

# 000 001 002 003 004 005 JUMP: JOINTLY UTILIZING MISSINGNESS FOR PRE- 006 DICTION ON INCOMPLETE TABULAR DATA 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

## ABSTRACT

Impute-then-predict is the default for tabular data with missing values, yet optimizing reconstruction of imputation rarely guarantees downstream gains and induces distribution shift when train–test missingness differs. We present JUMP, an end-to-end missingness-aware framework that jointly optimizes imputation and prediction. JUMP re-masks a subset of observed features as reconstruction targets, shares a single encoder between reconstruction and prediction heads, and explicitly injects missingness indicators to fuse pattern cues with raw features. This design transforms imputation from a standalone preprocessing step into a training signal that directly serves the predictive objective, acting as a lightweight regularizer that stabilizes representations under missingness. Extensive experiments on eight benchmarks show that JUMP achieves state-of-the-art performance, consistently outperforming twelve impute-then-predict pipelines, strong tree-based models, and advanced neural architectures across diverse missingness mechanisms and challenging out-of-distribution settings.

## 1 INTRODUCTION

Tabular data is one of the most prevalent and valuable modalities across both academic and industrial domains, supporting applications in finance, healthcare, customer analytics, manufacturing, and government statistics (Guo et al., 2021; Chen et al., 2016; Sadar et al., 2023; Abdou & Pointon, 2011). However, missing values are ubiquitous due to factors such as collection costs, privacy regulations, sensor malfunctions, and manual entry errors. If not properly addressed, missingness can lead to reduced sample size, biased estimation, and substantial degradation in the stability and generalization of downstream predictive models. Thus, effective and robust handling of missing values is fundamental to building trustworthy tabular machine learning systems.

Traditional approaches to missing-value imputation treat it as a preprocessing step prior to modeling. Simple strategies, including mean, median, or mode substitution and classical statistical or machine learning techniques (e.g. regression imputation), are efficient but often fail to capture intricate inter-feature dependencies, thereby introducing bias or distorting data distributions. More sophisticated statistical methods, such as Multiple Imputation by Chained Equations (van Buuren & Groothuis-Oudshoorn, 2011) and MissForest (Stekhoven & Bühlmann, 2011), offer improved correlation modeling. Recently, deep generative models—including Variational Autoencoders (Kingma & Welling, 2019), Generative Adversarial Imputation Nets (Yoon et al., 2018), and diffusion-based imputers—have shown promise, while self-supervised approaches like ReMasker leverage masked reconstruction to further enhance performance.

Despite these advances, the prevailing workflow for tabular modeling with missing values adheres to a two-stage “impute-then-predict” paradigm. In the first stage, an imputer is trained and evaluated primarily on reconstruction fidelity, often measured by metrics like RMSE. In the second stage, a predictive model is built upon the completed data. This paradigm, however, suffers from two fundamental limitations. First, its objectives are misaligned: higher reconstruction accuracy does not guarantee better downstream performance and may even harm it. Our empirical studies confirm this misalignment, showing that methods excelling at RMSE as shown in Figure 1, such as GAIN, MICE, or MissForest, can underperform simpler alternatives on classification and regression tasks. This occurs because excessive focus on pointwise accuracy can obscure discriminative information

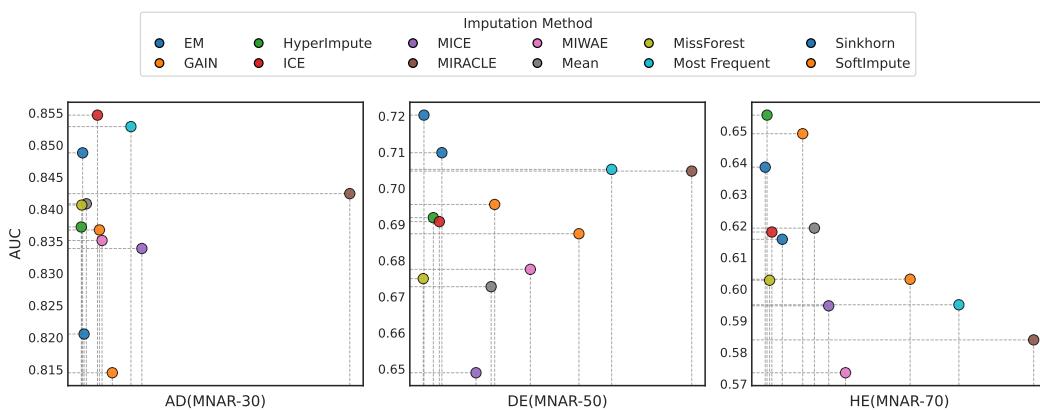


Figure 1: Performance comparison of various imputation methods for downstream prediction tasks based on XGBoost, with varying missing data ratios. The  $x$ -axis denotes reconstruction error (RMSE on missing entries).

critical for decision boundaries. Second, the decoupling of imputation from prediction prevents the imputer from adapting based on downstream feedback, restricting holistic optimization.

These observations raise a central question: what constitutes good imputation for tabular data? We argue that imputation quality should not be defined solely as approximating unobserved ground truth, but instead as maximizing downstream utility—the ability to improve predictive performance. Addressing this challenge requires breaking the rigid separation between imputation and prediction.

To this end, we propose JUMP, an end-to-end multi-task learning framework that unifies missing-value imputation and prediction. Drawing inspiration from masked autoencoders, JUMP explicitly incorporates missingness indicators and learns adaptive feature–missingness fusion guided directly by the predictive objective. By allowing gradient signals from the prediction task to steer the imputation process, JUMP departs from the sole pursuit of reconstruction fidelity and instead learns to reconstruct information most beneficial to downstream performance. This design overcomes the inherent bottlenecks of two-stage methods and enables consistent performance gains.

Our contributions are threefold:

1. **Rethinking Evaluation:** We provide the first systematic analysis demonstrating the misalignment between reconstruction metrics and downstream task performance in two-stage paradigms, and advocate for a task-utility-driven definition of “good” imputation.
2. **End-to-End Framework:** We introduce JUMP, a novel multi-task architecture that jointly optimizes imputation and prediction, enabling task-aware imputation through shared representations and dual-objective training.
3. **Extensive Validation:** Through comprehensive experiments on public benchmarks under varying missingness mechanisms and rates, we show that JUMP consistently outperforms state-of-the-art two-stage methods, delivering superior predictive accuracy and robustness.

## 2 RELATED WORK

This section reviews prior research on missing-value imputation and tabular prediction, and situates our work at the intersection of these areas to highlight the gap we aim to bridge.

### 2.1 MISSING-VALUE IMPUTATION

In the field of tabular data imputation, existing methods can be categorized into statistical methods, shallow machine learning methods, and deep learning approaches. Statistical methods include mean and mode imputation, which are widely used due to their simplicity and ease of implementation but may introduce bias. Shallow machine learning methods, such as k-Nearest Neighbors

(kNN) imputation, MICE van Buuren & Groothuis-Oudshoorn (2011), and MissForest Stekhoven & Bühlmann (2011), have demonstrated effective performance in filling missing data. Deep learning methods have gained significant attention in recent years. On one hand, neural networks leveraging deep models to uncover causal structures have been applied to data imputation, such as Generative Adversarial Imputation Networks Yoon et al. (2018) and Multiple Imputation with Variational Autoencoders Mattei & Frellsen (2019), which utilize Generative Adversarial Networks and Variational Autoencoders to enhance imputation capabilities.

## 2.2 TABULAR MODELING

Traditional approaches remain crucial for supervised and semi-supervised learning on tabular data, with tree-based methods long dominating the field. Tools such as XGBoost (Chen & Guestrin, 2016), CatBoost (Dorogush et al., 2018), and LightGBM (Ke et al., 2017) have achieved widespread success in numerous real-world applications. In recent years, propelled by advances in deep learning—particularly the breakthroughs of Transformers in computer vision and natural language processing—neural network methods for tabular prediction have rapidly emerged. Representative models include TabTransformer (Huang et al., 2020) with attention-centric architectures; TabNet (Arik & Pfister, 2019) with interpretable feature selection and sparse gating; FT-Transformer (Gorishniy et al., 2021) employing bidirectional attention over features and samples; and Transformer variants such as SAINT (Somepalli et al., 2021) that incorporate masked reconstruction or contrastive objectives. These methods leverage self-attention and embeddings to model higher-order feature interactions and, under semi/self-supervised regimes, use masked reconstruction to strengthen representations. However, most deep tabular models still rely on external imputers or simple missingness indicators, with limited focus on unified optimization of imputation and prediction.

## 3 JUMP

In this subsection, we first outline the problem formulation and the underlying missingness mechanisms. We then introduce our novel model **JUMP**. Jointly training on value imputation and the primary prediction task creates a unified objective. The core idea is that Utilizing the information inherent in data’s absence should be guided by the final prediction goal. To achieve this, Missingness patterns are explicitly modeled through our proposed Re-Masking mechanism. As a direct result, Performance is enhanced because the model learns to leverage missingness patterns that are truly relevant for the Prediction task.

### 3.1 PROBLEM FORMALIZATION

**Problem Setting** We consider a tabular dataset consisting of  $n$  samples and  $d$  features. The dataset consists of  $n$  samples and  $d$  features. For sample  $i$ , the latent complete feature vector is  $x_i = (x_{i1}, \dots, x_{id}) \in \mathcal{X}_1 \times \dots \times \mathcal{X}_d$ , where each feature space  $\mathcal{X}_j$  is either continuous or categorical. Observational access is governed by a missingness mask  $m_i = (m_{i1}, \dots, m_{id}) \in \{0, 1\}^d$ :  $m_{ij} = 1$  indicates that feature  $j$  is observed, while  $m_{ij} = 0$  indicates missingness (denoted NA). Accordingly, the observed input for sample  $i$  is represented as  $(x_i^{\text{obs}}, m_i)$ , where  $x_i^{\text{obs}}$  contains only the entries with  $m_{ij} = 1$ . Each sample is associated with a supervision signal  $y_i$  taking values in  $\mathcal{Y}$ , which is either  $\mathbb{R}$  (regression) or a finite label set (classification). The training set is  $\mathcal{D} = \{(x_i^{\text{obs}}, m_i, y_i)\}_{i=1}^n$ . Our goal is to learn a predictor  $f$  that takes  $(x^{\text{obs}}, m)$  as input and predicts  $y$  as accurately as possible, i.e., to minimize the expected loss  $\mathbb{E}[\ell(f(x^{\text{obs}}, m), y)]$  under the data-generating distribution.

**Missingness mechanisms.** Missing entries arise for a variety of reasons. To emulate different scenarios, and following prior work (Yoon et al., 2018; Jarrett et al., 2022), we consider three canonical mechanisms: (1) **MCAR** (missing completely at random): the mask is independent of the data, i.e.,  $p(m | x) = p(m)$  for all  $x$  (equivalently, for all  $m, x, x'$ ,  $p(m | x) = p(m | x')$ ). (2) **MAR** (missing at random): the mask may depend on the observed components of  $x$  but not on the unobserved ones; formally,  $p(m | x) = p(m | x_{\text{obs}})$ . Hence, if two inputs  $x$  and  $x'$  share the same observed values, then  $p(m | x) = p(m | x')$ . (3) **MNAR** (missing not at random): the mask may also depend on the missing values themselves; this is the case whenever the MCAR and MAR conditions do not hold.

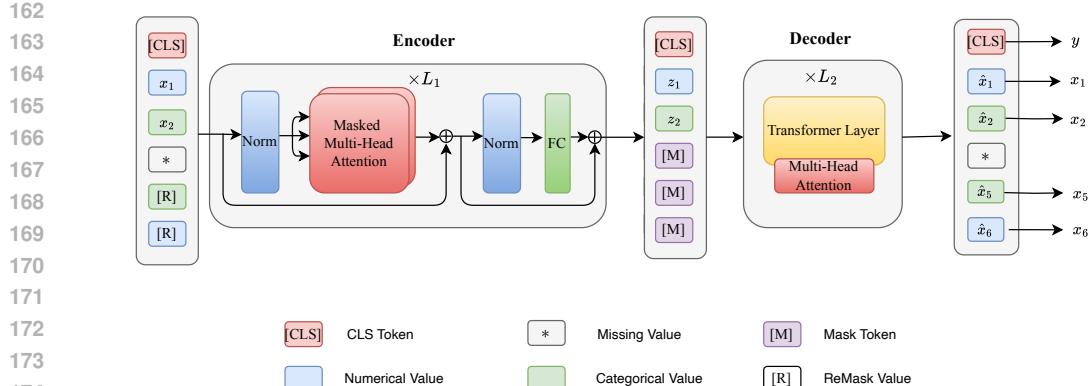


Figure 2: Overall framework of JUMP. During training, for each sample, in addition to the original missing values, we randomly re-mask a subset of observed values. The encoder processes only the remaining visible values to produce representations, which are then padded with learnable mask tokens at the masked positions and passed to the decoder to reconstruct the re-masked values. The [CLS] representation at the decoder output is then used for target prediction.

It is important to note that under the MNAR setting, the missingness distribution is generally not identifiable from observed data alone without imposing additional domain-specific assumptions or structural constraints (Chen et al., 2023).

### 3.2 DESIGN OF MODEL

Inspired by MAE’s success on inpainting, we apply a masking mechanism to tabular data with missing values. Because tabular datasets are inherently incomplete, we further re-mask a subset of observed entries to strengthen the learning signal. JUMP adopts an “encoder–decoder + re-masking” framework, augmented with a supervised tabular prediction head, and is trained end-to-end to jointly perform missing-value imputation and target prediction. During training, the re-masking step creates a harder self-supervised objective, encouraging representations that are invariant to missingness patterns. At inference, re-masking is disabled; a single forward pass produces both imputed features and target predictions. The architecture consists of the following modules:

**Re-masking mechanism.** Inspired by MAE He et al. (2021), to construct a more challenging self-supervised learning objective we introduce a *re-masking* mechanism during training, which artificially increases missingness and encourages representations robust to diverse missingness patterns.

Concretely, for each training sample, in addition to its natural missing matrix  $m$ , we generate a secondary mask  $m' \in \{0, 1\}^d$  by uniformly sampling without replacement from the indices of currently observed features. The interaction between  $m$  and  $m'$  induces three disjoint index sets:

$$I_{\text{missing}} = \{j \mid m_j = 0\}, I_{\text{remask}} = \{j \mid m_j = 1 \wedge m'_j = 0\}, I_{\text{unmask}} = \{j \mid m_j = 1 \wedge m'_j = 1\}.$$

During training, only features in  $I_{\text{unmask}}$  are provided to the encoder using their true value embeddings, while all masked positions ( $I_{\text{mask}} \cup I_{\text{remask}}$ ) are initialized with a shared learnable [MASK] token. At inference time, no re-masking is applied (equivalently,  $m'$  is all ones). The model leverages all originally observed features,  $I_{\text{obs}} \triangleq \{j \mid m_j = 1\} = I_{\text{unmask}} \cup I_{\text{remask}}$ , to perform imputation and prediction, thereby fully exploiting the available information.

### 3.3 ENCODER

The encoder maps each input value to a vector representation and processes the resulting sequence with Transformer blocks. For numerical features  $i$ , we use a linear encoding function  $e_i^{\text{num}} = W_i x + b_i$ , where  $W_i$  and  $b_i$  are learnable parameters. For categorical feature  $j$ , the embedding is defined as  $e_j^{\text{cat}} = b_j + E_j^{\text{cat}}(x_j^{\text{cat}})$ , where  $E_j^{\text{cat}}$  is a learnable embedding table. We also add positional

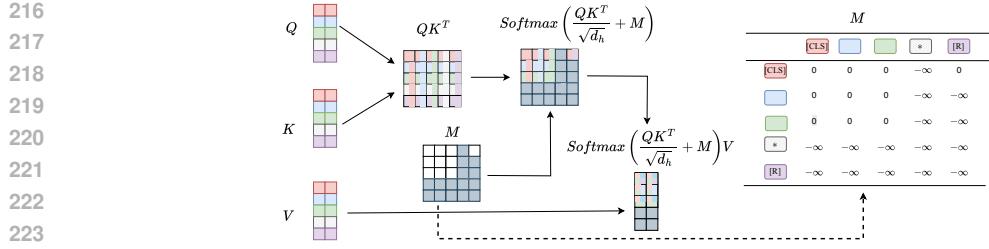


Figure 3: The proposed masked self-attention mechanism, designed to effectively ignore the impact of missing entries within the attention matrix.

encoding to the embedding of  $x$  to make the model memorize  $x$ ’s position in the input (e.g., the  $k$ -th feature):  $\text{pe}(k, 2i) = \sin\left(\frac{k}{10000^{2i/d}}\right)$ , where  $k$  and  $i$  denote the position of  $x$  in the input and the embedding dimension index, respectively, and  $d$  is the embedding width. After obtaining the feature embeddings and concatenating them into a sequence  $\mathbf{E}$ , which will be fed to the encoder later in the model architecture. The Transformer computes the query, key, and value matrices—denoted as  $\mathbf{Q}$ ,  $\mathbf{K}$ , and  $\mathbf{V}$  respectively—through linear transformations of the input embedding matrix  $\mathbf{E} \in \mathbb{R}^{n \times d_e}$ . For each attention head, these projections map the embeddings into a lower-dimensional subspace with dimension  $d_h = d/h$ , where  $h$  is the number of heads.  $\mathbf{Q} = \mathbf{E}\mathbf{W}_Q$ ,  $\mathbf{K} = \mathbf{E}\mathbf{W}_K$ ,  $\mathbf{V} = \mathbf{E}\mathbf{W}_V$ , where the learnable weight matrices are  $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d_e \times d_h}$ , resulting in  $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d_h}$ . The scaled dot-product attention is then computed as:

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \underbrace{\text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_h}} + \mathbf{M}\right)}_{\text{Attention Weights } \mathbf{A} \in \mathbb{R}^{n \times n}} \mathbf{V} \quad (1)$$

The matrix  $\mathbf{M} \in \mathbb{R}^{n \times n}$  is the attention mask, which adds  $-\infty$  to the attention logits corresponding to positions that should be ignored. This operation effectively nullifies their contribution after the softmax function is applied. Instead of applying standard global self-attention, we introduce a Customized Asymmetric Attention Mask specifically engineered for our joint prediction and imputation task.

**Mask Attention In Encoder** We insert a `[CLS]` token into the encoder for tabular prediction. The input sequence contains four types of tokens: (i) the `[CLS]` token for global aggregation; (ii) *missing* tokens corresponding to originally missing values; (iii) *remask* tokens for entries re-masked during training; and (iv) *unmask* tokens for observed values. Let  $I_{\text{unmask}}$ ,  $I_{\text{remask}}$ , and  $I_{\text{miss}}$  denote the index sets of unmask, remask, and original-missing tokens, respectively. We implement MASK Attention via an attention mask  $\mathbf{M}$ , where disallowed query–key pairs are set to  $-\infty$ . Under the MASK Attention design, the attention mask follows these rules: (1) The `[CLS]` token has a global view over all non-original-missing entries. Its Query is allowed to attend to itself, unmask tokens, and remask tokens, while positions corresponding to original missing tokens are set to  $-\infty$  to prevent leakage from genuinely absent features. (2) Unmask tokens serve as inputs to the reconstruction objective and may only attend to `[CLS]` and other unmask tokens. Their attention to original missing and remask tokens is set to  $-\infty$ , disallowing access to invisible or re-masked information. (3) Original missing and remask tokens do not participate in attention during encoding. In the subsequent decoder, they are replaced by a learnable `[MASK]` token to enable imputation and reconstruction. Through this carefully engineered attention mask, we ensure that the `[CLS]` token learns a high-quality global representation for prediction, while the self-supervised reconstruction task proceeds efficiently without any risk of information leakage.

### 3.4 DECODER

The JUMP decoder comprises a stack of Transformer blocks followed by a final MLP layer. Unlike the encoder, the decoder operates on embeddings of both observed and masked values. Following prior work (He et al., 2021), we use a shared, learnable mask token `[MASK]` as the initial embedding for each masked entry ( $I_{\text{remask}}$  and  $I_{\text{missing}}$ ). The decoder adds positional encodings to all value

270 embeddings (observed and masked), processes them through the Transformer stack, and applies a  
 271 linear projection to produce scalar predictions.  
 272

273 For supervised prediction, we take the [CLS] representation at the decoder output as the sample-level  
 274 aggregate and feed it into a task-specific prediction head: an MLP classifier for classification or a  
 275 regressor for regression, yielding the final output. Crucially, the decoder-end [CLS] has integrated  
 276 both the originally observed features ( $I_{obs}$ ) and the information inferred for missing parts by the  
 277 decoder, enabling prediction with the full breadth of tabular information—including signals carried  
 278 by missingness—which is key to the effectiveness of our model.  
 279

### 3.5 JOINT OPTIMIZATION OF RECONSTRUCTION AND PREDICTION

281 A key contribution of our model is its end-to-end joint training paradigm, which unifies self-  
 282 supervised missing-value reconstruction with the supervised downstream prediction within a single  
 283 optimization objective. This design avoids the error compounding inherent in “impute-then-predict”  
 284 pipelines and enables synergistic learning between the two tasks. We optimize a joint loss:  
 285

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{pred}} + \alpha \cdot \mathcal{L}_{\text{recon}}$$

287 Here,  $\mathcal{L}_{\text{pred}}$  is the primary supervised objective, defined as the Cross-Entropy loss for classification  
 288 or Mean Squared Error (MSE) for regression. The term  $\mathcal{L}_{\text{recon}}$  serves as an auxiliary self-supervised  
 289 objective, computed exclusively on the re-masked set ( $I_{\text{remask}}$ ) to drive the model to learn the data’s  
 290 intrinsic structure. To handle mixed data types,  $\mathcal{L}_{\text{recon}}$  is further decomposed into an MSE loss for  
 291 numerical features ( $\mathcal{L}_{\text{recon}}^{\text{num}}$ ) and a Cross-Entropy loss for categorical ones ( $\mathcal{L}_{\text{recon}}^{\text{cat}}$ ):  
 292

$$\mathcal{L}_{\text{recon}}^{\text{num}} = \frac{1}{|I_{\text{remask}}^{\text{num}}|} \sum_{j \in I_{\text{remask}}^{\text{num}}} (\hat{x}_j - x_j)^2 \quad \text{and} \quad \mathcal{L}_{\text{recon}}^{\text{cat}} = \frac{1}{|I_{\text{remask}}^{\text{cat}}|} \sum_{j \in I_{\text{remask}}^{\text{cat}}} \text{CE}(\hat{\mathbf{x}}_j, \mathbf{p}_j)$$

295 The hyperparameter  $\alpha$  balances the reconstruction term, which serves as a strong self-supervised  
 296 regularizer that promotes more robust representations under the guidance of the primary prediction  
 297 objective.  
 298

## 4 EXPERIMENTS

301 In this section, we first present the experimental setup and then, to demonstrate the effectiveness of  
 302 our approach, we investigate the following key questions:  
 303

**Q1: On Effective Imputation Strategies.** What is the most effective strategy for handling missing  
 304 tabular data? Does lower imputation error necessarily lead to better downstream predictive per-  
 305 formance?  
 306

**Q2: On Comparative Performance Across Tabular Architectures.** Against a range of state-  
 307 of-the-art tabular model architectures, does our method achieve superior performance on tabular  
 308 prediction tasks?  
 309

**Q3: On Generalization to Unseen Missingness Patterns.** How does our model’s performance  
 310 degrade when faced with test-time missingness rates that differ from those seen during training—a  
 311 common out-of-distribution scenario? Does it demonstrate superior generalization compared to  
 312 other methods?  
 313

### 4.1 EXPERIMENTAL SETUPS.

316 **Datasets** We make use of eight well-known tabular datasets: Adult(AD), Default(DE), Shop-  
 317 pers(SP), Beijing(BJ), News(NS), Covtype(CO), Helena(HE) and Jannis(JA). The dataset properties  
 318 are summarized in Table 1. Following previous works (Muzellec et al., 2020; Zhao et al., 2023),  
 319 we study three missing mechanisms: MCAR, MAR, and MNAR. In this section, we only report the  
 320 performance in the MNAR setting, while the results of the other two settings are in Appendix. In  
 321 the main experiments, we set the missing rate as  $r = 70\%$ . For each dataset, we generate 5 masks  
 322 according to the missing mechanism and report the mean and standard deviation of the imputing  
 323 performance. We use AUC as the main evaluation metric for the classification task and root mean  
 square error (RMSE) for regression.  
 324

324

325

Table 1: Dataset properties. Notation: "RMSE"  $\sim$  root-mean-square error, "Acc."  $\sim$  accuracy.

326

327

328

329

330

331

332

333

**Baselines** We organize the baselines into two categories according to whether they natively support missing values, and evaluate all methods on the same train/validation/test split while reporting average ranks across eight datasets. (1) Natively missing-value-aware models: these consume raw features with NaNs and internally handle missingness without any explicit imputation. This category includes the GBDT family—XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Dorogush et al., 2018)—as well as our method. We follow each library’s recommended practice for categorical features (e.g., native categorical handling or one-hot encoding), perform standardization/encoding only if needed, and adopt identical early stopping and hyperparameter search budgets for fair comparison.

341

342

343

344

345

346

347

348

349

350

351

(2) Impute-then-predict methods: we first fit an imputer on the training set and use it to complete the train/validation/test sets by inference, then train downstream tabular predictors on the imputed data. We consider 13 state-of-the-art imputers—HyperImpute (Jarrett et al., 2022), MI-WAE (Mattei & Frellsen, 2019), EM (García-Laencina et al., 2010), GAIN (Yoon et al., 2018), ICE, MICE(van Buuren & Groothuis-Oudshoorn, 2011), MIRACLE (Kyono et al., 2021), MissForest (Stekhoven & Bühlmann, 2011), Mean, Most\_Frequent, Sinkhorn (Muzellec et al., 2020), and SoftImpute (Hastie et al., 2015)—combined with representative tabular predictors, including MLP (Hornik et al., 1989), ResNet (He et al., 2015), DCNv2 (Wang et al., 2021), AutoInt (Weiping et al., 2018), MLP-PLR (Gorishniy et al., 2022). Attention-based models such as TabNet (Arik & Pfister, 2019), FT-Transformer (Gorishniy et al., 2021) and TabTransformer (Huang et al., 2020).

352

## 4.2 RESULTS

353

354

**RQ1: Ours vs. Imputation Then Prediction** In tabular learning, missing values are typically handled as part of data preprocessing, and the impute-then-predict paradigm remains commonplace. However, many imputation methods optimize for reconstruction error (e.g., an L2 metric to the original data). Whether lower reconstruction error reliably translates into better downstream predictive performance has not been systematically validated; Moreover, high-capacity neural imputation methods typically incur substantial computational and time costs. To address this core issue, we conduct a comprehensive evaluation of multiple imputation strategies on downstream prediction using FT-Transformer as a unified backbone under the MNAR-70 benchmark; the results are reported in Table 4.2. The figure 4 show that although HyperImpute and EM rank among the top on pure imputation, their impute-then-predict performance sits only around the middle of the 12 methods considered. In contrast, simple mean imputation proves surprisingly robust within the two-stage pipeline and serves as an effective preprocessing baseline. Beyond these two-stage baselines, our method achieves the best performance across all datasets, substantially outperforming competing approaches.

367

368

369

370

371

372

373

374

375

376

377

**RQ2.Ours vs. Various Backbones** We conduct a systematic comparison across a suite of modern tabular models spanning multiple architectures: gradient-boosted decision trees (e.g., XGBoost, LightGBM), deep learning models (e.g., ResNet, DCN2, TabNet, FT-Transformer, TabTransformer), and common baselines (e.g., MLP). All models are evaluated under the MNAR-70 missingness setting with a unified preprocessing pipeline: mean imputation for numerical features and mode imputation for categorical features. As shown in Table 4.2, our method achieves the lowest average rank of 1.75 across all datasets, substantially outperforming tree-based models that are strong contenders in tabular learning. Moreover, building on the FT-Transformer backbone, the introduction of the RE-mask mechanism and the joint optimization of observable-value reconstruction lead to marked gains in tabular prediction: an average AUROC improvement of 1.97 percentage points across six classification tasks, and significant RMSE reductions on regression datasets—most notably, over a 32% drop on the beijing dataset.

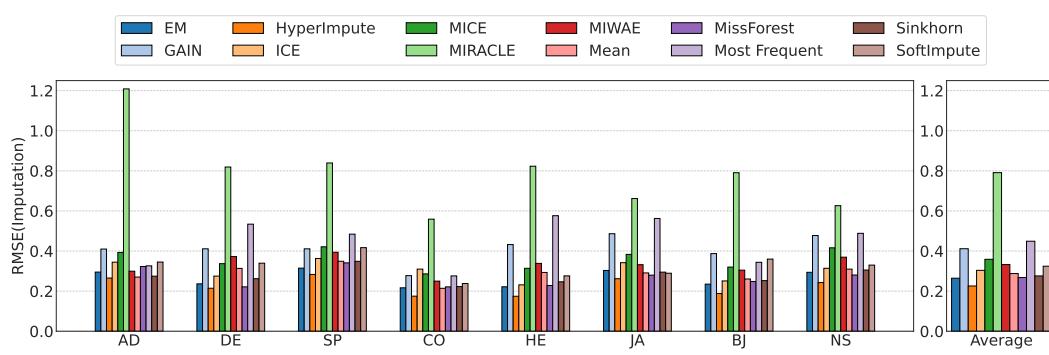


Figure 4: Comparison of imputation methods on eight benchmark datasets under MNAR with a 70% missingness rate. The left panel reports per-dataset performance, and the right panel shows the average across all datasets.

Table 2: The performance of different two-stage prediction methods under the MNAR-70 missingness setting, where all two-stage models use FT-Transformer as their backbone. For classification tasks, we report AUROC ( $\uparrow$  indicates higher is better); for regression tasks, we report RMSE ( $\downarrow$  indicates lower is better). Reported values are averaged over 5 random seeds. For each dataset, the best score is typeset in bold; ranks are assigned by sorting scores from best to worst for each dataset; the “Rank” column reports the average rank across all datasets.

| Model         | AD $\uparrow$ | DE $\uparrow$ | SP $\uparrow$ | CO $\uparrow$ | HE $\uparrow$ | JA $\uparrow$ | BJ $\downarrow$ | NS $\downarrow$ | Avg.Rank   |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|-----------------|------------|
| EM            | 80.49         | 68.31         | 77.37         | 85.47         | 75.24         | 71.72         | 1.1723          | 0.7373          | 6.43(1.72) |
| GAIN          | 75.00         | 65.75         | 77.26         | 85.58         | 75.01         | 71.41         | 1.1874          | 0.7367          | 8.81(2.81) |
| ICE           | 77.83         | 68.63         | 77.41         | 85.76         | 75.12         | 72.26         | 1.1901          | 0.7332          | 6.00(2.68) |
| MICE          | 75.81         | 67.02         | 75.32         | 85.46         | 75.45         | 71.69         | 1.1815          | 0.7332          | 7.81(2.51) |
| Mean          | 81.14         | 68.67         | 77.75         | 85.86         | 75.71         | 72.62         | 1.0558          | 0.7435          | 3.50(2.83) |
| MIWAE         | 76.18         | 67.18         | 75.91         | 85.58         | 75.35         | 71.12         | 1.1892          | 0.7468          | 9.00(2.00) |
| MIRACLE       | 80.82         | 65.36         | 75.17         | 85.16         | 78.02         | 71.73         | 1.1719          | 0.7474          | 7.62(4.5)  |
| MissForest    | 80.67         | 69.22         | 77.49         | 85.53         | 75.08         | 72.48         | 1.1819          | 0.7281          | 5.12(3.89) |
| Most.Frequent | 78.9          | 65.87         | 76.75         | 85.77         | 76.71         | 71.41         | 1.2043          | 0.7271          | 6.93(3.86) |
| Sinkhorn      | 81.06         | 68.31         | 75.02         | 85.58         | 75.12         | 71.51         | 1.1887          | 0.7382          | 7.68(2.77) |
| SoftImpute    | 76.31         | 68.12         | 77.06         | 85.37         | 76.04         | 71.51         | 1.1915          | 0.7369          | 8.06(2.33) |
| JUMP(ours)    | <b>81.62</b>  | <b>70.48</b>  | <b>78.78</b>  | <b>88.41</b>  | <b>78.63</b>  | <b>75.99</b>  | <b>0.7136</b>   | <b>0.6382</b>   | 1.00(0.00) |

Table 3: Performance of various models on different datasets under MNAR-70 setting. All models use the same preprocessing; numerical features are imputed with the mean, and categorical features with the mode. Reported values are averaged over 10 random seeds. For each dataset, the best score is typeset in bold.

| Model          | AD $\uparrow$ | DE $\uparrow$ | SP $\uparrow$ | CO $\uparrow$ | HE $\uparrow$ | JA $\uparrow$ | BJ $\downarrow$ | NS $\downarrow$ | Avg.Rank    |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|-----------------|-------------|
| CatBoost       | 81.93         | 69.12         | 77.76         | 87.44         | 75.16         | 75.56         | 0.9283          | 0.7223          | 5.68(2.63)  |
| LightGBM       | <b>82.54</b>  | 69.56         | 78.46         | 88.08         | 75.52         | 75.84         | 0.9393          | 0.7272          | 5.00(2.51)  |
| XGBoost        | 82.13         | 69.07         | 77.59         | 88.14         | 76.93         | 76.04         | 0.9286          | 0.7206          | 4.12(2.90)  |
| MLP            | 78.65         | 63.27         | 78.49         | 86.16         | 75.39         | 72.51         | 1.0132          | 0.7278          | 9.31(3.08)  |
| MLP-PLR        | 82.09         | 69.34         | 76.94         | 86.61         | 73.86         | 73.89         | 1.0132          | 0.7258          | 5.93(2.54)  |
| Resnet         | 79.25         | 63.85         | 78.03         | 88.43         | 76.91         | 74.61         | 1.0143          | 0.7276          | 7.12(3.68)  |
| DCN2           | 81.13         | 70.06         | 78.65         | 88.32         | 75.67         | 73.57         | 1.0136          | 0.7264          | 6.00(3.17)  |
| AutoInt        | 81.22         | 69.92         | 77.70         | 86.67         | 76.01         | 74.03         | 1.0133          | 0.7259          | 6.50(1.77)  |
| TabNet         | 78.46         | 58.80         | 75.61         | 85.49         | 74.83         | 73.11         | 0.9021          | 0.7245          | 10.00(4.56) |
| Saint          | 81.04         | 67.40         | 76.52         | 85.83         | 74.98         | 71.60         | 1.0543          | 0.7441          | 11.62(1.06) |
| TabTransformer | 81.60         | 69.12         | 76.87         | 87.98         | 77.16         | 71.12         | 1.0527          | 0.7432          | 8.31(3.73)  |
| FT-Transformer | 81.14         | 68.67         | 77.75         | 85.86         | 75.71         | 72.62         | 1.0558          | 0.7435          | 9.62(2.26)  |
| ours           | 81.62         | <b>70.48</b>  | <b>78.78</b>  | <b>88.41</b>  | <b>78.63</b>  | <b>75.99</b>  | <b>0.7136</b>   | <b>0.6382</b>   | 1.75(1.38)  |

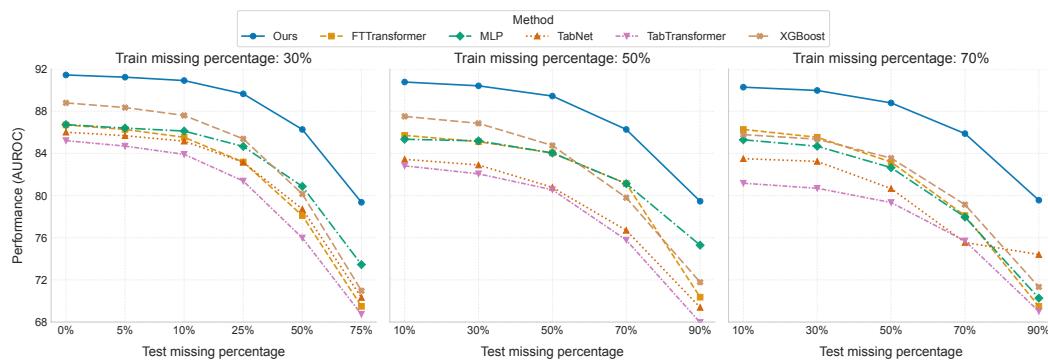


Figure 5: Model performance under varying missingness settings. On the Adult dataset, we evaluate multiple models under mismatched training and test missingness rates. Each subplot fixes the training missingness at 30%, 50%, or 70%, while the x-axis varies the test-time missingness (10%, 30%, 50%, 70%, 90%), enabling a direct comparison of robustness to out-of-distribution (OOD) missingness.

**RQ3. Ours on. OOD test data** To assess generalization under out-of-distribution (OOD) missingness, we conduct a key experiment: models are trained on datasets with missingness rate A (under MAR/MNAR/MCAR) and evaluated on test sets spanning a broader range of missingness rates B; On the Adult dataset, we evaluate test-time missingness rates of 10%, 30%, 50%, 70%, and 90% under MAR/MNAR/MCAR. For each rate, we average performance across the three mechanisms and report the results in Figure 5. while performance degrades as test-time missingness increases, our method consistently leads and exhibits substantially smaller drops. For example, Under 50% and 70% training missingness, our method also shows the smallest degradation even at 90% test missingness. This indicates that our approach learns representations less sensitive to missingness patterns, yielding stronger generalization and predictive performance under unknown test distributions. These gains stem from our core design. Beyond tree models and our approach, most neural methods (TabNet, MLP, FT-Transformer) follow a two-stage pipeline: they pre-impute the test set using training statistics (e.g., means) before prediction. When training and test missingness differ, this step induces significant distribution shift; moreover, imperfect imputations compound this shift, causing substantial performance drops. In contrast, our method natively handles missing data and avoids erroneous preprocessing, delivering superior robustness under OOD missingness patterns.

## 5 CONCLUSION

This work revisits missing-value handling in tabular learning and demonstrates that optimizing imputation in isolation is often misaligned with downstream objectives. We introduced JUMP, an end-to-end framework that jointly optimizes imputation and prediction by re-masking observed features, sharing a single encoder across tasks, and explicitly injecting missingness indicators to fuse pattern cues with raw features. By turning imputation into a training signal that directly serves the predictive objective, JUMP mitigates error propagation, stabilizes representations under varying missingness regimes, and consistently outperforms strong impute-then-predict pipelines, tree-based baselines, and advanced neural architectures across diverse settings. Our analysis and experiments advocate a task-utility-driven view of “good” imputation and show that unified optimization yields tangible gains in accuracy and robustness.

## ETHICS STATEMENT

This study relies solely on publicly available, anonymized datasets from the UCI Machine Learning Repository and does not involve any personally identifiable information or sensitive data. Our work focuses on the foundational technical challenge of handling missing data in tabular learning to improve robustness and trustworthiness. No human-subject interaction was conducted, and no additional IRB approval is required. We used a large language model (GPT) exclusively only for

486 editorial polishing of the manuscript. All experimental design, implementation, and conclusions  
 487 were carried out independently by the authors.  
 488

489 **REPRODUCIBILITY STATEMENT**  
 490

491 To ensure reproducibility, we document data sources, preprocessing, and training details in the main  
 492 text and appendix. All datasets are from the UCI Machine Learning Repository; data selection  
 493 and cleaning procedures, categorical encoding/standardization strategies, train/validation/test tem-  
 494 poral splits, and the missing-mask generation mechanisms (parameters and implementations for  
 495 MCAR/MAR/MNAR) are provided in the appendix (Data and Protocols section). Model architec-  
 496 ture and training configurations (encoder/decoder depth, embedding dimensions, optimizer, learning  
 497 rate, batch size, early stopping criteria), the weighting of the joint loss, hyperparameter search space  
 498 and budget, as well as evaluation metrics and statistical reporting (mean/standard deviation, average  
 499 ranks) are clearly specified in the Methods and Experiments sections.  
 500

501 **REFERENCES**  
 502

503 Hussein A Abdou and John Pointon. Credit scoring, statistical techniques and evaluation criteria:  
 504 a review of the literature. *Intelligent systems in accounting, finance and management*, 18(2-3):  
 505 59–88, 2011.

506 Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. *arXiv preprint*  
 507 *arXiv:1908.07442*, 2019.

508 Jia-Lve Chen, Yuanbo Xu, Pengyang Wang, and Yongjian Yang. Deep generative imputation model  
 509 for missing not at random data. *Proceedings of the 32nd ACM International Conference on*  
 510 *Information and Knowledge Management*, 2023. URL <https://api.semanticscholar.org/CorpusID:260926440>.  
 511

513 Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, and Xian-Sheng Hua. Deep ctr prediction in  
 514 display advertising. In *Proceedings of the 24th ACM international conference on Multimedia*, pp.  
 515 811–820, 2016.

516 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*  
 517 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,  
 518 2016.

519 Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with  
 520 categorical features support. *arXiv preprint arXiv:1810.11363*, 2018.

522 Pedro J. García-Laencina, José-Luis Sancho-Gómez, and Aníbal R. Figueiras-Vidal. Pattern clas-  
 523 sification with missing data: a review. *Neural Computing and Applications*, 19:263–282, 2010.  
 524 URL <https://api.semanticscholar.org/CorpusID:3351246>.  
 525

526 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning  
 527 models for tabular data. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),  
 528 *Advances in Neural Information Processing Systems*, 2021. URL [https://openreview.net/forum?id=i\\_Q1yr0egLY](https://openreview.net/forum?id=i_Q1yr0egLY).  
 529

530 Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in  
 531 tabular deep learning. In *NeurIPS*, 2022.

532 Hui Feng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang He. An embed-  
 533 ding learning framework for numerical features in ctr prediction. In *Proceedings of the 27th ACM*  
 534 *SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 2910–2918, 2021.

535 Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank  
 536 svd via fast alternating least squares. *J. Mach. Learn. Res.*, 16(1):3367–3402, January 2015. ISSN  
 537 1532-4435.

539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
 540 nition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.

540 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked  
 541 autoencoders are scalable vision learners, 2021. URL <https://arxiv.org/abs/2111.06377>.

543 K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-  
 544 mators. *Neural Netw.*, 2(5):359–366, July 1989. ISSN 0893-6080.

546 Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data  
 547 modeling using contextual embeddings. *arXiv preprint arXiv:2012.06678*, 2020.

548 Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyper-  
 549 impute: Generalized iterative imputation with automatic model selection, 2022. URL <https://arxiv.org/abs/2206.07769>.

551 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-  
 552 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural*  
 553 *information processing systems*, 30:3146–3154, 2017.

555 Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. *Found-  
 556 ations and Trends® in Machine Learning*, 12(4):307–392, 2019. ISSN 1935-8245. doi:  
 557 10.1561/2200000056. URL <http://dx.doi.org/10.1561/2200000056>.

558 Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Miracle: Causally-aware im-  
 559 putation via learning missing data mechanisms. In *Conference on Neural Information Processing*  
 560 *Systems(NeurIPS) 2021*, 2021.

561 Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of  
 562 incomplete data, 2019. URL <https://arxiv.org/abs/1812.02633>.

564 Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal  
 565 transport. In *International Conference on Machine Learning*, pp. 7130–7140. PMLR, 2020.

566 Uzama Sadar, Parul Agarwal, Suraiya Parveen, Sapna Jain, and Ahmed J Obaid. Heart disease  
 567 prediction using machine learning techniques. In *International Conference on Data Science,  
 568 Machine Learning and Applications*, pp. 551–560. Springer, 2023.

570 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.  
 571 Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.  
 572 *arXiv preprint arXiv:2106.01342*, 2021.

573 Daniel J. Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation  
 574 for mixed-type data. *Bioinformatics*, 28(1):112–118, October 2011. ISSN 1367-4803. doi: 10.  
 575 1093/bioinformatics/btr597. URL <http://dx.doi.org/10.1093/bioinformatics/btr597>.

577 Stef van Buuren and Catharina Gerarda Maria Groothuis-Oudshoorn. mice: Multivariate imputation  
 578 by chained equations in r. *Journal of statistical software*, 45(3), 2011. ISSN 1548-7660. Open  
 579 Access.

581 Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn  
 582 v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.  
 583 In *Proceedings of the Web Conference 2021*, WWW ’21, pp. 1785–1797, New York, NY, USA,  
 584 2021. Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.  
 585 3450078. URL <https://doi.org/10.1145/3442381.3450078>.

586 Song Weiping, Shi Chence, Xiao Zhiping, Duan Zhijian, Xu Yewen, Zhang Ming, and Tang Jian.  
 587 Autoint: Automatic feature interaction learning via self-attentive neural networks. *arXiv preprint*  
 588 *arXiv:1810.11921*, 2018.

589 Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Gain: Missing data imputation using  
 590 generative adversarial nets, 2018. URL <https://arxiv.org/abs/1806.02920>.

591 He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla. Transformed distribution matching for  
 592 missing value imputation. In *International Conference on Machine Learning*, pp. 42159–42186.  
 593 PMLR, 2023.

594  
595  

## A EXPERIMENTAL DETAILS

596  
597  

**Environment.** All experiments are conducted with 8 GPU V100, Intel(R) Xeon(R) Gold 6240  
598  
CPU @ 2.60GHz, and 128GB RAM.

599  
600  

**Parameter Setting.** The default parameter settings for our model, JUMP, are as follows. For  
601  
global settings, we use the Adam optimizer with an initial learning rate of 1e-3. The learning rate  
602  
scheduler is set to cosine annealing, and the gradient clipping threshold is 5.0. The model is trained  
603  
for 600 epochs, with a batch size of 64 and a masking ratio of 0.5. Regarding the model architecture,  
604  
both the encoder and decoder components of JUMP are based on the Transformer architecture. The  
605  
encoder consists of 8 Transformer blocks with an embedding width of 64 and 4 heads. The decoder  
606  
is composed of 4 Transformer blocks, also with an embedding width of 64 and 4 heads.

607  
608  

**Missing Mechanisms.** Missing data can be categorized into three canonical mechanisms based on  
609  
how the missingness patterns are generated:

610  
611  
612  
613  
614  
615  
616  

1. **Missing Completely at Random (MCAR):** The probability of an entry being missing is  
independent of any data values, i.e.,  $p(\mathbf{m}|\mathbf{x}) = p(\mathbf{m})$ .
2. **Missing at Random (MAR):** The probability of an entry being missing depends only on  
the observed values, i.e.,  $p(\mathbf{m}|\mathbf{x}) = p(\mathbf{m}|\mathbf{x}_{\text{obs}})$ .
3. **Missing Not at Random (MNAR):** The probability of an entry being missing may also  
depend on the unobserved (missing) values themselves. This category encompasses all  
cases not covered by MCAR or MAR.

617  
618  
To generate realistic missingness patterns for our experiments, we implement the MAR and MNAR  
619  
mechanisms following the procedure proposed by Zhao et al. (2023):620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  

- **MAR Generation:** We first partition the features into two sets: a fully observed set and a  
potentially missing set. A logistic regression model is then trained using the fully observed  
features as input to predict the probability of missingness for each entry in the potentially  
missing set. The bias term of this logistic model is adjusted via a line search to achieve the  
desired overall missingness rate.
- **MNAR Generation:** We adopt the “logistic model with MCAR-masked inputs” approach  
from the reference. Similar to the MAR setup, we divide features into two sets. A logistic  
model uses the first set of features to predict the missingness probabilities for the second  
set. Crucially, after these probabilities are determined but before they are used to generate  
masks, we apply an MCAR mask to the *input* features (the first set). This creates a dependency  
where the missingness in the second set is influenced by the (now masked) values in  
the first set, thus satisfying the MNAR condition.

632  
633  

## B IMPLEMENTATION DETAILS

634  
635  

**Baseline of Imputation.** We use 12 state-of-the-art imputation methods:

636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  

- HyperImpute: a hybrid imputer that performs iterative imputation with automatic model  
selection.
- MIWAE: an autoencoder model that fits missing data by optimizing a variational bound.
- EM: an iterative imputer based on expectationmaximization optimization.
- GAIN: a generative adversarial imputation network that trains the discriminator to classify  
the generator’s output in an element-wise manner.
- ICE: an iterative imputer based on regularized linear regression; MICE, an ICE-like, iterative  
imputer based on Bayesian ridge regression.
- MIRACLE: an iterative imputer that refines the imputation of a baseline by simultaneously  
modeling the missingness generating mechanism.
- MissForest: an iterative imputer based on random forests.

- 648 • Mean and Most\_Frequent, which impute missing values using column-wise unconditional  
649 mean, median, and the most frequent values, respectively.
- 650 • Sinkhorn: an imputer trained through the optimal transport metrics of Sinkhorn diver-  
651 gences.
- 652 • SoftImpute, which performs imputation through soft-thresholded singular value decompo-  
653 sition.
- 654

655 **Baseline Implementation.** The setup of our baseline follows the previous work and includes the  
656 following methods:

- 658 • XGBoost: Implemented based on the XGBoost package. We set the maximum number of  
659 estimators in 50, 100, 300 and the max depth in {5, 8, 10}.
- 660 • LightGBM: Implemented based on the LightGBM package. We set the maximum number  
661 of estimators in {50, 100, 300} and the max depth in {5, 8, 10}.
- 662 • MLP: Dense layers with hidden dimensions {256, 256}. Dropout with a rate of 0.1 is used.  
663 They are trained with batch size in {16, 32, 64, 128}, learning rate in {5e-5, 1e-4, 1e-3},  
664 and early stopping patience of 5 with 100 maximum epochs.
- 665 • TabNet: Use the official implementation with the default recommended parameters.  
666 Trained with batch size in {16, 32, 64, 128}, learning rate in {1e-4, 1e-3, 2e-2},  $n_a, n_b$   
667 in {8, 16, 64, 128},  $\gamma$  in {1.3, 1.5, 1.8}, categorical embedding dimension in {1, 8, 16}  
668 and early stopping patience of 5 with 100 maximum epochs.
- 669 • DCN-v2: The number of cross is 2. The dropout rate for the feedforward component is 0.1.  
670 MLP part has two dense layers of dimension {256, 128}. Trained with batch size in {16,  
671 32, 64, 128}, learning rate in {5e-5, 1e-4, 1e-3}, and early stopping patience of 10 in 100  
672 maximum epochs.
- 673 • AutoInt: The attention layer number is set to 2. The attention head number is set to 2. MLP  
674 part has two dense layers of dimension 256, 128; dropout deactivated; trained with batch  
675 size in 16, 32, 64, 128, learning rate in {5e-5, 1e-4, 1e-3}, and early stopping patience of  
676 10 in 100 maximum epochs.
- 677 • SAINT: The embedding size is 32 dimensions. 6 transformer layers are used. The number  
678 of heads of attention is in {4, 8}. The dropout rate is 0.1 in all attention layers and feed-  
679 forward layers. Inside the self-attention layer, the q, k, and v vectors are of dimension 16,  
680 and in the intersample attention layer, they are of size 64.
- 681 • FT-Transformer: Feed-forward component has 128 dimensions. 2 transformer layers are  
682 used. The number of heads of attention is in {2, 4, 8}. The dropout rate is 0.1.
- 683 • TransTab: Token embedding has 128 dimensions. 2 transformer layers are used. The  
684 number of heads of attention is 8. We train the model on all downstream task data taking  
685 batch size 64, learning rate 1e-4, dropout rate 0, and early stopping patience of 10 in 100  
686 maximum epochs. We run the pretraining, transfer learning, and vanilla supervised training  
687 methods in the paper, and take the highest score.
- 688

## 689 C ADDITIONAL RESULTS

690 To assess generalization under out-of-distribution (OOD) missingness, we conduct a key experiment  
691 in which models are trained at a fixed missingness rate A (under MAR/MNAR/MCAR) and eval-  
692 uated at test time across a broader range of rates B. On the Adult dataset, we report performance under  
693 MAR/MNAR/MCAR for test-time missingness rates of 10%- 90%. We benchmark FT-Transformer,  
694 MLP, TabNet, TabTransformer, XGBoost, and our method JUMP on both the Adult and Shopper  
695 datasets. Detailed results are presented in the Tables C and C.

696  
697  
698  
699  
700  
701

702  
703  
704  
705

706 Table 4: Performance of various models under different missing settings in ADadult.

| 707 <b>Train-30%</b> | 708 <b>10%</b> | 709 <b>30%</b> | 710 <b>50%</b> | 711 <b>70%</b> | 712 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 91.23 (0.17)   | 90.91 (0.17)   | 89.65 (0.14)   | 86.27 (0.31)   | 79.36 (0.29)   |
| FTTransformer        | 86.27 (0.13)   | 85.53 (0.16)   | 83.18 (0.23)   | 78.10 (0.30)   | 69.49 (0.26)   |
| MLP                  | 86.40 (0.18)   | 86.12 (0.20)   | 84.66 (0.27)   | 80.87 (0.25)   | 73.45 (0.41)   |
| TabNet               | 85.68 (0.21)   | 85.16 (0.22)   | 83.16 (0.25)   | 78.72 (0.24)   | 70.33 (0.21)   |
| XGBoost              | 88.35 (0.19)   | 87.60 (0.21)   | 85.38 (0.25)   | 80.15 (0.27)   | 70.97 (0.12)   |

| 714 <b>Train-50%</b> | 715 <b>10%</b> | 716 <b>30%</b> | 717 <b>50%</b> | 718 <b>70%</b> | 719 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 90.77 (0.27)   | 90.41 (0.25)   | 89.44 (0.26)   | 86.27 (0.21)   | 79.46 (0.24)   |
| FTTransformer        | 85.71 (0.17)   | 85.11 (0.20)   | 82.93 (0.19)   | 78.14 (0.27)   | 70.36 (0.33)   |
| MLP                  | 85.34 (0.24)   | 85.19 (0.18)   | 84.04 (0.13)   | 81.13 (0.23)   | 75.29 (0.22)   |
| TabNet               | 83.44 (0.36)   | 82.90 (0.37)   | 80.78 (0.36)   | 76.70 (0.30)   | 69.39 (0.34)   |
| XGBoost              | 87.51 (0.21)   | 86.85 (0.26)   | 84.75 (0.13)   | 79.80 (0.24)   | 71.78 (0.23)   |

| 720 <b>Train-70%</b> | 721 <b>10%</b> | 722 <b>30%</b> | 723 <b>50%</b> | 724 <b>70%</b> | 725 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 90.28 (0.17)   | 89.97 (0.16)   | 88.79 (0.23)   | 85.88 (0.27)   | 79.56 (0.25)   |
| FTTransformer        | 86.27 (0.13)   | 85.53 (0.16)   | 83.18 (0.23)   | 78.10 (0.30)   | 69.49 (0.26)   |
| MLP                  | 85.29 (0.25)   | 84.68 (0.27)   | 82.65 (0.27)   | 77.96 (0.28)   | 70.27 (0.50)   |
| TabNet               | 83.50 (0.66)   | 83.24 (0.59)   | 82.54 (0.44)   | 80.86 (0.29)   | 75.55 (0.40)   |
| XGBoost              | 85.78 (0.33)   | 85.35 (0.30)   | 83.55 (0.15)   | 79.16 (0.23)   | 71.33 (0.39)   |

726  
727  
728  
729  
730  
731  
732

733 Table 5: Performance of various models under different missing settings in Shoppers.

| 735 <b>Train-30%</b> | 736 <b>10%</b> | 737 <b>30%</b> | 738 <b>50%</b> | 739 <b>70%</b> | 740 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 91.40 (0.37)   | 90.66 (0.28)   | 88.56 (0.49)   | 83.16 (0.47)   | 73.15 (0.75)   |
| FTTransformer        | 89.01 (0.60)   | 88.11 (0.56)   | 86.25 (0.60)   | 81.36 (0.67)   | 71.67 (0.48)   |
| MLP                  | 79.10 (0.68)   | 78.35 (0.70)   | 75.36 (0.68)   | 69.13 (0.76)   | 61.78 (1.02)   |
| TabNet               | 88.49 (0.61)   | 87.51 (0.61)   | 85.27 (0.81)   | 80.26 (0.47)   | 70.77 (0.86)   |
| XGBoost              | 89.95 (0.39)   | 89.16 (0.35)   | 86.98 (0.46)   | 82.07 (0.62)   | 73.38 (0.54)   |

| 741 <b>Train-50%</b> | 742 <b>10%</b> | 743 <b>30%</b> | 744 <b>50%</b> | 745 <b>70%</b> | 746 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 90.36 (0.45)   | 89.88 (0.53)   | 87.74 (0.32)   | 82.92 (0.63)   | 74.07 (0.69)   |
| FTTransformer        | 81.11 (7.35)   | 80.60 (7.23)   | 78.93 (6.85)   | 74.58 (5.83)   | 67.96 (4.27)   |
| MLP                  | 77.27 (0.94)   | 76.63 (0.80)   | 74.12 (0.90)   | 69.96 (0.86)   | 63.57 (0.71)   |
| TabNet               | 87.42 (0.61)   | 87.01 (0.60)   | 84.96 (0.76)   | 78.86 (0.71)   | 70.77 (1.36)   |
| XGBoost              | 88.75 (0.66)   | 88.22 (0.59)   | 86.02 (0.77)   | 81.58 (0.64)   | 73.47 (0.69)   |

| 748 <b>Train-70%</b> | 749 <b>10%</b> | 750 <b>30%</b> | 751 <b>50%</b> | 752 <b>70%</b> | 753 <b>90%</b> |
|----------------------|----------------|----------------|----------------|----------------|----------------|
| Ours                 | 89.08 (0.67)   | 88.65 (0.79)   | 86.59 (0.62)   | 81.39 (0.70)   | 73.62 (0.64)   |
| FTTransformer        | 84.69 (0.84)   | 83.88 (0.99)   | 81.41 (0.87)   | 76.04 (0.92)   | 69.08 (0.62)   |
| MLP                  | 73.28 (0.40)   | 72.46 (0.62)   | 69.91 (0.46)   | 70.09 (0.38)   | 66.19 (0.60)   |
| TabNet               | 86.31 (0.67)   | 85.99 (0.69)   | 83.93 (0.72)   | 79.19 (0.48)   | 72.09 (0.33)   |
| XGBoost              | 87.29 (0.61)   | 87.02 (0.48)   | 84.81 (0.44)   | 81.46 (0.32)   | 73.72 (0.35)   |

754  
755