
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JUMP: JOINTLY UTILIZING MISSINGNESS FOR PRE-
DICTION ON INCOMPLETE TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Impute-then-predict is the default for tabular data with missing values, yet opti-
mizing reconstruction of imputation rarely guarantees downstream gains and in-
duces distribution shift when train–test missingness differs. We present JUMP, an
end-to-end missingness-aware framework that jointly optimizes imputation and
prediction. JUMP re-masks a subset of observed features as reconstruction tar-
gets, shares a single encoder between reconstruction and prediction heads, and
explicitly injects missingness indicators to fuse pattern cues with raw features.
This design transforms imputation from a standalone preprocessing step into a
training signal that directly serves the predictive objective, acting as a lightweight
regularizer that stabilizes representations under missingness. Extensive exper-
iments on eight benchmarks show that JUMP achieves state-of-the-art perfor-
mance, consistently outperforming twelve impute-then-predict pipelines, strong
tree-based models, and advanced neural architectures across diverse missingness
mechanisms and challenging out-of-distribution settings.

1 INTRODUCTION

Tabular data is one of the most prevalent and valuable modalities across both academic and industrial
domains, supporting applications in finance, healthcare, customer analytics, manufacturing, and
government statistics (Guo et al., 2021; Chen et al., 2016; Sadar et al., 2023; Abdou & Pointon,
2011). However, missing values are ubiquitous due to factors such as collection costs, privacy
regulations, sensor malfunctions, and manual entry errors. If not properly addressed, missingness
can lead to reduced sample size, biased estimation, and substantial degradation in the stability and
generalization of downstream predictive models. Thus, effective and robust handling of missing
values is fundamental to building trustworthy tabular machine learning systems.

Traditional approaches to missing-value imputation treat it as a preprocessing step prior to mod-
eling. Simple strategies, including mean, median, or mode substitution and classical statistical or
machine learning techniques (e.g. regression imputation), are efficient but often fail to capture in-
tricate inter-feature dependencies, thereby introducing bias or distorting data distributions. More
sophisticated statistical methods, such as Multiple Imputation by Chained Equations (van Buuren &
Groothuis-Oudshoorn, 2011) and MissForest (Stekhoven & Bühlmann, 2011), offer improved corre-
lation modeling. Recently, deep generative models—including Variational Autoencoders (Kingma
& Welling, 2019), Generative Adversarial Imputation Nets (Yoon et al., 2018), and diffusion-based
imputers—have shown promise, while self-supervised approaches like ReMasker leverage masked
reconstruction to further enhance performance.

Despite these advances, the prevailing workflow for tabular modeling with missing values adheres to
a two-stage “impute-then-predict” paradigm. In the first stage, an imputer is trained and evaluated
primarily on reconstruction fidelity, often measured by metrics like RMSE. In the second stage,
a predictive model is built upon the completed data. This paradigm, however, suffers from two
fundamental limitations. First, its objectives are misaligned: higher reconstruction accuracy does
not guarantee better downstream performance and may even harm it. Our empirical studies confirm
this misalignment, showing that methods excelling at RMSE as shown in Figure 1, such as GAIN,
MICE, or MissForest, can underperform simpler alternatives on classification and regression tasks.
This occurs because excessive focus on pointwise accuracy can obscure discriminative information

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AD(MNAR-30)

0.815

0.820

0.825

0.830

0.835

0.840

0.845

0.850

0.855
AU

C

DE(MNAR-50)

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

HE(MNAR-70)
0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

Imputation Method
EM
GAIN

HyperImpute
ICE

MICE
MIRACLE

MIWAE
Mean

MissForest
Most Frequent

Sinkhorn
SoftImpute

Figure 1: Performance comparison of various imputation methods for downstream prediction tasks
based on XGBoost, with varying missing data ratios. The x-axis denotes reconstruction error
(RMSE on missing entries).

critical for decision boundaries. Second, the decoupling of imputation from prediction prevents the
imputer from adapting based on downstream feedback, restricting holistic optimization.

These observations raise a central question: what constitutes good imputation for tabular data? We
argue that imputation quality should not be defined solely as approximating unobserved ground
truth, but instead as maximizing downstream utility—the ability to improve predictive performance.
Addressing this challenge requires breaking the rigid separation between imputation and prediction.

To this end, we propose JUMP, an end-to-end multi-task learning framework that unifies missing-
value imputation and prediction. Drawing inspiration from masked autoencoders, JUMP explicitly
incorporates missingness indicators and learns adaptive feature–missingness fusion guided directly
by the predictive objective. By allowing gradient signals from the prediction task to steer the im-
putation process, JUMP departs from the sole pursuit of reconstruction fidelity and instead learns
to reconstruct information most beneficial to downstream performance. This design overcomes the
inherent bottlenecks of two-stage methods and enables consistent performance gains.

Our contributions are threefold:

1. Rethinking Evaluation: We provide the first systematic analysis demonstrating the mis-
alignment between reconstruction metrics and downstream task performance in two-stage
paradigms, and advocate for a task-utility-driven definition of “good” imputation.

2. End-to-End Framework: We introduce JUMP, a novel multi-task architecture that jointly
optimizes imputation and prediction, enabling task-aware imputation through shared rep-
resentations and dual-objective training.

3. Extensive Validation: Through comprehensive experiments on public benchmarks under
varying missingness mechanisms and rates, we show that JUMP consistently outperforms
state-of-the-art two-stage methods, delivering superior predictive accuracy and robustness.

2 RELATED WORK

This section reviews prior research on missing-value imputation and tabular prediction, and situates
our work at the intersection of these areas to highlight the gap we aim to bridge.

2.1 MISSING-VALUE IMPUTATION

In the field of tabular data imputation, existing methods can be categorized into statistical meth-
ods, shallow machine learning methods, and deep learning approaches. Statistical methods include
mean and mode imputation, which are widely used due to their simplicity and ease of implemen-
tation but may introduce bias. Shallow machine learning methods, such as k-Nearest Neighbors

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(kNN) imputation, MICE van Buuren & Groothuis-Oudshoorn (2011), and MissForest Stekhoven
& Bühlmann (2011), have demonstrated effective performance in filling missing data. Deep learning
methods have gained significant attention in recent years. On one hand, neural networks leveraging
deep models to uncover causal structures have been applied to data imputation, such as Generative
Adversarial Imputation Networks Yoon et al. (2018) and Multiple Imputation with Variational Au-
toencoders Mattei & Frellsen (2019), which utilize Generative Adversarial Networks and Variational
Autoencoders to enhance imputation capabilities.

2.2 TABULAR MODELING

Traditional approaches remain crucial for supervised and semi-supervised learning on tabular data,
with tree-based methods long dominating the field. Tools such as XGBoost (Chen & Guestrin,
2016), CatBoost (Dorogush et al., 2018), and LightGBM (Ke et al., 2017) have achieved widespread
success in numerous real-world applications. In recent years, propelled by advances in deep learn-
ing—particularly the breakthroughs of Transformers in computer vision and natural language pro-
cessing—neural network methods for tabular prediction have rapidly emerged. Representative mod-
els include TabTransformer (Huang et al., 2020) with attention-centric architectures; TabNet (Arik
& Pfister, 2019) with interpretable feature selection and sparse gating; FT-Transformer (Gorishniy
et al., 2021) employing bidirectional attention over features and samples; and Transformer vari-
ants such as SAINT (Somepalli et al., 2021) that incorporate masked reconstruction or contrastive
objectives. These methods leverage self-attention and embeddings to model higher-order feature in-
teractions and, under semi/self-supervised regimes, use masked reconstruction to strengthen repre-
sentations. However, most deep tabular models still rely on external imputers or simple missingness
indicators, with limited focus on unified optimization of imputation and prediction.

3 JUMP

In this subsection, we first outline the problem formulation and the underlying missingness mech-
anisms. We then introduce our novel model JUMP. Jointly training on value imputation and the
primary prediction task creates a unified objective. The core idea is that Utilizing the information
inherent in data’s absence should be guided by the final prediction goal. To achieve this, Missingness
patterns are explicitly modeled through our proposed Re-Masking mechanism. As a direct result,
Performance is enhanced because the model learns to leverage missingness patterns that are truly
relevant for the Prediction task.

3.1 PROBLEM FORMALIZATION

Problem Setting We consider a tabular dataset consisting of n samples and d features. The
dataset consists of n samples and d features. For sample i, the latent complete feature vector is
xi = (xi1, . . . , xid) ∈ X1 × · · · × Xd, where each feature space Xj is either continuous or cate-
gorical. Observational access is governed by a missingness mask mi = (mi1, . . . ,mid) ∈ {0, 1}d:
mij = 1 indicates that feature j is observed, while mij = 0 indicates missingness (denoted NA).
Accordingly, the observed input for sample i is represented as (xobs

i ,mi), where xobs
i contains

only the entries with mij = 1. Each sample is associated with a supervision signal yi taking val-
ues in Y , which is either R (regression) or a finite label set (classification). The training set is
D = {(xobs

i ,mi, yi)}ni=1. Our goal is to learn a predictor f that takes (xobs,m) as input and pre-
dicts y as accurately as possible, i.e., to minimize the expected loss E

[
ℓ
(
f(xobs,m), y

)]
under the

data-generating distribution.

Missingness mechanisms. Missing entries arise for a variety of reasons. To emulate different sce-
narios, and following prior work (Yoon et al., 2018; Jarrett et al., 2022), we consider three canonical
mechanisms: (1)MCAR (missing completely at random): the mask is independent of the data, i.e.,
p(m | x) = p(m) for all x (equivalently, for all m,x, x′, p(m | x) = p(m | x′)). (2) MAR (missing
at random): the mask may depend on the observed components of x but not on the unobserved ones;
formally, p(m | x) = p(m | xobs). Hence, if two inputs x and x′ share the same observed values,
then p(m | x) = p(m | x′). (3) MNAR (missing not at random): the mask may also depend on the
missing values themselves; this is the case whenever the MCAR and MAR conditions do not hold.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

[CLS]

[R]

[R]

Norm
Masked

Multi-Head
Attention

Norm FC

Encoder

Decoder

[CLS]

x1

x2

[M]

[M]

[M]

[CLS]

[M]

[M]

[M]

[CLS]

Transformer Layer

Multi-Head
Attention

[CLS] CLS Token Missing Value

Numerical Value Categorical Value

[M] Mask Token

[R] ReMask Value

Figure 2: Overall framework of JUMP. During training, for each sample, in addition to the original
missing values, we randomly re-mask a subset of observed values. The encoder processes only the
remaining visible values to produce representations, which are then padded with learnable mask
tokens at the masked positions and passed to the decoder to reconstruct the re-masked values. The
[CLS] representation at the decoder output is then used for target prediction.

It is important to note that under the MNAR setting, the missingness distribution is generally not
identifiable from observed data alone without imposing additional domain-specific assumptions or
structural constraints (Chen et al., 2023).

3.2 DESIGN OF MODEL

Inspired by MAE’s success on inpainting, we apply a masking mechanism to tabular data with
missing values. Because tabular datasets are inherently incomplete, we further re-mask a subset of
observed entries to strengthen the learning signal. JUMP adopts an “encoder–decoder + re-masking”
framework, augmented with a supervised tabular prediction head, and is trained end-to-end to jointly
perform missing-value imputation and target prediction. During training, the re-masking step creates
a harder self-supervised objective, encouraging representations that are invariant to missingness
patterns. At inference, re-masking is disabled; a single forward pass produces both imputed features
and target predictions. The architecture consists of the following modules:

Re-masking mechanism. Inspired by MAE He et al. (2021), to construct a more challenging self-
supervised learning objective we introduce a re-masking mechanism during training, which artifi-
cially increases missingness and encourages representations robust to diverse missingness patterns.

Concretely, for each training sample, in addition to its natural missing matrix m, we generate a
secondary mask m′ ∈ {0, 1}d by uniformly sampling without replacement from the indices of
currently observed features. The interaction between m and m′ induces three disjoint index sets:

Imissing = { j | mj = 0 }, Iremask = { j | mj = 1∧m′
j = 0 }, Iunmask = { j | mj = 1∧m′

j = 1 }.

During training, only features in Iunmask are provided to the encoder using their true value embed-
dings, while all masked positions (Imask ∪ Iremask) are initialized with a shared learnable [MASK]
token. At inference time, no re-masking is applied (equivalently, m′ is all ones). The model lever-
ages all originally observed features, Iobs ≜ { j | mj = 1 } = Iunmask ∪ Iremask , to perform
imputation and prediction, thereby fully exploiting the available information.

3.3 ENCODER

The encoder maps each input value to a vector representation and processes the resulting sequence
with Transformer blocks. For numerical features i, we use a linear encoding function enumi =
Wix + bi, where Wi and bi are learnable parameters. For categorical feature j, the embedding is
defined as ecatj = bj+Ecat

j (xcat
j), where Ecat

i is a learnable embedding table. We also add positional

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

[CLS] [R]

[CLS]

[R]

0 0 0 0

0 0 0

0 0 0

Figure 3: The proposed masked self-attention mechanism, designed to effectively ignore the impact
of missing entries within the attention matrix.

encoding to the embedding of x to make the model memorize x’s position in the input (e.g., the k-th
feature): pe(k, 2i) = sin

(
k

10000 2i/d

)
, where k and i denote the position of x in the input and the

embedding dimension index, respectively, and d is the embedding width. After obtaining the feature
embeddings and concatenating them into a sequence E, which will be fed to the encoder later in the
model architecture. The Transformer computes the query, key, and value matrices—denoted as Q,
K, and V respectively—through linear transformations of the input embedding matrix E ∈ Rn×de .
For each attention head, these projections map the embeddings into a lower-dimensional subspace
with dimension dh = d/h, where h is the number of heads. Q = EWQ,K = EWK ,V = EWV ,
where the learnable weight matrices are WQ,WK ,WV ∈ Rde×dh , resulting in Q,K,V ∈ Rn×dh .
The scaled dot-product attention is then computed as:

Attention(Q,K,V) = softmax
(
QKT

√
dh

+M

)
︸ ︷︷ ︸

Attention Weights A∈Rn×n

V (1)

The matrix M ∈ Rn×n is the attention mask, which adds −∞ to the attention logits corresponding
to positions that should be ignored. This operation effectively nullifies their contribution after the
softmax function is applied. Instead of applying standard global self-attention, we introduce a Cus-
tomized Asymmetric Attention Mask specifically engineered for our joint prediction and imputation
task.

Mask Attention In Encoder We insert a [CLS] token into the encoder for tabular prediction.
The input sequence contains four types of tokens: (i) the [CLS] token for global aggregation; (ii)
missing tokens corresponding to originally missing values; (iii) remask tokens for entries re-masked
during training; and (iv) unmask tokens for observed values. Let Iunmask, Iremask, and Imiss denote
the index sets of unmask, remask, and original-missing tokens, respectively. We implement MASK
Attention via an attention mask M , where disallowed query–key pairs are set to −∞. Under the
MASK Attention design, the attention mask follows these rules: (1) The [CLS] token has a global
view over all non-original-missing entries. Its Query is allowed to attend to itself, unmask tokens,
and remask tokens, while positions corresponding to original missing tokens are set to −∞ to pre-
vent leakage from genuinely absent features. (2) Unmask tokens serve as inputs to the reconstruction
objective and may only attend to [CLS] and other unmask tokens. Their attention to original missing
and remask tokens is set to −∞, disallowing access to invisible or re-masked information. (3) Orig-
inal missing and remask tokens do not participate in attention during encoding. In the subsequent
decoder, they are replaced by a learnable [MASK] token to enable imputation and reconstruction.
Through this carefully engineered attention mask, we ensure that the [CLS] token learns a high-
quality global representation for prediction, while the self-supervised reconstruction task proceeds
efficiently without any risk of information leakage.

3.4 DECODER

The JUMP decoder comprises a stack of Transformer blocks followed by a final MLP layer. Unlike
the encoder, the decoder operates on embeddings of both observed and masked values. Following
prior work (He et al., 2021), we use a shared, learnable mask token [MASK] as the initial embedding
for each masked entry (Iremask and Imissing). The decoder adds positional encodings to all value

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

embeddings (observed and masked), processes them through the Transformer stack, and applies a
linear projection to produce scalar predictions.

For supervised prediction, we take the [CLS] representation at the decoder output as the sample-level
aggregate and feed it into a task-specific prediction head: an MLP classifier for classification or a
regressor for regression, yielding the final output. Crucially, the decoder-end [CLS] has integrated
both the originally observed features (Iobs) and the information inferred for missing parts by the
decoder, enabling prediction with the full breadth of tabular information—including signals carried
by missingness—which is key to the effectiveness of our model.

3.5 JOINT OPTIMIZATION OF RECONSTRUCTION AND PREDICTION

A key contribution of our model is its end-to-end joint training paradigm, which unifies self-
supervised missing-value reconstruction with the supervised downstream prediction within a single
optimization objective. This design avoids the error compounding inherent in “impute-then-predict”
pipelines and enables synergistic learning between the two tasks. We optimize a joint loss:

Ltotal = Lpred + α · Lrecon

Here, Lpred is the primary supervised objective, defined as the Cross-Entropy loss for classification
or Mean Squared Error (MSE) for regression. The term Lrecon serves as an auxiliary self-supervised
objective, computed exclusively on the re-masked set (Iremask) to drive the model to learn the data’s
intrinsic structure. To handle mixed data types, Lrecon is further decomposed into an MSE loss for
numerical features (Lnum

recon) and a Cross-Entropy loss for categorical ones (Lcat
recon):

Lnum
recon =

1

|Inum
remask|

∑
j∈Inum

remask

(x̂j − xj)
2 and Lcat

recon =
1

|Icat
remask|

∑
j∈Icat

remask

CE(x̂j ,pj)

The hyperparameter α balances the reconstruction term, which serves as a strong self-supervised
regularizer that promotes more robust representations under the guidance of the primary prediction
objective.

4 EXPERIMENTS

In this section, we first present the experimental setup and then, to demonstrate the effectiveness of
our approach, we investigate the following key questions:

Q1: On Effective Imputation Strategies. What is the most effective strategy for handling missing
tabular data? Does lower imputation error necessarily lead to better downstream predictive perfor-
mance?

Q2: On Comparative Performance Across Tabular Architectures. Against a range of state-
of-the-art tabular model architectures, does our method achieve superior performance on tabular
prediction tasks?

Q3: On Generalization to Unseen Missingness Patterns. How does our model’s performance
degrade when faced with test-time missingness rates that differ from those seen during training—a
common out-of-distribution scenario? Does it demonstrate superior generalization compared to
other methods?

4.1 EXPERIMENTAL SETUPS.

Datasets We make use of eight well-known tabular datasets: Adult(AD), Default(DE), Shop-
pers(SP), Beijing(BJ), News(NS), Covtype(CO), Helena(HE) and Jannis(JA). The dataset properties
are summarized in Table 1. Following previous works (Muzellec et al., 2020; Zhao et al., 2023),
we study three missing mechanisms: MCAR, MAR, and MNAR. In this section, we only report the
performance in the MNAR setting, while the results of the other two settings are in Appendix. In
the main experiments, we set the missing rate as r = 70%. For each dataset, we generate 5 masks
according to the missing mechanism and report the mean and standard deviation of the imputing
performance. We using AUC as the main evaluation metric for the classification task and root mean
square error (RMSE) for regression.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Dataset properties. Notation: ”RMSE” ∼ root-mean-square error, ”Acc.” ∼ accuracy.
AD HE JA CO DE SP BJ NS

#objects 48842 65196 83733 581012 30000 12330 43824 39644
#num. features 6 27 54 54 14 10 7 46
#cat. features 8 0 0 0 10 8 5 2
metric Acc. Acc. Acc. Acc. Acc. Acc. RMSE RMSE
#classes 2 2 4 7 2 2 – –

Baselines We organize the baselines into two categories according to whether they natively sup-
port missing values, and evaluate all methods on the same train/validation/test split while reporting
average ranks across eight datasets. (1) Natively missing-value-aware models: these consume raw
features with NaNs and internally handle missingness without any explicit imputation. This category
includes the GBDT family—XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and
CatBoost (Dorogush et al., 2018)—as well as our method. We follow each library’s recommended
practice for categorical features (e.g., native categorical handling or one-hot encoding), perform
standardization/encoding only if needed, and adopt identical early stopping and hyperparameter
search budgets for fair comparison.

(2) Impute-then-predict methods: we first fit an imputer on the training set and use it to com-
plete the train/validation/test sets by inference, then train downstream tabular predictors on the
imputed data. We consider 13 state-of-the-art imputers—HyperImpute (Jarrett et al., 2022), MI-
WAE (Mattei & Frellsen, 2019), EM (Garcı́a-Laencina et al., 2010), GAIN (Yoon et al., 2018),
ICE, MICE(van Buuren & Groothuis-Oudshoorn, 2011), MIRACLE (Kyono et al., 2021), MissFor-
est (Stekhoven & Bühlmann, 2011), Mean, Most Frequent, Sinkhorn (Muzellec et al., 2020), and
SoftImpute (Hastie et al., 2015)—combined with representative tabular predictors, including MLP
(Hornik et al., 1989), ResNet (He et al., 2015), DCNv2 (Wang et al., 2021), AutoInt (Weiping et al.,
2018), MLP-PLR (Gorishniy et al., 2022). Attention-based models such as TabNet (Arik & Pfister,
2019), FT-Transformer (Gorishniy et al., 2021) and TabTransformer (Huang et al., 2020).

4.2 RESULTS

RQ1: Ours vs. Imputation Then Prediction In tabular learning, missing values are typically
handled as part of data preprocessing, and the impute-then-predict paradigm remains commonplace.
However, many imputation methods optimize for reconstruction error (e.g., an L2 metric to the
original data). Whether lower reconstruction error reliably translates into better downstream predic-
tive performance has not been systematically validated; Moreover, high-capacity neural imputation
methods typically incur substantial computational and time costs. To address this core issue, we
conduct a comprehensive evaluation of multiple imputation strategies on downstream prediction us-
ing FT-Transformer as a unified backbone under the MNAR-70 benchmark; the results are reported
in Table 4.2. The figure 4 show that although HyperImpute and EM rank among the top on pure
imputation, their impute-then-predict performance sits only around the middle of the 12 methods
considered. In contrast, simple mean imputation proves surprisingly robust within the two-stage
pipeline and serves as an effective preprocessing baseline. Beyond these two-stage baselines, our
method achieves the best performance across all datasets, substantially outperforming competing
approaches.

RQ2.Ours vs. Various Backbones We conduct a systematic comparison across a suite of mod-
ern tabular models spanning multiple architectures: gradient-boosted decision trees (e.g., XGBoost,
LightGBM), deep learning models (e.g., ResNet, DCN2, TabNet, FT-Transformer, TabTransformer),
and common baselines (e.g., MLP). All models are evaluated under the MNAR-70 missingness set-
ting with a unified preprocessing pipeline: mean imputation for numerical features and mode impu-
tation for categorical features. As shown in Table 4.2, our method achieves the lowest average rank
of 1.75 across all datasets, substantially outperforming tree-based models that are strong contenders
in tabular learning. Moreover, building on the FT-Transformer backbone, the introduction of the
RE-mask mechanism and the joint optimization of observable-value reconstruction lead to marked
gains in tabular prediction: an average AUROC improvement of 1.97 percentage points across six
classification tasks, and significant RMSE reductions on regression datasets—most notably, over a
32% drop on the beijing dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AD DE SP CO HE JA BJ NS0.0

0.2

0.4

0.6

0.8

1.0

1.2
RM

SE
(Im

pu
ta

tio
n)

Average0.0

0.2

0.4

0.6

0.8

1.0

1.2

EM
GAIN

HyperImpute
ICE

MICE
MIRACLE

MIWAE
Mean

MissForest
Most Frequent

Sinkhorn
SoftImpute

Figure 4: Comparison of imputation methods on eight benchmark datasets under MNAR with a
70% missingness rate. The left panel reports per-dataset performance, and the right panel shows the
average across all datasets.

Table 2: The performance of different two-stage prediction methods under the MNAR-70 missing-
ness setting, where all two-stage models use FT-Transformer as their backbone. For classification
tasks, we report AUROC (↑ indicates higher is better); for regression tasks, we report RMSE (↓
indicates lower is better). Reported values are averaged over 5 random seeds. For each dataset, the
best score is typeset in bold; ranks are assigned by sorting scores from best to worst for each dataset;
the “Rank” column reports the average rank across all datasets.

Model AD ↑ DE ↑ SP ↑ CO ↑ HE ↑ JA ↑ BJ ↓ NS ↓ Avg.Rank
EM 80.49 68.31 77.37 85.47 75.24 71.72 1.1723 0.7373 6.43(1.72)
GAIN 75.00 65.75 77.26 85.58 75.01 71.41 1.1874 0.7367 8.81(2.81)
ICE 77.83 68.63 77.41 85.76 75.12 72.26 1.1901 0.7332 6.00(2.68)
MICE 75.81 67.02 75.32 85.46 75.45 71.69 1.1815 0.7332 7.81(2.51)
Mean 81.14 68.67 77.75 85.86 75.71 72.62 1.0558 0.7435 3.50(2.83)
MIWAE 76.18 67.18 75.91 85.58 75.35 71.12 1.1892 0.7468 9.00(2.00)
MIRACLE 80.82 65.36 75.17 85.16 78.02 71.73 1.1719 0.7474 7.62(4.5)
MissForest 80.67 69.22 77.49 85.53 75.08 72.48 1.1819 0.7281 5.12(3.89)
Most Frequent 78.9 65.87 76.75 85.77 76.71 71.41 1.2043 0.7271 6.93(3.86)
Sinkhorn 81.06 68.31 75.02 85.58 75.12 71.51 1.1887 0.7382 7.68(2.77)
SoftImpute 76.31 68.12 77.06 85.37 76.04 71.51 1.1915 0.7369 8.06(2.33)

JUMP(ours) 81.62 70.48 78.78 88.41 78.63 75.99 0.7136 0.6382 1.00(0.00)

Table 3: Performance of various models on different datasets under MNAR-70 setting. All models
use the same preprocessing; numerical features are imputed with the mean, and categorical features
with the mode.Reported values are averaged over 10 random seeds. For each dataset, the best score
is typeset in bold.

Model AD ↑ DE ↑ SP ↑ CO ↑ HE ↑ JA ↑ BJ ↓ NS ↓ Avg.Rank
CatBoost 81.93 69.12 77.76 87.44 75.16 75.56 0.9283 0.7223 5.68(2.63)
LightGBM 82.54 69.56 78.46 88.08 75.52 75.84 0.9393 0.7272 5.00(2.51)
XGBoost 82.13 69.07 77.59 88.14 76.93 76.04 0.9286 0.7206 4.12(2.90)

MLP 78.65 63.27 78.49 86.16 75.39 72.51 1.0132 0.7278 9.31(3.08)
MLP-PLR 82.09 69.34 76.94 86.61 73.86 73.89 1.0132 0.7258 5.93(2.54)
Resnet 79.25 63.85 78.03 88.43 76.91 74.61 1.0143 0.7276 7.12(3.68)
DCN2 81.13 70.06 78.65 88.32 75.67 73.57 1.0136 0.7264 6.00(3.17)
AutoInt 81.22 69.92 77.70 86.67 76.01 74.03 1.0133 0.7259 6.50(1.77)
TabNet 78.46 58.80 75.61 85.49 74.83 73.11 0.9021 0.7245 10.00(4.56)
Saint 81.04 67.40 76.52 85.83 74.98 71.60 1.0543 0.7441 11.62(1.06)
TabTransformer 81.60 69.12 76.87 87.98 77.16 71.12 1.0527 0.7432 8.31(3.73)
FT-Transformer 81.14 68.67 77.75 85.86 75.71 72.62 1.0558 0.7435 9.62(2.26)

ours 81.62 70.48 78.78 88.41 78.63 75.99 0.7136 0.6382 1.75(1.38)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0% 5% 10% 25% 50% 75%

Test missing percentage

68

72

76

80

84

88

92
P

er
fo

rm
an

ce
 (A

U
R

O
C

)

Train missing percentage: 30%

10% 30% 50% 70% 90%

Test missing percentage

Train missing percentage: 50%

10% 30% 50% 70% 90%

Test missing percentage

Train missing percentage: 70%

Method
Ours FTTransformer MLP TabNet TabTransformer XGBoost

Figure 5: Model performance under varying missingness settings. On the Adult dataset, we eval-
uate multiple models under mismatched training and test missingness rates. Each subplot fixes the
training missingness at 30%, 50%, or 70%, while the x-axis varies the test-time missingness (10%,
30%, 50%, 70%, 90%), enabling a direct comparison of robustness to out-of-distribution (OOD)
missingness.

RQ3. Ours on. OOD test data To assess generalization under out-of-distribution (OOD) miss-
ingness, we conduct a key experiment: models are trained on datasets with missingness rate A (under
MAR/MNAR/MCAR) and evaluated on test sets spanning a broader range of missingness rates B;
On the Adult dataset, we evaluate test-time missingness rates of 10%, 30%, 50%, 70%, and 90%
under MAR/MNAR/MCAR. For each rate, we average performance across the three mechanisms
and report the results in Figure 5. while performance degrades as test-time missingness increases,
our method consistently leads and exhibits substantially smaller drops. For example, Under 50%
and 70% training missingness, our method also shows the smallest degradation even at 90% test
missingness. This indicates that our approach learns representations less sensitive to missingness
patterns, yielding stronger generalization and predictive performance under unknown test distribu-
tions. These gains stem from our core design. Beyond tree models and our approach, most neural
methods (TabNet, MLP, FT-Transformer) follow a two-stage pipeline: they pre-impute the test set
using training statistics (e.g., means) before prediction. When training and test missingness differ,
this step induces significant distribution shift; moreover, imperfect imputations compound this shift,
causing substantial performance drops. In contrast, our method natively handles missing data and
avoids erroneous preprocessing, delivering superior robustness under OOD missingness patterns.

5 CONCLUSION

This work revisits missing-value handling in tabular learning and demonstrates that optimizing im-
putation in isolation is often misaligned with downstream objectives. We introduced JUMP, an
end-to-end framework that jointly optimizes imputation and prediction by re-masking observed fea-
tures, sharing a single encoder across tasks, and explicitly injecting missingness indicators to fuse
pattern cues with raw features. By turning imputation into a training signal that directly serves
the predictive objective, JUMP mitigates error propagation, stabilizes representations under varying
missingness regimes, and consistently outperforms strong impute-then-predict pipelines, tree-based
baselines, and advanced neural architectures across diverse settings. Our analysis and experiments
advocate a task-utility-driven view of “good” imputation and show that unified optimization yields
tangible gains in accuracy and robustness.

ETHICS STATEMENT

This study relies solely on publicly available, anonymized datasets from the UCI Machine Learn-
ing Repository and does not involve any personally identifiable information or sensitive data. Our
work focuses on the foundational technical challenge of handling missing data in tabular learning
to improve robustness and trustworthiness. No human-subject interaction was conducted, and no
additional IRB approval is required. We used a large language model (GPT) exclusively only for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

editorial polishing of the manuscript. All experimental design, implementation, and conclusions
were carried out independently by the authors.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we document data sources, preprocessing, and training details in the main
text and appendix. All datasets are from the UCI Machine Learning Repository; data selection
and cleaning procedures, categorical encoding/standardization strategies, train/validation/test tem-
poral splits, and the missing-mask generation mechanisms (parameters and implementations for
MCAR/MAR/MNAR) are provided in the appendix (Data and Protocols section). Model architec-
ture and training configurations (encoder/decoder depth, embedding dimensions, optimizer, learning
rate, batch size, early stopping criteria), the weighting of the joint loss, hyperparameter search space
and budget, as well as evaluation metrics and statistical reporting (mean/standard deviation, average
ranks) are clearly specified in the Methods and Experiments sections.

REFERENCES

Hussein A Abdou and John Pointon. Credit scoring, statistical techniques and evaluation criteria:
a review of the literature. Intelligent systems in accounting, finance and management, 18(2-3):
59–88, 2011.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. arXiv preprint
arXiv:1908.07442, 2019.

Jia-Lve Chen, Yuanbo Xu, Pengyang Wang, and Yongjian Yang. Deep generative imputation model
for missing not at random data. Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, 2023. URL https://api.semanticscholar.
org/CorpusID:260926440.

Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, and Xian-Sheng Hua. Deep ctr prediction in
display advertising. In Proceedings of the 24th ACM international conference on Multimedia, pp.
811–820, 2016.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Pedro J. Garcı́a-Laencina, José-Luis Sancho-Gómez, and Anı́bal R. Figueiras-Vidal. Pattern clas-
sification with missing data: a review. Neural Computing and Applications, 19:263–282, 2010.
URL https://api.semanticscholar.org/CorpusID:3351246.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=i_Q1yrOegLY.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. In NeurIPS, 2022.

Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang He. An embed-
ding learning framework for numerical features in ctr prediction. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2910–2918, 2021.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank
svd via fast alternating least squares. J. Mach. Learn. Res., 16(1):3367–3402, January 2015. ISSN
1532-4435.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

10

https://api.semanticscholar.org/CorpusID:260926440
https://api.semanticscholar.org/CorpusID:260926440
https://api.semanticscholar.org/CorpusID:3351246
https://openreview.net/forum?id=i_Q1yrOegLY
https://openreview.net/forum?id=i_Q1yrOegLY
http://arxiv.org/abs/1512.03385

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111.
06377.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
mators. Neural Netw., 2(5):359–366, July 1989. ISSN 0893-6080.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyper-
impute: Generalized iterative imputation with automatic model selection, 2022. URL https:
//arxiv.org/abs/2206.07769.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146–3154, 2017.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foun-
dations and Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8245. doi:
10.1561/2200000056. URL http://dx.doi.org/10.1561/2200000056.

Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Miracle: Causally-aware im-
putation via learning missing data mechanisms. In Conference on Neural Information Processing
Systems(NeurIPS) 2021, 2021.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of
incomplete data, 2019. URL https://arxiv.org/abs/1812.02633.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal
transport. In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020.

Uzama Sadar, Parul Agarwal, Suraiya Parveen, Sapna Jain, and Ahmed J Obaid. Heart disease
prediction using machine learning techniques. In International Conference on Data Science,
Machine Learning and Applications, pp. 551–560. Springer, 2023.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Daniel J. Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118, October 2011. ISSN 1367-4803. doi: 10.
1093/bioinformatics/btr597. URL http://dx.doi.org/10.1093/bioinformatics/
btr597.

Stef van Buuren and Catharina Gerarda Maria Groothuis-Oudshoorn. mice: Multivariate imputation
by chained equations in r. Journal of statistical software, 45(3), 2011. ISSN 1548-7660. Open
Access.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, WWW ’21, pp. 1785–1797, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.
3450078. URL https://doi.org/10.1145/3442381.3450078.

Song Weiping, Shi Chence, Xiao Zhiping, Duan Zhijian, Xu Yewen, Zhang Ming, and Tang Jian.
Autoint: Automatic feature interaction learning via self-attentive neural networks. arXiv preprint
arXiv:1810.11921, 2018.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Gain: Missing data imputation using
generative adversarial nets, 2018. URL https://arxiv.org/abs/1806.02920.

He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla. Transformed distribution matching for
missing value imputation. In International Conference on Machine Learning, pp. 42159–42186.
PMLR, 2023.

11

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2206.07769
https://arxiv.org/abs/2206.07769
http://dx.doi.org/10.1561/2200000056
https://arxiv.org/abs/1812.02633
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1145/3442381.3450078
https://arxiv.org/abs/1806.02920

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

Environment. All experiments are conducted with 8 GPU V100, Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz, and 128GB RAM.

Parameter Setting. The default parameter settings for our model, JUMP, are as follows. For
global settings, we use the Adam optimizer with an initial learning rate of 1e-3. The learning rate
scheduler is set to cosine annealing, and the gradient clipping threshold is 5.0. The model is trained
for 600 epochs, with a batch size of 64 and a masking ratio of 0.5. Regarding the model architecture,
both the encoder and decoder components of JUMP are based on the Transformer architecture. The
encoder consists of 8 Transformer blocks with an embedding width of 64 and 4 heads. The decoder
is composed of 4 Transformer blocks, also with an embedding width of 64 and 4 heads.

Missing Mechanisms. Missing data can be categorized into three canonical mechanisms based on
how the missingness patterns are generated:

1. Missing Completely at Random (MCAR): The probability of an entry being missing is
independent of any data values, i.e., p(m|x) = p(m).

2. Missing at Random (MAR): The probability of an entry being missing depends only on
the observed values, i.e., p(m|x) = p(m|xobs).

3. Missing Not at Random (MNAR): The probability of an entry being missing may also
depend on the unobserved (missing) values themselves. This category encompasses all
cases not covered by MCAR or MAR.

To generate realistic missingness patterns for our experiments, we implement the MAR and MNAR
mechanisms following the procedure proposed by Zhao et al. (2023):

• MAR Generation: We first partition the features into two sets: a fully observed set and a
potentially missing set. A logistic regression model is then trained using the fully observed
features as input to predict the probability of missingness for each entry in the potentially
missing set. The bias term of this logistic model is adjusted via a line search to achieve the
desired overall missingness rate.

• MNAR Generation: We adopt the “logistic model with MCAR-masked inputs” approach
from the reference. Similar to the MAR setup, we divide features into two sets. A logistic
model uses the first set of features to predict the missingness probabilities for the second
set. Crucially, after these probabilities are determined but before they are used to generate
masks, we apply an MCAR mask to the input features (the first set). This creates a depen-
dency where the missingness in the second set is influenced by the (now masked) values in
the first set, thus satisfying the MNAR condition.

B IMPLEMENTATION DETAILS

Baseline of Imputation. We use 12 state-of-the-art imputation methods:

• HyperImpute: a hybrid imputer that performs iterative imputation with automatic model
selection.

• MIWAE: an autoencoder model that fits missing data by optimizing a variational bound.
• EM: an iterative imputer based on expectationmaximization optimization.
• GAIN: a generative adversarial imputation network that trains the discriminator to classify

the generator’s output in an element-wise manner.
• ICE: an iterative imputer based on regularized linear regression; MICE, an ICE-like, itera-

tive imputer based on Bayesian ridge regression.
• MIRACLE: an iterative imputer that refines the imputation of a baseline by simultaneously

modeling the missingness generating mechanism.
• MissForest: an iterative imputer based on random forests.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Mean and Most Frequent, which impute missing values using column-wise unconditional
mean, median, and the most frequent values, respectively.

• Sinkhorn: an imputer trained through the optimal transport metrics of Sinkhorn diver-
gences.

• SoftImpute, which performs imputation through soft-thresholded singular value decompo-
sition.

Baseline Implementation. The setup of our baseline follows the previous work and includes the
following methods:

• XGBoost: Implemented based on the XGBoost package. We set the maximum number of
estimators in 50, 100, 300 and the max depth in {5, 8, 10}.

• LightGBM: Implemented based on the LightGBM package. We set the maximum number
of estimators in {50, 100, 300} and the max depth in {5, 8, 10}.

• MLP: Dense layers with hidden dimensions {256, 256}. Dropout with a rate of 0.1 is used.
They are trained with batch size in {16, 32, 64, 128}, learning rate in {5e-5, 1e-4, 1e-3},
and early stopping patience of 5 with 100 maximum epochs.

• TabNet: Use the official implementation with the default recommended parameters.
Trained with batch size in {16, 32, 64, 128}, learning rate in {1e-4, 1e-3, 2e-2}, na, nb

in {8, 16, 64, 128}, γ in {1.3, 1.5, 1.8}, categorical embedding dimension in {1, 8, 16}
and early stopping patience of 5 with 100 maximum epochs.

• DCN-v2: The number of cross is 2. The dropout rate for the feedforward component is 0.1.
MLP part has two dense layers of dimension {256, 128}. Trained with batch size in {16,
32, 64, 128}, learning rate in {5e-5, 1e-4, 1e-3}, and early stopping patience of 10 in 100
maximum epochs.

• AutoInt: The attention layer number is set to 2. The attention head number is set to 2. MLP
part has two dense layers of dimension 256, 128; dropout deactivated; trained with batch
size in 16, 32, 64, 128, learning rate in {5e-5, 1e-4, 1e-3}, and early stopping patience of
10 in 100 maximum epochs.

• SAINT: The embedding size is 32 dimensions. 6 transformer layers are used. The number
of heads of attention is in {4, 8}. The dropout rate is 0.1 in all attention layers and feed-
forward layers. Inside the self-attention layer, the q, k, and v vectors are of dimension 16,
and in the intersample attention layer, they are of size 64.

• FT-Transformer: Feed-forward component has 128 dimensions. 2 transformer layers are
used. The number of heads of attention is in {2, 4, 8}. The dropout rate is 0.1.

• TransTab: Token embedding has 128 dimensions. 2 transformer layers are used. The
number of heads of attention is 8. We train the model on all downstream task data taking
batch size 64, learning rate 1e-4, dropout rate 0, and early stopping patience of 10 in 100
maximum epochs. We run the pretraining, transfer learning, and vanilla supervised training
methods in the paper, and take the highest score.

C ADDTIONAL RESULTS

To assess generalization under out-of-distribution (OOD) missingness, we conduct a key experiment
in which models are trained at a fixed missingness rate A (under MAR/MNAR/MCAR) and evalu-
ated at test time across a broader range of rates B. On the Adult dataset, we report performance under
MAR/MNAR/MCAR for test-time missingness rates of 10%- 90%. We benchmark FT-Transformer,
MLP, TabNet, TabTransformer, XGBoost, and our method JUMP on both the Adult and Shopper
datasets. Detailed results are presented in the Tables C and C.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Performance of various models under different missing settings in ADdult.
Train-30% 10% 30% 50% 70% 90%
Ours 91.23 (0.17) 90.91 (0.17) 89.65 (0.14) 86.27 (0.31) 79.36 (0.29)
FTTransformer 86.27 (0.13) 85.53 (0.16) 83.18 (0.23) 78.10 (0.30) 69.49 (0.26)
MLP 86.40 (0.18) 86.12 (0.20) 84.66 (0.27) 80.87 (0.25) 73.45 (0.41)
TabNet 85.68 (0.21) 85.16 (0.22) 83.16 (0.25) 78.72 (0.24) 70.33 (0.21)
XGBoost 88.35 (0.19) 87.60 (0.21) 85.38 (0.25) 80.15 (0.27) 70.97 (0.12)

Train-50% 10% 30% 50% 70% 90%
Ours 90.77 (0.27) 90.41 (0.25) 89.44 (0.26) 86.27 (0.21) 79.46 (0.24)
FTTransformer 85.71 (0.17) 85.11 (0.20) 82.93 (0.19) 78.14 (0.27) 70.36 (0.33)
MLP 85.34 (0.24) 85.19 (0.18) 84.04 (0.13) 81.13 (0.23) 75.29 (0.22)
TabNet 83.44 (0.36) 82.90 (0.37) 80.78 (0.36) 76.70 (0.30) 69.39 (0.34)
XGBoost 87.51 (0.21) 86.85 (0.26) 84.75 (0.13) 79.80 (0.24) 71.78 (0.23)
Train-70% 10% 30% 50% 70% 90%
Ours 90.28 (0.17) 89.97 (0.16) 88.79 (0.23) 85.88 (0.27) 79.56 (0.25)
FTTransformer 86.27 (0.13) 85.53 (0.16) 83.18 (0.23) 78.10 (0.30) 69.49 (0.26)
MLP 85.29 (0.25) 84.68 (0.27) 82.65 (0.27) 77.96 (0.28) 70.27 (0.50)
TabNet 83.50 (0.66) 83.24 (0.59) 82.54 (0.44) 80.86 (0.29) 75.55 (0.40)
XGBoost 85.78 (0.33) 85.35 (0.30) 83.55 (0.15) 79.16 (0.23) 71.33 (0.39)

Table 5: Performance of various models under different missing settings in Shoppers.
Train-30% 10% 30% 50% 70% 90%
Ours 91.40 (0.37) 90.66 (0.28) 88.56 (0.49) 83.16 (0.47) 73.15 (0.75)
FTTransformer 89.01 (0.60) 88.11 (0.56) 86.25 (0.60) 81.36 (0.67) 71.67 (0.48)
MLP 79.10 (0.68) 78.35 (0.70) 75.36 (0.68) 69.13 (0.76) 61.78 (1.02)
TabNet 88.49 (0.61) 87.51 (0.61) 85.27 (0.81) 80.26 (0.47) 70.77 (0.86)
XGBoost 89.95 (0.39) 89.16 (0.35) 86.98 (0.46) 82.07 (0.62) 73.38 (0.54)

Train-50% 10% 30% 50% 70% 90%
Ours 90.36 (0.45) 89.88 (0.53) 87.74 (0.32) 82.92 (0.63) 74.07 (0.69)
FTTransformer 81.11 (7.35) 80.60 (7.23) 78.93 (6.85) 74.58 (5.83) 67.96 (4.27)
MLP 77.27 (0.94) 76.63 (0.80) 74.12 (0.90) 69.96 (0.86) 63.57 (0.71)
TabNet 87.42 (0.61) 87.01 (0.60) 84.96 (0.76) 78.86 (0.71) 70.77 (1.36)
XGBoost 88.75 (0.66) 88.22 (0.59) 86.02 (0.77) 81.58 (0.64) 73.47 (0.69)
Train-70% 10% 30% 50% 70% 90%
Ours 89.08 (0.67) 88.65 (0.79) 86.59 (0.62) 81.39 (0.70) 73.62 (0.64)
FTTransformer 84.69 (0.84) 83.88 (0.99) 81.41 (0.87) 76.04 (0.92) 69.08 (0.62)
MLP 73.28 (0.40) 72.46 (0.62) 69.91 (0.46) 70.09 (0.38) 66.19 (0.60)
TabNet 86.31 (0.67) 85.99 (0.69) 83.93 (0.72) 79.19 (0.48) 72.09 (0.33)
XGBoost 87.29 (0.61) 87.02 (0.48) 84.81 (0.44) 81.46 (0.32) 73.72 (0.35)

14

	Introduction
	Related Work
	Missing-Value Imputation
	Tabular Modeling

	JUMP
	Problem formalization
	Design of Model
	Encoder
	Decoder
	Joint Optimization of Reconstruction and Prediction

	EXPERIMENTS
	Experimental Setups.
	Results

	Conclusion
	EXPERIMENTAL DETAILS
	IMPLEMENTATION DETAILS
	Addtional RESULTS

