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Accurate and Lightweight Learning for Specific Domain
Image-Text Retrieval

Anonymous Authors

ABSTRACT
Recent advances in vision-language pre-trained models like CLIP
have greatly enhanced general domain image-text retrieval per-
formance. This success has led scholars to develop methods for
applying CLIP to Specific Domain Image-Text Retrieval (SDITR)
tasks such as Remote Sensing Image-Text Retrieval (RSITR) and
Text-Image Person Re-identification (TIReID). However, these meth-
ods for SDITR often neglect two critical aspects: the enhancement
of modal-level distribution consistency within the retrieval space
and the reduction of CLIP’s computational cost during inference,
resulting in suboptimal retrieval spaces and unnecessarily high
inference computational loads. To address these issues, this paper
presents a novel framework, Accurate and lightweight learning
for specific domain Image-text Retrieval (AIR), based on the CLIP
architecture. AIR incorporates a Modal-Level distribution Consis-
tency Enhancement regularization (MLCE) loss and a Self-Pruning
Distillation Strategy (SPDS) to improve retrieval precision and com-
putational efficiency. The MLCE loss harmonizes the sample dis-
tance distributions within image and text modalities, fostering a
retrieval space closer to the ideal state. Meanwhile, SPDS employs
a strategic knowledge distillation process to transfer deep multi-
modal insights from CLIP to a shallower level, maintaining only the
essential layers for inference, thus achieving model light-weighting.
Comprehensive experiments across various datasets in RSITR and
TIReID demonstrate the effectiveness of both MLCE loss and SPDS.
The study also explores the limits of SPDS’s performance and com-
pares it with conventional teacher-student distillation methods.
The findings reveal that MLCE loss secures optimal retrieval on
several datasets, while SPDS achieves a favorable balance between
accuracy and computational demand during testing.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies → Neural networks.

KEYWORDS
Cross-modal image-text retrieval, Lightweight, Vision-language
pre-trainedmodels, Remote sensing, Text-image person re-identification
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1 INTRODUCTION
Cross-modal image-text retrieval (CMITR) enables semantic-based
matching between text and images and has garnered significant at-
tention from scholars [11, 25, 56, 58, 69]. CMITR can be dichotomized
based on its application scope: General Domain Image-Text Re-
trieval (GDITR) addresses natural or everyday scenes [5, 21, 22],
while Specific Domain Image-Text Retrieval (SDITR) focuses on spe-
cialized fields, such as Remote Sensing Image-Text Retrieval (RSITR)
[42, 68, 72] and Text-Image person Re-identification (TIReID) [19,
52, 66]. In the realm of GDITR, there is a growing consensus on
the efficacy of employing Visual-Language large-scale Pre-training
models (VLPs) [2, 10, 32, 47, 48]. A typical strategy involves fine-
tuning VLPs on targeted GDITR datasets [13]. This methodology
has been applied with considerable success in GDITR, leading to
significant enhancements in performance metrics [17, 24, 27, 30, 46].
Notably, CLIP [46], as an exemplary VLP, underscores this progress.
Trained on a diverse dataset of 400 million web-based image-text
pairs, CLIP has established a new standard for image-text alignment
and spurred the creation of novel approaches that have propelled
GDITR accuracy to unprecedented levels.

The remarkable achievements of CLIP in GDITR have prompted
researchers to extend its utility to SDITR. One straightforward
method of adaptation is full fine-tuning on SDITR datasets [19].
Furthermore, several researchers have delved into alternative ap-
proaches, such as prompt learning [23] and the integration of adap-
tors [71], which have significantly advanced CLIP’s efficacy in
SDITR. Despite these improvements, current methods have not
adequately addressed two critical concerns.

Firstly, existing methods primarily employ contrastive loss to
focus on instance-level cross-modal alignment, yet they overlook
the importance of maintaining modal-level distribution consistency
within the joint representation space in SDITR. Modal-level distri-
bution consistency refers to the uniformity between the distance
distributions of samples within different modalities. The better
the alignment between image and text modalities, the higher the
modal-level distribution consistency observed. Figure 1 (a) illus-
trates an ideal state of maximal modal-level distribution consis-
tency. We quantify modal-level distribution consistency using the
Kullback-Leibler (KL) divergence between image and text intra-
modal self-similarity matrices. Comparative evaluations on GDITR
and SDITR tasks (Figure 1(e)) reveal a positive correlation between
modal-level distribution consistency and retrieval performance,
with SDITR showing notably lower precision and weaker modal-
level distribution consistency. Meanwhile, there is an inherent lack
of modal-level distribution consistency in the SDITR task data, as
evidenced in Figure 1 (b)-(d), indicating the necessity for a spe-
cific focus on enhancing modal-level distribution consistency in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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SDITR tasks. However, current adaptations of CLIP for SDITR do
not adequately resolve this inconsistency. Consequently, this work
advocates that the enhancement of modal-level distribution consis-
tency can facilitate the formation of an optimal retrieval space in
SDITR, thereby achieving more accurate retrieval results.

Secondly, the demands of real-time processing in SDITR are not
adequately addressed, as these methods neglect the imperative of
lightweight inference for efficient data stream processing. Tasks in
SDITR often necessitate high real-time performance. For example,
RSITR typically involves processing an extensive gallery, necessitat-
ing both lightweight inference and real-time processing capabilities
[73]. Furthermore, the task of semantic localization through RSITR,
which must handle a substantial volume of large-scale remote sens-
ing images, also requires robust real-time performance [73]. In
TIReID, particularly within security and surveillance applications,
the need for swift inference is paramount [19]. Existing methods
[71] have focused primarily on diminishing training overheads
without considering the computational and temporal efficiencies
during inference. Consequently, to facilitate the application of CLIP
in SDITR, optimizing for lightweight retrieval during testing is
essential to streamline the data stream.

To tackle the issues previously outlined, we introduce a novel
framework termed Accurate and lightweight learning for Specific
Domain Image-text Retrieval (AIR), grounded in the CLIP archi-
tecture. AIR integrates a Modal-Level distribution Consistency En-
hancement regularization (MLCE) loss and a Self-Pruning Distil-
lation Strategy (SPDS), designed to refine retrieval performance
while maintaining computational efficiency.

The MLCE loss is engineered to bolster the uniformity of intra-
modal distributions for both images and texts, thereby augmenting
modal-level distribution consistency and guiding the optimization
of the shared representation toward an ideal retrieval space. This
approach is instrumental in cultivating refined joint image-text rep-
resentations tailored for SDITR, while simultaneously reinforcing
modal interactions within CLIP. In practice, the MLCE loss reduces
the KL divergence between the self-similarity matrices of the im-
age modality and the text modality within a mini-batch, fostering
consistency in the distribution of sample distances within different
modalities. This optimization is directed towards enhancing the
joint representation to align with the ideal scenario depicted in
Figure 1 (a).

SPDS, drawing on the principles of knowledge distillation, facil-
itates self-pruning by harnessing intra-CLIP knowledge transfer.
The streamlined model preserves robust retrieval capabilities while
curtailing the parameter count and computational demands. SPDS
uses the image-text similarity matrix from CLIP’s final layer as a
pedagogical guide for the matrices derived from the initial K layers.
This training approach effectively redistributes the deeper layers’
learned knowledge to earlier stages. During inference, the retention
of only the first K layers in the image (text) encoder’s transformer
substantially reduces the model’s complexity.

Our extensive empirical analysis across two SDITR tasks—RSITR
and TIReID—demonstrates that AIR achieves both precise and ef-
ficient retrieval outcomes. The utilization of MLCE loss in CLIP
results in an mR retrieval metric that outperforms existing ap-
proaches, thereby setting a new state-of-the-art (SOTA) benchmark
and corroborating the efficacy of the MLCE loss. Moreover, we

Figure 1: (a) Ideal retrieval spacewith aligned intra-modal dis-
tance distributions. (b) High variability in text descriptions
for similar remote sensing images. (c) Non-distinctive text
descriptions for different pedestrian images. (d) RSITMD and
TIReID exhibit poor modal-level distribution consistency. (e)
Finetuning performance and modal-level distribution con-
sistency are compared between GDITR and SDITR. Lower
KL divergence indicates stronger consistency, vice versa.

conduct an in-depth examination of SPDS to delineate its perfor-
mance thresholds and the trade-off dynamics between self-pruning
precision and model capacity. Our comparative analysis of SPDS
with conventional teacher-student distillation models offers critical
insights and serves as a reference for future research endeavors
aimed at refining the efficiency of CLIP.

Our contributions are concisely summarized as follows:

• TheAccurate and Lightweight learning framework for domain-
specific image-text Retrieval (AIR) is introduced, wherein
CLIP’s robust features are leveraged to balance accuracy and
computational cost efficiently in domain-specific image-text
retrieval (SDITR) tasks.

• The Modal-Level distribution Consistency Enhancement reg-
ularization (MLCE) loss is introduced to align image-text
modalities within CLIP, essential for optimizing joint repre-
sentations in SDITR.

• The Self-Pruning Distillation Strategy (SPDS) has been de-
vised, which reduces the computational requirements and
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model size of CLIP without significantly compromising re-
trieval capabilities.

• Extensive experiments on diverse datasets validate MLCE
loss’s effectiveness, achieving new performance benchmarks.
SPDS’s trade-off between retrieval accuracy and model size
has been explored. Comparative studies with traditional dis-
tillation methods provide insights for advancing efficient
CLIP model reduction.

2 RELATEDWORK
2.1 Specific Domain Image-Text Retrieval

(SDITR)
SDITR refers to image-text retrieval tasks within certain industries
and specialized fields. This paper focuses on two SDITR tasks: Re-
mote Sensing Image-Text Retrieval (RSITR) and Text-Image person
Re-identification (TIReID).

RSITR is a bi-directional retrieval technique that has become in-
creasingly prominent due to its efficacy in managing and analyzing
the growing volume of remote sensing (RS) imagery [8, 36, 49, 70,
72, 74, 75]. It leverages semantic similarities to retrieve RS images
or corresponding text descriptions. Significant advancements in
RSITR include a semantic alignment module by Cheng et al. [8] that
employs attention and gating mechanisms for matching RS images
with text. Yuan et al. have contributed extensively, introducing a
fine-grained RS image-text dataset and frameworks that enhance
retrieval accuracy [72] and support cross-modal retrieval encom-
passing images, text, and audio [74]. Other notable works include
graph neural network models for feature interaction learning [70],
unsupervised contrastive hashing for cross-modal retrieval [39],
and multilingual frameworks [49] for RSITR.

Our study investigates the application of CLIP for RSITR, diverg-
ing from approaches like Yuan et al.’s parameter-efficient training
[71]. Instead, we focus on preserving CLIP’s performance while
reducing parameter count and computational expense during infer-
ence.

TIReID aims to retrieve the most relevant individual from a
large image repository using text query, with applications rang-
ing from personal photo album searches to public safety. The task
was initially proposed by Li et al. [29] along with the first bench-
mark dataset, CUHK-PEDES [29]. Subsequent methods [28] utilized
VGG and LSTM as feature extractors for images and text, respec-
tively, aligning them with a matching loss function. Later, studies
[50, 80] improved feature extraction backbones with ResNet50/101
and BERT, and designed novel cross-modal matching losses to
align global image-text features in a joint embedding space. Re-
cent work has also incorporated CLIP. Yan et al. [66] introduced a
CLIP-driven fine-grained informationmining framework to transfer
CLIP’s knowledge. Jiang et al. [19] designed an implicit relational
reasoning and alignment method to fine-tune CLIP.

Prior methods, however, did not consider reducing CLIP’s data
flow. Our paper conducts an in-depth investigation into this aspect,
addressing the need for efficiency in TIReID systems.

2.2 Visual-Language large-scale Pre-training
model (VLP)

The surge in VLP model development [17, 24, 26, 27, 30, 33, 34,
46, 77] has been fueled by breakthroughs in both language [9]
and vision models [14], bolstered by expansive image-text datasets.
Pre-training on auxiliary tasks like Image-Conditioned Masked
Language Modeling and Image-Text Matching [46] equips these
models for diverse applications, including retrieval and visual ques-
tion answering. Key models include Lu et al.’s VILBERT [33], which
leverages dual-stream architecture, and LXMERT by Tan et al. [53],
which integrates object location data. Su et al. Li et al. [26] present
stacked Transformer models, unifying object, image, and text fea-
tures. Li et al. [30] and Kim et al. [24] further refine these models
with specialized input structures and task optimizations. Zeng et
al.’s X-VLM [77] and Jia et al.’s billion-pair model [17] continue this
trend, emphasizing feature alignment and large-scale pre-training.
Among these, CLIP [46] stands out for its simplicity and effective-
ness, pre-trained from scratch on a vast internet-sourced dataset. It
has become a benchmark for image-text tasks due to its straight-
forward architecture and contrastive learning approach. Our work
builds upon CLIP’s framework to enhance SDITR, focusing on
achieving precision and speed in this specialized domain.

2.3 Knowledge Distillation
Knowledge distillation streamlines large-scale models (teacher mod-
els) into smaller, efficient counterparts (student models), a concept
introduced by Bucilua et al. [3] and advanced by Hinton et al. [16].
It has since become a cornerstone for model compression, with
extensive research contributions in unimodal [1, 15, 57, 63] and
multimodal distillation [38, 43, 55, 62, 81].

Unimodal Model Distillation: Wu et al. [63] implemented
distillation in open set domains, introducing angular and embedding
constraints for recognition tasks. He et al. [15] tailored distillation
for semantic segmentation, optimizing latent feature similarity with
an autoencoder to align student-teacher features. Wang et al. [57]
enhanced student networks in facial recognition through positional-
aware exclusivity. Aguilar et al. [1] showcased distillation’s efficacy
using BERT’s internal representation for language benchmarks.

Multimodal Model Distillation: Wang et al. [55] harnessed
multimodal data via independent unimodal teacher models to in-
struct a multimodal student model. Zhao et al. [81] innovated a
cross-modal scheme, allowing student training on datasets inac-
cessible to teachers. Miech et al. [38] mediated the speed-accuracy
dichotomy in image-text retrieval with a Transformer-based teacher
model. Several studies have optimized the CLIP model through dis-
tillation. TinyCLIP by Wu et al. [62] applied affinity imitation and
weight inheritance for a more compact CLIP model. Pei et al. [43]
introduced CLIPPING, a layer-wise technique using CLIP’s visual
encoder to refine MobileViT-v2.

Our work diverges by featuring self-distillation with SPDS, lever-
aging in-network deep-layer insights to inform shallow layers, thus
bypassing the need for external student models and intricate distil-
lation protocols, offering a more innovative approach.
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Figure 2: The pipeline of the proposed AIR framework. (a) introduces AIR framework, (b) and (c) respectively illustrate the
effects of contrastive loss and MLCE loss, and (d) depicts the ideal feature distribution in the retrieval space.

3 METHOD
In this study, we present our framework from three aspects. Firstly,
we introduce the MLCE loss. This innovation aims to enhance the
consistency of modality sample distribution at the modality level.
Then, we present the SPDS, which further enhances the test effi-
ciency of our framework. Furthermore, we provide a comprehensive
review of CLIP in Supplementary Materials.

3.1 Modal-Level Consistency distribution
Enhancement (MLCE) loss

In this paper, we propose an MLCE loss based on CLIP to ensure the
convergence of similarity distributions between samples in the text
modality and the image modality. The MLCE loss imposes regular-
ization constraints on the internal representations of the image and
text modalities, which goes beyond the capability of the inherent
contrastive loss in CLIP. The contrastive loss only enforces cross-
modal consistency between images and text, as shown in Figure 2
(b). By incorporating the MLCE loss, we address the limitations
of the contrastive loss and tackle the issue of poor modal-level
distribution consistency in SDITR. This leads to a joint image-text
representation space that approaches the ideal retrieval space, as
illustrated in Figure 1 (a) and Figure 2 (d).

Specifically, we first compute the self-similarity matrices within
the text and image modalities respectively, denoted as St and Sv, as
shown in Equations 1 and 2.

St = 0.5 ∗ (1 + RtRt𝑇 ) (1)

Sv = 0.5 ∗ (1 + RvRv𝑇 ) (2)

Rv = {𝑅𝑖𝑣, 𝑖 = 1, 2, . . .} is a matrix of image feature vectors output
by CLIP within a batch. Rt = {𝑅𝑖𝑡 , 𝑖 = 1, 2, . . .} denotes a matrix
of text feature vectors within a batch. 𝑇 denotes the transposition
operation.

Then, we calculate the K-L divergence between the text self-
similarity matrix and the image self-similarity matrix to use as the
MLCE loss. The MLCE loss is shown in Equation 3,

𝐿𝑀𝐿𝐶𝐸 =
1
𝑚

𝑚∑︁
𝑖 = 1

𝐾𝐿(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( St
𝑖

𝜇
)∥𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( Sv

𝑖

𝜇
)) (3)

where 𝐿𝑀𝐿𝐶𝐸 denotes the MLCE loss, 𝐾𝐿() denotes the K-L diver-
gence, 𝑚 denotes the batch size, and 𝜇 denotes the temperature
coefficient.

The total loss of the model is shown in Equation 4,

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑣𝑡𝑐 + 𝛼𝐿𝑀𝐿𝐶𝐸 (4)

where 𝐿𝑣𝑡𝑐 denotes the cross-modal contrastive loss used in CLIP,
𝐿𝑡𝑜𝑡𝑎𝑙 is the total loss, and 𝛼 represents the combination coefficient.
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3.2 Self-Pruning Distillation Strategy (SPDS)
Although CLIP with 𝐿𝑀𝐿𝐶𝐸 can achieve SDITR, it has a large num-
ber of parameters and incurs high computational costs during in-
ference. Consequently, processing massive RS images in practical
scenarios becomes unfeasible. To alleviate this issue, a novel SPDS
is designed to lighten CLIP.

As shown in Figure 2, we use the output of the 𝐾-th Transformer
block of CLIP as the lightweight image and text features within
a batch, denoted as Pv and Pt, respectively. We then calculate the
similarity matrix S1 between the 𝑃𝑣 and 𝑃𝑡 . The similarity matrix of
the raw outputs from the last Transformer block of CLIP is denoted
as S2.

S1 = PvPt𝑇 (5)

S2 = RvRt𝑇 (6)
𝑇 denotes the transposition operation.

During the optimization, we use 𝐿𝑣𝑡𝑐
𝑙𝑖𝑔ℎ𝑡

and 𝐿𝑣𝑡𝑐 for S1 and S2
respectively. Both of 𝐿𝑣𝑡𝑐

𝑙𝑖𝑔ℎ𝑡
and 𝐿𝑣𝑡𝑐 represent the cross-modal

contrastive losses. Additionally, a novel self-distillation loss 𝐿𝑠𝑑 is
proposed, so that the information of S2 can guide S1 in optimization,
thus achieving knowledge transfering.

𝐿𝑠𝑑 = ( −
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑒𝑥𝑝
(
S2𝑖 𝑗/𝛾

)∑𝑚
𝑘=1 𝑒𝑥𝑝

(
S2𝑖𝑘/𝛾

)
𝑙𝑜𝑔(

𝑒𝑥𝑝
(
S1𝑖 𝑗/𝛾

)∑𝑚
𝑘=1 𝑒𝑥𝑝

(
S1𝑖𝑘/𝛾

) )) +
( −

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑒𝑥𝑝

(
ST2

𝑖 𝑗/𝛾
)

∑𝑚
𝑘=1 𝑒𝑥𝑝

(
ST2

𝑖𝑘/𝛾
)

𝑙𝑜𝑔(
𝑒𝑥𝑝

(
ST1

𝑖 𝑗/𝛾
)

∑𝑚
𝑘=1 𝑒𝑥𝑝

(
ST1

𝑖𝑘/𝛾
) ))

(7)

where𝑚 denotes the batch size and 𝛾 denotes the temperature
coefficients.

With the inclusion of lightweight, we modify the overall loss in
Equation 4 to the following form:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑣𝑡𝑐 + 𝐿𝑣𝑡𝑐
𝑙𝑖𝑔ℎ𝑡

+ 𝛼𝐿𝑀𝐿𝐶𝐸 + 𝜂𝐿𝑠𝑑 (8)

where 𝛼 and 𝜂 represents the combination coefficients.
During inference, we only keep the former K Transformer blocks,

which greatly reduces the parameters capacity and computation of
the test.

4 EXPERIMENTS
To demonstrate the efficacy of the AIR framework, we executed
comprehensive experiments in RSITR and TIReID. We describe the
experimentation protocols and datasets initially, followed by com-
parative analyses highlighting AIR’s retrieval efficacy, parameter
efficiency, and computational economy. Ablation studies further
elucidate the MLCE loss and the layer-wise influence of the SPDS.

Additional experiments contrast SPDS with conventional teacher-
student knowledge distillation approaches.

4.1 Implementation details, Metrics, and
datasets

Our experiments were performed on an NVIDIA RTX 3090 GPU
within the PyTorch framework using the AdamW optimizer. We
trained our model for 10 epochs on the RSITR task and 30 epochs
on the TIReID task, employing a batch size of 64 and an initial
learning rate of 1e-5, with learning rate decay managed by a cosine
annealing strategy. We utilize the pretrained model weights from
CLIP as the initialization for our model. We strictly followed the
official train-test splits for all datasets. We conducted an exhaustive
hyperparameter search for each parameter, such as the combina-
tion coefficients 𝛼 , 𝜂, and the temperature coefficient 𝜇 in the loss
functions. Details of these experiments can be found in the Supple-
mentary Material. The hyperparameters in the main experiments
were all set based on the outcomes presented in the Supplementary
Material.

Following established benchmarks [72], for RSITR, we measure
performance using recall rates R@k (k=1,5,10) andmean Recall (mR)
for both text-to-image and image-to-text tasks. R@k quantifies the
percentage of correct results in the top k retrievals, while mR is the
average of the six R@k values. For TIReID [19], we utilize R@K
for text-to-pedestrian tasks and mean Average Precision (mAP)
for overall performance evaluation. Additionally, we assess the
model’s efficiency by computing the Parameters and Floating Point
Operations (FLOPs) at inference.

We employed the following four RSITR datasets. RSITMD [72]
features 4,743 images from 32 land-cover classes, each paired with
text. RSICD [35] comprises 10,921 images across 31 categories. UCM
Caption [44] contains 2,100 images over 21 scenes. Sydney Cap-
tion [44] includes 613 images in 7 categories. Each image in these
datasets is coupled with five textual descriptions.

We investigated the following two TIReID datasets. CUHK-
PEDES [29] encompasses 40,206 images of 13,003 subjects, with
80,412 text descriptions. RSTPReid [85] contains 20,505 images
of 4,101 individuals from 15 camera views, each with two text
descriptions.

4.2 Comparison experiments
4.2.1 RSITR Results. To highlight our method’s superiority, we
conducted comparative experiments against a spectrum of estab-
lished techniques. Results were compiled from existing literature
and complemented by our reimplementations. These techniques are
classified into three main groups. The initial group encompasses
conventional image-text retrieval and RSITR methodologies. The
second group is formed by several Transformer-based methods.
The third group is composed of CLIP-based variants. We pitted
various configurations of our proposed method against these com-
parative methods. "AIR(w/o SPDS)" denotes the performance of the
fine-tuned CLIP model with our MLCE loss on the RSITR dataset,
absent the SPDS. "AIR(k=3)" and "AIR(k=9)" reflect the outcomes
with the application of SPDS, resulting in pruned models with 3 and
9 layers, respectively. We conducted comparative experiments on
the RSICD, RSITMD, and UCM Caption datasets, with the RSICD
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Table 1: Experimental results on RSITR

Dataset RSITMD RSICD

Method Test Parameters (M) Test FLOPS (G)
Sentence Retrieval Image Retrieval

mR
Sentence Retrieval Image Retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Traditional methods
SCAN [25] ECCV’18 13.68 2.42 11.06 25.88 39.38 9.82 29.38 42.12 26.28 5.85 12.89 19.84 3.71 16.4 26.73 14.23
CAMP [58] ICCV’19 36.64 2.28 11.73 26.99 38.05 8.27 27.79 44.34 26.20 5.12 12.89 21.12 4.15 15.23 27.81 14.39
CAMERA [45] MM’20 131.81 4.21 8.33 21.83 33.11 7.52 26.19 40.72 22.95 4.57 13.08 21.77 4.00 15.93 26.97 14.39
AMFMN [72] TGRS’22 35.94 2.75 11.06 29.20 38.72 9.96 34.03 52.96 29.32 5.39 15.08 23.40 4.90 18.28 31.44 16.42
MCRN [74] JAG’22 52.35 4.87 13.27 29.42 41.59 9.42 35.53 52.74 30.33 6.59 19.40 30.28 5.03 19.38 32.99 18.95

LW-MCR [73] TGRS’21 1.65 0.46 9.73 26.77 37.61 9.25 34.07 54.03 28.58 4.39 13.35 20.29 4.30 18.85 32.34 15.59
GALR [76] TGRS’22 46.89 2.57 14.82 31.64 42.48 11.15 36.68 51.68 31.41 6.59 19.85 31.04 4.69 19.48 32.13 18.96
SWAN [54] ICMR’23 37.50 6.54 13.35 32.15 46.90 11.24 40.40 60.60 34.11 7.41 20.13 30.86 5.56 22.26 37.41 20.61
HVSA [79] TGRS’23 35.01 2.51 13.20 32.08 45.58 11.43 39.20 57.45 33.16 7.47 20.62 32.11 5.51 21.13 34.13 20.16
PIR [42] MM’23 – – 18.14 41.15 52.88 12.17 41.68 63.41 38.24 9.88 27.26 39.16 6.97 24.56 38.92 24.26

MGRM [78] TGRS23’ – – 13.51 31.87 46.27 11.11 37.22 56.61 32.76 7.41 23.24 35.32 5.75 21.23 35.55 21.42
SMLGN [7] TGRS’24 – – 17.26 39.38 51.55 13.19 43.94 60.40 37.62 8.87 25.53 37.24 7.85 27.14 42.58 24.87

Additional variants
VIT+BERT 171.29 19.50 12.83 31.19 46.24 9.60 36.59 54.42 31.81 9.06 22.78 32.75 5.32 19.47 33.71 20.52

ResNet18 + BERT 97.28 4.46 16.37 31.19 42.04 9.73 33.76 51.59 30.78 7.23 22.05 34.58 4.54 19.25 33.5 20.19
ResNet101+ BERT 129.13 10.50 13.50 32.30 46.24 11.90 36.46 52.43 32.14 9.15 23.7 35.32 5.07 19.69 33.21 21.02

CLIP based methods
CLIP-zero-shot ICML’21 82.46 13.21 9.51 25.00 33.41 7.79 28.98 45.66 25.06 7.23 17.38 26.26 5.38 18.12 29.17 17.26

CLIP-full-finetune ICML’21 82.46 13.21 25.88 50.22 63.27 23.14 56.11 72.74 48.56 19.21 38.15 50.59 14.07 38.50 54.40 35.82
Maple [23] CVPR’23 87.24 13.21 21.46 40.26 54.86 15.53 47.35 67.92 41.23 13.08 30.74 41.08 10.65 32.08 48.22 29.31
CoOp [84] IJCV’22 82.47 13.21 9.73 25.22 39.82 8.19 32.39 51.37 27.85 7.87 21.32 31.47 6.24 21.70 34.44 20.51
VPT [18] ECCV’22 82.55 13.21 13.72 34.29 48.67 13.72 40.89 59.56 34.14 9.97 24.52 37.33 9.64 29.49 44.76 25.95

Ours
AIR (w/o SPDS) 2.46 13.21 29.20 49.78 65.27 26.06 57.04 73.98 50.22 18.85 39.07 51.78 14.24 39.03 54.49 36.24

AIR (k=9) 61.99 9.94 23.67 44.47 57.3 19.96 51.73 69.82 44.49 14.55 33.58 45.93 11.03 32.94 49.62 31.28
AIR (k=3) 21.86 3.39 14.82 33.85 46.2 11.19 37.88 57.92 33.65 7.69 20.77 33.58 5.27 20.68 36.29 20.71

Table 2: Experimental results on TIReID

method R@1 R@5 R@10 mAP
Test

FLOPs (G)
Test

Parameters (M) Ref

Traditional methods
MANET [67] 63.92 82.15 87.69 – 11.14 83.75 TNNLS 23
TIMAM [50] 54.51 77.56 84.78 35.13 11.68 63.96 ICCV 19
HGAN [82] 59.00 79.49 86.62 37.80 5.26 120.84 MM 20
C2A2 [40] 64.82 83.54 89.77 – 12.87 107.71 MM 22
RKT [64] 61.48 80.74 87.28 – 7.16 63.34 TMM 23

PWM-ATH [6] 27.14 49.45 61.02 – – 137.61 WACV 18
Dual-Path [83] 44.40 66.26 75.07 – – 185.73 TOMM 20

MIA [41] 53.10 75.00 82.90 – – 211.00 TIP 20
PMA [20] 53.81 73.54 81.23 – 55.29 157.46 AAAI 20
DCMG [37] 55.81 77.44 84.87 – 14.82 134.86 IVC 21
LCR^2S [65] 67.36 84.19 89.62 59.24 4.64 87.82 MM 23
ILTL [4] 67.13 84.60 90.37 – 24.02 82.46 CVPR 23
Unipt [51] 66.83 84.16 89.42 – 13.59 142.91 ICCV 23
IVT [52] 65.59 83.11 89.21 – 19.07 142.32 ECCVW 22

TGDA [12] 64.64 83.38 89.34 58.64 5.08 113.84 TCSVT 23
IMG-NET [61] 56.48 76.89 85.01 – – – JEI 20
DSSL [85] 59.98 80.41 87.56 – 4.70 53.89 MM 21
SUM [59] 59.22 80.35 87.60 – 5.29 39.11 KBS 22
LBUL [60] 64.04 82.66 87.22 – 8.88 57.99 MM 22

CLIP based methods
CLIP-full-finetune 67.37 86.52 91.88 60.73 13.21 82.46 ICML 21
CLIP-zero-shot 12.64 27.13 5.56 11.15 13.21 82.46 ICML 21

Ours
AIR (w/o SPDS) 68.83 86.34 91.60 61.48 13.21 82.46 –

AIR (k=9) 62.52 81.17 87.51 57.93 9.94 61.99 –

and RSITMD results in Table 1 and UCM Caption findings in the
Supplementary Material.

On the RSITMD dataset, our AIR (w/o SPDS) achieved a SOTA
mR of 50.22. The AIR (k=9) and AIR (k=3) configurations attained
mR scores of 44.49 and 33.65, respectively, while significantly reduc-
ing computational and parameter costs. Our method outperforms
traditional methods, with our AIR (w/o SPDS or k=9) substantially
surpassing the previous best mR of 38.24 by PIR. Compared to addi-
tional variants, our configurations exceed the mR of ResNet (VIT)

+ BERT, with the added benefit of a smaller parameter footprint
and lower computational costs. Our method’s superiority is evident
when compared to CLIP-based methods. AIR (w/o SPDS) surpasses
CLIP (full-finetune) by 1.66 in mR without increasing test-time
resources. AIR (k=9) offers a balance, reducing resources while
maintaining a competitive mR of 44.49. Compared to the recent
prompt-based Maple [23], our AIR (k=9) not only achieves higher
mR scores but does so with reduced computational complexity and
parameters.

On the RSICD dataset, our method also sets a new state-of-the-
art, with AIR (w/o SPDS), AIR (k=9), and AIR (k=3) achieving mR
values of 36.24, 31.28, and 20.71, respectively, outperforming all
traditional methods. In terms of resource efficiency, our lighter
models still deliver competitive results. Even our lightweight set-
ting AIR (k=9) surpasses the highest traditional method KAMCAL.
Against additional variants, our configurations perform notably
better, with AIR (k=9) improving upon ResNet101 + BERT and VIT
+ BERT by 10.26 and 10.76 in mR, respectively, while requiring less
computation and fewer parameters. When benchmarked against
other CLIP-based approaches, our models demonstrate enhanced
performance. AIR (w/o SPDS) edges out CLIP (full-finetune) by 0.42
in mR, while AIR (k=9) achieves a good balance between perfor-
mance and efficiency, underscoring the effectiveness of our SPDS
in achieving a lightweight yet high-performing network.

4.2.2 TIReID Results. We performed comparative experiments for
TIReID on the CUHK PEDES and RSTPReid datasets. The results on
CUHK PEDES are shown in Table 2, and the results for RSTPReid
can be found in the Supplementary Materials. We categorized the
comparison algorithms into traditional methods and CLIP-based
methods. As shown in Table 2, AIR without SPDS achieved an R@1
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Figure 3: Efficetness of MLCE loss. Red font denotes RSITR
datasets, while blue indicates TIReID datasets.

score of 68.83, surpassing all traditional methods. Compared to
CLIP-based methods, AIR without SPDS exceeded the performance
of CLIP-full-finetune by 1.46 in R@1, demonstrating the effective-
ness of MLCE loss. Our lightweight version of AIR (k=9) achieved
an R@1 of 62.52, maintaining competitive retrieval precision while
reducing computational and parameter requirements, which evi-
dences that SPDS can achieve a favorable balance between retrieval
accuracy and speed.

4.3 Abalation study
4.3.1 Efficetness of MLCE loss. We have demonstrated the effec-
tiveness of theMLCE loss on a variety of RSITR and TIReID datasets.
A visual representation of our findings is depicted in Figure 3, which
clearly illustrates the superior performance of our proposed loss
function. For each dataset involved in these two distinct SDITR
tasks, the use of the MLCE loss yields better results than merely
fine-tuning the CLIP model.

When employing the MLCE loss in conjunction with the CLIP
model on the RSITMD dataset, we observe a mR improvement of
1.66 points over the baseline of a fine-tuned CLIP, all the while
maintaining an equal computational cost and model size during
the evaluation phase. This underscores the efficacy of our MLCE
loss. On the RSICD, integrating MLCE loss with CLIP results in
an mR increase of 0.42, further evidencing the utility of our loss
function. Moreover, the application of MLCE loss with CLIP on
the UCM Caption and Sydney datasets leads to mR enhancements
of 0.53 and 1.73, respectively. The improvements are even more
pronounced in the TIReID tasks. When applying MLCE loss, we
achieve substantial gains in R@1, with increases of 1.46 on the

CUHK-PEDES dataset, 5.05 on the RSTPReid dataset, and 2.42 on
the ICFG-PEDES dataset.

To further investigate MLCE loss’s impact, we conducted supple-
mentary parameter search for 𝜇 and 𝛼 in Equations 3 - 4, identifying
optimal settings as detailed in the Supplementary Material.

4.3.2 Ablation of SPDS. Weperformed a search on the combination
coefficient 𝜂 of self-distillation loss, with 𝐾 = 3 and 𝛾 = 8 fixed
empirically. The experimental results are shown in Figure 4. We set
the combination coefficient 𝜂 to the following values: {0.5, 0.1, 0.05,
0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. From Figure 4, it is
evident that when 𝜂 is too small, the mR value decreases, indicating
that our designed self-distillation loss is beneficial for learning
shallow CLIP features and facilitates the transfer of knowledge
from deeper to shallower layers. Conversely, when 𝜂 is too large,
the mR value also decreases, due to the excessive 𝜂 impeding the
optimization of the contrastive loss. The optimal value of mR is
achieved when 𝜂 equals 0.1.

Figure 4: Search on the combination coefficient 𝜂 of self-
distillation loss

To assess the impact of layer count on the effectiveness of SPDS,
a comprehensive optimization was conducted to determine the op-
timal values for the number of SPDS layers, 𝐾 , and the temperature
coefficient, 𝛾 . This optimization was performed over six datasets
for RSITR and TIReID. Here, we present the results on the RSICD
dataset within RSITR. Results for other datasets can be found in the
Supplementary Material. For the RSITR task, the mR was employed
as the metric for joint search. We set 𝐾 to the set {3, 4, 5, 6, 7, 8, 9,
10} and 𝛾 to {2, 4, 6, 8, 10}. The resultant performance on the RSICD
dataset is illustrated in Figure 5. As depicted in Figure 5, a 𝐾 value
of 3 enables our self-distillation approach to achieve an mR of 20.71
on the RSICD dataset, outperforming the majority of traditional
methods. Moreover, a general trend of increasing mRwith the rising
number of layers was observed, aligning with expectations.
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Figure 5: Joint search results for 𝐾 and 𝛾 on RSICD

The investigation highlighted the significant efficiency improve-
ments realized by the SPDS, which markedly reduces the parameter
and computational overheads associated with large-scale models,
without incurring substantial losses in retrieval accuracy. An analy-
sis of SPDS (elucidated in the Supplementary Materials) delineates
a direct correlation between the number of blocks, 𝐾 , and both
parameter count and computational complexity. The integration of
SPDS results in pronounced reductions in these metrics, especially
when juxtaposed with CLIP-based methods, while still maintaining
competitive retrieval performance.

Figure 6: Curve of mR variation with K on RSICD

4.4 Futher Exploration
To further explore the lightening of CLIP in RSITR, we also con-
ducted experiments using the student-teacher distillation method
based on [31]. We design a lightweight student model based on
MobileNet and TextCNN architectures. The teacher model is our
"AIR(w/o SPDS)". For the design and specific details of the student
model, please refer to the Supplementary Material.

The "STU-TEA" represents the results of the student-teacher
distillation approach. We can observe that STU-TEA achieves mR
values of 21.81 on the RSICD. The performance of STU-TEA sur-
passes the traditional comparison methods. Furthermore, the stu-
dent model in STU-TEA has significantly lower parameters ca-
pacity and computational complexity, with only 0.09G and 9.15M,
respectively, which is much smaller compared to other methods.
We examine the variation of mR values concerning K for SPDS
on the RSITMD and RSICD, comparing AIR with STU-TEA. The
experimental results on the RSITMD are shown in Figure 6. For the
experimental results on the RSITMD, please refer to the Supplemen-
tary Material. We observed that as K increases, the mR values for
AIR also increase.when K is greater than 3, AIR achieves higher mR
values than STU-TEA. Additionally, AIR(W/O SPDS) with 12 Trans-
former blocks has the highest mR value, reaching 36.24. These
observations demonstrate the strong flexibility of our proposed
method. When users prioritize high mR values without considering
computational speed and memory consumption, AIR(W/O SPDS)
can be chosen. When users face strict requirements for computa-
tional speed and memory limitations, STU-TEA can be selected.
Finally, when users consider a trade-off between computational
speed and retrieval accuracy (mR), the value of K can be determined
based on their specific needs to utilize AIR.

5 CONCLUSION
In this paper, we address the adaptation of pre-trained cross-modal
Visual-Language models for Specific Domain Image-Text Retrieval
(SDITR), tackling modal-level distribution inconsistency and ex-
cessive computational demands at inference. We introduce a novel
Modal-Level distribution Consistency Enhancement regulariza-
tion (MLCE) loss, derived from the CLIP framework, to harmo-
nize image-text representations. Furthermore, we propose a Self-
Pruning Distillation Strategy (SPDS) to mitigate parameter and
computational overhead during testing. This strategy utilizes the
CLIP model’s cross-modal output to refine shallower-layer learn-
ing, ensuring only the essential layers are retained for a compact
inference model. Empirical evaluations across diverse datasets con-
firm that our MLCE loss significantly advances joint representation,
leading to unparalleled retrieval accuracy in remote sensing image-
text retrieval and text-image person re-identification tasks. SPDS
is extensively tested, demonstrating its effectiveness in balancing
accuracy with computational efficiency. We also examine the limits
of SPDS’s impact and its trade-off between accuracy and model
size, and compare SPDS to conventional teacher-student knowledge
distillation methods.

Despite these contributions, our study is limited to the CLIP
model. Further research is needed to assess the applicability of our
strategies across a wider spectrum of VLPs. Future work will focus
on expanding the generalizability of our findings.
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