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Abstract
Lion is a novel optimization method that has outperformed traditional optimizers like Adam across
a variety of tasks. Despite its empirical success, the reasons behind Lion’s superiority remain un-
clear. In this paper, we investigate the mechanisms contributing to Lion’s enhanced performance,
focusing on the structured noise introduced by the use of the sign function in gradient updates. We
characterize this noise by the angle of rotation between a vector and its signum. We inject this noise
as a random fixed-angle rotation into normalized updates and analyze how the performance of this
method compares to that of Lion. We demonstrate that this method has stronger performance than
Lion in our setting. This approach reveals a relationship between the learning rate and the noise
specific to the Lion method, providing insights into its improved performance metrics. Addition-
ally, we identify an effect we term ”momentum tracing” in neural networks with normalization
layers and ReLU activations, which can significantly destabilize the training process. Our analysis
demonstrates that the rotation noise inherent in Lion mitigates the negative impact of ”momentum
tracing”, leading to more stable learning. These findings offer theoretical justification for Lion’s
effectiveness and suggest avenues for developing more robust optimization algorithms.

1. Introduction

Modern optimization methods leverage various properties of neural networks to enhance conver-
gence toward solutions with superior performance. The loss landscape of neural networks pos-
sesses distinct characteristics that define criteria for effective optimization. Numerous studies have
explored how these properties are connected to generalization capabilities and have contributed to
the development of advanced optimization techniques.

One of the earliest and most widely adopted optimizers specifically developed for neural net-
works is Adam [8]. This method utilizes first and second-order momentum estimates to stabilize
the training process. Several studies have demonstrated how these mechanisms help the optimizer
converge to regions that offer better generalization [3, 5, 15].
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In addition to traditional optimization methods, fixed-step approaches have also been explored
for neural networks. Norm (S)GD normalizes the gradient, optimizing in its direction at each itera-
tion with a step size equal to the learning rate [11, 13, 18]. Another method, Sign (S)GD, applies the
sign function to the update direction. That results in each parameter being adjusted by the ± learn-
ing rate, depending on the sign of the corresponding gradient component [2, 10, 12, 16]. However,
these methods have shown inferior performance and have not gained widespread adoption, although
they have been utilized in other learning paradigms.

A novel method, Lion [4], was developed through programmatic search within a symbolic rep-
resentation of optimizer space. Lion integrates various mechanisms from earlier methods, such as
the sign function, decoupled weight decay, momentum, and decoupled momentum. The authors
demonstrated that Lion outperforms Adam across a broad spectrum of CV and NLP tasks. How-
ever, due to Lion’s novelty, there is a lack of theoretical justification and analysis explaining the
reasons behind its superiority.

The use of the sign function in Lion leads to optimization that does not strictly follow the true
gradient direction. This can be interpreted as an introduction of a specific noise into the optimization
process. While optimization with a fixed step size in the gradient direction, as in Norm SGD, may
seem more logical, it has been observed to result in poorer model performance. This paper aims
to explore why Lion exhibits superior performance and how the noise introduced by perturbing the
gradient direction helps stabilize the learning process.

This noise can be characterized by the angle between a gradient and its sign. Such noise can be
synthetically introduced into the Norm SGD optimizer by applying random rotations with a fixed
angle to the gradient update as a form of regularization. This characterization allowed us to identify
the relationship between the learning rate and the noise specific to the Lion method, as well as
explain why Lion might achieve better performance.

Furthermore, we identified an effect that we termed ”momentum tracing”, observed in both
Lion and Norm SGD when they are applied to neural networks that include normalization layers
and ReLU (or GELU) activations. This effect can lead to the destabilization of the training process.
Our study investigates how the structured noise introduced by Lion mitigates the negative impact of
this effect, contributing to more stable learning.

2. Rotation noise

Most Loss Function Landscape (LFL) theories work with rotation-invariant constructions, such as
the spectral norm of the Hessian. From the rotation-invariant perspective, the choice of basis for
the sign operation is random. The sign operation itself can be interpreted as a form of arbitrary
rotary noise injection into gradient directions. This interpretation seems reasonable since noise in
loss function gradients plays a crucial role in neural networks’ optimization [14]. We begin by
theoretically analyzing this noise distribution.

Definition 1 We define Lion Noise Injection (LNI) on a vector v as follows: sample an orthonormal
basis B uniformly, express v in the coordinates of B, and then apply the sign function to these
coordinates.

Alternatively, we can describe LNI as follows: LNI(v) = wB

√
dim(v), where wB is a normal-

ized vector along the bisector of the hyperoctant to which v belongs, with respect to a sampled basis
B. To analyze the noise distribution, we can reformulate the procedure: instead of sampling a basis,
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we can fix a basis and sample a vector v uniformly from the sphere — it gives us an equivalent
rotary noise distribution. For spaces with a sufficiently high dimension, this distribution is spher-
ically symmetric and degenerates to a specific angle, see fig. 1. This is intuitive. Indeed, denote

Figure 1: A histogram of the rotary noise sampled uniformly from the sphere S6000000.

by ∠(x, y) an angle between vectors x and y and let e = (1, 1, . . . , 1)/
√
dim be a bisector of the

positive hyperoctant, where dim is the dimension of the space. Then the distribution density at an
angle α is proportional to a total measure of a manifold

M(α) = {x ∈ Sn−1 | xi ≥ 0 ∀i and ∠(x, e) = α}.

The manifold M(α) consists of points on the unit sphere Sn−1 that both lie in the positive hyper-
octant H+ and are equidistant to e. The equidistance condition from vector e defines an (n − 2)-
dimensional sphere Sα with radius sin(α). Its measure grows as f(α) = sinn−2(α) — a rate that
becomes extremely rapid at typical neural network dimensions. We can say that the full measure of
M(α) is proportional to f(α)g(α), where 0 ≤ g ≤ 1 is a function of a different nature: it measures
the fraction of Sα contained in H+ — a ratio that decreases to 0 as α increases. For the product fg
to maintain similar values near argmax(fg), function g would need to closely mirror f — which is
unlikely given its dissimilar nature and f ’s extreme growth rate.

A significant distinction between this model and practice is that in practice, gradient compo-
nents’ distribution tends to have heavy tails [17]. This implies that gradient directions are concen-
trated near the hyperoctant’s border rather than being uniformly distributed over the sphere.

As shown in fig. 2, Lion does exhibit the degenerate angle property, although the observed angle
consistently exceeds the theoretical estimate. Moreover, the angle depends heavily on the learning
rate. The exact mechanism behind this relationship remains unclear. One hypothesis stems from an
observation that the cosine of the angle is proportional to a ratio of L2/L1 gradient norms. In our
future work, we aim to demonstrate that Lion regularizes L1-norm of the gradient with a strength
proportional to the learning rate.

Consider the following optimization scheme that mirrors Lion (see definition 3).

Definition 2 Define Enim (Evolved Noise Injection Momentum) as an algorithm that modifies Lion
by replacing the sign operation with LNI. The update rule of Enim:{

mt+1 = β2mt + (1− β2)∇L(wt)

wt+1 = (1− ηλ)wt + η LNI(β1mt − (1− β1)∇L(wt))
(1)

where η is the learning rate, λ is the weight decay coefficient, m is momentum, w is the network
weights.
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Figure 2: Multiple runs of Lion with different learning rates on ResNet9 trained for 200 epochs
on CIFAR100. (Left:) Lion runs with larger learning rates correspond to larger angles.
(Center:) The angle by which Lion’s sign operation rotates the update vector. The ob-
served angles exceed the theoretical estimation (which is based on the assumption that
the gradients are uniformly sampled from the sphere).

To test whether this view of the sign operation is reasonable, we compare Lion directly to Enim.
We calibrate Enim’s noise injections to match Lion’s empirically observed sign noise. More pre-
cisely, for each learning rate we first select an angle matching Lion’s sign operation angle (observed
with this learning rate). Then, at each iteration, we rotate the update vector by this angle in a random
direction and normalize it to match Lion’s step size. The right graph of fig. 3 shows that Enim with
matched noise injections performs slightly better than Lion (see the right graph of fig. 2).
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Figure 3: Enim’s performance on ResNet9 trained for 200 epochs on CIFAR100, with noise angles
matching those empirically observed for Lion’s sign operation. The right graph (together
with the right graph of fig. 2) shows that Enim performs slightly better than Lion, even
without additional noise angle tuning.

The natural question then becomes how different noise angles interact with Enim’s performance
and to what extent we can enhance its performance by varying the noise. See the left graph of fig.
3 (an analogous graph for noise is presented in the Appendix). As it turns out, the angles observed
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empirically for Lion yield near-optimal performance for Enim, at least in our small-scale CIFAR100
setting. One important observation is that the optimal noise angle for Enim increases when we
increase the learning rate. This is counter-intuitive from LFL theories perspective, as both angle
growth and learning rate growth make positive contributions to the noisiness of the optimization
process. One explanation for this phenomenon lies in two effects described below. The first, less
dramatic one, is that Enim with small learning rates and large angles does not fully converge in 200
epochs. The second one, which we term ”momentum tracing”, is discussed in the next section. For
Enim we observe that large noise angles soften this effect, preventing the optimization process from
destabilizing.

3. Momentum Tracing

Most modern neural networks incorporate normalization layers, such as Batch Normalization [7]
and Layer Normalization [1], followed by ReLU or similar activations. When the preactivation
feature map components are negative, ReLU outputs zero, resulting in no backpropagation signal
through those components. Consequently, the corresponding components of the bias term in the
normalization layer receive zero gradient.

After the gradient becomes zero, these components continue to update in the direction of mo-
mentum for an extended period until the gradient becomes non-zero again or the momentum value
diminishes to numerical precision limits. If the momentum components associated with the bias
term of the normalization layers are negative, a positive feedback loop can occur. In this scenario,
the bias components shift further into negative values, reducing the preactivation values even more,
which in turn maintains zero gradients.

By the moment when the gradient signal suddenly reappears (e.g., due to skip-connections),
the weight values contributing to the corresponding activation may have shifted into suboptimal re-
gions, causing abrupt changes that destabilize the training process. We term this effect ”momentum
tracing”. With both convolutional and linear layers multiple parameters lose the gradient signal
when the corresponding BatchNorm activation outputs zero.
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Figure 4: A display of Lion divergence with ResNet18 on CIFAR-10 . (Center left:) A number
of BN biases with a near-zero momentum that receive a non-zero gradient on the cur-
rent iteration. (Center:) Blue — a 95 quantile of networks’ parameters values. Under
Lion-weight decay dynamics weights converge to ±5 = ±1/λ when their gradients are
identical to zero. (Center right:) Cosine similarity between 5% largest weights and their
updates converges to 1 as the weights converge to 1/λ.
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This effect can occur with any optimization method. However, in methods like Adam, the
magnitude of the update for a component decreases rapidly at a geometric progression rate of ap-
proximately β1/

√
β2, where commonly used values are β1 = 0.9 and β2 = 0.999. This rapid

decay prevents the optimizer from pushing the weights too far into suboptimal regions. In con-
trast, methods like Norm Gradient Descent (Norm GD) with momentum and decoupled momentum
mechanisms similar to Lion exhibit a slower decay of the momentum component, typically with
β2 = 0.99. In Lion, the momentum decay rate is similar to that of Norm GD, but due to the use of
the signum function, the method can take larger update steps for a component, which would be ex-
pected to lead to even greater destabilization. However, the noise introduced by the method reduces
the frequency of zero gradients.

In experiments with Enim, this effect is most noticeable when the noise is set to zero and with
large learning rates. The larger the learning rate, the more significant the steps the optimizer takes
in the direction of momentum when the gradient has diminished. Introducing noise by rotating
the update direction by a random fixed angle can result in gradients becoming non-zero earlier,
preventing the optimizer from taking excessive steps in the momentum direction.

4. Conclusion

In this work, we analyzed the characteristics of the specific sign noise introduced by the Lion op-
timizer. We demonstrated that Lion adapts the rotation noise in accordance with the learning rate
to stabilize the training process, which can significantly impact model performance. Additionally,
we introduced a novel optimization method that employs random rotations of the gradient update at
fixed angles, serving as a tool for analyzing Lion’s behavior.

Future work. We plan to delve deeper into the mechanisms of noise adaptation in Lion and pro-
vide theoretical explanations for why the rotation angle positively correlates with the learning rate
value. Furthermore, we intend to analyze the features of the loss landscape associated with Lion’s
attractors, which will enable us to clearly formulate the inductive bias properties of the Lion opti-
mizer.
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Appendix A. Lion scheme

Definition 3 The update rule of Lion:{
mt+1 = β2mt + (1− β2)∇L(wt)

wt+1 = (1− ηλ)wt + η sign(β1mt − (1− β1)∇L(wt))
(2)

where η is the learning rate, λ is the weight decay coefficient, m — momentum, w — network
weights.

Appendix B. Rotation angle dependence

Specified effects was better visible for methods with momentum and affine transform in normaliza-
tion layers.
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Appendix C. Momentum tracing
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Figure 6: (Left:) Relationship between learning rate, noise and average number of zero compo-
nents in gradient. The more zero components gradient have, the more the method can be
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malization layer. Most components are negative, which could lead to positive feedback
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