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Abstract

Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive
abilities by exploiting graph structural and temporal dynamics. However, the ex-
isting DyGNN:Ss fail to handle distribution shifts, which naturally exist in dynamic
graphs, mainly because the patterns exploited by DyGNNs may be variant with
respect to labels under distribution shifts. In this paper, we propose to handle
spatio-temporal distribution shifts in dynamic graphs by discovering and utilizing
invariant patterns, i.e., structures and features whose predictive abilities are stable
across distribution shifts, which faces two key challenges: 1) How to discover the
complex variant and invariant spatio-temporal patterns in dynamic graphs, which
involve both time-varying graph structures and node features. 2) How to handle
spatio-temporal distribution shifts with the discovered variant and invariant pat-
terns. To tackle these challenges, we propose the Disentangled Intervention-based
Dynamic graph Attention networks (DIDA). Our proposed method can effectively
handle spatio-temporal distribution shifts in dynamic graphs by discovering and
fully utilizing invariant spatio-temporal patterns. Specifically, we first propose a
disentangled spatio-temporal attention network to capture the variant and invariant
patterns. Then, we design a spatio-temporal intervention mechanism to create
multiple interventional distributions by sampling and reassembling variant patterns
across neighborhoods and time stamps to eliminate the spurious impacts of variant
patterns. Lastly, we propose an invariance regularization term to minimize the
variance of predictions in intervened distributions so that our model can make
predictions based on invariant patterns with stable predictive abilities and there-
fore handle distribution shifts. Experiments on three real-world datasets and one
synthetic dataset demonstrate the superiority of our method over state-of-the-art
baselines under distribution shifts. Our work is the first study of spatio-temporal
distribution shifts in dynamic graphs, to the best of our knowledge.

1 Introduction

Dynamic graphs widely exist in real-world applications, including financial networks [[1} 2], social
networks [3| 4], traffic networks [5, 6], etc. Distinct from static graphs, dynamic graphs can
represent temporal structure and feature patterns, which are more complex yet common in reality.
Dynamic graph neural networks (DyGNNs) have been proposed to tackle highly complex structural
and temporal information over dynamic graphs, and have achieved remarkable progress in many
predictive tasks [7 8]
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Nevertheless, the existing DyGNNss fail to handle spatio-temporal distribution shifts, which naturally
exist in dynamic graphs for various reasons such as survivorship bias [9], selection bias [[10, [11]],
trending [12], etc. For example, in financial networks, external factors like period or market would
affect the correlations between the payment flows and transaction illegitimacy [[13]]. Trends or commu-
nities also affect interaction patterns in coauthor networks [[14]] and recommendation networks [[15].
If DyGNNSs highly rely on spatio-temporal patterns which are variant under distribution shifts, they
will inevitably fail to generalize well to the unseen test distributions.

To address this issue, in this paper, we study the problem of handling spatio-temporal distribution
shifts in dynamic graphs through discovering and utilizing invariant patterns, i.e., structures and
features whose predictive abilities are stable across distribution shifts, which remain unexplored in
the literature. However, this problem is highly non-trivial with the following challenges:

* How to discover the complex variant and invariant spatio-temporal patterns in dynamic graphs,
which include both graph structures and node features varying through time?

* How to handle spatio-temporal distribution shifts in a principled manner with discovered variant
and invariant patterns?

To tackle these challenges, we propose a novel DyGNN named Disentangled Intervention-based
Dynamic Graph Attention Networks (DIDAE]). Our proposed method handles distribution shifts
well by discovering and utilizing invariant spatio-temporal patterns with stable predictive abilities.
Specifically, we first propose a disentangled spatio-temporal attention network to capture the variant
and invariant patterns in dynamic graphs, which enables each node to attend to all its historic
neighbors through a disentangled attention message-passing mechanism. Then, inspired by causal
inference literatures [16}117], we propose a spatio-temporal intervention mechanism to create multiple
intervened distributions by sampling and reassembling variant patterns across neighborhoods and
time, such that spurious impacts of variant patterns can be eliminated. To tackle the challenges
that i) variant patterns are highly entangled across nodes and ii) directly generating and mixing up
subsets of structures and features to do intervention is computationally expensive, we approximate the
intervention process with summarized patterns obtained by the disentangled spatio-temporal attention
network instead of original structures and features. Lastly, we propose an invariance regularization
term to minimize prediction variance in multiple intervened distributions. In this way, our model
can capture and utilize invariant patterns with stable predictive abilities to make predictions under
distribution shifts. Extensive experiments on one synthetic dataset and three real-world datasets
demonstrate the superiority of our proposed method over state-of-the-art baselines under distribution
shifts. The contributions of our work are summarized as follows:

* We propose Disentangled Intervention-based Dynamic Graph Attention Networks (DIDA), which
can handle spatio-temporal distribution shifts in dynamic graphs. This is the first study of
spatio-temporal distribution shifts in dynamic graphs, to the best of our knowledge.

* We propose a disentangled spatio-temporal attention network to capture variant and invariant
graph patterns. We further design a spatio-temporal intervention mechanism to create multiple
intervened distributions and an invariance regularization term based on causal inference theory to
enable the model to focus on invariant patterns under distribution shifts.

* Experiments on three real-world datasets and one synthetic dataset demonstrate the superiority of
our method over state-of-the-art baselines.

2 Problem Formulation

In this section, we formulate the problem of spatio-temporal distribution shift in dynamic graphs.

Dynamic Graph. Consider a graph G with the node set V and the edge set £. A dynamic graph can
be defined as G = ({G*}L_,), where T is the number of time stamps, Gt = (V*, £?) is the graph
slice at time stamp ¢, }V = U;le VEE = Ule E'. For simplicity, a graph slice is also denoted as
Gt = (X!, A), which includes node features and adjacency matrix at time . We use G to denote a
random variable of G*.

30ur codes are publicly available at https://github.com/wondergo2017/DIDA
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Figure 1: The framework of our proposed method DIDA. (Bottom left) For a given dynamic graph
with multiple timestamps, the disentangled dynamic graph attention networks first obtain summariza-
tions of high-order invariant and variant patterns by disentangled spatio-temporal message passing.
(Top) Then the spatio-temporal intervention mechanism creates multiple intervened distributions by
sampling and reassembling variant patterns across space and time for each node. (Bottom right) Last,
invariance loss is calculated by using samples from intervened distributions to optimize the model so
that it can focus on invariant patterns to make predictions.

Prediction tasks. For dynamic graphs, the prediction task can be summarized as using past graphs to
make predictions, i.e. p(Y!|G!, G2, ..., G)=p(Y!|G¥?), where label Y! can be node properties
or occurrence of links between nodes at time ¢ + 1. In this paper, we mainly focus on node-level tasks,
which are commonly adopted in dynamic graph literatures [7, [8]. Following [18][19]], we factorize
the distribution of graph trajectory into ego-graph trajectories, i.e. p(Y! | G'*) =[], p(y' | GL).
An ego-graph induced from node v at time ¢ is defined as G! = (X!, A!) where A’ is the adjacency
matrix including all edges in node v’s L-hop neighbors at time ¢, i.e. N, and X! includes the
features of nodes in V. The optimization objective is to learn an optimal predictor with empirical
risk minimization

min By giomp, v,y £(f6(9,7). y°) (M

where fj is a learnable dynamic graph neural networks, We use G,y to denote the random variable
of the ego-graph trajectory and its label, and G,y refer to the respective instances.

Spatio-temporal distribution shift. However, the optimal predictor trained with the training
distribution may not generalize well to the test distribution when there exists a distribution shift
problem. In the literature of dynamic graph, researchers are devoted to capture laws of network
dynamics which are stable in systems 21122, 23| 24]. Following them, we assume the conditional
distribution is the same p;,-(Y?|GY*) = p;(Y!|GY?), and only consider the covariate shift problem
where py,.(G1) # pi.(G1?). Besides temporal distribution shift which naturally exists in time-
varying data and structural distribution shift in non-euclidean data [30],
there exists a much more complex spatio-temporal distribution shift in dynamic graphs. For example,
the distribution of ego-graph trajectories may vary across periods or communities.



3 Method

In this section, we propose Disentangled Intervention-based Dynamic Graph Attention Networks
(DIDA) to handle spatio-temporal distribution shift in dynamic graphs. First, we propose a disentan-
gled dynamic graph attention network to extract invariant and variant spatio-temporal patterns. Then
we propose a spatio-temporal intervention mechanism to create multiple intervened data distributions.
Finally, we optimize the model with invariance loss to make predictions relying on invariant patterns.

3.1 Handling Spatio-Temporal Distribution Shift

Spatio-Temporal Pattern. In recent decades of development of dynamic graphs, some scholars
endeavor to conclude insightful patterns of network dynamics to reflect how real-world networks
evolve through time [311 32| [33] [34]]. For example, the laws of triadic closure describe that two nodes
with common neighbors (patterns) tend to have future interactions in social networks [35} 36, 23]].
Besides structural information, node attributes are also an important part of the patterns, e.g., social
interactions can be also affected by gender and age [37]]. Instead of manually concluding patterns,
we aim at learning the patterns using DyGNNs so that the more complex spatio-temporal patterns
with mixed features and structures can be mined in dynamic graphs. Therefore, we define the
spatio-temporal pattern used for node-level prediction as a subset of ego-graph trajectory

P'(v) =ml(G,)") )

where m! (+) selects structures and attributes from the ego-graph trajectory. In [23]], the pattern can be
explained as an open triad with similar neighborhood, and the model tend to make link predictions to
close the triad with 7!, , = fo(P*(u), P*(v)) based on the laws of triadic closure [38]. DyGNNs aim
at exploiting predictive spatio-temporal patterns to boost prediction ability. However, the predictive
power of some patterns may vary across periods or communities due to spatio-temporal distribution
shift. Inspired by the causal theory [16}[17]], we make the following assumption

Assumption 1 For a given task, there exists a predictor f(-) , for samples (G:t,yt) from any
distribution, there exists an invariant pattern P}(v) and a variant pattern P}, (v) such that y* =
f(P{(v)) + e and Pj(v) = G;\Py (v), i.e., y* L P (v) | Pi(v).

Assumption [1|shows that invariant patterns P* (v) are sufficiently predictive for label y* and can be
exploited across periods and communities without adjusting the predictor, while the influence of
variant patterns P!, (v) on y* is shielded by the invariant patterns.

Training Objective. Our main idea is that to obtain better generalization ability, the model should
rely on invariant patterns instead of variant patterns, as the former is sufficient for prediction while
the predictivity of the latter could be variant under distribution shift. Along this, our objective can be
transformed to R
gni@n E(yt,gql}:t),\,ptr(yt7G71):t)£(f91 (PIt (U)), yt)
1,V2 (3)
st ¢g,(GEY) = Pi(v),y' L P (v) | Ph(v).

where fp, (-) make predictions based on the invariant patterns, ¢y, (-) aims at finding the invariant
patterns. Backed by causal theory[16 [17]], it can be transformed into

min By g, (v,a50 £(for (00, (90), v+
102 @

AVarses (B (ye g1ie)op,. (vt,G 1t do(P, =) £ (fo, (00, (G07)), 4))

where ‘do’ denotes do-calculas to intervene the original distribution [39][17], S denotes the inter-
vention set and A is a balancing hyperparameter. The idea can be informally described that as in
Eq. (@), variant patterns P!, have no influence on the label y* given the invariant patterns P, then
the prediction would not be varied if we intervene the variant patterns and keep invariant patterns
untouched. More details about the connections between objective Eq.(3)) and Eq.(@) can be found in
Appendix.

Remark 1 Minimizing the variance term in Eq. help the model to satisfy the constraint of
y' LPy(v) | Pi(v) in Eq. @), ie, p(y’ | P7(v), Py (v)) = p(y" | P}(v))



3.2 Disentangled Dynamic Graph Attention Networks

Dynamic Neighborhood. To simultaneously consider the spatio-temporal information, we define the
dynamic neighborhood as N (u) = {v : (u,v) € '}, which includes all nodes that have interactions
with node u at time ¢.

Disentangled Spatio-temporal Graph Attention Layer. To capture spatio-temporal pattern for
each node, we propose a spatio-temporal graph attention to enable each node to attend to its dynamic

neighborhood simultaneously. For a node u at time stamp ¢ and its neighbors v € A/ v (u),Vt' <t,
we calculate the Query-Key-Value vectors as:

v

al, = W, (bl ||TE(®)), ki = Wi (bl |ITE(t)), v}, = W, (b} ||TE(#)) (5)

where hf, denotes the representation of node u at the time stamp ¢, q, k, v represents the query,
key and value vector, respectively, and we omit the bias term for brevity. TE(¢) denotes temporal
encoding techniques to obtain embeddings of time ¢ so that the time of link occurrence can be
considered inherently [40,|41]]. Then, we can calculate the attention scores among nodes in the
dynamic neighborhood to obtain the structural masks

kT kT
9 ), my = Softmax(fqi) (6)

Vd Vd

where d denotes feature dimension, m; and my represent the masks of invariant and variant
structural patterns. In this way, dynamic neighbors with higher attention scores in invariant patterns
will have lower attention scores in variant ones, which means the invariant and variant patterns have
a negative correlation. To capture invariant featural pattern, we adopt a learnable featural mask
my = Softmax(w ) to select features from the messages of dynamic neighbors. Then the messages
of dynamic neighborhood can be summarized with respective masks,

m; = Softmax(

z7(u) = Agg;(my, v © my)
zy, (u) = Aggy (my,v)

where Agg(-) denotes aggregating and summarizing messages from dynamic neighborhood. To fur-
ther disentangle the invariant and variant patterns, we design different aggregation functions Agg,(-)
and Aggy, (-) to summarize specific messages from masked dynamic neighborhood respectively. Then
the pattern summarizations are added up as hidden embeddings to be fed into subsequent layers.

h!, « 27 (u) + z (u) (8)

(7

Overall Architecture. The overall architecture is a stacking of spatio-temporal graph attention layers.
Like classic graph message-passing networks, this enables each node to access high-order dynamic
neighborhood indirectly, where z! (u) and z,(u) at I-th layer can be a summarization of invariant and
variant patterns in [-order dynamic neighborhood. In practice, the attention can be easily extended to
multi-head attention [42] to stable the training process and model multi-faceted graph evolution [43].

3.3 Spatio-Temporal Intervention Mechanism

Direct Intervention. One way of intervening variant pattern distribution as Eq. @) is directly
generating and altering the variant patterns. However, this is infeasible in practice due to the
following reasons: First, since it has to intervene the dynamic neighborhood and features node-
wisely, the computational complexity is unbearable. Second, generating variant patterns including
time-varying structures and features is another intractable problem.

Approximate Intervention. To tackle the problems mentioned above, we propose to approximate the
patterns P* with summarized patterns z* found in Sec.[3.2} As z%(u) and z{, (u) act as summarizations
of invariant and variant spatio-temporal patterns for node u at time ¢, we approximate the intervention
process by sampling and replacing the variant pattern summarizations instead of altering original
structures and features with generated ones. To do spatio-temporal intervention, we collect variant
patterns of all nodes at all time, from which we sample one variant pattern to replace the variant
patterns of other nodes across time. For example, we can use the variant pattern of node v at time ¢
to replace the variant pattern of node w at time ¢; as

2y (u), 2} (u) + 27 (u), 22 (v) ©)



As the invariant pattern summarization is kept the same, the label should not be changed. Thanks
to the disentangled spatio-temporal graph attention, we get variant patterns across neighborhoods
and time, which can act as natural intervention samples inside data so that the complexity of the
generation problem can also be avoided. By doing Eq. (9) multiple times, we can obtain multiple
intervened data distributions for the subsequent optimization.

3.4 Optimization with Invariance Loss

Based on the multiple intervened data distributions with different variant patterns, we can next
optimize the model to focus on invariant patterns to make predictions. Here, we introduce invariance
loss to instantiate Eq. {@). Let z; and zy be the summarized invariant and variant patterns, we
calculate the task loss by only using the invariant patterns

L=L(f(z1),y) (10)

where f(-) is the predictor. The task loss let the model utilize the invariant patterns to make predictions.
Then we calculate the mixed loss as

Ly =09(zv,21),y) (11)

where another predictor g(-) makes predictions using both invariant patterns zy and variant patterns
z;. The mixed loss measure the model’s prediction ability when variant patterns are also exposed to
the model. Then the invariance loss is calculated by

L4, = Vars,cs(Ly|do(PY = s;)) (12)

where ‘do’ denotes the intervention mechanism as mentioned in Section.[3.3l The invariance loss
measures the variance of the model’s prediction ability under multiple intervened distributions. The
final training objective is

ngn L+ ALy, (13)

where the task loss £ is minimized to exploit invariant patterns while the invariance loss L4, helps
the model to discover invariant and variant patterns, and ) is a hyperparameter to balance between
two objectives. After training, we only adopt invariant patterns to make predictions in the inference
stage. The overall algorithm is summarized in Table [T}

Algorithm 1 Training pipeline for DIDA

Require: Training epochs L, number of intervention samples S, hyperparameter A
1: for{=1,...,Ldo

2:  Obtain z},, z} for each node and time as described in Section
3:  Calculate task loss and mixed loss as Eq. and Eq.
4:  Sample S variant patterns from collections of z!,, to construct intervention set S
5. forsinSdo
6: Replace the nodes’ variant pattern summarizations with s as Section [3.3]
7 Calculate mixed loss as Eq. (T1)
8: end for
9:  Calculate invariance loss as Eq. (I2)
10:  Update the model according to Eq. (13)
11: end for

4 Experiments

In this section, we conduct extensive experiments to verify that our framework can handle spatio-
temporal distribution shifts by discovering and utilizing invariant patterns. More Details of the
settings and other results can be found in Appendix.

Baselines. We adopt several representative GNNs and Out-of-Distribution(OOD) generalization
methods as our baselines:

o Static GNNs: GAE [44], a representative static GNN with stacking of graph convolutions;
VGAE [44] further introduces variational variables into GAE.



* Dynamic GNNs: GCRN [45],a representative dynamic GNN that first adopts a GCNJ[44] to
obtain node embeddings and then a GRU [46] to model the dynamics; EvolveGCN [13] adopts a
LSTM[47] or GRU [46] to flexibly evolve the GCN[44] parameters instead of directly learning
the temporal node embeddings; DySAT [43] models dynamic graph using structural and temporal
self-attention.

* OOD generalization methods: IRM [48] aims at learning an invariant predictor which minimizes
the empirical risks for all training domains; GroupDRO [49] reduces differences in risk across
training domains to reduce the model’s sensitivity to distributional shifts; V-REx [50] puts more
weight on training domains with larger errors when minimizing empirical risk.

4.1 Real-world Datasets

Settings. We use 3 real-world dynamic graph datasets, including COLLAB, Yelp and Transaction.
We adopt the challenging inductive future link prediction task, where the model exploits past graphs
to make link prediction in the next time step. Each dataset can be split into several partial dynamic
graphs based on its field information. For brevity, we use ‘w/ DS’ and ‘w/o DS’ to represent test
data with and without distribution shift respectively. To measure models’ performance under spatio-
temporal distribution shift, we choose one field as ‘w/ DS’ and the left others are further split into
training, validation and test data (‘w/o DS’) chronologically. Note that the ‘w/o DS’ is a merged
dynamic graph without field information and ‘w/ DS’ is unseen during training, which is more
practical and challenging in real-world scenarios. More details on their spatio-temporal distribution
shifts are provided in Appendix. Here we briefly introduce the real-world datasets as follows

« COLLAB [51 is an academic collaboration dataset with papers that were published during
1990-2006. Node and edge represent author and coauthorship respectively. Based on the field of
co-authored publication, each edge has the field information including "Data Mining", "Database",
"Medical Informatics", "Theory" and "Visualization". The time granularity is year, including 16
time slices in total. We use "Data Mining" as ‘w/ DS’ and the left as ‘w/o DS’.

* Yelp [43E]is a business review dataset, containing customer reviews on business. Node and edge
represent customer/business and review behavior respectively. We consider interactions in five
categories of business including "Pizza", "American (New) Food", "Coffee & Tea ", "Sushi Bars"
and "Fast Food" from January 2019 to December 2020. The time granularity is month, including
24 time slices in total. We use "Pizza" as ‘w/ DS’ and the left as ‘w/o DS’.

. Transactiorﬁ is a secondary market transaction dataset, which records transaction behaviors of
users from 10th April 2022 to 10th May 2022. Node and edge represent user and transaction
respectively. The transactions have 4 categories, including "Pants", "Outwears", "Shirts" and
"Hoodies". The time granularity is day, including 30 time slices in total. We use "Pants" as ‘w/
DS’ and the left as ‘w/o DS’.

Results. Based on the results on real-world datasets in Table. [T} we have the following observations:

» Baselines fail dramatically under distribution shift: 1) Although DyGNN baselines perform
well on test data without distribution shift, their performance drops greatly under distribution
shift. In particular, the performance of DySAT, which is the best-performed DyGNN in ‘w/o
DS’, drop by nearly 12%, 12% and 5% in ‘w/ DS’. In Yelp and Transaction, GCRN and EGCN
even underperform static GNNs, GAE and VGAE. This phenomenon shows that the existing
DyGNNs may exploit variant patterns and thus fail to handle distribution shift. 2) Moreover, as
generalization baselines are not specially designed to consider spatio-temporal distribution shift in
dynamic graphs, they only have limited improvements in Yelp and Transaction. In particular, they
rely on ground-truth environment labels to achieve OOD generalization, which are unavailable
for real dynamic graphs. The inferior performance indicates that they cannot generalize well
without accurate environment labels, which verifies that lacking environmental labels is also a
key challenge for handling distribution shifts of dynamic graphs.

L]

Our method can better handle distribution shift than the baselines, especially in stronger distribu-
tion shift. DIDA improves significantly over all baselines in ‘w/ DS’ for all datasets. Note that

*https://www.aminer.cn/collaboration.
Shttps://www.yelp.com/dataset
8Collected from Alibaba.com



Table 1: Results(AUC%) of different methods on real-world datasets. The best results are in bold
and the second-best results are underlined. ‘w/o DS’ and ‘w/ DS’ denote test data with and without
distribution shift.

Model COLLAB Yelp Transaction
Test Data w/o DS w/ DS w/o DS w/ DS w/o DS w/ DS

GAE 77.15+050 74.04+0.75 70.67+1.11 64.45+502  71.90+032 73.44+041
VGAE 86.47+004 T74.95+125 76.54+050 65.33+143  79.31+037 75.66=+0.30
GCRN 82.78+054 69.72+045 68.59+1.05  54.68+759  78.99+028 71.24+035
EGCN 86.62+095 76.15+091  78.21+003  53.82+206 73.22+1.11  66.49+0.97
DySAT 88.774023  76.59+020 78.87+057  66.09+142  81.55+066 76.18+0.43

IRM 87.96+090 75.42+087 66.49+1078 56.02+16.08 81.65+050 75.61+0.61
VREx 88.31+032 76.24+077 79.04+0.16 66.41+187 81.72+035 76.24+052

GroupDRO  88.76+0.12  76.33+029 79.38+042  66.97+061  81.50+024 75.92+037

DIDA 91.97+0.05 81.87+040 78.22+040  75.92+090 83.08+0.33 77.61+o0.59

Table 2: Results(AUC%) of different methods on synthetic dataset. The best results are in bold and
the second-best results are underlined. Larger p denotes higher distribution shift level.

Model \p 04 0.6 0.8
Split Train Test Train Test Train Test

GCRN 69.60+t1.14  72.57+072 74.71+017 72294047 75.69+007 67.26+0.22
EGCN 78.82+140 69.00+053 79.47+168 62.70+1.14 81.07+4.10 60.13+0.89
DySAT 84.71+080 70.24+126 89.77+032 64.01+019 94.02+129 62.19+039
IRM 85.20+007 69.40+0.09 89.48+022 63.97+037 95.02+0.09 62.66+033
VREXx 84.77+084 70.44+108 89.81+021 63.99+021 94.06+130 62.21+0.40
GroupDRO  84.78+085 70.30+123 89.90+0.11 64.054+021 94.08+133 62.13+035

DIDA 87.92+092 85.20+084 91.22+059 82.89+023 92.72+216 72.59+331

Yelp has stronger temporal distribution shift since COVID-19 happens in the midway, strongly
affecting consumers’ behavior in business, while DIDA outperforms the most competitive baseline
GroupDRO by 9% in ‘w/ DS’. In comparison to similar field information in Yelp (all restaurants)
and Transaction (all costumes), COLLAB has stronger spatial distribution shift since the fields
are more different to each other, while DIDA outperforms the most competitive baseline DySAT
by 5% in ‘w/ DS’.

4.2 Synthetic Dataset

Settings. To evaluate the model’s generalization ability under spatio-temporal distribution shift,
following [18]], we introduce manually designed shifts in dataset COLLAB with all fields merged.
Denote original features and structures as X{ € RV* and A? € {0, 1} *¥_ For each time ¢, we
uniformly sample p(t)|£1+1| positive links and (1 — p(¢))|E¥T!| negative links in A+, Then they
are factorized into variant features X € RV*? with property of structural preservation. Two portions
of features are concatenated as X* = [X?%, X}] as input node features for training and inference. The
sampling probability p(t) = clip(p + ocos(t), 0, 1) refers to the intensity of shifts, where the variant
features X% constructed with higher p(t) will have stronger correlations with future link A1, We
set Dyegy = 0.1, 0test = 0, Otrqin = 0.05 and vary p,,.,;,, in from 0.4 to 0.8 for evaluation. Since the
correlations between X% and label A**! vary through time and neighborhood, patterns include X}
are variant under distribution shifts. As static GNNs can not support time-varing features, we omit
their results.

Results. Based on the results on synthetic dataset in Table. [2| we have the following observations:

* Our method can better handle distribution shift than the baselines. Although the baselines achieve
high performance when training, their performance drop drastically in the test stage, which



shows that the existing DyGNNs fail to handle distribution shifts. In terms of test results, DIDA
consistently outperforms DyGNN baselines by a significantly large margin. In particular, DIDA
surpasses the best-performed baseline by nearly 13%/10%/5% in test results for different shift
levels. For the general OOD baselines, they reduce the variance in some cases while their
improvements are not significant. Instead, DIDA is specially designed for dynamic graphs and
can exploit the invariant spatio-temporal patterns to handle distribution shift.

* Our method can exploit invariant patterns to consistently alleviate harmful effects of variant
patterns under different distribution shift levels. As shift level increases, almost all baselines
increase in train results and decline in test results. This phenomenon shows that as the relationship
between variant patterns and labels goes stronger, the existing DyGNNs become more dependent
on the variant patterns when training, causing their failure in test stage. Instead, the rise in train
results and drop in test results of DIDA are significantly lower than baselines, which demonstrates
that DIDA can exploit invariant patterns and alleviate the harmful effects of variant patterns under
distribution shift.

4.3 Complexity Analysis

We analyze the computational complexity of DIDA as follows. Denote |V| and |E| as the total
number of nodes and edges in the graph, respectively, and d as the dimensionality of the hidden
representation. The spatio-temporal aggregation has a time complexity of O(|E|d + |V'|d?). The
disentangled component adds a constant multiplier 2, which does not affect the time complexity of
aggregation. Denote |E,| as the number of edges to predict and |S| as the size of the intervention
set. Our intervention mechanism has a time complexity of O(|E,||S|d) in training, and does
not put extra time complexity in inference. Therefore, the overall time complexity of DIDA is
O(|E|d + |V|d? + |E,||S|d). Notice that |S| is a hyper-parameter and is usually set as a small
constant. In summary, DIDA has a linear time complexity with respect to the number of nodes and
edges, which is on par with the existing dynamic GNNss.

4.4 Ablation study

In this section, we conduct ablation studies to verify the effectiveness of the proposed spatio-temporal
intervention mechanism and disentangled graph attention in DIDA.

Spatio-temporal intervention mechanism.
We remove the intervention mechanism men- :

tioned in Sec [3.3] From Figure 2] we can ; — oA ‘
see that without spatio-temporal intervention, 80 m== DIDA /o I&D

the model’s performance drop significantly
especially in the synthetic dataset, which ver-
ifies that our intervention mechanism helps
the model to focus on invariant patterns to

make predictions.

.

AUC (%)
&

70

Disentangled graph attention. We further 6
remove the disentangled attention mentioned COLLAB  Yelp  Transaction Synthetic
in Sec[3.2] From Figure[2] we can see that dis-

e B >" Figure 2: Ablation studies on intervention mechanism
entangled attention is a critical component in 4 disentangled attention, where *w/o I’ denotes re-
the model design, especially in Yelp dataset. ,ying the spatio-temporal intervention mechanism

MoreoYer, without dlser}tanglftd modu.le, th; in DIDA and *w/o I&D’ further removes disentangled
model is unable to obtain variant and invari- attention

ant patterns for the subsequent intervention.

5 Related Work

Dynamic Graph Neural Networks. To tackle the complex structural and temporal information in
dynamic graphs, considerable research attention has been devoted to dynamic graph neural networks
(DyGNNs) [7, 18]]. A classic of DyGNNSs first adopt a GNN to aggregate structural information
for graph at each time, followed by a sequence model like RNN [52) 53| |54} 145] or temporal
self-attention [43]] to process temporal information. Another classic of DyGNNs first introduce



time-encoding techniques to represent each temporal link as a function of time, followed by a spatial
module like GNN or memory module [20, 155} 40, 41] to process structural information. To obtain
more fine-grained continous node embeddings in dynamic graphs, some work further leverages neural
interaction processes [S6] and ordinary differential equation [57]. DyGNNs have been widely applied
in real-world applications, including dynamic anomaly detection [58]], event forecasting [59]], dynamic
recommendation [60], social character prediction [61]], user modeling [62], temporal knowledge
graph completion [[63]], etc. In this paper, we consider DyGNNs under spatio-temporal distribution
shift, which remains unexplored in dynamic graph neural networks literature.

Out-of-Distribution Generalization. Most existing machine learning methods assume that the
testing and training data are independent and identically distributed, which is not guaranteed to hold
in many real-world scenarios [[64]]. In particular, there might be uncontrollable distribution shifts
between training and testing data distribution, which may lead to sharp drop of model performance.
To solve this problem, Out-of-Distribution (OOD) generalization problem has recently become a
central research topic in various areas [65) |64} [66l]. Recently, several works attempt to handle
distribution shift on graphs [67} 29, 18 68| [11} 169} 70, 71, [72, [73]]. Another classic of OOD methods
most related to our works handle distribution shifts on time-series data [25} 26, 12} 27, 28, [74].
Current works consider either only structural distribution shift for static graphs or only temporal
distribution shift for time-series data. However, spatio-temporal distribution shifts in dynamic graphs
are more complex yet remain unexplored. To the best of our knowledge, this is the first study of
spatio-temporal distribution shifts in dynamic graphs.

Disentangled Representation Learning. Disentangled representation learning aims to characterize
the multiple latent explanatory factors behind the observed data, where the factors are represented
by different vectors [75]. Besides its applications in computer vision [76, [77) 78, [79, I80] and
recommendation [81 828384} 85| 186], several disentangled GNNs have proposed to generalize
disentangled representation learning in graph data recently. DisenGCN [87] and IPGDN [I88]] utilize
the dynamic routing mechanism to disentangle latent factors for node representations. FactorGCN [89]
decomposes the input graph into several interpretable factor graphs. DGCL [90, 91]] aim to learn
disentangled graph-level representations with self-supervision. Some works factorize deep generative
models based on node, edge, static, dynamic factors [92] or spatial, temporal, graph factors [93] to
achieve interpretable dynamic graph generation.

6 Conclusion

In this paper, we propose Disentangled Intervention-based Dynamic Graph Attention Networks
(DIDA) to handle spatio-temporal distribution shift in dynamic graphs. First, we propose a disen-
tangled dynamic graph attention network to capture invariant and variant spatio-temporal patterns.
Then, based on the causal inference literature, we design a spatio-temporal intervention mechanism
to create multiple intervened distributions and propose an invariance regularization term to help the
model focus on invariant patterns under distribution shifts. Extensive experiments on three real-world
datasets and one synthetic dataset demonstrate that our method can better handle spatio-temporal
distribution shift than state-of-the-art baselines. One limitation is that in this paper we mainly consider
dynamic graphs in scenarios of discrete snapshots, and we leave studying spatio-temporal distribution
shifts in continous dynamic graphs for further explorations.
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