing updates, with formal guarantees.
We instantiate PSPO within GRPO (GR-PSPO) and fine-tune Qwen2.5-0.5B/1.5B
on GSM8K, evaluating on GSM8K test and the cross-dataset generalisation on
SVAMP, ASDiv, and MATH-500. Relative to unclipped GRPO (single iteration;
no data reuse, ratio always = 1), GR-PSPO attains similar accuracy but produces
clearer, more concise, and more logically coherent responses (LLM-as-Judge).
Compared to clipped GRPO, GR-PSPO substantially improves performance in
both the 0.5B and 1.5B models, with a boost of over 20% on GSM8K (39.7% vs.
17.6% for 0.5B, 59.4% vs. 37.8% for 1.5B).

1 INTRODUCTION

Reinforcement learning (RL) is now a central component of large language model (LLM) fine-
tuning pipelines after supervised fine-tuning (SFT) (Ouyang et al.). Proximal Policy Optimiza-
tion (PPO; Schulman et al., 2017b) underpins systems such as WebGPT (Nakano et al.), LLaMA-
2 Chat (Touvron et al., 2023), and Sparrow (Glaese et al.). Group Relative Policy Optimization
(GRPO) adapts PPO for LLMs (Shao et al., 2024) and has been applied to mathematical reasoning
tasks (Shao et al., 2024), alongside other RL approaches (Luong et al., 2024; Mitra & Ulukus, 2025;
Luo et al., 2025; Zheng et al., 2025). A key challenge within policy optimisation is achieving a bal-
ance between learning speed and stability. Optimal theoretical options (Schulman et al., 2017a) lead
to small step sizes, making convergence at best inefficient but often infeasible. Trust Region Policy
Optimisation (TRPO) (Schulman et al., 2017a) constrains updates using the KL divergence, which
allows for larger steps but is computationally inefficient. PPO provides an empirically stronger reg-
ularisation by using clipped probability ratios as a first-order approximation of the KL divergence,
of which GRPO inherits.

However, ratio clipping has drawbacks, namely vanishing gradients when the policy ratio leaves the
clip range. Additionally, clipping can miss better policies outside of the clipped policy space (Chen
et al., 2022), especially in problems where greater exploration might be beneficial. Alternatives (KL
early stopping (Sun et al., 2022), smooth transforms (Chen et al., 2022)) can be brittle or saturating,
particularly in more complex settings. Some implementations of GRPO (Hugging Face) effectively
avoid clipping by using a single pass over data; the importance sampling ratio is always 1, which
essentially reverts the approach back to a vanilla policy gradient method, and as such, will typically
require small steps and be sample inefficient.

We propose Probability Smoothing Policy Optimisation (PSPO), as an alternative to clipping. In-
stead of truncating ratios, we smooth the current policy’s probabilities toward the old behaviour
policy before computing the importance ratio. This is inspired by label smoothing in supervised
learning. This smoothing reduces overconfidence in any single action while retaining informative
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gradients everywhere. Crucially, by interpolating with πθold , it acts as a soft trust region. We instan-
tiate PSPO in GRPO (GR-PSPO) and evaluate on GSM8K (Cobbe et al., 2021), ASDiv (Miao et al.,
2020), SVAMP (Patel et al., 2021), and MATH-500 (Lightman et al., 2023), training on Qwen2.5-
0.5B/1.5B.

2 PROBABILITY SMOOTHING POLICY OPTIMISATION

Policy gradient methods optimise the expected reward by updating the policy πθ with respect to
sampled trajectories. To effectively reuse trajectories from an old policy πθold , any update is regu-
larised using importance sampling. Importance sampling estimates how likely the (state st, action
at) pair would occur given the current policy. In PPO (Schulman et al., 2017b) and GRPO Shao
et al. (2024), this is approximated with a ratio of the current policy πθ and the old, behaviour policy
πθold which generated the trajectory. This ratio is defined in equation 1,

rt(θ) =
πθ(at | st)
πθold(at | st)

. (1)

GRPO (Shao et al., 2024) is an adaptation of PPO, which removes the need for a critic model,
reducing the amount of training resources and developed specifically for LLMs. GRPO samples a
group G of outputs a for a given prompt s ∈ S, and uses the group scores r as a baseline estimate
to then calculate the advantage Â using the relative rewards based on the current group baseline;
Ât,i = Rt,i − R̄t,i. GRPO includes the same clipping principle as PPO in its surrogate objective,
although some default implementations suggest that using GRPO with only 1 iteration over the data
gives comparable performance and negates the effect of clipping. GRPO aims to maximise the
objective function:

JGRPO(θ) = Et

[
1

G

G∑
i=1

{
min

(
rt,i(θ)Ât,i, clip(rt,i(θ), 1− ε, 1+ ε)Ât,i

)
− βDKL[πθ | πref ]

}]
,

(2)

where DKL[πθ | πref ] is an estimate of the KL divergence from the current policy πθ to a refer-
ence policy πref , and β is a hyper-parameter which controls the strength of this penalty. This KL
divergence is similar to that used by TRPO, but in GRPO it is used as a soft penalty of πθ to πref

compared with TRPO’s hard constraint of πθold to πθ. In some popular implementations (Hugging
Face), β is set to 0 as it reduces memory usage and improves the training speed by not needing to
load the reference model.

In complex RL problems, there is often multiple optimal actions. Language generation tasks demon-
strate this excellently, as within language, there are typically many possible words (actions) that can
represent the same meaning (achieve the same goal).

To reduce overconfidence in any single action in a given state, we took inspiration from the la-
bel smoothing regularisation method used in supervised learning (Szegedy et al., 2016). Label
smoothing has been shown to reduce overconfidence and improve the robustness of a model (Müller
et al.) (Goibert & Dohmatob, 2019). Label smoothing, equation 3, moves from one-hot encoded
target distribution φ(k | x) to soft targets φ̃(k | x) that are a weighted average of the hard target dis-
tribution and another distribution, traditionally the uniform distribution u(k) (Szegedy et al., 2016),
1

φ̃(k | x) = (1− α) · φ(k | x) + α · u(k), (3)

where α ∈ [0, 1] controls the smoothing strength. We apply (3) to the current policy probability in
equation 4,

π̃θ(at | st) = (1− α)πθ(at | st) + α · q(at | st), (4)

where q(·) represents the distribution we want to smooth towards.

For policy optimisation, updates should be within a trust region to enable larger step updates. There-
fore, we decided to smooth towards the old behaviour policy, q = πθold , rather than the uniform

1In the original label smoothing paper, ε is used as the smoothing parameter, we use α to avoid confusion
with the clipping range, often denoted as ε.
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distribution, so the smoothing behaves as a behaviour-anchored trust region. Szegedy et al. (2016)
noted that the deviation in the loss when using label smoothing compared to the loss otherwise could
equivalently be captured by the KL divergence. This bolsters our intuition to smooth towards the old
policy, and in doing so, we introduce an equivalent estimate of the KL-divergence with the smoothed
action probability and create a soft trust region. The smoothed probability becomes equation 5,

π̃θ(at | st) = (1− α)πθ(at | st) + α · πθold(at | st). (5)

If we then consider the ratio equation, we can find the effect from the smoothed probability on the
ratio using equation 5,

r̃t(θ) =
π̃θ(at | st)
πθold(at | st)

, (6)

which given (5), becomes equation 7,

r̃t(θ) =
(1− α)πθ(at | st) + α · πθold(at | st)

πθold(at | st)
= (1− α)rt + α. (7)

Soft Trust Region - Implicit divergence control from probability smoothing. Given the
smoothed policy and ratio (Eqs. ( 4)–( 7)), the linear interpolation, r̃t(θ) = (1 − α)rt + α, yields
a contraction around r = 1 and induces a soft trust region anchored at πθold , consistent with our
intuition.

Lemma 1 (Total variation contraction). For any state s and α ∈ [0, 1],

∥π̃θ(· | s)− πθold(· | s)∥1 = (1− α) ∥πθ(· | s)− πθold(· | s)∥1.

Proof. Since π̃θ − πθold = (1 − α)(πθ − πθold) pointwise, linearity of the ℓ1 norm gives the result
directly.

Corollary 1 (KL upper bounds shrink under smoothing). We use the joint convexity of KL and set
λ = 1− α, P1 = πθ, P2 = πθold , Q1 = πθold , Q2 = πθold . This gives us:

λP1 + (1− λ)P2 = (1− α)πθ + απθold = π̃θ, λQ1 + (1− λ)Q2 = (1− α)πθold + απθold = πθold

Given that DKL

(
πθold∥ πθold

)
= 0, we then find:

DKL

(
π̃θ ∥πθold

)
≤ (1− α)DKL

(
πθ ∥πθold

)
Similarly for the reverse direction we find:

DKL

(
πθold ∥ π̃θ

)
≤ (1− α)DKL

(
πθold ∥πθ

)
.

Hence α directly sets a soft trust-region radius in both TV and (upper-bounded) KL.

Proposition 1 (Ratio contraction and non-vanishing slopes). For any action a with πθold(a | s) > 0,
and r(a) is the importance sampling ratio for action a,

|r̃(a)− 1| ≤ (1− α) |r(a)− 1|, ∂

∂r

(
r̃ A

)
= (1− α)A.

Thus, PSPO preserves slope (1−α)A everywhere, avoiding the flat plateaus introduced by clipping
outside [1− ε, 1 + ε] (Fig. 1).

Proposition 2 (Overconfidence regularisation). For any state s and action a, the smoothed policy
satisfies:

π̃θ(a | s) ≤ max
(
πθ(a | s), πθold(a | s)

)
,

with strict inequality whenever πθ(a | s) ̸= πθold(a | s) and πθ(a | s) > πθold(a | s).

Proof. From the definition π̃θ(a | s) = (1−α)πθ(a | s)+απθold(a | s). When πθ(a | s) ≥ πθold(a |
s), we have π̃θ(a | s) < πθ(a | s). When πθ(a | s) < πθold(a | s), we have π̃θ(a | s) < πθold(a |
s).

3
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Figure 1: Illustrative plot of ratio r vs. the surrogate term A, and the gradients for A > 0 and A < 0,
with ε = 0.2 and α = 0.2. For A > 0 the clipped ratio is flat (zero gradient) for r > 1 + ε; for
A < 0, the clipped ratio is flat when r < 1 − ε. PSPO’s slope is (1 − α)A everywhere, creating a
soft trust region without hard plateaus.

Proposition 3 (PSPO surrogate as a scaled policy gradient with implicit stability). The per-state
PSPO objective can be written

JPSPO(θ) = Ea∼πθold
[r̃(a)A(a)] = (1− α)Ea∼πθ

[A(a)] + αEa∼πθold
[A(a)].

using equation 1 and the change of measure formula. Only the first term depends on θ, and using
policy gradient theorem, ∇θJPSPO = (1 − α)Ea∼πθ

[
∇θ log πθ(a | s)A(a)

]
. Hence, PSPO is the

on-policy gradient scaled by (1−α), while the policy itself is mixed with πθold (Lemma 1), implicitly
controlling divergence without an explicit KL term (which we set β=0 in our GRPO runs).

Figure 1 illustrates how PSPO and clipping affect the ratio and the gradients. Clipping creates flat
regions where gradients vanish: for A > 0, the clipped surrogate is constant for r > 1 + ε; for
A < 0, it is constant for r < 1 − ε. In contrast, our method smooths the current policy toward the
behaviour policy, giving us Eq. 7. This smooths ratios toward 1, creating a soft trust region anchored
by πθold , while maintaining non-zero gradients everywhere: ∂

∂r (r̃A) = (1− α)A. Therefore, PSPO
preserves learning signal outside the clip range whilst still controlling updates.

Applicability. PSPO is a direct replacement for ratio clipping, requiring only the substitution r̃t =
(1− α)rt + α for rt in any clipped-ratio objective. This change requires no additional computation
or memory beyond evaluating the usual importance ratio.

Application to GRPO: We demonstrate how PSPO can apply to GRPO, to produce GR-PSPO
which changes (2) to equation 8,

JGR-PSPO(θ) = Et

[
1

G

G∑
i=1

(r̃t,i(θ)Ât,i)− β · DKL[πθ | πref ]

]
. (8)
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3 EXPERIMENTAL SETUP

3.1 MODEL AND PROMPT FORMATTING

We fine-tune the open source causal LMs Qwen2.5-0.5B and -1.5B (Qwen Team, 2024) using their
own tokeniser. All runs use identical tokenisation and prompt formatting. Each sample is formatted
with a system instruction followed by the user problem text. We use the model’s native chat template
via tokenizer.apply chat template(..., add generation prompt=True) to
append the assistant header and ensure the model completes in the assistant role.

System:

You are a careful math solver. Think through the solution and show the steps. Use English
only. End the response with the final answer only in the format: ’#### <final numeric
answer only>’.

User content: the raw problem text (with no few-shot exemplars).

When decoding completions, we set max completion length=128. We do not enforce any
additional stop strings beyond the template EOS.

We use this formatting to encourage stepwise reasoning and finish with a single, numeric final
answer, which can be more easily extracted for calculating the reward.

3.2 MATHEMATICAL REASONING DATASETS

We train on GSM8K (standard train/test split) (Cobbe et al., 2021) and evaluate in-domain on
GSM8K and out-of-distribution on ASDiv (Miao et al., 2020), SVAMP (Patel et al., 2021), and
MATH-500 (Lightman et al., 2023). These benchmarks span basic arithmetic word problems (AS-
Div), robustness to linguistic perturbations (SVAMP), and competition-level reasoning (MATH-500;
sampled from MATH (Hendrycks et al., 2021)). Following Minerva (Lewkowycz et al.) and Open-
WebMath (Paster et al., 2024), we restrict evaluation to problems with numeric final answers to
enable automatic verification. For GSM8K training, we split the published train set into 7000 train
and 472 validation examples.

3.3 REWARD FUNCTION

Our rewards follow the commonly used correctness-based setup (Lewkowycz et al.; Paster et al.,
2024; DeepSeek-AI et al., 2025): R=1 for exact numeric correctness within 10−6 tolerance, plus a
+0.05 shaping bonus if the output matches the format “#### <number>”; values are constrained to
[0, 1] giving {0, 0.05, 1}. We first attempt to extract the number from the requested format; if this is
not present, we fall back to the last numeric token in the completion.

3.4 TRAINING

All methods use the same hardware (2×NVIDIA H200 GPUs), effective batch size, and decoding
settings. We train each method across 5 seeds (0.5B) and 3 seeds (1.5B), saving checkpoints and
running evaluations every 100 steps during training under a fixed generation-token budget; we report
the best-validation checkpoint per run for test evaluation.

3.5 METHODS

We compare GR-PSPO to two GRPO variants: GRPO-clip (standard clipped ratio) and GRPO-
noclip (single iteration over the data). GR-PSPO and GRPO-clip use 2 iterations (data reuse), while
GRPO-noclip uses 1 iteration (setting the ratio to 1). To reduce memory and match common defaults,
we set β = 0 in the KL penalty (Hugging Face) (cf. Eqs. 2, 8). We also compare with two baselines:
(i) the base model with the same decoding settings; (ii) SFT on GSM8K using trl’s SFTTrainer
with cross-entropy and the identical prompt template.

5
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3.5.1 HYPERPARAMETERS

We list some of the hyperparameters in Table 1. We ran hyperparameter tuning for each method us-
ing a small grid-search across the learning rate and clipping range/smoothing strength. We ran each
method for 500 global training steps on the GSM8K training set, using the evaluation reward to de-
termine the optimal parameter values. We kept the memory-related parameters consistent across all
methods, with bf16=True, num generations=4, per device train batch size=4,
and gradient accumulation steps=162. We also kept the decoding parameters consistent
across all methods, during training: temperature=0.8 and top-p=0.9. All other hyperpa-
rameters are the GRPOTrainer defaults(Hugging Face), including the AdamW optimiser, the KL
coefficient β = 0 and 3 training epochs.

Table 1: Training hyperparameters for the different methods used when fine-tuning Qwen2.5-0.5B
and -1.5B on GSM8K training dataset.

Parameter GRPO-noclip GRPO-clip GR-PSPO
Number of Iterations 1 2 2

Qwen2.5-0.5B Parameters

Learning rate 1× 10−6 5× 10−6 5× 10−7

Clipping Range (ε) N/A 0.1 N/A
Smoothing Strength (α) N/A N/A 0.1

Qwen2.5-1.5B Parameters

Learning rate 1× 10−6 5× 10−7 5× 10−7

Clipping Range (ε) N/A 0.2 N/A
Smoothing Strength (α) N/A N/A 0.1

3.6 EVALUATION

We evaluate each test set across temperatures T ∈ {0.0, 0.2, 0.4, 0.6, 0.8} with top-p=1.0. We
report zero-shot Top-1 accuracy with 95% confidence intervals. We use Top-1 at T = 0 as it reflects
single-answer deployment settings and is deterministic.

We also assess response quality by scoring 5 metrics on a scale of 1 − 5 using an LLM-as-Judge
(validating results by sampling a subset of the responses ourselves). The metrics scored are: overall
quality; constraint adherence (format fidelity, steps present); logical coherence (no contradictions,
consistent rationale); mathematical soundness (valid operations/derivations); and clarity (concise,
well-structured). Prompts are in App. B.

4 RESULTS

At T=0 (greedy, deterministic), GR-PSPO improves Top-1 over GRPO-clip by +22.1pp on GSM8K
for the 0.5B model (39.7 vs. 17.6) and +21.6pp for the 1.5B model (59.4 vs. 37.8), while remaining
comparable to GRPO-noclip. There are positive gains on ASDiv/SVAMP (approx. 20pp on 0.5B
and 7pp and 12pp on 1.5B); MATH-500 shows minimal improvements.

Tables 2 and 3 report our full results alongside published performances on similar model sizes; we
omit published results which are below < 15% accuracy from the table (Brown et al.; Ho et al.,
2023; Zhuang et al., 2025; Ho et al., 2023) for visual clarity. The full table can be found in the
Appendix A.

0.5B. Results on the 0.5B model are shown in Table 2. GR-PSPO and GRPO-noclip demonstrate
similar performance across all datasets (≤1pp difference; CIs overlap), while GR-PSPO is far ahead
of GRPO-clip across datasets (e.g., GSM8K 39.7 vs. 17.6). On MATH-500, improvements vs. clip-
ping are smaller (16.8 vs. 10.3). GR-PSPO and GRPO-noclip both outperform SFT on all datasets,

2Given that we used 2 GPUs for training, the effective batch size was 64.
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but SFT does outperform GRPO-clip. Compared to literature at similar scale Luo et al. (2025) out-
performs our methods on both GSM8K and MATH, using a slightly larger model (0.7B vs. 0.5B).
We note that our models were only fine-tuned on GSM8K, unlike Luo et al. (2025), which fine-tunes
on both GSM8K and MATH. Zhuang et al. (2025) performs the best on MATH-500, with 23.6%.

1.5B. Results on the 1.5B model are shown in Table 3. GR-PSPO attains the best T=0 Top-1 on
GSM8K (59.4) and MATH-500 (25.6), with GRPO-noclip slightly ahead on ASDiv/SVAMP; both
outperforming GRPO-clip. Confidence intervals are larger at this scale, effectively covering the gap
between GR-PSPO and GRPO-noclip. Compared with the published results, Luo et al. (2025) is the
closest result, with slightly poorer performance on both datasets.

Model Size Fine-tuning Dataset GSM8K ASDiv SVAMP MATH-500

WizardMath-GPT2-
Small (Luo et al., 2025)

0.1B GSM8K & MATH 26.4 - - 12.3*

WizardMath-GPT2-
Medium (Luo et al., 2025)

0.3B GSM8K & MATH 38.7 - - 15.6*

Qwen2.5-0.5B+RL (Zhuang
et al., 2025)

0.5B GSM8K 34.1 - - 23.6

WizardMath-GPT2-
Large (Luo et al., 2025)

0.7B GSM8K & MATH 50.1 - - 21.2*

FlanT5-Large + Spe-
cialised (Fu et al.)

0.76B GSM8K 20.2 23.8 20.4 -

GPT-2 (Socratic CoT) (Shrid-
har et al., 2023)

0.77B GSM8K + Socratic CoT 21.1 - - -

GPT-2 (Socratic CoT) (Shrid-
har et al., 2023)

0.77B SVAMP + Socratic CoT 21.1 - 23.6 -

Our Results

Qwen2.5-0.5B 0.5B - 8.3 50.8 26.3 10.2
SFT 0.5B GSM8K 28.6 57.6 38.1 14.2
GRPO-clip 0.5B GSM8K 17.6 42.8 34.3 10.3
GRPO-noclip 0.5B GSM8K 40.7 68.3 53.9 17.2
GR-PSPO 0.5B GSM8K 39.7 68.1 53.2 16.8

Table 2: Performance of similar-size smaller language models (< 1B parameter) from the literature,
compared with our results fine-tuning Qwen2.5-0.5B. We report our model accuracy from the zero-
shot Top-1 accuracy at temperature T = 0.
*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset
of MATH, we still compare the results here.

Model Size Fine-tuning Dataset GSM8K ASDiv SVAMP MATH-500

GPT-2-XL (Brown et al.) 1.5B GSM8K & MATH 15.4 - - 6.9*
WizardMath-GPT2-XL (Luo
et al., 2025)

1.5B GSM8K & MATH 58.9 - - 25.4*

Our Results

Qwen2.5-1.5B 1.5B - 1.6 2.4 1.7 5.1
GRPO-clip 1.5B GSM8K 37.8 70.9 58.4 14.9
GRPO-noclip 1.5B GSM8K 57.9 80.4 74.9 25.2
GR-PSPO 1.5B GSM8K 59.4 77.7 70.3 25.6

Table 3: Performance of similar-size large language models (> 1B parameter) from the literature,
compared with our results fine-tuning Qwen2.5-1.5B. We report our model accuracy from the zero-
shot Top-1 accuracy at temperature T = 0.
*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset
of MATH, we still compare the results here.

Response Quality: LLM-as-Judge scores (1–5) favour GR-PSPO’s responses on
GSM8K/ASDiv/MATH-500 across overall quality, constraint adherence, logical coherence,
mathematical soundness, and clarity; GRPO-noclip is best on SVAMP.

An example of each of our Qwen2.5-0.5B fine-tuned models responses are shown below for a ques-
tion from the ASDiv dataset:

Prompt:

7
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Dataset Model Overall Constraints Logic Maths Clarity

GSM8K Qwen2.5-0.5B 2.450 2.650 2.400 2.400 2.350
GSM8K GRPO-clip 2.072 2.486 2.133 2.082 2.009
GSM8K GRPO-noclip 3.579 4.191 3.393 3.302 3.839
GSM8K GR-PSPO 3.720 4.310 3.590 3.520 4.080
ASDiv Qwen2.5-0.5B 3.000 3.000 3.000 3.000 2.950
ASDiv GRPO-clip 2.925 3.218 2.946 2.976 2.479
ASDiv GRPO-noclip 4.380 4.610 4.300 4.330 4.380
ASDiv GR-PSPO 4.490 4.630 4.400 4.450 4.600
SVAMP Qwen2.5-0.5B 1.500 2.600 1.400 1.550 1.450
SVAMP GRPO-clip 2.700 3.340 2.640 2.750 2.420
SVAMP GRPO-noclip 3.356 4.031 3.102 3.226 3.683
SVAMP GR-PSPO 3.260 3.820 2.955 3.106 3.627

MATH-500 Qwen2.5-0.5B 4.053 4.579 4.053 4.000 3.842
MATH-500 GRPO-clip 3.967 4.262 4.010 3.967 3.793
MATH-500 GRPO-noclip 4.222 4.559 4.139 4.199 4.155
MATH-500 GR-PSPO 4.536 4.840 4.493 4.483 4.480

Table 4: Averaged scores of the model responses as judged by the llama-3.3-70b-versatile LLM.
Constraints - how well the response followed the task constraints; Logic - how coherent and
contradiction-free the logical reasoning was; Maths - how sound and valid the mathematical steps
were; Clarity - how concise and clear the response was.

The base of the parallelogram is 11 inches and its area is 132 Sq. inches. Find the height
of the parallelogram.

GRPO-clip:

The height of the parallelogram can be calculated using the formula: height =
area/baseheight = 132/11 = 12 inchesThe answer: 12 inches.The answer is: 12 inches
reibungsystem You are a careful math solver. Think through the solution and show the
steps. Use English only. End the response with the final answer only in the format: ’####
<final numeric answer only> ...

GRPO-noclip:

The height can be found by dividing the area by the base, which gives us 132/11 = 12
inches. #### 12 #### No answer provided and no explanation given. Please calculate and
respond with the result. #### No answer provided ...

GR-PSPO:

The area of a parallelogram can be calculated as the product of its base and height. Let’s
call the base 11 inches and the area 132 square inches. So we have 11 * h = 132. Solving
for h, we get h = 132 / 11 = 12 inches. #### 12

Both GRPO-clip and GRPO-noclip have a tendency to leak system instructions, rather than fin-
ishing the response early. GRPO-noclip sometimes leaks system instruction-like data, but worded
differently than how we prompted the model, this may be from the base model training. Addition-
ally, GRPO-noclip tends to append different alphabet characters, likely due to confusion within the
model as the base model is trained on multiple languages.

GR-PSPO tends to produce clearer, shorter responses. It does on occasion duplicate the final value
at the end of the message, or append additional ’####’.
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5 DISCUSSION

Compared with ratio clipping and explicit KL regularisation, PSPO provides stability without need-
ing to truncate the surrogate objective, and it does so without adding compute or an extra optimisa-
tion objective.

The empirical results demonstrate that GR-PSPO consistently outperforms GRPO-clip on all
datasets across both model sizes. Compared to GRPO-noclip, we achieve similar performances
on the 0.5B model, within 1% difference, which is within the confidence intervals of each model.
Similarly, on the 1.5B model, we perform slightly better on GSM8K and MATH-500, again, all
differences are within the confidence interval bands of the models.

Importantly, we notice a distinct difference in response styles, with our LLM-judge ranking
GR-PSPO as better in all categories on the GSM8K, ASDiv and MATH-500 datasets. On SVAMP,
all methods perform worse, with GRPO-noclip performing best of the bunch. Response quality is
important in LLM training for extractability, format fidelity, and tool use. GR-PSPO’s behaviour-
anchored smoothing reduces instruction leakage and verbosity while improving clarity and con-
straint adherence.

Furthermore, Zheng et al. (2025); NormalUhr (2025) note that larger or sparser models (e.g.
Mixture-of-Experts), often require larger rollout batch sizes, and to improve sample efficiency mini-
batches are necessary. In such cases, GRPO-noclip would be undesirable, as iterating over mini-
batches without clipping (or an alternative) would lead to large, unstable steps. Future work to
extend empirical testing to larger models would be beneficial to find the limit of GRPO-noclip’s
usefulness, and confirm that GR-PSPO continues to demonstrate stable training.

6 LIMITATIONS

While our results demonstrate the effectiveness of GR-PSPO on mathematical reasoning tasks, there
are limitations in our experimental approach.

Our experimental evaluation is only on mathematical reasoning, where there are binary, objective
reward signals. The effectiveness of probability smoothing in domains with more subjective or
continuous rewards remains unexplored, and should be considered in future work. This will also
provide more insight into the sensitivity of α across domains.

The scale of our experiments is limited to models under 2B parameters. In practice, larger models are
normally deployed. Although we demonstrate GR-PSPO performs across two model sizes, future
work should consider larger model sizes, as well as different architectures and tokeniser uses.

Finally, GR-PSPO achieves similar quantitative performance to GRPO-noclip, and we have noted
that literature(Zheng et al., 2025; NormalUhr, 2025) both have claimed GRPO struggles with larger
models and more complex architectures. Empirically comparing GR-PSPO against GRPO in these
settings will allow a fuller characterisation of where our method provides practical advantages.

7 CONCLUSIONS

We have introduced Probability Smoothing Policy Optimisation (PSPO) as a gradient-preserving
alternative to ratio clipping in reinforcement learning for large language models, which mixes the
current policy with the behaviour policy before forming the importance ratio. This blend results
in a behaviour-anchored soft trust region: it linearly contracts ratios around r=1, shrinks TV/KL
divergence bounds, and preserves non-zero gradients everywhere.

We empirically evaluate our method by implementing PSPO within GR-PSPO, we consistently out-
perform clipping GRPO on all datasets, with gains of over 20% on GSM8K on both the 0.5B and
1.5B models. We match the performance of the unclipped, single-pass GRPO, but, importantly,
GR-PSPO consistently improves clarity and constraint adherence. Additionally, PSPO is a compute-
and memory-neutral, with only a straightforward change to the importance ratio and loss calcula-
tions, making it a practical option when multi-epoch updates or mini-batches are used.
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Model Size Fine-tuning Dataset GSM8K ASDiv SVAMP MATH-500

Smaller Language Models (< 1B)

GPT-2-Small (Brown et al.) 0.1B GSM8K & MATH 6.9 - - 5.4*
WizardMath-GPT2-
Small (Luo et al., 2025)

0.1B GSM8K & MATH 26.4 - - 12.3*

WizardMath-GPT2-
Medium (Luo et al., 2025)

0.3B GSM8K & MATH 38.7 - - 15.6*

GPT-2-Medium (Brown et al.) 0.3B GSM8K & MATH 11.2 - - 6.2*
GPT-3 (ada) (Ho et al., 2023) 0.3B Distillation of 12 datasets incl. GSM8K

& SVAMP
3.1 - 5.0 -

Qwen2.5-0.5B+KD (Zhuang
et al., 2025)

0.5B GSM8K 18.7 - - 10.0

Qwen2.5-0.5B+KD
(LoRA) (Zhuang et al.,
2025)

0.5B GSM8K 9.7 - - 7.6

Qwen2.5-0.5B+SFT (Zhuang
et al., 2025)

0.5B GSM8K 21.6 - - 9.2

Qwen2.5-0.5B+SFT
(LoRA) (Zhuang et al.,
2025)

0.5B GSM8K 2.1 - - 1.2

Qwen2.5-0.5B+RL (Zhuang
et al., 2025)

0.5B GSM8K 34.1 - - 23.6

WizardMath-GPT2-
Large (Luo et al., 2025)

0.7B GSM8K & MATH 50.1 - - 21.2*

GPT-2-Large (Brown et al.) 0.7B GSM8K & MATH 13.6 - - 6.4*
FlanT5-Large + Spe-
cialised (Fu et al.)

0.76B GSM8K 20.2 23.8 20.4 -

GPT-2 (Socratic CoT) (Shrid-
har et al., 2023)

0.77B GSM8K + Socratic CoT 21.1 - - -

GPT-2 (Socratic CoT) (Shrid-
har et al., 2023)

0.77B SVAMP + Socratic CoT 21.1 - 23.6 -

Larger Language Models (> 1B)

GPT-3 (babbage) (Ho et al.,
2023)

1.3B 12 datasets incl. GSM8K & SVAMP 4.7 - 8.0 -

GPT-2-XL (Brown et al.) 1.5B GSM8K & MATH 15.4 - - 6.9*
WizardMath-GPT2-XL (Luo
et al., 2025)

1.5B GSM8K & MATH 58.9 - - 25.4*

Our Results

Qwen2.5-0.5B 0.5B - 8.3 50.8 26.3 10.2
SFT 0.5B GSM8K 35.7 39.3 14.3
GRPO-clip 0.5B GSM8K 17.6 42.8 34.3 10.3
GRPO-noclip 0.5B GSM8K 40.7 68.3 53.9 17.2
GR-PSPO 0.5B GSM8K 39.7 68.1 53.2 16.8

Qwen2.5-1.5B 1.5B - 1.6 2.4 1.7 5.1
GRPO-clip 1.5B GSM8K 37.8 70.9 58.4 14.9
GRPO-noclip 1.5B GSM8K 57.9 80.4 74.9 25.2
GR-PSPO 1.5B GSM8K 59.4 77.7 70.3 25.6

Table 5: Performance of similar-size models from the literature, compared with our results. We
report our model accuracy from the zero-shot Top-1 accuracy.
*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset
of MATH, we still compare the results here.

B LLM-AS-JUDGE SETUP

We use the following rubric:

You are an evaluator. Judge ONLY the reasoning quality (not final an-
swer). Score four criteria from 0 (bad) to 5 (excellent): 1) Uses given con-
straints/numbers 2) Logical flow (no leaps/contradictions) 3) Mathematical sound-
ness of steps 4) Clarity/conciseness (limited repetition/hedging) Return strict JSON:
”score”:”constraints”:X,”logic”:Y,”math”:Z,”clarity”:W,”overall”:O,”rationale”:”...”.
Overall is the rounded mean of the four sub-scores.

We use the following system prompt:

You are a fair, strict, and concise evaluator. Output ONLY JSON.

We use the following user prompt:
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702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Problem: prompt
Model reasoning: completion
Provide your JSON now.

We used llama-3.3-70b-versatile as our judge model, accessing it via an API service. We
averaged scores per dataset per model across all responses and seeds. We used the T = 0 answers.
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