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ABSTRACT

Automated Machine Learning (AutoML) aims to accelerate the process of solving
machine learnging (ML) problems by providing tools for automating pipeline de-
sign. However, existing AutoML approaches are often computationally expensive,
as they solve high-dimensional optimization tasks without leveraging knowledge
from past solutions. Meta-learning aims to leverage past experience to improve the
efficiency of solving new machine learning problems. In the context of automated
pipeline design, meta-learning can facilitate the ranking of candidate pipelines by
drawing structural insights from a database of previously solved tasks. However,
existing meta-learning approaches tend to focus on relatively simple pipelines and
tasks.

In this paper, we propose using Graph Neural Networks (GNNs) as probabilistic
ranking surrogates for evolutionary optimization of pipelines with variable struc-
tures in AutoML. The GNNs are trained on meta-knowledge from a database of
tabular classification problems to efficiently rank candidate pipelines based on
their expected performance. This enables stronger initial estimates for optimiza-
tion and accelerates convergence by leveraging surrogate evaluation of the fitness
function. Our approach is implemented as an open-source library that can enhance
the performance of state-of-the-art AutoML solutions.

1 INTRODUCTION

Automated Machine Learning (AutoML) fills the important gap between ML algorithms and their
practical application in science and industry [Singh & Joshi| (2022)); Baratchi et al.| (2024). There
are many AutoML solutions that can design the pipeline structure using different optimization tech-
niques |He et al.| (2021). The structure of the pipeline can be described by different patterns — from
linear sequence to directed acyclic graph (DAG) with variable structure|Zoller & Huber (2021).

However, most existing AutoML solutions are computationally expensive due to the underlying
optimization approach, which requires evaluating a large number of ML pipelines. As a result, it can
be difficult to apply AutoML to large datasets. The high consumption of computational resources
also raises sustainability concerns [Tornede et al.| (2021)).

Meta-optimization techniques can be used to produce solutions to AutoML tasks in a more effec-
tive way [Ye & Ye (2022). Accumulated knowledge of dataset-pipeline matches can facilitate the
disrovery of new solutions with minimal effort. The key challenge is to match new tasks with pre-
viously solved ones that have a considered optimal solution. This challenge can be addressed by
leveraging the meta-features of each dataset.

In this paper, we propose an approach based on a deep neural graph model to improve the efficiency
of evolutionary AutoML. This is achieved by replacing some of the function evaluation operations
with probabilistic pairwise comparison of individuals. The approach is implemented as a modular
open source framework and can be used as part of existing state-of-the-art AutoML tools.
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2 RELATED WORKS

2.1 AUTOML FRAMEWORKS

The AutoML field is already well-known to a public and has several excellent surveys Baratchi
et al.| (2024); Barbudo et al|(2023). This section is focused on providing a brief overview of the
state-of-the-art AutoML solutions.

The auto-sklearn |Feurer et al.|(2015) is the most popular Meta-AutoML tool. Basically, it is a wrap-
per for the scikit-learn [Pedregosa et al.|(2011)) package, which additionally allows you to automate
the algorithm selection and hyperparameter tuning. The underlying optimization mechanism is a
Bayesian optimization (from the SMAC library).

Modern AutoML tools are focused on creating multi-layered ensembles of pipelines. For example,
TPOT |Olson & Moore| (2016) uses genetic algorithms that consider machine learning models as
primitives, and these are combined into a tree-based pipeline. AutoGluon [Erickson et al.| (2020)
uses multi-layered stack ensembling with repeated k-fold bagging. Another approach is H20 Au-
toML |[LeDell & Poirier| (2020). The key aspects of this approach are the ability to handle missing
and categorical data natively, a comprehensive modeling strategy, and use of stacked ensembles.
Another evolutionary AutoML approach is implemented in FEDOT Nikitin et al.[(2022). It is based
on the idea of evolutionary design of graph-based pipelines. A recent approach is LightAutoML
Vakhrushev et al.| (2021)), which applies two-layer ensemble pipelines.

2.2 ADVANCED OPTIMIZATION TECHNIQUES IN AUTOML

Over the past few years, Reinforcement Learning (RL) techniques have been used to develop var-
ious approaches in AutoML methods. Inspired by the success of AlphaeZero |Silver et al.| (2017),
Drori’s research group suggested AlphaD3M [Drori et al.| (2021). AlphaD3M is an automatic ma-
chine learning system that uses DARPA’s Data-Driven Discovery of Models (D3M) as a foundation.
The core idea of AlphaD3M is to use the neural network for predicting pipeline performance and
action probabilities along with a Monte-Carlo Tree Search that takes strong decisions based on the
network. The regularization problem is also considered as part of the pipeline design task Nikitin
et al.[(2024).

Most of the AutoML methods discussed start by building a pipeline for a new, unknown ML task
from scratch. However, existing AutoML approaches are generally computationally expensive be-
cause they solve high-dimensional optimization tasks without using knowledge from previously
solved tasks.

2.3 META-LEARNING

One possible direction for improving AutoML is the meta-learning approach. It extracts knowl-
edge from previous runs of AutoML and the known performance of ML pipelines on ML tasks to
improve AutoML. For example, the choice of search space directly affects the results of AutoML
Cambronero et al.|(2020). In |Rakotoarison et al.|(2021)), appropriate reductions in the search space
can be achieved through meta-learning that takes into account the experience of previous runs. Dif-
ferent patterns can be extracted from the final structures Zoller et al.|(2021) obtained in an automated
way. Meta-learning can use meta-characteristics of datasets to suggest relevant pipelines as an ini-
tial search point (warm-starting). Meta-learning can use a pairwise correlation matrix of ML models
describing their co-occurrence in pipelines. The structure of pipelines or features of datasets can
also be represented as an embedding |Fusi et al.| (2018)); Singh et al.[(2021)); Jomaa et al.| (2021}).

In evolution-based AutoML, the parameters of evolutionary algorithms (EA) can be adjusted dy-
namically during optimization, as different parameter values may be optimal at different stages of
the optimization process and for different tasks Aleti & Moser| (2016). An overview of adaptive and
machine learning approaches in EA is given in|Aleti & Moser (2016) and Mamaghan et al.| (2021).
For example, the frequency of mutations can vary depending on the diversity of the current popu-
lation [Evans et al.| (2020). In particular, the subfield of Adaptive Operator Selection (AOS) adapts
the probabilities of evolutionary operators using optimization history [Fialho & Roberto| (2010). In
AOS, there are approaches using Multi-Armed Bandits (MAB) |L1 et al|(2014) and attempts to use
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Reinforcement Learning (RL) Drugan| (2019); [Buzdalova et al.| (2014)). However, such approaches
only take into account the experience gained during the current run or use some static heuristics.

Overall, we can highlight three approaches to control the optimization process through the meta-
algorithm: (1) changing initial assumptions and parameters; (2) restricting the search space; (3) and
guided exploration of the search space.

The latest meta-AutoML approaches try to use large language models (LLMs) [Xu et al.| (2024);
Zhang et al.[(2023). This allows experiments to be designed using descriptions of data and models
and to be carried out in an automated way for various tasks (including computer vision and nat-
ural language processing). The hybridization of GPT-like LLMs and evolutionary algorithms for
NAS tasks can also be used to improve the efficiency of AutoML and reduce optimization time
Yu et al.| (2023). There is also an example of a successful application of the GPT model to auto-
mate feature engineering [Hollmann et al.| (2023). The authors of the survey |Gu et al.| (2024) on
the use of LLMs for AutoML applications provide a comprehensive review of the application of
LLMs in AutoML, specifically in data and feature engineering, model selection, hyperparameter
optimization, and workflow optimization. While this approach demonstrates promising results, sev-
eral significant challenges remain, including the risk of data leakage, which can compromise result
validity, the complexity of prompt engineering, the occurrence of hallucinations, and difficulties in
interpretability. A key limitation of employing LLMs in AutoML is their substantial resource con-
sumption, which exceeds that of alternative methods. Even when LLMs yield superior results, their
high computational cost may render them impractical in certain scenarios.

These examples confirm the great potential of different variants of meta-optimization for improving
AutoML approaches. However, there is no ready-made solution for the automated design of complex
graph-based modeling pipelines that can transfer knowledge between similar tasks and provide an
always-on solution for AutoML tasks.

2.4 PIPELINE RANGING

To train a ranking model for machine learning pipelines, it is necessary to represent pipelines as
embeddings. One way to represent pipeline is a heterogeneous graph, where nodes correspond to
machine learning algorithms and their associated hyperparameters.

Several approaches can be employed to transform a heterogeneous graph into an embedding, in-
cluding random walk-based methods, graph neural networks (GNNs), and deep learning approaches
that do not rely on GNNs. The work of Dong et al.[|(2017) extends the conventional random walk-
based method, Path2Vec (Kutuzov et al.| (2018))) by incorporating meta-path guided random walks
to better capture relationships between nodes. Among the various approaches, GNN-based meth-
ods are the most widely adopted, particularly their heterogeneous graph extension, relational graph
convolutional networks (RGCN) |Schlichtkrull et al| (2017). Alternative methods employ different
node aggregation mechanisms, such as the Transformer-based architecture utilized in Heterogeneous
Graph Transformer [Hu et al.| (2020). More recent techniques, including Graph-BERT [Zhang et al.
(2020), deviate from conventional message-passing framework of GNNs. Instead, they leverage
Transformer architectures to explicitly model the structural dependencies between nodes.

Once the pipeline is represented as a graph embedding, the next step is to rank pipelines based on
their suitability for a given problem. The most commonly used learning-to-rank approaches fall
into three categories: pointwise, which treats ranking as a regression or classification problem for
individual pipelines; pairwise, which optimizes the relative ordering between two pipelines; and
listwise, which directly models ranking functions based on entire sets of candidate pipelines |[Liu
et al.[|(2009).

3 PROBLEM STATEMENT

The problem statement of automated machine learning can be considered as a discrete optimization
task. The following formulation can be used:
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P* = argmax f (P|Tyen < 74),
PeP (D

P=(G,E),G =AD,{\},),P P,

where f is the black-box objective function that characterizes the efficiency of the pipeline P for
dataset D and P* is the best obtained pipeline using a discrete optimization algorithm, IP is a pipeline
search space, Ty, is the time spent on optimization, 7, is the time limit. A pipeline P itself is
formulated as a DAG with nodes G. Each node GG contains a machine learning algorithm A that
trains on data D with hyperparameters A.

The main problem is that 7, should be large enough to achieve the appropriate number of iterations
of the optimization algorithm. At the same time, each evaluation of the fitness function can be very
computationally expensive due to the complexity of the pipeline and the size of the training sample.

To reduce T}, without reducing the quality of the obtained pipelines, we can move from Eq.[I|to a
meta-optimization formulation, which uses information extracted from historical data D,,..,, about
previous learning results to make the time spent on meta-optimization 7;,.:, much smaller than the
time spent on optimization Ty, :

P* = argmax f (P|Tmeta < Tg,Dprev)) s Tmeta << Tgen, 2
PeP

There are several meta-optimization strategies that can be applied. We can select P,y — the exist-
ing pipeline for the most similar datasets from D,..,,. We can also train a generative model using
Dy, e as a training sample. Finally, we can use the knowledge extracted from Ty, to improve the
convergence of the optimization algorithm (e.g. evolutionary search) at different stages: choice of
the initial assumption, evaluation of the objective function, and fine-tuning of the algorithm hyper-
parameters for D,.c,.

In the case of objective-function approximation, a Graph NN (GNN) can be used in Eq. [3] For
GNN model training, information about previous attempts to solve similar tasks from sets Dy, e,
machine learning algorithms trained on data D¢, and resulting numerical values of the obtained
quality metric is used. After GNN training, it can be used as a surrogate model for new data D, .

f = GNN(DvA(Dv {A}n))v

3
D= {Dpreva Dnew}v

However, we do not need to evaluate the exact values of the objective function. If we use the model

to compare the values of the function, the GNN-based surrogate can be considered as an order-oracle

Lobanov et al.|(2024) for the optimization.

4 PROPOSED APPROACH FOR SURROGATE MODELING OF PIPELINE
OBJECTIVE WITH GNN

We design a modular and effective GNN-based solution to the problem of Meta-AutoML. It is based
on a multi-stage approach: (1) the construction of a meta-knowledge base (meta-storage); the (2) fast
selection of initial assumptions using GNN; (3) evolutionary optimization with surrogate estimation
of the objective function for a pipeline.

The surrogate model is used for the fast estimation of the objective function. Pipeline-fitness evalu-
ation is one of the most expensive operations in AutoML algorithms. A database of previous runs of
AutoML on various ML datasets D,,..,, contains a large number of pipeline-score pairs. It allows for
training a surrogate model for estimating pipeline fitness and partially bypassing expensive pipeline
evaluation on real data during evolutionary optimization. The primary part with sensors is described
in Figure[T]

The general surrogate model scheme is as follows: we form embeddings of the dataset and the
pipelines to be compared, and we train the surrogate model via backpropagation to rank the pipelines
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Figure 1: Architecture of GNN-based oracle proposed as a part of an evolutionary optimizer. Dataset
and pipelines are mapped to their embeddings and then passed to the ranking head for target predic-
tion.

using the dataset embedding as a query. In this work, we define the correct ordering as pipelines
with a better quality metric having a higher rank.

Our choice of a ranking task rather than direct metric prediction is due to the fact that the same
composite ML models can be applied to different ML tasks, and different metrics can be used within
the same task. Therefore, it is useful to predict the ranking of models in terms of their quality on a
given dataset.

In this work, we have explored three different ranking options: pointwise, pairwise and listwise; and
for the pairwise and listwise options, we have explored early and late stages for introducing a query.

GNN pipeline encoder. A pipeline P characterized by different algorithms A, each defined by its
type T4 and associated hyperparameters A 4, forms a heterogeneous graph Gp:. This heterogeneity
arises from the varying nature of the algorithms, each accompanied by its unique set of hyperparam-
eters A 4, which differ both in size and semantics. However, despite this variance, the general type of
each node maintains a consistent general type — they all represent algorithms, ensuring uniformity
in the edges between them.

Given the differing semantics of these features, a simplistic approach such as filling the hyperparam-
eters with zeros to homogenise the graph is not viable. Therefore, to facilitate the use of a homoge-
neous GNN for embedding such graphs, we propose using specialised encoders Enc 4 per algorithm.
These encoders are implemented as Multi-Layer Perceptrons (MLPs). They serve to translate the
hyperparameters of each operation into a shared space A < Enc4 () 4), thereby achieving graph ho-
mogeneity. For algorithms with hyperparameters, encoders consist of multiple feed-forward layers,
while for algorithms without hyperparameters, encoders are learnable vectors.

The algorithm name is processed via ordinal encoding and mapped to a learnable vector using an
embedding layer, which is then concatenated to the homogenised hyperparameter feature A. This
homogeneous graph is then processed using a GNN to produce the graph embedding.

Dataset encoder. The encoder uses a meta-features extractor to obtain a representation of the data,
which is then normalized and passed through MLP, denoted as MLP ;.. In this paper, we use the
metafeatures from PyMFE and OpenML listed in|Alcobaca et al. (2020)) and [Bilalli et al.| (2017).

Dataset and pipeline encoders are jointly trained with a ranking head in an end-to-end fashion.

Ranking head. This approach Burges et al.|(2005) transforms the surrogate into a scoring function
with a MLPg.,.. layer that accepts a concatenation of a meta-feature embedding and a pipeline
embedding to predict the pipeline score for the given dataset. The final ranking is achieved by using
the scores to sort a candidate set.

Given a meta-feature vector d and pipelines P4 and Pp with metrics s4 and sp, training the surro-
gate model f,, parameterized with weight w € 2 is as follows:



Published as a conference paper at MathAI 2025

w < argmin BCELoss (yapg, paB) ,
weN

pap < Sigmoid (Oap),

Oap < Za— Zp,

Zi — MLPscore (Ez) )
weR

E; + concatenate (z;,x4) ,
we
Tq < MLPdset (d) N
weN

“4)

b

1 ifsg > sp
yap < 0.5 ifsy=sp
0 otherwise

During inference, Z; values are used as pipeline scores. These values are a uniform representation of
a pipeline metric, allowing the surrogate to be trained on different metrics, provided that the metric
is the same for a pair of pipelines. For a schematic overview of the proposed methods, refer to

Appendix

DirectRanker head. This approach transforms the surrogate into a comparison function with a
MLP ., layer to predict whether the first pipeline is better than the second for the given dataset.
The final ranking is achieved by using the comparator in any sorting algorithm.

This method is adopted from Koppel et al.| (2020) as it claims all the required properties of a cor-
rect comparator. A similar idea of combining GNN and DirectRanker can be found in |[Damke &
Hiillermeier| (2021). However, we apply a different strategy to graph embedding and introduce a
query for ranking.

For this method, we have studied two stages of introducing a query to the model.

For the early fusion, the training of the surrogate model is the same as in Eq. ] with the following
changes:

w < argmin MSE (yap, paB) ,
we

PAB < Tanh (OAB)
OAB — MLPcomp (Z) )

weN
7« E4— Eg,
Ei < MLij'n (Jl) s (5)
weN

J; < concatenate (z;, z4) ,

1 ifsg > sp
yap <+ 0 if s4 = sp
—1 otherwise

For late fusion, the surrogate model training is the same as in Eq. 5| with the following changes:

Z + concatenate (zp, 2q) ,

(6)
Tp ¢ TA— 2B

During inference, p4p is rounded to an integer and used as the result of comparing two pipelines

P4 and Pp. This allows the surrogate to be trained on different metrics provided that the metric is

the same for a pair of pipelines.

SetRank head. This approach Pang et al.|(2020) allows the surrogate to accept an arbitrary number
of pipelines and a meta-feature vector to evaluate the pipelines against each other. The variable
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size of a set of pipelines is achieved with the Self-Attention Transformer SA;I;, which can handle
we

sequences of arbitrary length. No positional encoding is required here, since a set of candidates to
be ranked is an unordered sequence. The final ranking is achieved by using the scores to sort a set
of candidates.

For this method, we considered two stages of introducing a query into the model. We denote a set
of N pipelines as P < {Py, Ps, ..., Py} and their corresponding metrics as S < {s1, S2, ..., SN }-

For early fusion, the training of the surrogate model is the same as in Eq. ] with the following
changes:

w < argmin CrossEntropyLoss (y, p) ,
weN

p < Softmax (O) ,

(
O < MLPg.ore (Z)
weN
(

Z « SAT(E),
weN

)

E « concatenate (E1, Es, ..., Ex) ,
y < Softmax (5)

For late fusion, a cross-attention transformer layer CAg is introduced to reweight the pipeline scores
we

U with respect to the given dataset x4. The training of the surrogate model is the same as in eq.
with the following changes:

Z AT
< Een (U, za),

U+ SAT (X), @®)

X < concatenate (z1, T2, ..., TN)

During inference, p values are used as pipeline scores. These values represent the position of
pipelines in a set. This allows the surrogate to be trained on different metrics, since the metric
is the same for each set of pipelines.

The proposed meta-learning framework that implements the GNN-based optimization has a modular
architecture of components to make it adaptable to different AutoML setups.

5 EXPERIMENTAL STUDIES

5.1 EXPERIMENTAL SETUP

The setup includes several configurations of AutoML systems. The baseline part includes the Au-
toML framework FEDOT and the AutoSklearn 2.0 framework (as an example of an existing meta-
AutoML solution). The results can also be compared with state-of-the-art solutions using metrics
from the widely used AutoML benchmark Gijsbers et al.|(2024)). For the experiments, we configured
a server based on Xeon Cascadelake (2900MHz) with 8 cores and 48GB memory.

The experiments were performed on data prepared using the self-developed AutoML framework.
The data includes 11 classification datasets from the OpenML platform, each forming 10 cross-
validation folds. The total number of pipelines collected is 2,499,548. For each metadata set, 189
to 1,869 unique architectures of pipelines are generated. For each unique architecture, 50 variants
with different hyperparameters are provided. The dataset is divided into training and validation sets
as 80% of pipelines and 20% of pipelines respectively.

5.2 HYPERPARAMETERS

Here we provide some additional details related to hyperparameters of the model.
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Algorithm Encoder. In this paper we translate the hyperparameters of any algorithm into a shared
space with a MLP of 2 layers and a hidden size of 8 at all layers. To translate the algorithm name, we
encode it with Ordinal Encoding and map it to a learnable vector of length 2. For algorithms without
hyperparameters, we use a learnable vector of the same dimension as the output of the above MLP.
After concatenating the features, the resulting node size is 10.

Graph Encoder Parameters. A 2-layer graph convolutional network with a hidden size of 64 was
used for pipeline embedding. We set the dropout to 0.3 and used the BatchNorm layer. The final
pipeline representation was obtained using mean pooling.

Dataset Coder Parameters. A 2-layer MLP with hidden size 16 and ReLU nonlinearity was used
for the dataset encoding.

Rank head parameters. The ranking head is a 2-layer MLP with hidden size 16 and ReLu non-
linearity. Early fusion DirectRanker and late fusion DirectRanker are a 1-layer MLP with hidden
size 1 with early fusion option using additional 2-layer MLP with hidden size of 16 and ReLu
nonlinearity to join a pipeline and dataset embeddings. Early fusion SetRank head is a 4-layer Self-
Attention Transformer with 8 heads and 0.1 dropout. Late fusion SetRank head is the same with the
addition of a 2-layer Cross-Attention Transformer with 8 heads and 0.1 dropout.

Optimizer and loader parameters. A dataloader with a batch size of 256 candidate dataset com-
binations was used for training. Each candidate set is randomly formed from 10 pipelines with the
same metric name and the same accompanying dataset. We did this in order to reuse the same train-
ing dataset class. For point-wise and pair-wise methods, we get 9 pairs from the set for free, as the
set is sorted based on the true scores of the pipelines in descending order. This gives us a batch size
of 1152 for both point-wise and pair-wise methods. We used an Adam optimizer with a learning rate
of 0.001 and a weight decay of le-4.

5.2.1 SURROGATE COMPARISON

To evaluate the developed surrogate models, we use the Kendall-Tau correlation coefficient and the
precision score. Although NDCG score is a common metric to assess the quality of a ranking model,
this metric turns out to be unsuitable for the data used in this work because the relevance scores are
close to each other (e.g., 0.9 and 0.91), which makes the NDCG score insensitive to permutations of
the ranked candidate set.

To train the SetRank approach, candidate sets are formed with 10 pipelines, these quality metric
values are transformed into relevance by applying a softmax function over a set of candidates.

For the evaluation of all methods, candidate sets are generated in the same way as for the SetRank
approach. During the evaluation, 5000 candidate sets are randomly selected across all metadata sets.

The results show that the RankNet head produces the best result regardless of the meta-features
used (Table [T). A comparison of the early and late fusion strategies shows that the early fusion
strategy produces higher results. Furthermore, the particular set of meta-features used does not lead
to significant differences in the results. Figures Figures [2] and [3|in the Appendix show plots of
mean predicted relevance versus true relevance with standard deviation. On average, the surrogates
predict correctly, although the deviation is quite significant.

5.2.2 FEATURE IMPORTANCE

This section presents an ablation study to investigate whether the surrogate effectively utilises all
the features provided.

The surrogate model accepts a pipeline represented as a heterogeneous graph and metadata features
as a vector. The graph is characterised by edges between nodes (operations), and each node is
characterised by a type and hyperparameters, resulting in three input features. The metadata vector
is considered as the fourth input feature.

To evaluate the importance of each feature, we conducted experiments where each feature was shuf-
fled independently; the resulting change in surrogate quality was measured. The experiment is
provided on PyMFE meta-features with 5000 candidate sets over all the meta-datasets as in the
evaluation section.
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Table 1: Comparison of different ranking head setups for proposed architecture of surrogate model.

Surrogate | Fusion [ Kendall-Tau | Precision
OpenML Meta-features
Random - 0.00 0.10
Proposed
RankNet-based Early | 0.52 0.24
. Early | 0.51 0.24
Direct Ranker TLaio 047 019
Early | 0.44 0.21
SetRank Late | AT 0.2
PyMFE Meta-features
Random - 0.00 0.10
Proposed
RankNet-based Early | 0.53 0.25
. Early | 0.52 0.24
Direct Ranker Tatc 041 019
Early | 0.44 0.21
SetRank Late | 0.36 0.18

Table |1I| summarizes the drop in surrogate quality for different permutations. For DirectRanker
and SetRank both the early and late fusion cases are presented, while for RankNet, only a single
embedding is used to assess the pipeline, so no fusion options are available. The results show that
all provided features are important, although their importance varies. Graph-related features are
more important than meta-dataset features. This fact is consistent with the initial assumption that
metadata features only serve as a query that tells the surrogate how to rank pipelines. Interestingly,
late-fusion strategies show the least use of metadata information. This is a possible reason why the
late-fusion surrogates show the worst quality. We assume that there is no key insight in the fact that
late-fusion surrogates rely mostly on connections between nodes, as the importance of this feature
is approximately the same as for the other surrogates.

Table 2: Surrogates features importance.
Graph | Dataset

Op. Op. d ta-
Surrogate | Fusion | type, | hparams, edges, | meta
%(l) | % feats,
%) | %
Kendall-Tau
RankNet | Early | -77 -40 -62 -38
Direct Early | -80 -41 -63 -37
Ranker Late -50 -46 -68 -24
Early -66 -36 -57 -36
SeRank 158 @2 5819
Precision
RankNet | Early | -50 -29 -42 -29
Direct Early | -50 -29 -46 -29
Ranker Late -35 -30 -40 -5
Earl -38 -24 -33 -24
SetRank |- e 33 6

5.2.3 PIPELINE GENERATION

In this section, the proposed surrogate with RankNet head is integrated into the FEDOT frame-
work to investigate its impact on both the generation process duration and the resulting pipeline
quality. We then compare the obtained results with the default baseline configuration and proposed
surrogate-based setup.For pipelines taken from the database, we assume that the pipeline generation
time 7' is zero.
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For FEDOT we restrict possible algorithms to the set of algorithms in the training database, so that
the surrogate has a corresponding encoder for an algorithm. LGBM is used as initial assumption.

For this experiment, we run AutoML on OpenML datasets that are not represented in test. The
experiment was performed using OpenML features due to their ease of acquisition.

Table [3|shows the results of the comparison of criteria between surrogate and non-surrogate setups.
For our framework, the surrogate allows to drastically reduce the time needed to generate a pipeline
with insignificant quality reduction while maintaining similar quality (indistinguishable according to
the non-parametric one-tailed Mann-Whitney test). The outlier experiment with significant quality
reduction when using the surrogate can be caused by a high dispersion of the surrogate predictions,
or by pipelines/meta-features with an outlier training distribution.

Table 3: Comparison of AutoML approaches on OpenML datasets.

Criteria Non-surrogate Proposed surrogate
approach
ROC AUC 0,69 0,692
Time before
best result, min 690 30

6 FUTURE WORKS

Future research will focus on (1) extending the evaluation of our framework and (2) improving
pipeline ranking methods.

To enhance robustness, we will expand the number of datasets, ensuring broader meta-feature rep-
resentation. While our surrogate model is trained on classification tasks, assessing its performance
on regression datasets is crucial for evaluating generalizability.

Further development will explore additional data modalities, such as text and images, by integrating
new feature engineering strategies. LLMs could aid in dataset analysis for pipeline selection or
generate auxiliary inputs to improve surrogate model predictions. Investigating their role in this
context could provide valuable insights for future improvements.

7 CONCLUSIONS

In the paper, we propose the flexible Meta-AutoML approach that combines the fast surrogate-
assisted selection of initial assumptions of modelling pipelines with variable structure.

Analysis of obtained results The results can be considered as a proof-of-concept for the idea of a
configurable multi-stage Meta-AutoML based on surrogate estimation of pipelines using GNN. It
confirms that the correct choice of the surrogate model allowed a significant reduction in the time
needed to design the modelling pipelines. However, a more detailed experimental study is still
needed to estimate the efficiency of the meta-approach for a large number of different ML tasks.

Limitations The main limitation of the proposed approach is the assumption that the similarity of
embeddings for datasets is related to the similarity between modelling pipelines. However, this may
be incorrect in many cases. The evolutionary stage of the proposed approach still allows the pipeline
to be improved, but the convergence time can be increased for cases with an unsuccessful choice of
initial assumption.

8 CODE AND DATA AVAILABILITY

The software implementation of the proposed algorithms and scripts for the conducted experiments
are available in the open repository https://github.com/ITMO-NSS-team/GAMLET.
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Table 4: Meta-features used to describe datasets.

PyMFE OpenML
Averaged over
Entire meta-dataset features | meta-dataset Entire meta-dataset features
columns features
attr_to_inst attr_ent MajorityClassSize
class_ent eigenvalues MinorityClassSize
eq-num_attr freq-class NumberOfClasses
gravity joint_ent NumberOfFeatures
inst_to_attr kurtosis NumberOfInstances
nr_attr max NumberOfNumericFeatures
nr_class mean NumberOfSymbolicFeatures
nr_cor_attr min -
nr_inst mut_inf -
nr_num range -
ns_ratio skewness -
- var -

A SURROGATE QUALITY ACROSS DIFFERENT PIPELINE EVALUATION
METRICS

During the experiments, it was noticed that surrogates work better for pipelines evaluated using the
ROC AUC metrics compared to those using the Logloss metric. To exclude any anomalies, the
average value of the relevance prediction and the standard deviation for each candidate in the set are
shown in Figures[2]and3|for pipelines evaluated using ROC AUC and LogLoss metrics, respectively.
The experiment was conducted with candidate sets consisting of 10 pipelines. According to the plots,
on average all the surrogates rank both types of pipelines correctly. Standard deviation of prediction
is similar across all the surrogates. Overall, all the surrogates exhibit high standard deviation of
prediction. Thus, predicting capabilities of models is not arguable but demanding for better training
of the models.

B SURROGATE QUALITY ACROSS DIFFERENT SIZES OF CANDIDATE SET

In this section, we examine the behavior of the proposed surrogates on candidate sets of varying
sizes. The candidate set sizes analyzed are [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35]. Meta-datasets are
picked randomly with meta-features taken from OpenML. As depicted in Figure ] all surrogates
exhibit similar Kendall-Tau correlation across these candidate set sizes. However, the precision of
the surrogates decreases as the candidate set size increases. For RankNet-based surrogate this be-
havior is expected, since this surrogate maps any pipeline to a score. For the other surrogates we can
claim that they are non-dependent on candidate pool size. Figure 5] similar to the previous section,
displays the average candidate relevance (standard deviation is omitted for the sake of chart readabil-
ity) to approve Kendall-Tau correlation stability over various sizes of candidate pools. According to
these charts, the surrogates generally predict accurately, though the Late Fusion SetRank encounters
minor issues when ranking large candidate pools.

C META-FEATURES

In this work we have considered meta-features to make a vector representation of datasets to be
passed through surrogate model in conjunction with pipelines. We explored usage of PyMFE and
OpenML packages to achieve it (Table F).
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Figure 2: Predicted relevancy over true relevancy for pipelines of ROC AUC score.
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Figure 3: Predicted relevancy over true relevancy for pipelines of Logloss score.
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Table 5: Comprehensive comparison of surrogate models.
AutoGluon | Our Our w/ Baseline Best . B.e st .
surrogate Baseline | Pipeline
RocAuc
kddcup09 _appetency 0,836 0,833 | 0,696 0,820 0,842 -
guillermo 0,915 - 0,882 0,897 0,917 -
albert 0,770 0,726 | 0,728 0,756 0,766 0,676
christine 0,824 - 0,804 0,817 0,829 -
numerai28_6 0,522 0,525 | 0,519 0,524 0,532 0,510
amazon_employee_access | 0,865 — 0,705 0,843 0,874 —
airlines 0,731 0,713 | 0,674 0,709 0,728 0,650
sf-police-incidents — — 0,678 0,645 0,676 —
Time, sec
kddcup09_appetency 537 15734 | 1120 0 0 0
guillermo 16367 - 32072 0 0 0
albert 7416 1334 1491 0 0 0
christine 1851 - 3283 0 0 0
numerai28_6 5622 14443 | 1863 0 0 0
amazon_employee_access | 422 - 2127 0 0 0
airlines 8058 16598 | 2081 0 0 0
sf-police-incidents — - 1855 0 0 0
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D COMPREHENSIVE COMPARISON OF SURROGATE MODELS

To assess benefits of introducing the surrogate model to our framework FEDOT we have provided
experiments of held-out set of datasets. For experiments with our framework we kept all parameters
same except type of optimizer (w/ or w/o surrogate). Table [5] demonstrates that using of surrogate
does not always reduce time required to design a surrogate model, but it can reduce the time sig-
nificantly. Currently, we have not investigated the reasons of this behavior. Final pipeline quality
can vary other different datasets the pipeline is designed for. For now, we consider that the reason
lies in the surrogate has a large spread of predicted values as was shown in Figures 2] and [3] In
comparison with AutoGluon, our approach is not always faster (we kept all experiments with one
number of jobs equal to 1), however it is worth to examine the effect of introducing the surrogate to
other frameworks.

E HETEROGENEOUS DATA BATCHING

In this work GNN-framework PyTorch Geometric is utilized. In this framework, a batch of graphs is
represented as a disconnected graph with each sample represented as a subgraph. For heterogeneous
data the framework requires each subgraph to have the same set of node types. Moreover, adjacency
of nodes in heterogeneous graph is considered for each pair of types separately. This format of
watching is not applicable for the current work, since adjacency must be considered as it would be
if all nodes be of the same type and requirement of all subgraphs to have the same set of node types
limits possible combinations of pipelines in a candidate set. To overcome this limitation, a custom
structure to store batch of heterogenous batch is proposed. The comparison of PyTorch Geometric
batch and the proposed batch is shown on Figure|[6]

In the proposed batching method each node type is stored as a list of nodes instead of tensor of nodes.
This eliminates the requirement of having the same set of node types in subgraphs. A look-up table
(LUT) is used to keep mapping between nodes and their indexes in the disconnected graph. This
allows the use of a regular adjacency list as the nodes would be of the same type. Later, the proposed
structure is parsed during graph homogenization and transformed to a regular PyTorch Geometric
batch of homogeneous graphs.

F ARCHUTECTURE OF THE FRAMEWORK

The internal implementation of each component is replaceable while preserving the external inter-
face. The basic approach is a warm-start of optimization based on the meta-features of the dataset.
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a) Meta-feature based warm-starting setup b)
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Figure 7: The interaction of the framework components (a) retrieving metadata and obtaining knowl-
edge (b) at the stage of knowledge application

Its results can be used both independently and in any AutoML framework that starts the optimization
process with some initial approximations.

The interaction between framework components at the stages of collecting metadata, obtaining
knowledge and knowledge application stage is described in Figure

The Datasets loader is designed to automate work with datasets. This component is responsible for
the following operations: receiving a dataset from a dataset source, saving a dataset into a cache file,
and loading a dataset into the working memory from the cache file.

The Meta-features extractor is designed to automate meta-features extraction. It takes as input a
list of cache objects of datasets and returns a table of meta-features, in which each row corresponds
to a dataset and each column to a meta-feature. Since extracting meta-features is a time-consuming
process, the meta-feature values for datasets are also cached and are not recalculated when retrieving
them again.

The Datasets similarity assessor is designed to assess the similarity of datasets by meta-features.
At the knowledge acquisition stage, a table of meta-features of datasets is input. At the knowledge
application stage, the component accepts meta-signs of new datasets and converts them into lists of
similar datasets from the previously “memorized” ones. Optionally, it can also return a measure of
similarity (or distance) between the new datasets and the “memorized” ones.

The Models loader component imports and unifies data from model evaluation sources on datasets.
A selection of experiments from the source according to a predefined criterion is also available, e.g.,
selecting the best or worst models for each dataset.

Models advisor is the final component of the initial approximation fitting. The current implementa-
tion combines results from Models loader and Datasets similarity assessor. The first one provides a
set of models for datasets, the second one provides similar datasets from “memorized” ones.

G RANKING METHODS

For clarity, the methods proposed in Section /4| are summarized here, accompanied by schematic
representations for reference.”
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Figure 10: RankNet method scheme as outlined in Eq. [7]and [g]
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