

000 IT'S NOT YOU, IT'S CLIPPING: A SOFT TRUST- 001 REGION VIA PROBABILITY SMOOTHING FOR LLM RL 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Training large language models (LLMs) with reinforcement learning (RL) meth-
010 ods such as PPO and GRPO commonly relies on ratio clipping to stabilise up-
011 dates. While effective at preventing instability, clipping discards information and
012 introduces gradient discontinuities. We propose *Probability Smoothing Policy Opti-
013 misation* (PSPO), which smooths the current policy's probabilities toward the
014 old (behaviour) policy before computing the importance ratio, analogous to label
015 smoothing. Unlike clipping, PSPO preserves gradient signal, while interpolation
016 toward the old policy creates a *soft trust region* that discourages large, destabilis-
017 ing updates, with formal guarantees.
018

019 We instantiate PSPO within GRPO (GR-PSPO) and fine-tune Qwen2.5-0.5B/1.5B
020 on GSM8K, evaluating on GSM8K test and the cross-dataset generalisation on
021 SVAMP, ASDiv, and MATH-500. Relative to unclipped GRPO (single iteration;
022 no data reuse, ratio always = 1), GR-PSPO attains similar accuracy but produces
023 clearer, more concise, and more logically coherent responses (LLM-as-Judge).
024 Compared to clipped GRPO, GR-PSPO substantially improves performance in
025 both the 0.5B and 1.5B models, with a boost of over 20% on GSM8K (39.7% vs.
026 17.6% for 0.5B, 59.4% vs. 37.8% for 1.5B).
027

028 1 INTRODUCTION 029

030 Reinforcement learning (RL) is now a central component of large language model (LLM) fine-
031 tuning pipelines after supervised fine-tuning (SFT) (Ouyang et al.). Proximal Policy Optimiza-
032 tion (PPO; Schulman et al., 2017b) underpins systems such as WebGPT (Nakano et al.), LLaMA-
033 2 Chat (Touvron et al., 2023), and Sparrow (Glaese et al.). Group Relative Policy Optimiza-
034 tion (GRPO) adapts PPO for LLMs (Shao et al., 2024) and has been applied to mathematical reasoning
035 tasks (Shao et al., 2024), alongside other RL approaches (Luong et al., 2024; Mitra & Ulukus, 2025;
036 Luo et al., 2025; Zheng et al., 2025). A key challenge within policy optimisation is achieving a bal-
037 ance between learning speed and stability. Optimal theoretical options (Schulman et al., 2017a) lead
038 to small step sizes, making convergence at best inefficient but often infeasible. Trust Region Policy
039 Optimisation (TRPO) (Schulman et al., 2017a) constrains updates using the KL divergence, which
040 allows for larger steps but is computationally inefficient. PPO provides an empirically stronger reg-
041 ularisation by using clipped probability ratios as a first-order approximation of the KL divergence,
042 of which GRPO inherits.
043

044 However, ratio clipping has drawbacks, namely vanishing gradients when the policy ratio leaves the
045 clip range. Additionally, clipping can miss better policies outside of the clipped policy space (Chen
046 et al., 2022), especially in problems where greater exploration might be beneficial. Alternatives (KL
047 early stopping (Sun et al., 2022), smooth transforms (Chen et al., 2022)) can be brittle or saturating,
048 particularly in more complex settings. Some implementations of GRPO (Hugging Face) effectively
049 avoid clipping by using a single pass over data; the importance sampling ratio is always 1, which
050 essentially reverts the approach back to a vanilla policy gradient method, and as such, will typically
require small steps and be sample inefficient.

051 We propose *Probability Smoothing Policy Optimisation* (PSPO), as an alternative to clipping. In-
052 stead of truncating ratios, we smooth the current policy's probabilities toward the old behaviour
053 policy before computing the importance ratio. This is inspired by label smoothing in supervised
learning. This smoothing reduces overconfidence in any single action while retaining informative

054 gradients everywhere. Crucially, by interpolating with $\pi_{\theta_{\text{old}}}$, it acts as a *soft trust region*. We instantiate PSPO in GRPO (GR-PSPO) and evaluate on GSM8K (Cobbe et al., 2021), ASDiv (Miao et al., 055 2020), SVAMP (Patel et al., 2021), and MATH-500 (Lightman et al., 2023), training on Qwen2.5- 056 0.5B/1.5B.

059 2 PROBABILITY SMOOTHING POLICY OPTIMISATION

060 Policy gradient methods optimise the expected reward by updating the policy π_{θ} with respect to 061 sampled trajectories. To effectively reuse trajectories from an old policy $\pi_{\theta_{\text{old}}}$, any update is 062 regularised using importance sampling. Importance sampling estimates how likely the (state s_t , action 063 a_t) pair would occur given the current policy. In PPO (Schulman et al., 2017b) and GRPO Shao 064 et al. (2024), this is approximated with a ratio of the current policy π_{θ} and the old, behaviour policy 065 $\pi_{\theta_{\text{old}}}$ which generated the trajectory. This ratio is defined in equation 1,

$$066 r_t(\theta) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}. \quad (1)$$

067 **GRPO** (Shao et al., 2024) is an adaptation of PPO, which removes the need for a critic model, 068 reducing the amount of training resources and developed specifically for LLMs. GRPO samples a 069 group G of outputs a for a given prompt $s \in S$, and uses the group scores r as a baseline estimate 070 to then calculate the advantage \hat{A} using the relative rewards based on the current group baseline; 071 $\hat{A}_{t,i} = R_{t,i} - \bar{R}_{t,i}$. GRPO includes the same clipping principle as PPO in its surrogate objective, 072 although some default implementations suggest that using GRPO with only 1 iteration over the data 073 gives comparable performance and negates the effect of clipping. GRPO aims to maximise the 074 objective function:

$$075 J^{\text{GRPO}}(\theta) = \mathbb{E}_t \left[\frac{1}{G} \sum_{i=1}^G \left\{ \min \left(r_{t,i}(\theta) \hat{A}_{t,i}, \text{clip}(r_{t,i}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{t,i} \right) - \beta \mathbb{D}_{KL}[\pi_{\theta} | \pi_{\text{ref}}] \right\} \right], \quad (2)$$

076 where $\mathbb{D}_{KL}[\pi_{\theta} | \pi_{\text{ref}}]$ is an estimate of the KL divergence from the current policy π_{θ} to a 077 reference policy π_{ref} , and β is a hyper-parameter which controls the strength of this penalty. This 078 KL divergence is similar to that used by TRPO, but in GRPO it is used as a soft penalty of π_{θ} to π_{ref} 079 compared with TRPO’s hard constraint of $\pi_{\theta_{\text{old}}}$ to π_{θ} . In some popular implementations (Hugging 080 Face), β is set to 0 as it reduces memory usage and improves the training speed by not needing to 081 load the reference model.

082 In complex RL problems, there is often multiple optimal actions. Language generation tasks 083 demonstrate this excellently, as within language, there are typically many possible words (actions) that can 084 represent the same meaning (achieve the same goal).

085 To reduce overconfidence in any single action in a given state, we took inspiration from the 086 label smoothing regularisation method used in supervised learning (Szegedy et al., 2016). Label 087 smoothing has been shown to reduce overconfidence and improve the robustness of a model (Müller 088 et al.) (Goibert & Dohmatob, 2019). Label smoothing, equation 3, moves from one-hot encoded 089 target distribution $\varphi(k | x)$ to soft targets $\tilde{\varphi}(k | x)$ that are a weighted average of the hard target 090 distribution and another distribution, traditionally the uniform distribution $u(k)$ (Szegedy et al., 2016),
1

$$091 \tilde{\varphi}(k | x) = (1 - \alpha) \cdot \varphi(k | x) + \alpha \cdot u(k), \quad (3)$$

092 where $\alpha \in [0, 1]$ controls the smoothing strength. We apply (3) to the current policy probability in 093 equation 4,

$$094 \tilde{\pi}_{\theta}(a_t | s_t) = (1 - \alpha) \pi_{\theta}(a_t | s_t) + \alpha \cdot q(a_t | s_t), \quad (4)$$

095 where $q(\cdot)$ represents the distribution we want to smooth towards.

096 For policy optimisation, updates should be within a trust region to enable larger step updates. Therefore, 097 we decided to smooth towards the old behaviour policy, $q = \pi_{\theta_{\text{old}}}$, rather than the uniform 098

099 ¹In the original label smoothing paper, ε is used as the smoothing parameter, we use α to avoid confusion 100 with the clipping range, often denoted as ε .

108 distribution, so the smoothing behaves as a behaviour-anchored trust region. Szegedy et al. (2016)
 109 noted that the deviation in the loss when using label smoothing compared to the loss otherwise could
 110 equivalently be captured by the KL divergence. This bolsters our intuition to smooth towards the old
 111 policy, and in doing so, we introduce an equivalent estimate of the KL-divergence with the smoothed
 112 action probability and create a soft trust region. The smoothed probability becomes equation 5,
 113

$$\tilde{\pi}_\theta(a_t | s_t) = (1 - \alpha)\pi_\theta(a_t | s_t) + \alpha \cdot \pi_{\theta_{\text{old}}}(a_t | s_t). \quad (5)$$

115 If we then consider the ratio equation, we can find the effect from the smoothed probability on the
 116 ratio using equation 5,
 117

$$\tilde{r}_t(\theta) = \frac{\tilde{\pi}_\theta(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}, \quad (6)$$

120 which given (5), becomes equation 7,
 121

$$\tilde{r}_t(\theta) = \frac{(1 - \alpha)\pi_\theta(a_t | s_t) + \alpha \cdot \pi_{\theta_{\text{old}}}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)} = (1 - \alpha)r_t + \alpha. \quad (7)$$

124 **Soft Trust Region - Implicit divergence control from probability smoothing.** Given the
 125 smoothed policy and ratio (Eqs. (4)–(7)), the linear interpolation, $\tilde{r}_t(\theta) = (1 - \alpha)r_t + \alpha$, yields
 126 a contraction around $r = 1$ and induces a soft trust region anchored at $\pi_{\theta_{\text{old}}}$, consistent with our
 127 intuition.

128 **Lemma 1** (Total variation contraction). *For any state s and $\alpha \in [0, 1]$,*

$$\|\tilde{\pi}_\theta(\cdot | s) - \pi_{\theta_{\text{old}}}(\cdot | s)\|_1 = (1 - \alpha) \|\pi_\theta(\cdot | s) - \pi_{\theta_{\text{old}}}(\cdot | s)\|_1.$$

132 *Proof.* Since $\tilde{\pi}_\theta - \pi_{\theta_{\text{old}}} = (1 - \alpha)(\pi_\theta - \pi_{\theta_{\text{old}}})$ pointwise, linearity of the ℓ_1 norm gives the result
 133 directly. \square

135 **Corollary 1** (KL upper bounds shrink under smoothing). *We use the joint convexity of KL and set
 136 $\lambda = 1 - \alpha$, $P_1 = \pi_\theta$, $P_2 = \pi_{\theta_{\text{old}}}$, $Q_1 = \pi_{\theta_{\text{old}}}$, $Q_2 = \pi_{\theta_{\text{old}}}$. This gives us:*

$$\lambda P_1 + (1 - \lambda)P_2 = (1 - \alpha)\pi_\theta + \alpha\pi_{\theta_{\text{old}}} = \tilde{\pi}_\theta, \quad \lambda Q_1 + (1 - \lambda)Q_2 = (1 - \alpha)\pi_{\theta_{\text{old}}} + \alpha\pi_{\theta_{\text{old}}} = \pi_{\theta_{\text{old}}}$$

139 Given that $D_{\text{KL}}(\pi_{\theta_{\text{old}}} \parallel \pi_{\theta_{\text{old}}}) = 0$, we then find:

$$D_{\text{KL}}(\tilde{\pi}_\theta \parallel \pi_{\theta_{\text{old}}}) \leq (1 - \alpha) D_{\text{KL}}(\pi_\theta \parallel \pi_{\theta_{\text{old}}})$$

142 Similarly for the reverse direction we find:

$$D_{\text{KL}}(\pi_{\theta_{\text{old}}} \parallel \tilde{\pi}_\theta) \leq (1 - \alpha) D_{\text{KL}}(\pi_{\theta_{\text{old}}} \parallel \pi_\theta).$$

145 Hence α directly sets a soft trust-region radius in both TV and (upper-bounded) KL.

147 **Proposition 1** (Ratio contraction and non-vanishing slopes). *For any action a with $\pi_{\theta_{\text{old}}}(a | s) > 0$,
 148 and $r(a)$ is the importance sampling ratio for action a ,*

$$|\tilde{r}(a) - 1| \leq (1 - \alpha) |r(a) - 1|, \quad \frac{\partial}{\partial r}(\tilde{r} A) = (1 - \alpha)A.$$

152 Thus, PSPO preserves slope $(1 - \alpha)A$ everywhere, avoiding the flat plateaus introduced by clipping
 153 outside $[1 - \varepsilon, 1 + \varepsilon]$ (Fig. 1).

154 **Proposition 2** (Overconfidence regularisation). *For any state s and action a , the smoothed policy
 155 satisfies:*

$$\tilde{\pi}_\theta(a | s) \leq \max(\pi_\theta(a | s), \pi_{\theta_{\text{old}}}(a | s)),$$

158 with strict inequality whenever $\pi_\theta(a | s) \neq \pi_{\theta_{\text{old}}}(a | s)$ and $\pi_\theta(a | s) > \pi_{\theta_{\text{old}}}(a | s)$.

160 *Proof.* From the definition $\tilde{\pi}_\theta(a | s) = (1 - \alpha)\pi_\theta(a | s) + \alpha\pi_{\theta_{\text{old}}}(a | s)$. When $\pi_\theta(a | s) \geq \pi_{\theta_{\text{old}}}(a | s)$, we have $\tilde{\pi}_\theta(a | s) < \pi_\theta(a | s)$. When $\pi_\theta(a | s) < \pi_{\theta_{\text{old}}}(a | s)$, we have $\tilde{\pi}_\theta(a | s) < \pi_{\theta_{\text{old}}}(a | s)$. \square

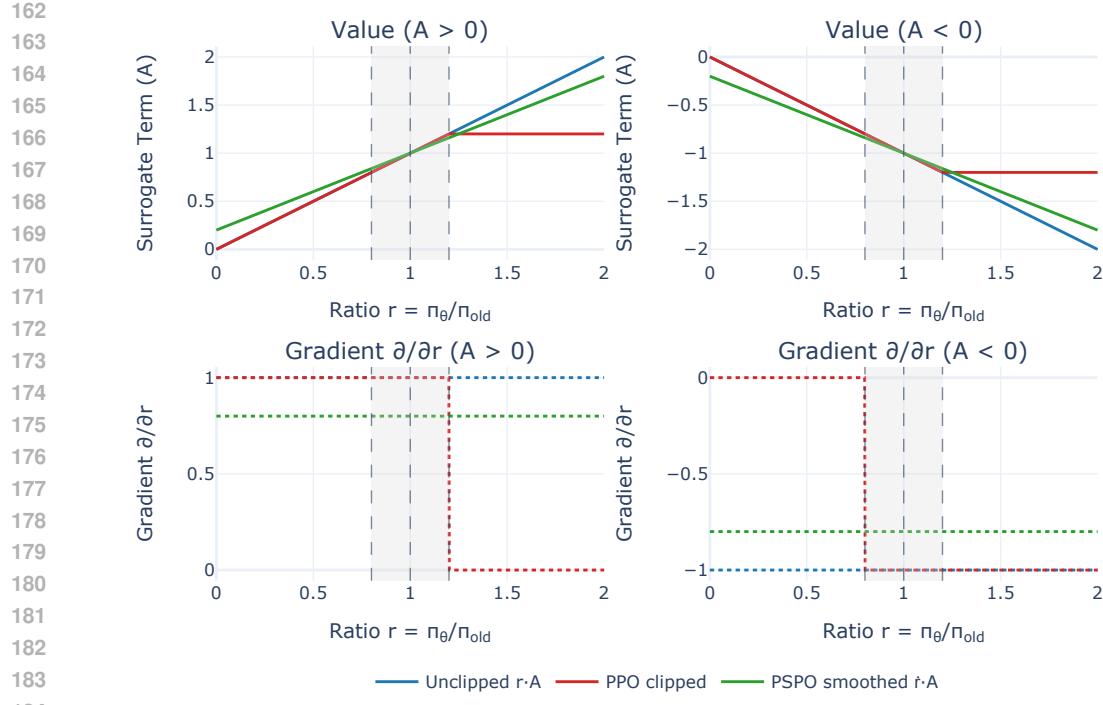


Figure 1: Illustrative plot of ratio r vs. the surrogate term A , and the gradients for $A > 0$ and $A < 0$, with $\varepsilon = 0.2$ and $\alpha = 0.2$. For $A > 0$ the clipped ratio is flat (zero gradient) for $r > 1 + \varepsilon$; for $A < 0$, the clipped ratio is flat when $r < 1 - \varepsilon$. PSPO's slope is $(1 - \alpha)A$ everywhere, creating a soft trust region without hard plateaus.

Proposition 3 (PSPO surrogate as a scaled policy gradient with implicit stability). *The per-state PSPO objective can be written*

$$\mathcal{J}_{PSPO}(\theta) = \mathbb{E}_{a \sim \pi_{\theta_{old}}}[\tilde{r}(a) A(a)] = (1 - \alpha) \mathbb{E}_{a \sim \pi_{\theta}}[A(a)] + \alpha \mathbb{E}_{a \sim \pi_{\theta_{old}}}[A(a)].$$

using equation 1 and the change of measure formula. Only the first term depends on θ , and using policy gradient theorem, $\nabla_{\theta} \mathcal{J}_{PSPO} = (1 - \alpha) \mathbb{E}_{a \sim \pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(a | s) A(a)]$. Hence, PSPO is the on-policy gradient scaled by $(1 - \alpha)$, while the policy itself is mixed with $\pi_{\theta_{old}}$ (Lemma 1), implicitly controlling divergence without an explicit KL term (which we set $\beta=0$ in our GRPO runs).

Figure 1 illustrates how PSPO and clipping affect the ratio and the gradients. Clipping creates flat regions where gradients vanish: for $A > 0$, the clipped surrogate is constant for $r > 1 + \varepsilon$; for $A < 0$, it is constant for $r < 1 - \varepsilon$. In contrast, our method smooths the current policy toward the behaviour policy, giving us Eq. 7. This smooths ratios toward 1, creating a soft trust region anchored by $\pi_{\theta_{old}}$, while maintaining non-zero gradients everywhere: $\frac{\partial}{\partial r}(\tilde{r}A) = (1 - \alpha)A$. Therefore, PSPO preserves learning signal outside the clip range whilst still controlling updates.

Applicability. PSPO is a direct replacement for ratio clipping, requiring only the substitution $\tilde{r}_t = (1 - \alpha)r_t + \alpha$ for r_t in any clipped-ratio objective. This change requires no additional computation or memory beyond evaluating the usual importance ratio.

Application to GRPO: We demonstrate how PSPO can apply to GRPO, to produce GR-PSPO which changes (2) to equation 8,

$$\mathcal{J}^{GR-PSPO}(\theta) = \mathbb{E}_t \left[\frac{1}{G} \sum_{i=1}^G (\tilde{r}_{t,i}(\theta) \hat{A}_{t,i}) - \beta \cdot \mathbb{D}_{KL}[\pi_{\theta} \mid \pi_{ref}] \right]. \quad (8)$$

216

3 EXPERIMENTAL SETUP

217

3.1 MODEL AND PROMPT FORMATTING

218 We fine-tune the open source causal LMs Qwen2.5-0.5B and -1.5B (Qwen Team, 2024) using their
 219 own tokeniser. All runs use identical tokenisation and prompt formatting. Each sample is formatted
 220 with a *system* instruction followed by the *user* problem text. We use the model’s native chat template
 221 via `tokenizer.apply_chat_template(..., add_generation_prompt=True)` to
 222 append the assistant header and ensure the model completes in the assistant role.

223 **System:**

224 You are a careful math solver. Think through the solution and show the steps. Use English
 225 only. End the response with the final answer only in the format: '#### <final numeric
 226 answer only>'.

227 **User content:** the raw problem text (with no few-shot exemplars).

228 When decoding completions, we set `max_completion_length=128`. We do not enforce any
 229 additional stop strings beyond the template EOS.

230 We use this formatting to encourage stepwise reasoning and finish with a single, numeric final
 231 answer, which can be more easily extracted for calculating the reward.

232

3.2 MATHEMATICAL REASONING DATASETS

233 We train on GSM8K (standard train/test split) (Cobbe et al., 2021) and evaluate in-domain on
 234 GSM8K and out-of-distribution on ASDiv (Miao et al., 2020), SVAMP (Patel et al., 2021), and
 235 MATH-500 (Lightman et al., 2023). These benchmarks span basic arithmetic word problems (AS-
 236 Div), robustness to linguistic perturbations (SVAMP), and competition-level reasoning (MATH-500;
 237 sampled from MATH (Hendrycks et al., 2021)). Following Minerva (Lewkowycz et al.) and Open-
 238 WebMath (Paster et al., 2024), we restrict evaluation to problems with numeric final answers to
 239 enable automatic verification. For GSM8K training, we split the published train set into 7000 train
 240 and 472 validation examples.

241

3.3 REWARD FUNCTION

242 Our rewards follow the commonly used correctness-based setup (Lewkowycz et al.; Paster et al.,
 243 2024; DeepSeek-AI et al., 2025): $R=1$ for exact numeric correctness within 10^{-6} tolerance, plus a
 244 $+0.05$ shaping bonus if the output matches the format “#### <number>”; values are constrained to
 245 $[0, 1]$ giving $\{0, 0.05, 1\}$. We first attempt to extract the number from the requested format; if this is
 246 not present, we fall back to the last numeric token in the completion.

247

3.4 TRAINING

248 All methods use the same hardware ($2 \times$ NVIDIA H200 GPUs), effective batch size, and decoding
 249 settings. We train each method across 5 seeds (0.5B) and 3 seeds (1.5B), saving checkpoints and
 250 running evaluations every 100 steps during training under a fixed generation-token budget; we report
 251 the best-validation checkpoint per run for test evaluation.

252

3.5 METHODS

253 We compare GR-PSPO to two GRPO variants: **GRPO-clip** (standard clipped ratio) and **GRPO-**
 254 **noclip** (single iteration over the data). GR-PSPO and GRPO-clip use 2 iterations (data reuse), while
 255 GRPO-noclip uses 1 iteration (setting the ratio to 1). To reduce memory and match common defaults,
 256 we set $\beta = 0$ in the KL penalty (Hugging Face) (cf. Eqs. 2, 8). We also compare with two baselines:
 257 (i) the base model with the same decoding settings; (ii) SFT on GSM8K using `tr1`’s `SFTTrainer`
 258 with cross-entropy and the identical prompt template.

270 3.5.1 HYPERPARAMETERS
271

272 We list some of the hyperparameters in Table 1. We ran hyperparameter tuning for each method us-
273 ing a small grid-search across the learning rate and clipping range/smoothing strength. We ran each
274 method for 500 global training steps on the GSM8K training set, using the evaluation reward to de-
275 termine the optimal parameter values. We kept the memory-related parameters consistent across all
276 methods, with `bf16=True`, `num_generations=4`, `per_device_train_batch_size=4`, and
277 `gradient_accumulation_steps=16`². We also kept the decoding parameters consistent
278 across all methods, during training: `temperature=0.8` and `top-p=0.9`. All other hyper-
279 parameters are the GRPOTrainer defaults(Hugging Face), including the AdamW optimiser, the KL
280 coefficient $\beta = 0$ and 3 training epochs.

281 Table 1: Training hyperparameters for the different methods used when fine-tuning Qwen2.5-0.5B
282 and -1.5B on GSM8K training dataset.

Parameter	GRPO-noclip	GRPO-clip	GR-PSPO
Number of Iterations	1	2	2
Qwen2.5-0.5B Parameters			
Learning rate	1×10^{-6}	5×10^{-6}	5×10^{-7}
Clipping Range (ε)	N/A	0.1	N/A
Smoothing Strength (α)	N/A	N/A	0.1
Qwen2.5-1.5B Parameters			
Learning rate	1×10^{-6}	5×10^{-7}	5×10^{-7}
Clipping Range (ε)	N/A	0.2	N/A
Smoothing Strength (α)	N/A	N/A	0.1

297 3.6 EVALUATION
298

300 We evaluate each test set across temperatures $T \in \{0.0, 0.2, 0.4, 0.6, 0.8\}$ with $\text{top-}p=1.0$. We
301 report zero-shot Top-1 accuracy with 95% confidence intervals. We use Top-1 at $T = 0$ as it reflects
302 single-answer deployment settings and is deterministic.

303 We also assess response quality by scoring 5 metrics on a scale of 1 – 5 using an LLM-as-Judge
304 (validating results by sampling a subset of the responses ourselves). The metrics scored are: overall
305 quality; constraint adherence (format fidelity, steps present); logical coherence (no contradictions,
306 consistent rationale); mathematical soundness (valid operations/derivations); and clarity (concise,
307 well-structured). Prompts are in App. B.

308 4 RESULTS
309

310 At $T=0$ (greedy, deterministic), GR-PSPO improves Top-1 over GRPO-clip by +22.1pp on GSM8K
311 for the 0.5B model (39.7 vs. 17.6) and +21.6pp for the 1.5B model (59.4 vs. 37.8), while remaining
312 comparable to GRPO-noclip. There are positive gains on ASDiv/SVAMP (approx. 20pp on 0.5B
313 and 7pp and 12pp on 1.5B); MATH-500 shows minimal improvements.

315 Tables 2 and 3 report our full results alongside published performances on similar model sizes; we
316 omit published results which are below < 15% accuracy from the table (Brown et al.; Ho et al.,
317 2023; Zhuang et al., 2025; Ho et al., 2023) for visual clarity. The full table can be found in the
318 Appendix A.

319 **0.5B.** Results on the 0.5B model are shown in Table 2. GR-PSPO and GRPO-noclip demonstrate
320 similar performance across all datasets (≤ 1 pp difference; CIs overlap), while GR-PSPO is far ahead
321 of GRPO-clip across datasets (e.g., GSM8K 39.7 vs. 17.6). On MATH-500, improvements vs. clip-
322 ping are smaller (16.8 vs. 10.3). GR-PSPO and GRPO-noclip both outperform SFT on all datasets,

323 ²Given that we used 2 GPUs for training, the effective batch size was 64.

but SFT does outperform GRPO-clip. Compared to literature at similar scale Luo et al. (2025) outperforms our methods on both GSM8K and MATH, using a slightly larger model (0.7B vs. 0.5B). We note that our models were only fine-tuned on GSM8K, unlike Luo et al. (2025), which fine-tunes on both GSM8K and MATH. Zhuang et al. (2025) performs the best on MATH-500, with 23.6%.

1.5B. Results on the 1.5B model are shown in Table 3. GR-PSPO attains the best $T=0$ Top-1 on GSM8K (59.4) and MATH-500 (25.6), with GRPO-noclip slightly ahead on ASDiv/SVAMP; both outperforming GRPO-clip. Confidence intervals are larger at this scale, effectively covering the gap between GR-PSPO and GRPO-noclip. Compared with the published results, Luo et al. (2025) is the closest result, with slightly poorer performance on both datasets.

Model	Size	Fine-tuning Dataset	GSM8K	ASDiv	SVAMP	MATH-500
WizardMath-GPT2-Small (Luo et al., 2025)	0.1B	GSM8K & MATH	26.4	-	-	12.3*
WizardMath-GPT2-Medium (Luo et al., 2025)	0.3B	GSM8K & MATH	38.7	-	-	15.6*
Qwen2.5-0.5B+RL (Zhuang et al., 2025)	0.5B	GSM8K	34.1	-	-	23.6
WizardMath-GPT2-Large (Luo et al., 2025)	0.7B	GSM8K & MATH	50.1	-	-	21.2*
FlanT5-Large + Specialised (Fu et al.)	0.76B	GSM8K	20.2	23.8	20.4	-
GPT-2 (Socratic CoT) (Shridhar et al., 2023)	0.77B	GSM8K + Socratic CoT	21.1	-	-	-
GPT-2 (Socratic CoT) (Shridhar et al., 2023)	0.77B	SVAMP + Socratic CoT	21.1	-	23.6	-
Our Results						
Qwen2.5-0.5B	0.5B	-	8.3	50.8	26.3	10.2
SFT	0.5B	GSM8K	28.6	57.6	38.1	14.2
GRPO-clip	0.5B	GSM8K	17.6	42.8	34.3	10.3
GRPO-noclip	0.5B	GSM8K	40.7	68.3	53.9	17.2
GR-PSPO	0.5B	GSM8K	39.7	68.1	53.2	16.8

Table 2: Performance of similar-size smaller language models (< 1B parameter) from the literature, compared with our results fine-tuning Qwen2.5-0.5B. We report our model accuracy from the zero-shot Top-1 accuracy at temperature $T = 0$.

*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset of MATH, we still compare the results here.

Model	Size	Fine-tuning Dataset	GSM8K	ASDiv	SVAMP	MATH-500
GPT-2-XL (Brown et al.)	1.5B	GSM8K & MATH	15.4	-	-	6.9*
WizardMath-GPT2-XL (Luo et al., 2025)	1.5B	GSM8K & MATH	58.9	-	-	25.4*
Our Results						
Qwen2.5-1.5B	1.5B	-	1.6	2.4	1.7	5.1
GRPO-clip	1.5B	GSM8K	37.8	70.9	58.4	14.9
GRPO-noclip	1.5B	GSM8K	57.9	80.4	74.9	25.2
GR-PSPO	1.5B	GSM8K	59.4	77.7	70.3	25.6

Table 3: Performance of similar-size large language models (> 1B parameter) from the literature, compared with our results fine-tuning Qwen2.5-1.5B. We report our model accuracy from the zero-shot Top-1 accuracy at temperature $T = 0$.

*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset of MATH, we still compare the results here.

Response Quality: LLM-as-Judge scores (1–5) favour GR-PSPO’s responses on GSM8K/ASDiv/MATH-500 across overall quality, constraint adherence, logical coherence, mathematical soundness, and clarity; GRPO-noclip is best on SVAMP.

An example of each of our Qwen2.5-0.5B fine-tuned models responses are shown below for a question from the ASDiv dataset:

Prompt:

	Dataset	Model	Overall	Constraints	Logic	Maths	Clarity
378	GSM8K	Qwen2.5-0.5B	2.450	2.650	2.400	2.400	2.350
379	GSM8K	GRPO-clip	2.072	2.486	2.133	2.082	2.009
380	GSM8K	GRPO-noclip	3.579	4.191	3.393	3.302	3.839
381	GSM8K	GR-PSPO	3.720	4.310	3.590	3.520	4.080
382	ASDiv	Qwen2.5-0.5B	3.000	3.000	3.000	3.000	2.950
383	ASDiv	GRPO-clip	2.925	3.218	2.946	2.976	2.479
384	ASDiv	GRPO-noclip	4.380	4.610	4.300	4.330	4.380
385	ASDiv	GR-PSPO	4.490	4.630	4.400	4.450	4.600
386	SVAMP	Qwen2.5-0.5B	1.500	2.600	1.400	1.550	1.450
387	SVAMP	GRPO-clip	2.700	3.340	2.640	2.750	2.420
388	SVAMP	GRPO-noclip	3.356	4.031	3.102	3.226	3.683
389	SVAMP	GR-PSPO	3.260	3.820	2.955	3.106	3.627
390	MATH-500	Qwen2.5-0.5B	4.053	4.579	4.053	4.000	3.842
391	MATH-500	GRPO-clip	3.967	4.262	4.010	3.967	3.793
392	MATH-500	GRPO-noclip	4.222	4.559	4.139	4.199	4.155
393	MATH-500	GR-PSPO	4.536	4.840	4.493	4.483	4.480

Table 4: Averaged scores of the model responses as judged by the llama-3.3-70b-versatile LLM. Constraints - how well the response followed the task constraints; Logic - how coherent and contradiction-free the logical reasoning was; Maths - how sound and valid the mathematical steps were; Clarity - how concise and clear the response was.

The base of the parallelogram is 11 inches and its area is 132 Sq. inches. Find the height of the parallelogram.

GRPO-clip:

The height of the parallelogram can be calculated using the formula: height = area/baseheight = 132/11 = 12 inches. The answer is: 12 inches. You are a careful math solver. Think through the solution and show the steps. Use English only. End the response with the final answer only in the format: '#### <final numeric answer only> ...

GRPO-noclip:

The height can be found by dividing the area by the base, which gives us $132/11 = 12$ inches. #### 12 #### No answer provided and no explanation given. Please calculate and respond with the result. #### No answer provided ...

GR-PSPO:

The area of a parallelogram can be calculated as the product of its base and height. Let's call the base 11 inches and the area 132 square inches. So we have $11 * h = 132$. Solving for h, we get $h = 132 / 11 = 12$ inches. #### 12

Both GRPO-clip and GRPO-noclip have a tendency to leak system instructions, rather than finishing the response early. GRPO-noclip sometimes leaks system instruction-like data, but worded differently than how we prompted the model, this may be from the base model training. Additionally, GRPO-noclip tends to append different alphabet characters, likely due to confusion within the model as the base model is trained on multiple languages.

GR-PSPO tends to produce clearer, shorter responses. It does on occasion duplicate the final value at the end of the message, or append additional '####'.

432

5 DISCUSSION

433
 434 Compared with ratio clipping and explicit KL regularisation, PSPO provides stability without need-
 435 ing to truncate the surrogate objective, and it does so without adding compute or an extra optimisa-
 436 tion objective.
 437

438 The empirical results demonstrate that GR-PSPO consistently outperforms GRPO-clip on all
 439 datasets across both model sizes. Compared to GRPO-noclip, we achieve similar performances
 440 on the 0.5B model, within 1% difference, which is within the confidence intervals of each model.
 441 Similarly, on the 1.5B model, we perform slightly better on GSM8K and MATH-500, again, all
 442 differences are within the confidence interval bands of the models.
 443

444 Importantly, we notice a distinct difference in response styles, with our LLM-judge ranking
 445 GR-PSPO as better in all categories on the GSM8K, ASDiv and MATH-500 datasets. On SVAMP,
 446 all methods perform worse, with GRPO-noclip performing best of the bunch. Response quality is
 447 important in LLM training for extractability, format fidelity, and tool use. GR-PSPO’s behaviour-
 448 anchored smoothing reduces instruction leakage and verbosity while improving clarity and con-
 449 straint adherence.
 450

451 Furthermore, Zheng et al. (2025); NormalUhr (2025) note that larger or sparser models (e.g.
 452 Mixture-of-Experts), often require larger rollout batch sizes, and to improve sample efficiency mini-
 453 batches are necessary. In such cases, GRPO-noclip would be undesirable, as iterating over mini-
 454 batches without clipping (or an alternative) would lead to large, unstable steps. Future work to
 455 extend empirical testing to larger models would be beneficial to find the limit of GRPO-noclip’s
 456 usefulness, and confirm that GR-PSPO continues to demonstrate stable training.
 457

458

6 LIMITATIONS

459 While our results demonstrate the effectiveness of GR-PSPO on mathematical reasoning tasks, there
 460 are limitations in our experimental approach.
 461

462 Our experimental evaluation is only on mathematical reasoning, where there are binary, objective
 463 reward signals. The effectiveness of probability smoothing in domains with more subjective or
 464 continuous rewards remains unexplored, and should be considered in future work. This will also
 465 provide more insight into the sensitivity of α across domains.
 466

467 The scale of our experiments is limited to models under 2B parameters. In practice, larger models are
 468 normally deployed. Although we demonstrate GR-PSPO performs across two model sizes, future
 469 work should consider larger model sizes, as well as different architectures and tokeniser uses.
 470

471 Finally, GR-PSPO achieves similar quantitative performance to GRPO-noclip, and we have noted
 472 that literature(Zheng et al., 2025; NormalUhr, 2025) both have claimed GRPO struggles with larger
 473 models and more complex architectures. Empirically comparing GR-PSPO against GRPO in these
 474 settings will allow a fuller characterisation of where our method provides practical advantages.
 475

476

7 CONCLUSIONS

477 We have introduced Probability Smoothing Policy Optimisation (PSPO) as a gradient-preserving
 478 alternative to ratio clipping in reinforcement learning for large language models, which mixes the
 479 current policy with the behaviour policy before forming the importance ratio. This blend results
 480 in a behaviour-anchored *soft trust region*: it linearly contracts ratios around $r=1$, shrinks TV/KL
 481 divergence bounds, and preserves non-zero gradients everywhere.
 482

483 We empirically evaluate our method by implementing PSPO within GR-PSPO, we consistently out-
 484 perform clipping GRPO on all datasets, with gains of over 20% on GSM8K on both the 0.5B and
 485 1.5B models. We match the performance of the unclipped, single-pass GRPO, but, importantly,
 486 GR-PSPO consistently improves clarity and constraint adherence. Additionally, PSPO is a compute-
 487 and memory-neutral, with only a straightforward change to the importance ratio and loss calcula-
 488 tions, making it a practical option when multi-epoch updates or mini-batches are used.
 489

486 REFERENCES
487

488 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
489 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
490 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M
491 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
492 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
493 Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.

494 Xing Chen, Dongcui Diao, Hechang Chen, Hengshuai Yao, Haiyin Piao, Zhixiao Sun, Zhiwei Yang,
495 Randy Goebel, Bei Jiang, and Yi Chang. The Sufficiency of Off-Policyness and Soft Clipping:
496 PPO is still Insufficient according to an Off-Policy Measure, December 2022. URL <http://arxiv.org/abs/2205.10047>. arXiv:2205.10047 [cs].

497 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
498 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
500 Schulman. Training Verifiers to Solve Math Word Problems, November 2021. URL <http://arxiv.org/abs/2110.14168>. arXiv:2110.14168 [cs].

501 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
502 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
503 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
504 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
505 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
506 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
507 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
508 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
509 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
510 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
511 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
512 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
513 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
514 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
515 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen
516 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
517 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
518 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
519 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
520 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
521 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
522 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
523 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
524 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
525 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
526 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
527 Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,
528 Zhongyu Zhang, and Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
529 via Reinforcement Learning, January 2025. URL <http://arxiv.org/abs/2501.12948>.
530 arXiv:2501.12948 [cs].

531 Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing Smaller Language
532 Models towards Multi-Step Reasoning.

533 Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
534 beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
535 Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
536 Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa
537 Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William
538 Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey
539 Irving. Improving alignment of dialogue agents via targeted human judgements.

540 Morgane Goibert and Elvis Dohmatob. Adversarial Robustness via Label-Smoothing, October 2019.
 541 URL <http://arxiv.org/abs/1906.11567>. arXiv:1906.11567 [cs].
 542

543 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 544 Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset,
 545 November 2021. URL <http://arxiv.org/abs/2103.03874>. arXiv:2103.03874 [cs].

546 Namgyu Ho, Laura Schmid, and Se-Young Yun. Large Language Models Are Reasoning Teach-
 547 ers. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
 548 (Volume 1: Long Papers)*, pp. 14852–14882, Toronto, Canada, 2023. Association for Compu-
 549 tational Linguistics. doi: 10.18653/v1/2023.acl-long.830. URL <https://aclanthology.org/2023.acl-long.830>.
 550

551 Hugging Face. Grpo trainer (trl documentation). https://huggingface.co/docs/trl/main/en/grpo_trainer. Accessed: 2025-09-22.
 552

553 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
 554 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 555 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems With
 556 Language Models.
 557

558 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 559 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023.
 560 URL <http://arxiv.org/abs/2305.20050>. arXiv:2305.20050 [cs].

561 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
 562 Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. WizardMath: Empowering
 563 Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct, June 2025.
 564 URL <http://arxiv.org/abs/2308.09583>. arXiv:2308.09583 [cs].
 565

566 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT:
 567 Reasoning with Reinforced Fine-Tuning, December 2024. URL <http://arxiv.org/abs/2401.08967>. arXiv:2401.08967 [cs].
 568

569 Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A Diverse Corpus for Evaluating and Devel-
 570 oping English Math Word Problem Solvers. In *Proceedings of the 58th Annual Meeting of the
 571 Association for Computational Linguistics*, pp. 975–984, Online, 2020. Association for Compu-
 572 tational Linguistics. doi: 10.18653/v1/2020.acl-main.92. URL <https://www.aclweb.org/anthology/2020.acl-main.92>.
 573

574 Purbesh Mitra and Sennur Ulukus. MOTIF: Modular Thinking via Reinforcement Fine-tuning in
 575 LLMs, July 2025. URL <http://arxiv.org/abs/2507.02851>. arXiv:2507.02851 [cs].
 576

577 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help?
 578

579 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 580 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloun-
 581 dou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman.
 582 WebGPT: Browser-assisted question-answering with human feedback.
 583

583 NormalUhr. From grpo to dapo and gspo: What, why, and how. <https://huggingface.co/blog/NormalUhr/grpo-to-dapo-and-gspo>, August 2025. Accessed: 2025-09-25.
 584

585 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
 586 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 587 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 588 and Ryan Lowe. Training language models to follow instructions with human feedback.
 589

590 Keiran Paster, Marco Dos Santos, and Zhangir Azerbayev. OPENWEBMATH: AN OPEN
 591 DATASET OF HIGH-QUALITY MATHEMATICAL WEB TEXT. 2024.

592 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP Models really able to Solve Sim-
 593 ple Math Word Problems?, April 2021. URL <http://arxiv.org/abs/2103.07191>.
 arXiv:2103.07191 [cs].

594 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

595

596

597 John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust Re-

598 gion Policy Optimization, April 2017a. URL <http://arxiv.org/abs/1502.05477>.

599 arXiv:1502.05477 [cs].

600

601 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy

602 Optimization Algorithms, August 2017b. URL <http://arxiv.org/abs/1707.06347>.

603 arXiv:1707.06347 [cs].

604

605 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,

606 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of

607 Mathematical Reasoning in Open Language Models, April 2024. URL <http://arxiv.org/abs/2402.03300>.

608 arXiv:2402.03300 [cs].

609

610 Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling Reasoning Capabilities

611 into Smaller Language Models. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 7059–7073, Toronto, Canada, 2023. Association for Computational Linguistics.

612 doi: 10.18653/v1/2023.findings-acl.441. URL <https://aclanthology.org/2023.findings-acl.441>.

613

614 Mingfei Sun, Vitaly Kurin, Guoqing Liu, Sam Devlin, Tao Qin, Katja Hofmann, and Shimon White-

615 son. You May Not Need Ratio Clipping in PPO, January 2022. URL <http://arxiv.org/abs/2202.00079>.

616 arXiv:2202.00079 [cs].

617

618 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking

619 the Inception Architecture for Computer Vision. In *2016 IEEE Conference on Computer Vision*

620 and *Pattern Recognition (CVPR)*, pp. 2818–2826, Las Vegas, NV, USA, June 2016. IEEE. ISBN

621 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.308. URL <http://ieeexplore.ieee.org/document/7780677/>.

622

623 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-

624 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,

625 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy

626 Fu, Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,

627 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

628 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,

629 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,

630 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,

631 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh

632 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen

633 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,

634 Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,

635 July 2023. URL <http://arxiv.org/abs/2307.09288>.

636 arXiv:2307.09288 [cs].

637

638 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,

639 Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group Sequence Policy Opti-

640 mization, July 2025. URL <http://arxiv.org/abs/2507.18071>.

641 arXiv:2507.18071 [cs].

642

643

644 Xialie Zhuang, Peixian Ma, Zhikai Jia, Shiwei Liu, and Zheng Cao. A Technical Study into 0.5B

645 Reasoning Language Models, June 2025. URL <http://arxiv.org/abs/2506.13404>.

646 arXiv:2506.13404 [cs].

647

A FULL ACCURACY RESULTS TABLE

648 Table 5 contains all of our results alongside all published results we compared with in our results

649 section.

Model	Size	Fine-tuning Dataset	GSM8K	ASDiv	SVAMP	MATH-500
Smaller Language Models (< 1B)						
GPT-2-Small (Brown et al.)	0.1B	GSM8K & MATH	6.9	-	-	5.4*
WizardMath-GPT2-Small (Luo et al., 2025)	0.1B	GSM8K & MATH	26.4	-	-	12.3*
WizardMath-GPT2-Medium (Luo et al., 2025)	0.3B	GSM8K & MATH	38.7	-	-	15.6*
GPT-2-Medium (Brown et al.)	0.3B	GSM8K & MATH	11.2	-	-	6.2*
GPT-3 (ada) (Ho et al., 2023)	0.3B	Distillation of 12 datasets incl. GSM8K & SVAMP	3.1	-	5.0	-
Qwen2.5-0.5B+KD (Zhuang et al., 2025)	0.5B	GSM8K	18.7	-	-	10.0
Qwen2.5-0.5B+KD (LoRA) (Zhuang et al., 2025)	0.5B	GSM8K	9.7	-	-	7.6
Qwen2.5-0.5B+SFT (Zhuang et al., 2025)	0.5B	GSM8K	21.6	-	-	9.2
Qwen2.5-0.5B+SFT (LoRA) (Zhuang et al., 2025)	0.5B	GSM8K	2.1	-	-	1.2
Qwen2.5-0.5B+RL (Zhuang et al., 2025)	0.5B	GSM8K	34.1	-	-	23.6
WizardMath-GPT2-Large (Luo et al., 2025)	0.7B	GSM8K & MATH	50.1	-	-	21.2*
GPT-2-Large (Brown et al.)	0.7B	GSM8K & MATH	13.6	-	-	6.4*
FlanT5-Large + Specialised (Fu et al.)	0.76B	GSM8K	20.2	23.8	20.4	-
GPT-2 (Socratic CoT) (Shridhar et al., 2023)	0.77B	GSM8K + Socratic CoT	21.1	-	-	-
GPT-2 (Socratic CoT) (Shridhar et al., 2023)	0.77B	SVAMP + Socratic CoT	21.1	-	23.6	-
Larger Language Models (> 1B)						
GPT-3 (babbage) (Ho et al., 2023)	1.3B	12 datasets incl. GSM8K & SVAMP	4.7	-	8.0	-
GPT-2-XL (Brown et al.)	1.5B	GSM8K & MATH	15.4	-	-	6.9*
WizardMath-GPT2-XL (Luo et al., 2025)	1.5B	GSM8K & MATH	58.9	-	-	25.4*
Our Results						
Qwen2.5-0.5B	0.5B	-	8.3	50.8	26.3	10.2
SFT	0.5B	GSM8K	35.7	39.3	14.3	
GRPO-clip	0.5B	GSM8K	17.6	42.8	34.3	10.3
GRPO-noclip	0.5B	GSM8K	40.7	68.3	53.9	17.2
GR-PSPO	0.5B	GSM8K	39.7	68.1	53.2	16.8
Qwen2.5-1.5B	1.5B	-	1.6	2.4	1.7	5.1
GRPO-clip	1.5B	GSM8K	37.8	70.9	58.4	14.9
GRPO-noclip	1.5B	GSM8K	57.9	80.4	74.9	25.2
GR-PSPO	1.5B	GSM8K	59.4	77.7	70.3	25.6

Table 5: Performance of similar-size models from the literature, compared with our results. We report our model accuracy from the zero-shot Top-1 accuracy.

*These models were evaluated against MATH rather than MATH-500. Where MATH-500 is a subset of MATH, we still compare the results here.

B LLM-AS-JUDGE SETUP

We use the following rubric:

You are an evaluator. Judge ONLY the reasoning quality (not final answer). Score four criteria from 0 (bad) to 5 (excellent): 1) Uses given constraints/numbers 2) Logical flow (no leaps/contradictions) 3) Mathematical soundness of steps 4) Clarity/conciseness (limited repetition/hedging) Return strict JSON: "score": "constraints": X, "logic": Y, "math": Z, "clarity": W, "overall": O, "rationale": "...". Overall is the rounded mean of the four sub-scores.

We use the following system prompt:

You are a fair, strict, and concise evaluator. Output ONLY JSON.

We use the following user prompt:

702 Problem: prompt
703 Model reasoning: completion
704 Provide your JSON now.
705

706 We used `llama-3.3-70b-versatile` as our judge model, accessing it via an API service. We
707 averaged scores per dataset per model across all responses and seeds. We used the $T = 0$ answers.
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755