Under review as a conference paper at ICLR 2026

THINK TWICE, ACT ONCE: TOKEN-AWARE COMPRESSION
AND ACTION REUSE FOR EFFICIENT INFERENCE IN VISION-
LANGUAGE-ACTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have emerged as a powerful paradigm for robot con-
trol through natural language instructions. However, their high inference cost—stemming
from large-scale token computation and autoregressive decoding—poses significant chal-
lenges for real-time deployment and edge applications. While prior work has primarily
focused on efficient architectural optimization, we take a different and innovative per-
spective by identifying a dual form of redundancy in VLA models: (i) high similarity
across consecutive action steps, and (ii) substantial redundancy in visual tokens. Motivated
by these observations, we propose FLASHVLA, the first training-free and plug-and-play
acceleration framework that enables action reuse in VLA models. Specifically, FLASHVLA
improves inference efficiency through a token-aware action reuse mechanism that avoids
redundant decoding across stable action steps, and an information-guided visual token se-
lection strategy that prunes low-contribution tokens. Extensive experiments on the LIBERO
benchmark show that FLASHVLA reduces FLOPs by 55.7% and latency by 36.0%, with
only a 0.7% drop in task success rate. These results demonstrate the effectiveness of
FLASHVLA in enabling lightweight, low-latency VLA inference without retraining.

1 INTRODUCTION

In the development of embodied intelligence systems, Vision-Language-Action (VLA) models are rapidly
emerging as a key technology for enabling general-purpose behavior control. By integrating visual perception,
language understanding, and action generation, VLA models empower embodied agents to execute complex
tasks based on natural language instructions, demonstrating strong generalization and task adaptability Brohan
et al. (2022); [Nair et al.| (2022); |Bai et al.| (2023)); [Chen et al.| (2023)); (Cheang et al.| (2024); L1 et al.| (2023));
Jiang et al.| (2023)); Kim et al.|(2024); |Chen et al.| (2024d); (Chi et al.|(2023); Duan et al.| (2024)); Singh et al.
(2023)). However, despite their impressive performance in task execution, VLA models often involve heavy
computational loads and high latency during inference, making them difficult to deploy in high-frequency
control settings and limiting their applicability in more dexterous and complex bimanual manipulation
tasks | Kim et al.| (2025)); [Liu et al.| (2024b); [Wen et al.| (2025)); L1 et al.| (2024 a)).

Current VLA architectures typically fall into two paradigms: the autoregressive generation paradigm, such
as OpenVLA Kim et al|(2024), which encodes multimodal inputs into tokens and decodes actions step-
by-step using a language model; and the diffusion policy paradigm Wen et al.| (2024); |Li et al.| (2024b);
Yan et al.|(2024);|Chi et al.[(2023)); Hou et al.|(2024)), which formulates action generation as a conditional
denoising process and enables parallel trajectory sampling. Both paradigms rely heavily on Transformer
architectures, where each inference step incurs a quadratic complexity O(IN?) with respect to sequence
length IV, leading to high computational cost. To mitigate this, recent work focuses on architectural-level

Under review as a conference paper at ICLR 2026

1)
=3

@
Oa F=u

FlashVLA

p
_ I l
Baseline ”"“‘k'"fb ‘Thmkmz/ Thinking | \Th'"k'"g m m:m m:)
o 0 eeoe [|| fl ~ aytl | et eoe
(_/\ o (/\ Oﬁ f ® (f Tetu R« = RN . =y
b k : '
. ‘ e Change d
e

transformation area
(>175% Mean Value)

%
1=

kTIunkmg
(_/-\0 S‘\‘*/" e
T
) @

® = =

slight transformation area
(75~175% Mean Value)

IS
[

stable area
S (<75% Mean Value)

Angle Value Ax Between Actions (°)
(=]

Action Step 0 40 Action‘Step

Figure 1: Motivation behind our proposed FLASHVLA. (Left) Illustration of action computation frequency:
the baseline triggers frequent “thinking” events, while FLASHVLA reduces such computations. (Right)
Analysis of action-transition dynamics: the figure shows the change in the VLA model’s output vector at each
time step relative to the previous one; the vertical axis indicates the directional difference between consecutive

actions, with most steps in the stable area and only a few entering transformation regions.

optimizations, including action chunking [Song et al.|(2025); Liu et al.|(2024d), parallel decoding Kim et al.
(2025)), low-rank adaptation Wen et al.| (2025)), and model quantization |Park et al.|(2024). While effective,
these methods typically require additional training overhead.

Unlike prior work that focuses on architectural optimizations, we take a new perspective by analyzing the
temporal behavior of VLA models at the action level. We observe that in many tasks (e.g., OpenVLA |Kim et al.
(2024)), consecutive action steps show minimal directional change, suggesting semantic redundancy
(see Fig.[T). This indicates that actions in stable phases can be reused to avoid redundant computation. We
further find significant redundancy in visual tokens (see Appendix [F), consistent with observations in
vision-language models (VLMs) |Chen et al.| (2024c); Yang et al.| (2024)); |Zhang et al.| (2025)); |Chen et al.
(20244a), which reveals potential for reducing computational cost along another computational dimension.

Building on these observations, we propose FLASHVLA, a training-free, plug-and-play dual-path acceleration
framework that improves VLA inference efficiency via action reuse and token pruning. The first component
is a token-aware reuse mechanism that compares both action similarity and visual token stability to decide
whether to skip computation and reuse the previous action. The second is a visual token selection strategy
based on information contribution scores, retaining informative tokens while discarding low-impact ones. The
proposed FLASHVLA integrates seamlessly with Flash Attention-based VLA models and follows a “Think
Twice, Act Once” paradigm: it performs lightweight assessment before execution, selecting between skipped
execution and lightweight execution, as illustrated in Fig. [I|by reducing the frequency of action computations,
significantly reducing FLOPs and latency while maintaining control accuracy.

To evaluate the effectiveness of FLASHVLA, we conduct systematic experiments on the LIBERO benchmark
using OpenVLA as the primary backbone. To further examine generality across different architectures and
environments, we additionally validate on UniVLA and VLAbench. FLASHVLA achieves a 55.7% reduction
in FLOPs and a 36.0% reduction in latency without any additional training, while reducing the number of
visual tokens to 62.5% of the original input. Notably, the average success rate drops by only 0.7% compared to
the baseline VLA model. Ablation studies and benchmark results collectively demonstrate that FLASHVLA
significantly reduces computational cost while preserving task performance, enabling efficient VLA inference
with minimal performance drop. Our key contributions are summarized as follows:

1. We identify a novel form of action-level and token-level redundancy in VLA inference. Specifically,
we observe that most consecutive action steps yield highly similar outputs with only minor directional

Under review as a conference paper at ICLR 2026

changes, allowing action reuse in stable phases. Additionally, many visual tokens contribute little to
the inference process, revealing a degree of visual redundancy similar to that observed in MLLMs.

2. We introduce FLASHVLA, the first training-free and plug-and-play acceleration framework that
enables action reuse in VLA models. It integrates a token-aware action reuse mechanism to
skip redundant computation in stable action steps, and a visual token selection strategy based on
information contribution scores to retain informative tokens. It is worth noted that FLASHVLA is
fully compatible with Flash Attention-based VLA backbones.

3. We conduct comprehensive experiments on four representative tasks from the LIBERO benchmark.
When visual tokens are reduced to 62.5% of the original input, FLASHVLA lowers inference latency
by 36.0% and decreases the FLOPs of visual token computation by 55.7%, while incurring only a
0.7% drop in success rate. These results demonstrate that FLASHVLA achieves significant efficiency
gains with limited performance trade-off.

2 RELATED WORK

Recent advances in VLA models highlight the critical role of architecture in determining both performance
and efficiency. To address the computational challenges inherent in these models, a variety of acceleration
methods |[Kim et al.| (2025); |Song et al.| (2025)); [Li et al.| (2024b)); [Wen et al.| (2025)); [Liu et al.| (2024a)); | Xu
et al. (2025); Yue et al.| (2024); [Park et al.| (2024) have been proposed across two dominant paradigms:
autoregressive generation and diffusion policy Zitkovich et al.| (2023)); Kim et al.| (2024); [Black et al.; |Liu
et al.|(2024Db); ' Wen et al.| (2024); |Yan et al.| (2024); L1 et al.| (2024b)); |Chen et al.| (2023)).

Vision-language-action models. Vision-language-action (VLA) models provide a promising direction for
training generalist robot policies/Ahn et al.|(2022)); Brohan et al.|(2022); Black et al.;|Duan et al.|(2024)) and are
built on large-scale robot learning datasets|Liu et al.|(2023); O’ Neill et al.| (2024)); [Fang et al.| (2023); Khazatsky
et al.[(2024); Li et al.| (2024c). Most VLA models follow one of two paradigms: autoregressive generation
and diffusion policy. Autoregressive models, such as RT-2|Zitkovich et al.|(2023]) and OpenVLA Kim et al.
(2024), encode multimodal inputs into tokens and decode actions step-by-step using a language model.
RT-2 treats actions as text tokens and trains them alongside natural language, while OpenVLA combines a
vision backbone with a language model trained on large-scale robot trajectories. Pi0|Black et al.|is another
autoregressive model that uses flow matching for faster action generation. Diffusion-based models, including
RDT-1B [Liu et al.{(2024b), Diffusion-VLA Wen et al.|(2024), DNACT Yan et al.|(2024), and CogACT |Li et al.
(2024b), formulate action generation as conditional denoising. Diffusion-VLA combines autoregressive and
diffusion methods to improve robustness. DNACT focuses on multi-task 3D policy learning, while CogACT
generates diverse action sequences to improve flexibility. However, the large size of VLA models leads to
high computational cost, limiting real-time deployment and high-frequency control.

Acceleration for VLA models. Existing methods mainly focus on architectural-level optimizations tailored
to the two main VLA paradigms, including action chunking Song et al.| (2025); [Kim et al.| (2025)), which
splits complex actions into smaller segments to reduce per-step computation; parallel decoding|Song et al.
(2025)); KKim et al.| (2025)), which enables simultaneous generation of multiple actions; low-rank adapta-
tion|Wen et al.| (2025)); Hu et al.| (2022), which compresses model weights to reduce parameters; and model
quantization |Pertsch et al.| (2025); [Park et al.| (2024)), which lowers numerical precision to save memory
and computation. While these techniques improve efficiency, they require additional training or fine-tuning.
Training-free acceleration remains underexplored. Although some pruning methods from VLMs|Chen et al.
(2024b)); Zhang et al.| (2024b); |Yang et al.| (2024); Liu et al. (2024c)) are training-free, they are incompatible
with Flash Attention and do not sufficiently consider the structural characteristics of VLA models. To
address these limitations, we propose a training-free, plug-and-play dual-path framework that accelerates
VLA inference through action reuse and token pruning.

Under review as a conference paper at ICLR 2026

Pruned Inference Reuse Action

FlashVLA FlashVLA FlashVLA
0

i
ﬁ

. Skip__
Thinking Action Thinking Action Thinking Action Action Step
FlashVLA e
\
I X |
. 1 Vision Language Prompt Token Visual Token Output Token
FlashTrigger | Action Model Y . — i
' Y\ important Token Unimportant Token !
g Action Vector(s — 2) 3 (=== 3
! = Y X f
Step[-2,-1] - Rk] - g i 3) 2 n :
AcGll Action Vector Angle H v, é“ E 1) II f
. M Il o =l [l
Information CerRy Action Vector(s — 1) (a>¢1) ! 9{TAY E>] 1) || 5 E
Token Set(s — 2) G>e) i g2, |26 l*////ilL' 160 160 s |! Ax
» $>e E o ::> 1 " E> E:> g | A0]
: () 1 Prompt. !) l| g : Mot
2, - ---> => Trigger - x|
Step[-2, -1
epl I Token Token Set Thifl%in 1 ‘pick up the 1) ////'l 84 i Action
- " g i B 2
Token Memory ! Intersection \| " alphabet E> g I Token g
" i ° 43
Information ‘Token Set(s — 1) 1| soup and %‘ Lis LSe_IectLonJ Lysd | Liesz i
\| place it in [} '
! o LLM LLM !
|| the basket g
O Uy Prefill Stage Decode Stage '
[) [J e i ’
Reuse Action

Figure 2: Framework of our FLASHVLA. We illustrate how our method works as action steps change. Before
each inference, FlashTrigger will think about whether it can reuse the output of the previous action based on
action memory and token memory (as shown in blue block). If the trigger condition is met, this inference is
skipped. If the trigger condition is not met, proceed to the pruned inference step. In pruned inference step, we
select the set of important visual tokens in the prefill stage and prune the other unimportant tokens. After
inference, action information and token information are used to update action memory and token memory.

3 FLASHVLA

The FLASHVLA architecture is illustrated in Fig2] In the following, we first introduce the standard
formulation of VLA models in Sectior3.1] We then detail our visual token selection strategy and action
reuse mechanism in Section [3.2]and Section [3.3] respectively. The overall algorithmic flow of FLASHVLA is
provided in Appendix [A] (Algorithm T).

3.1 PRELIMINARIES

VLA models extend vision-and-language foundation models for robotic control by generating actions from
visual inputs and language prompts. A representative example is OpenVLA Kim et al.| (2024), a 7B-parameter
open-source model that establishes a strong baseline for general-purpose manipulation. It consists of a vision
encoder that combines DINOv2|0Oquab et al.| (2023) and SigLIP|Zhai et al.[(2023) features, a projector that
maps visual features into the language embedding space, and a LLaMA [Touvron et al.|(2023)) language model
as the backbone. Given an image and a text prompt, the encoder and projector produce a sequence of visual
tokens T = {TV,T¢,...T%}, while the prompt is tokenized into T! = {T}, T%,...,T%,}. These tokens
are concatenated and passed to the language model, which autoregressively generates actions as control
outputs. However, the large number of visual tokens, combined with highly repetitive action outputs, leads to
significant computational overhead. These observations highlight two key sources of inefficiency in VLA

Under review as a conference paper at ICLR 2026

models: visual token redundancy and temporal redundancy in action generation. In the following sections, we
introduce methods to address both aspects and improve inference efficiency without additional training.

3.2 VISUAL TOKEN SELECTION STRATEGY VIA INFORMATION CONTRIBUTION THEORY

We observe that VLA models exhibit visual token redundancy patterns similar to those found in VLMs
(2024c)), where attention distributions are highly sparse beyond the initial few transformer layers (see
Appendix [F). This motivates our token selection strategy based on information contribution theory, which
identifies tokens that best preserve the structure of the visual feature space. However, most recent architectures
(e.g., OpenVLA) rely on Flash Attention (2022)), making traditional attention score-based selection
infeasible. To address this, we directly operate on the attention output matrix and rank tokens by their
estimated contribution to the global feature representation.

Let 7% € RV *4 denote the attention output matrix corresponding to the visual tokens, where NN is the number
of tokens and d is the hidden dimension. To quantify the amount of information contained in 17, we perform
singular value decomposition (SVD), where 7 = UXV T. Here, U € RY*N contains the left singular
vectors, V' € R%*4 contains the right singular vectors, and ¥ € RV* is a diagonal matrix of singular values
o; sorted in descending order. Each token representation T“(m) corresponds to a row of T and can be
expressed as:

T
T () = Zumaw; (1)
i=1

where 7 is the effective rank of the matrix. We define the information contribution score (ICS) of the x-th
token as:

C(x) = Z [tzi0i] (2)
i=1

This score measures the magnitude of the token’s projection onto the dominant singular directions, weighted
by their corresponding singular values. Tokens with higher C'(x) values are expected to contribute more
significantly to the overall representation. As shown in Fig. 3] ICS-selected tokens can better focus on
information-rich regions compared with random selection. A theoretical justification of ICS is provided in

Appendix
3.3 TOKEN-AWARE ACTION REUSE STRATEGY

Action outputs in VLA models often exhibit minimal variation
or remain identical across frames (Fig[I), and can be regarded as
redundant actions suitable for direct reuse to accelerate inference.
As shown in Fig[2] FlashTrigger decides whether to reuse the
previous action or perform a new pruned inference. It consists of
Action Memory, Token Memory, and a Trigger Thinking module.
To ensure stability, reuse is not applied in the first two frames;
the current frame is denoted as the s-th with s > 2. At the
action level, consistency is measured by the variation in action
vectors A. Action Memory stores the outputs from the previous Figure 3: Comparison of token selection
two frames, A(s — 2) and A(s — 1), and computes the angle o Strategies on a robot-view image. Left:

Prompt: pick up the aphabet soup and place it in the basket.

between them to quantify the change: selection by the proposed ICS method.
Right: uniform random selection. ICS
A(s—2)- A(s — 1) typically focuses on semantically mean-

a(s) = Arccos() (3) ingful and information-dense regions.

[1A(s —2)I] x [|A(s = 1)]|

Under review as a conference paper at ICLR 2026

In token level, the change of set I computed in Section is used to determine the degree of change
in environment with a VLA model perspective. The Token Memory dynamically updates and stores the
computed I from the previous two frames: I(s — 2) and I(s — 1). We calculate the intersection ratio ¢
between I(s — 2) and I(s — 1) to determine the extent of the change of I:

Len[I(s—=2)NI(s—1
oo = Lenllls =2 01(s — 1)
Len[I(s —1)]
where Len(-) returns the number of elements in the set.

“)

At the same time, the lower limit of «/(s) change is denoted by £1. We define ¢ as the maximum number of
allowed changes in the set of visual tokens at the two action steps before and after. Thus the lower limit of the
threshold e5 at which ¢(s) is allowed to change can be defined:

]
I ®)
Len[I(s—1)]
Before each inference, the Trigger Thinking module thinks ahead about whether this inference should directly
reuse A(s — 1) or recalculate how to act. It can be represented as:

Eg =

Reuse Action, if a(s) > e1 and ¢(s) > ez

else

Trigger Thinking = { (6)

Pruned Inference,

When the reuse condition is not met, VLA performs pruned inference using the informative visual token set
I instead of the full token set. In other words, FLASHVLA consistently accelerates the inference process,
regardless of whether the action is reused.

Table 1: Main results of FLASHVLA under different visual token budgets across four task suites in the
LIBERO. We report SR, visual-token FLOPs, and latency at five token settings. With 160 visual tokens,
FLASHVLA achieves a strong balance between SR and efficiency—reducing FLOPs by 55.7% and latency
by 36.0%—while maintaining comparable or even improved success rates across most tasks.

. 256 192 160 128 96
Task / Visual token (Baseline) (75%) (62.5%) (50%) (37.5%)

SR (%) 84.2 81.8 (— 2.4) 82.6 (— 1.6) 754 (— 8.8) 67 (— 17.2)
LIBERO-Spatial | Flops (10'2) 1.31 0.8(1389%) 0.66(,49.6%) 0.51(61.1%) 0.43 (] 67.2%)
Latency (ms) 82.7 62.7 (1 24.2%) 61.2 (] 26.0%) 58.1 (1 29.7%) 58.9 (1 28.8%)

SR (%) 86.4 86.6 (+0.2) 86.6 (+0.2) 852 (—1.2) 83.6 (— 2.8)
LIBERO-Object Flops (10'%) 1.31 0.74 (] 43.5%) 0.57 (| 56.5%) 0.42 (] 67.9%) 0.33 (] 74.8%)
Latency (ms) 82.7 58.8 (1 289%) 53.1(]35.8%) 453 (1 452%) 472 (] 42.9%)

SR (%) 75.4 76.2 (+0.8) 78.8 (+3.4) 76.8 (+ 1.4) 70.2 (—5.2)
LIBERO-Goal Flops (10') 1.31 0.71 (] 45.8%) 0.6 (J 54.2%) 0.49 (] 62.6%) 0.37 (] 71.8%)
Latency (ms) 82.7 55.2 (] 33.3%) 56.8 (1 31.3%) 54.1 (| 34.6%) 53.8 (1 34.9%)

SR (%) 514 502 (— 1.2) 46.8 (— 4.6) 46.4 (— 5.0) 452 (—6.2)
LIBERO-Long | Flops (10'%) 1.31 0.54 (| 58.8%) 047 (| 64.1%) 0.4(69.5%) 0.32 (] 75.6%)
Latency (ms) 82.7 4243 (1 48.7%) 4035 (1 512%) 3831 (1 53.7%) 44.05 (| 46.7%)

SR (%) 74.4 73.7(—0.7) 73.7(—0.7) 71.0 (—3.4) 66.5 (— 7.9)
Average Flops (10'%) 1.31 0.70 ({ 46.6%) 0.58 (| 55.7%) 0.46 (] 64.9%) 0.36 ({ 72.5%)
Latency (ms) 82.7 548 (133.7%) 52.9(136.0%) 49.0 (| 40.7%) 51.0 (| 38.3%)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate FLASHVLA on the LIBERO benchmark using OpenVLA, following standard protocols. Detailed
experimental environment, implementation settings, and hyperparameters are provided in Appendix [D]

Under review as a conference paper at ICLR 2026

[LIBERO-Spatial [LIBERO-Object [LIBERO-Goal [LIBERO-Long [FlashVLA (actual)
281 281 281 281

147 162

Action Computations per Episode

192 160 96

Token Budget
Figure 4: Average number of action computations per episode under different token budgets on LIBERO
tasks. FlashVLA consistently requires fewer actions than the 256-token baseline.

4.2 MAIN RESULTS ON LIBERO BENCHMARK

We evaluate the performance of FLASHVLA across four task suites in the LIBERO benchmark under varying
visual token budgets. As shown in Table[T] the 160-token configuration (62.5% of the original) offers the best
accuracy—efficiency trade-off. Compared to the full 256-token baseline, it reduces visual-token FLOPs by
55.7% (from 1.31 to 0.58 x10'2) and lowers inference latency by 36.0% (from 82.7ms to 52.9ms), while
maintaining the same average success rate (73.7% vs. 74.4%). Interestingly, we observe a slight gain at 160
tokens in both LIBERO-Object and LIBERO-Goal, where the success rate increases from 86.4% to 86.6%
and from 75.4% to 78.8%, respectively. This suggests that modest token pruning may even help mitigate
redundancy and stabilize policy execution. In contrast, LIBERO-Long is more sensitive to pruning, showing
a larger SR decline when the token count drops below 160. Nevertheless, even in such cases, FLASHVLA
achieves substantial savings in computational cost (e.g., 64.1% FLOPs reduction at 160 tokens).

These results highlight that FLASHVLA, particularly at the 160-token configuration, significantly improves
inference efficiency without compromising performance, making it suitable for real-world deployment across
diverse embodied tasks. Moreover, as illustrated in Fig.] FlashVLA consistently requires fewer action
computations per episode compared to the 256-token baseline, demonstrating its holistic efficiency advantage.
Further, we visualize the trajectories of FlashVLA and the baseline during successful task executions (Fig. [5)),
showing that FlashVLA exhibits smoother and more stable motion while achieving comparable outcomes.

Table 2: Ablation on the two core modules—Pruned Inference and Ac- Table 3: Overall Evaluation
tion Reuse—and the ActionVector/TokenSet components within the reuse ~ Performance of FLASHVLA
mechanism. At the baseline of 256 tokens, SR is 84.2% and FLOPs are in VLAbench [Zhang et al.
1.31 x 10'2. FlashVLA achieves the best trade-off, while removing mod- (2024a) under different visual

ules or components leads to either higher FLOPs or lower SR. token budgets.
192 Tokens 160 Tokens 128 Tokens 96 Tokens . SR FLOPs
Visual token % 12
Method SR FLOPs SR FLOPs SR FLOPs SR FLOPs (%) (10°9)

(%) (10™) (%) (10") (%) (10') (%) (10'%)
w/o Action Reuse [84.6 1.00 83.6 085 782 0.69 678 0.54

256 (baseline) | 7.0 1.31

192 8.0 0.62

w/o Pruned Inference |82.2 1.04 80.6 1.01 81.0 097 80.2 0.97
wlo ActionVector |81.6 0.68 79.6 056 732 044 654 035 160 50 0.62
w/o TokenSet 764 052 748 044 734 037 622 029 128 6.0 041
FlashVLA 81.8 0.80 82.6 0.66 754 051 67.0 043 96 7.0 0.30

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

Effect of Token Pruning and Action Reuse. We evaluate the contribution of each FLASHVLA component
via ablations on LIBERO-Spatial, disabling Pruned Inference or Action Reuse. As shown in Table 2] both
are crucial for efficient inference with minimal performance loss. Removing Action Reuse preserves token
pruning benefits and still reduces FLOPs (e.g., 0.66 at 160 tokens vs. 0.85), while maintaining similar SR,
indicating that Action Reuse mainly improves efficiency. In contrast, disabling Pruned Inference yields
consistently higher FLOPs with only marginal SR gains—for example, at 128 tokens, FLOPs rise from 0.51
(FlashVLA) to 0.97 (x10'2), while SR improves from 75.4% to 81.0%. The full FlashVLA combines both
strategies and achieves the best performance—efficiencv trade-off.

— baseline
baseline + FlashVLA a 88

86

Success Rate (%)

Parameter &

bss

%
&

%
®

Success Rate (%)

-10

=1
5=4
=1

o0
>
o o >

X 10 -15 0

12 14 20 3 4 6 8 10
Parameter &1
Figure 5: Trajectory of action. We visualize the tra- Figure 6: Hyperparameter Sensitivity. Experi-
jectory of action in 3-dimensional space. The location ments are conducted to investigate the effect of
of red dashed box illustrates the smoother trajectory of parameter €1 and §. The size of point represents

FLASHVLA for the same task. the size of the FLOPs.

Component Analysis of Action Reuse Module. We assess the Action Reuse module in FLASHVLA via
ablations on LIBERO-Spatial, removing either the action vector (w/o ActionVector) or token information (w/o
TokenSet). As shown in Table[2] disabling either degrades performance. Without the action vector, SR drops
under tight budgets (e.g., 82.6% — 65.4% at 96 tokens), showing temporal consistency is critical. Without
token stability, the model reuses too aggressively, yielding lowest FLOPs (0.29 at 96 tokens) but unstable
control (SR 62.2%). These results underscore their complementarity: the action vector ensures temporal
continuity, while token stability reflects environmental change, jointly balancing efficiency and robustness.

Hyperparameter Sensitivity. We conduct experiments to analyze the impact of two hyperparameters, €1
and 4, on performance and efficiency, as shown in Figl6] Fig[f[a) shows that varying 1 has negligible effect
on both success rate and FLOPs, indicating that our method is largely insensitive to this parameter. In contrast,
Fig. [6|b) shows that § significantly affects both metrics: increasing ¢ reduces computation cost but leads to a
drop in performance. This provides flexibility to trade-off accuracy and efficiency based on application needs.

4.4 COMPARISON WITH TOKEN PRUNING METHODS

FLASHVLA is compared with FastV |Chen et al.|(2024c]), a dynamic pruning baseline, and Sparse VLM [Zhang
et al.| (2024b), a structured pruning approach, on the LIBERO-Object suite under varying visual token
budgets. As shown in Table[d] FLASHVLA consistently achieves comparable or better performance with
lower FLOPs. At 160 tokens, for example, it attains a higher success rate (86.6% vs. 84.8%) while reducing

Under review as a conference paper at ICLR 2026

Table 4: Detailed Comparison between FLASHVLA, Table 5: Performance of FLASHVLA applied to
FastV [Chen et al| (2024c), and SparseVLM [Zhang] UniVLA|Bu et al.|(2025), a VLA model with implicit
et al(2024b) on the LIBERO-Object task suite under ~ action chunking and amortized planning, across four

various visual token budgets. LIBERO tasks under different visual token budgets.
Method / Visual token | 256 192 160 128 96 Task/Visualtoken | 256 192 160 128 96
SR (%) 864 862 848 852 852 ‘ SR (%) 97.8 956 956 934 826

Spatial

FastV FLOPs (10'%) | 1.3 1.0 09 07 05
Latency (ms) | 827 813 799 789 77.8

FLOPs (10'2) | 1.3 0.8 0.7 0.6 0.5

) SR (%) 958 958 948 864 512
SR(%) | 864 858 860 858 860 Object | Elops0™) | 13 07 05 04 03

SparseVLM | FLOPs (10'%) | 13 1.0 09 07 05
Latency (ms) | 827 759 759 755 758 Goal SR (%) 950 948 952 932 940
FLOPs (10*2) 1.3 0.6 0.5 0.4 0.3

SR (%) 864 86.6 86.6 852 83.6
FlashVLA | FLOPs(10'%) | 13 07 06 04 03 Long SR (%) 91.0 90.6 888 838 614
Latency (ms) | 827 58.8 53.1 453 47.2 FLOPs (10'2) | 1.3 0.6 0.5 0.4 0.4

FLOPs from 0.85 to 0.57 (x10'2). While Sparse VLM maintains stable SR across token budgets, its FLOPs
reduction is limited compared to FLASHVLA. Overall, while both FastV and SparseVLM fall under the token
pruning paradigm, a key advantage of FLASHVLA is compatibility with FlashAttention Dao et al.| (2022), a
memory-efficient and GPU-optimized attention kernel widely used in LLMs. This enables FLASHVLA to
achieve lower memory overhead and faster inference, making it suitable for real-time deployment.

4.5 GENERALIZATION TO DIVERSE VLA ARCHITECTURES

To assess the generality of FLASHVLA, we apply it to UniVLA [Bu et al.|(2025)), a VLA model with implicit
action chunking and amortized planning. As shown in Table[5] FLASHVLA preserves strong performance
under different token budgets, maintaining high success rates while substantially reducing FLOPs. For
instance, on the Spatial task it achieves 95.6% SR with only 0.74x 102 FLOPs at 160 tokens, compared to
97.8% SR with 1.31x10'2 FLOPs at 256 tokens. These results demonstrate that FLASHVLA generalizes
effectively to architectures with latent planning structures without requiring retraining.

4.6 GENERALIZATION TO OTHER ENVIRONMENTS

To assess the generality of our approach, we evaluate it on VLAbench [Zhang et al.| (2024a)), a simulated
robot environment featuring more diverse and challenging tasks. Specifically, we test on the Select Painting
task using OpenVLA with LoRA-fine-tuned weights [Hu et al.| (2022)) provided by the authors. As shown
in Table 3] although the overall success rate is low due to task difficulty, our method significantly reduces
computational cost while preserving baseline performance.

5 CONCLUSION

We propose FLASHVLA, the first training-free and plug-and-play acceleration framework that enables action
reuse in VLA models. By exploiting two forms of redundancy—temporal coherence across consecutive
actions and visual token redundancy—FLASHVLA improves inference efficiency through token-aware action
reuse and information-guided token pruning, reducing unnecessary computation across action steps and
within inputs. Experiments on the LIBERO benchmark show that FLASHVLA reduces FLOPs by 55.7%
and latency by 36.0%, with only a 0.7% drop in success rate—demonstrating practicality, effectiveness,
and scalability for efficient VLA inference. Moreover, FLASHVLA generalizes to other VLA architectures
such as UniVLA, maintaining high success rates with reduced FLOPs. In future work, we plan to explore
additional inference acceleration techniques further tailored to the unique characteristics of VLA models.

Under review as a conference paper at ICLR 2026

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 1(2):3, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. 70: A vision-language-action flow model for general robot
control, 2024. URL https://arxiv. org/abs/2410.24164.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and
Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. arXiv preprint
arXiv:2505.06111, 2025.

Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu,
Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model with web-scale knowledge
for robot manipulation. arXiv preprint arXiv:2410.06158, 2024.

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, and Alan Yuille. Efficient large
multi-modal models via visual context compression. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang. An image
is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models. In
European Conference on Computer Vision, pp. 19-35. Springer, 2024b.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang. An image
is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models. In
European Conference on Computer Vision, pp. 19-35. Springer, 2024c.

Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan, and Tao
Chen. LI3da: Visual interactive instruction tuning for omni-3d understanding reasoning and planning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26428-26438,
2024d.

Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your commands
via motion diffusion in latent space. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 18000-18010, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, pp. 02783649241273668, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in neural information processing systems, 35:16344—16359,
2022.

10

Under review as a conference paper at ICLR 2026

Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ranjay Kr-
ishna. Manipulate-anything: Automating real-world robots using vision-language models. arXiv preprint
arXiv:2406.18915, 2024.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu
Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot. arXiv preprint
arXiv:2307.00595, 2023.

Zhi Hou, Tianyi Zhang, Yuwen Xiong, Hengjun Pu, Chengyang Zhao, Ronglei Tong, Yu Qiao, Jifeng Dai,
and Yuntao Chen. Diffusion transformer policy. arXiv preprint arXiv:2410.15959, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a foreign
language. Advances in Neural Information Processing Systems, 36:20067-20079, 2023.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth Karamcheti,
Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action model.
arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing speed
and success. arXiv preprint arXiv:2502.19645, 2025.

Kevin Y Li, Sachin Goyal, Joao D Semedo, and J Zico Kolter. Inference optimal vims need only one visual
token but larger models. arXiv preprint arXiv:2411.03312, 2024a.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng, Sicheng Xu,
Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for synergizing cognition and
action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024b.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing,
Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot imitators. arXiv
preprint arXiv:2311.01378, 2023.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024c.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero: Benchmark-
ing knowledge transfer for lifelong robot learning. Advances in Neural Information Processing Systems,
36:44776-44791, 2023.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang, Renrui
Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model for efficient
robot reasoning and manipulation. arXiv preprint arXiv:2406.04339, 2024a.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang

Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024b.

11

Under review as a conference paper at ICLR 2026

Ting Liu, Liangtao Shi, Richang Hong, Yue Hu, Quanjun Yin, and Linfeng Zhang. Multi-stage vision token
dropping: Towards efficient multimodal large language model. arXiv preprint arXiv:2411.10803, 2024c.

Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn. Bidirectional
decoding: Improving action chunking via closed-loop resampling. arXiv preprint arXiv:2408.17355,
2024d.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang, Hu Xu,
Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas, Gabriel
Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision, 2023.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee,
Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment: Robotic learning
datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6892-6903. IEEE, 2024.

Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang, Byeongwook Jeon, Yoonseon Oh, and
Jungwook Choi. Quantization-aware imitation-learning for resource-efficient robotic control. arXiv
preprint arXiv:2412.01034, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea
Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action models. arXiv
preprint arXiv:2501.09747, 2025.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language
models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523-11530.
IEEE, 2023.

Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun Ma,
and Haoang Li. Accelerating vision-language-action model integrated with action chunking via parallel
decoding. arXiv preprint arXiv:2503.02310, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li, Xiaoyu Liu,
Yaxin Peng, Chaomin Shen, et al. Diffusion-vla: Scaling robot foundation models via unified diffusion and
autoregression. arXiv preprint arXiv:2412.03293, 2024.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action models for robotic
manipulation. IEEE Robotics and Automation Letters, 2025.

Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
efficient vision-language-action model via adaptive token caching in robotic manipulation. arXiv preprint
arXiv:2502.02175, 2025.

12

Under review as a conference paper at ICLR 2026

Ge Yan, Yueh-Hua Wu, and Xiaolong Wang. Dnact: Diffusion guided multi-task 3d policy learning. arXiv
preprint arXiv:2403.04115, 2024.

Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia. Visionzip:
Longer is better but not necessary in vision language models. arXiv preprint arXiv:2412.04467, 2024.

Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao Huang.
Deer-vla: Dynamic inference of multimodal large language models for efficient robot execution. Advances
in Neural Information Processing Systems, 37:56619-56643, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-
training. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11975-11986,
2023.

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video large
multimodal models with one vision token. arXiv preprint arXiv:2501.03895, 2025.

Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin, Zuxuan
Wu, Yu-Gang Jiang, and Xipeng Qiu. Vlabench: A large-scale benchmark for language-conditioned
robotics manipulation with long-horizon reasoning tasks, 2024a. URL https://arxiv.org/abs/
2412.18194.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gudovskiy,
Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevim: Visual token sparsification for efficient
vision-language model inference. arXiv preprint arXiv:2410.04417, 2024b.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wabhid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. In Conference on Robot Learning, pp. 2165-2183. PMLR, 2023.

13

https://arxiv.org/abs/2412.18194
https://arxiv.org/abs/2412.18194

Under review as a conference paper at ICLR 2026

Appendix for FLASHVLA

A ALGORITHM FLOW OF FLASHVLA

This section provides a detailed description of the algorithmic workflow of FLASHVLA, as outlined in
Algorithm[I] The overall execution is divided into two phases: initialization and iterative reasoning.

During the initialization phase (lines 1-5), the agent executes the first two steps without action reuse to
establish initial context. For each of the first two frames, the model selects a subset of informative visual
tokens using the strategy described in Section [3.2] performs pruned inference based on the selected tokens,
executes the resulting action, and updates the Action Memory and Token Memory with the new observations
and outputs.

The iterative phase begins thereafter (lines 6-19), and continues until the task is successfully completed.
At each step, the FlashTrigger mechanism (Section [3.3) determines whether the previous action can be
reused. If reuse is triggered and the last step did not already reuse an action, the model directly reuses the
previous output and sets the reuse flag. Otherwise, the model selects a new visual token subset, runs pruned
inference, updates both memories, and resets the reuse flag. Regardless of reuse, the action is executed in the
environment and the task state is updated.

Once the task is complete, the loop exits.

Algorithm 1 FLASHVLA

1: for i in range(2) do

2 > Select important visual token set, according to Section. @]

3 > Reasoning using these important visual token sets to get action

4 > Perform the action

5 > Update Action Memory and Token Memory, according to action and visual token set
6: end for

7. while Task State is False do

8 > Calculate flag Reuse Action, according to Flashtrigger in Section.

9 if Reuse Action is True and last reuse is False then

10: > Reuse last action

11: > Set flag last reuse as True

12: else

13: > Select important visual token set, according to Section. [3.2]

14: > Reasoning using these important visual token sets to get action

15: > Update Action Memory and Token Memory, according to action and visual token set
16: > Set flag last reuse as False

17: end if

18: > Perform the action

19: > Update Task State

20: if Task State is True then
21: > break

22: end if

23: end while

14

Under review as a conference paper at ICLR 2026

B COMPUTATION COST ESTIMATION

To analyze the computational efficiency of FlashVLA, we estimate the FLOPs consumed by the Multi-Head
Attention (MHA) and Feed-Forward Network (FFN) modules, which dominate the cost of Transformer-based
architectures. In VLA models, visual tokens typically account for more than 80% of the input, making
them the primary contributor to overall inference cost. Since the number of language prompt tokens varies
across tasks, we use the FLOPs associated with visual tokens as a consistent and representative measure of
complexity.

The total FLOPs are estimated as:
FLOPs = (1 — R) x [Ly - (4nd® 4 2n*d + 2ndm) + (L — Ly) - (4n,d® + 2n2d 4 2n,dm)] (7)
where:

e n: total number of input tokens (visual + language),

d: hidden dimension,

* m: intermediate dimension in the FFN module,
 L: total number of Transformer layers,

* L, layer index at which visual token pruning starts,
* n,: number of visual tokens after pruning,

e R: action reuse rate.

By default, we set L,, = 2 during the prefill stage, meaning that full-token computation is retained in the first
two layers to preserve early-layer representation quality. During decoding, FlashVLA reuses token selections
from the prefill stage and sets L, = 0. Therefore, the actual FLOPs of FlashVLA are slightly lower than the
values reported in this paper, as both prefill and decoding stages are estimated using L,, = 2 for consistency.

C THEORETICAL JUSTIFICATION OF INFORMATION CONTRIBUTION SELECTION

To theoretically justify the superiority of ICS-based token selection over random sampling, we analyze the
information retention in the top-K selected tokens. Let S C {1,..., N} with K C (1, N) be the indices of
selected tokens, and let T¢ & REXd denote the corresponding token matrix. The retained information is
measured by the Frobenius norm of its projection onto the top-r singular directions:

I(S) = |T§V 7 = D (uaioi)®. (8)

zeS i=1

Maximizing I(S) ensures the preservation of the dominant subspace of 7. Although C/(x) is defined via
absolute values, it provides a greedy approximation to maximizing I (.S). Specifically, by the Cauchy—Schwarz
inequality:

Cx)® <) (ugio:). 9)
=1

Thus, ranking tokens by C(x) identifies those with high energy in the top singular directions. The retained
information of the top-K tokens is:

I(Sc) = Y) (uaios)?, (10)

z€Sc i=1

15

Under review as a conference paper at ICLR 2026

while for uniformly random selection, the expected retention is:

N r
E[(Stna)] = % Z Z(umai)Q. (11)

rx=11i=1

Since the top-K tokens ranked by C'(x) dominate this global sum, we have I(S¢) > E[I(S;ang)]. Therefore,
ICS-based selection guarantees better structural preservation in expectation.

D EXPERIMENTAL SETUP (DETAILS)

Evaluation Environment. We evaluate FLASHVLA on the LIBERO simulation benchmark, which uses
a simulated Franka Emika Panda arm and provides multimodal demonstration data, including camera
observations, robot states, task labels, and delta end-effector pose actions. The benchmark contains four
task suites—LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long—each with 500 expert
demonstrations across 10 tasks. These suites are designed to test policy generalization under variations in
spatial layouts, object types, goal specifications, and long-horizon task sequences.

Implementation Details. We apply FLASHVLA to accelerate the OpenVLA model fine-tuned on LIBERO.
All experiments are conducted on a single NVIDIA H100 GPU. We evaluate under different visual token
configurations using three metrics: success rate (SR), inference latency, and visual-token FLOPs. Latency is
measured via wall-clock time, and FLOPs are estimated following Appendix [B| Real-world runtime profiling
is performed with torch.profiler.

FLASHVLA employs a threshold-based action reuse mechanism controlled by two hyperparameters, 1
and 5. Unless specified otherwise, we set €1 = 2 and use the following § values for different token
counts: (192,3), (160,4.5), (128,5), (96,5.5). These § values are converted to 5 using Equation[5] A full
sensitivity analysis is provided in Section[d.3]

E FLOPS ANALYSIS OF FLASHVLA

To further analyze the efficiency of FlashVLA, we provide a detailed FLOPs breakdown across the four
LIBERO task suites (Spatial, Object, Goal, and Long-horizon). This complements the main results by
explicitly showing how computation savings arise from both token pruning and computation reuse.

As shown in Figure [/} FlashVLA maintains substantial efficiency improvements under different token budgets.
The decomposition into effective FLOPs, reuse action, and pruned inference highlights the contribution of
each component. This analysis provides further evidence that the dual-path acceleration strategy effectively
reduces computational cost while preserving strong task performance.

F VISUAL REDUNDANCY IN VLA MODELS

To better understand the presence of visual redundancy in VLA models, we analyze the behavior of attention
maps and attention scores across transformer layers. Figure [§|shows the average attention maps of VLA and
VLM models across different layers. We observe that both types of models exhibit similar patterns: in early
layers, attention is distributed relatively uniformly across visual tokens, while starting from the second layer,
the attention maps become increasingly sparse and concentrated on fewer regions. This layer-wise transition
suggests that redundancy accumulates early in the encoding process, making some tokens less informative in
deeper layers.

16

Under review as a conference paper at ICLR 2026

I Effective FLOPs [0 Reuse Action Pruned Inference ~ ------- baseline = 1.31

)

o
)

FLOPs (10'2)

N
'S

" I | H

S PP R NSRS NIRRT
LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long

Figure 7: FLOPs breakdown of FlashVLA across four LIBERO tasks under different visual token budgets.
Each bar shows the cumulative reduction in FLOPs contributed by token pruning and computation reuse.
FlashVLA consistently operates below the baseline FLOPs (dashed line), demonstrating the effectiveness of
the dual-path acceleration strategy.

To further quantify this sparsification effect, we examine the attention scores of visual tokens computed
from the last transformer layer. Specifically, we extract the raw attention weights from the model outputs as
follows:

layer_attention = layer_outputs[1l]
layer_attention_avg = torch.mean (layer_attention, dim=1) [0]
attention_score = layer_attention_avg[-1]

Here, the attention weights are averaged over all heads, and the final row corresponds to the attention received
by each visual token when queried by the final position (e.g., the action token or decoder query). We use this
vector as the attention score distribution.

As shown in Figure [0} the attention scores are nearly uniform across token positions in the first two layers.
However, starting from the second layer, we observe a clear increase in variance, with attention values
increasingly concentrated on a small subset of tokens. This indicates a growing redundancy among visual
tokens in deeper layers—a phenomenon also observed in recent studies on VLMs |Chen et al.|(2024c). These
observations provide empirical evidence for the existence of token-level redundancy in VLA models and
motivate our token pruning strategy.

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 LIBERO SIMULATED ENVIRONMENT BENCHMARK

LIBERO is a novel benchmark designed for studying knowledge transfer in multitask and lifelong robot
learning. It addresses the challenge of benchmarking knowledge transfer capabilities in robot learning
systems, with a focus on manipulation tasks that require both declarative knowledge (about objects and spatial
relationships) and procedural knowledge (about motion and behaviors) .

LIBERO provides four main task suites, each designed to evaluate different aspects of knowledge transfer:

17

Under review as a conference paper at ICLR 2026

Vision-Language Models

Attention map by layer 1 Imm

- 0.0006

Attention map by layer 15 Attention map by layer 30

- 0.0006 - 0.0006

- 00004 - 00004 - 0.0004

Vision-Language Action Models

Attention map by layer 0 soomo Attention map by layer 1 oot 00010

0.0008 0.0008 0.0008.

- 0.0006 - 0.0006 - 0.0006

- 0,000 - 0.0004 - 0.0004

0.0002 0.0002 0.0002

0.0000 0.0000 0.0000

sooro oo Attention map by layer 31 .

0.0008. 0.0008. 0.0008

- 00006 - 00006 - 0.0006

- 0.0004 - 00004 - 0.0004

00002 00002 0.0002

- 0.0000 - 0.0000 0.0000

Figure 8: Attention Map: Layer-wise attention map visualizations in VLA and VLM models. Both models
exhibit uniform attention distribution in the first layer, while attention becomes increasingly sparse from

the second layer onward. This pattern suggests growing redundancy in token interactions, motivating token
pruning strategies in deeper layers

18

Under review as a conference paper at ICLR 2026

846
847
848
849
850
851
852
853
854
855
856
857
858 .
859 -
860
861
862

863 - » @ B @ @ o » ® B @ ? R » ® @ I3 »

Attention score by layer 0 Atention score by layer 1 Atention score by layer 2

EEEEEEEN

864 Attention score by layer 3 Attention score by layer 10 Attention score by layer 15

865
866
867
868
869

Attention score by layer 20 Attention score by layer 25 Attention score by layer 31

871 - -

872 e -

. Al 1“ : Ml DLl)

EEREEEERE

Ry l Wl |i “ {L 11 -
5] # # » . B ¢ ¥ # 7

¥y 8 & & §

H
i
H

874
875 -

876 £ mm»'? k4 & Mmo‘ N * & “md’ & +
877

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Figure 9: Attention Score: Attention score distributions across transformer layers in a VLA model. The
scores are computed by averaging attention weights over heads and selecting the attention received by each
token from the final query position. The results show increasing sparsity from the second layer onward, where
attention becomes concentrated on a small subset of tokens.

19

Under review as a conference paper at ICLR 2026

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long

Figure 10: Sample Frame of Four Main Task Suites.

LIBERO-Spatial It contains 10 tasks that focus on transferring knowledge of spatial relationships. These
tasks require robots to understand the spatial relationship between different objects and use this knowledge
to complete the task. For example, the robot need to place objects according to a certain spatial layout, or
navigate to the target position according to spatial clues in a complex environment. Through these tasks, its
ability to master and apply the knowledge of spatial relationship is investigated.

LIBERO-Object It consists of 10 tasks that require transferring object-related knowledge. Robots are
expected to identify different objects, comprehend their attributes (e.g., color, shape, material) and functions
(e.g., tool usage, container functionality), and manipulate the objects accordingly. Examples include classify-
ing objects based on their attributes or utilizing tools to perform specific tasks. These tasks serve to measure
the robot’s capability to transfer knowledge related to objects.

LIBERO-Goal It has 10 tasks that emphasize transferring goal-oriented knowledge. Robots must precisely
comprehend the task objectives, determine the essential steps and strategies for achieving them. For example,
it should be able to accurately prioritize goals in multi - task scenarios or break down complex goals into
manageable sub - goals and accomplish them step by step. The evaluation aims to assess the robot’s ability to
transfer and apply goal - oriented knowledge effectively.

LIBERO-Long It has 10 tasks primarily designed to evaluate the robot’s knowledge transfer ability over
extended learning periods. These tasks typically involve learning and integrating knowledge across multiple
tasks. The investigation focuses on whether the robot can effectively apply the experience, skills, and
knowledge acquired from previous tasks to new subsequent tasks, thereby achieving continuous performance
enhancement and improved adaptability. Furthermore, it emphasizes the accumulation, updating, transfer,
and application of knowledge throughout the long - term learning process.

H LIMITATIONS AND FUTURE WORKS

We propose FLASHVLA, the first training-free and plug-and-play acceleration framework that enables action
reuse in VLA models. Although our approach maintains the performance of the model while greatly reducing
the amount of modeling operations and the actuallatency, there are limitations and shortcomings in our
approach. First of all we have only tested in a simulated environment, lacking further validation in the real
world. Second, we only performe experimental validation of a single-arm robot. In the future, we will further
validate the advantages of our approach in extending our method to more robotic arms with more degrees of
freedom.

20

Under review as a conference paper at ICLR 2026

I USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that we used an LLM (ChatGPT by OpenAl)
only after completing the full manuscript draft, and solely for surface-level proofreading: correcting grammar,
punctuation, and minor phrasing for clarity and consistency. The LLM did not contribute to research ideation,
problem formulation, method or experiment design, data collection or labeling, or analysis. Every suggested
edit was manually reviewed and selectively adopted by the authors.

We understand and accept full responsibility for all content written under our names, including any text that
may have been revised with LLM assistance. We took care to avoid plagiarism and factual errors, and we
did not provide the LLM with proprietary or personally identifiable data beyond de-identified manuscript
excerpts necessary for proofreading. The LLM is not an author or contributor under ICLR authorship criteria.

21

	Introduction
	Related Work
	FlashVLA
	Preliminaries
	Visual Token Selection Strategy via Information Contribution Theory
	Token-Aware Action Reuse Strategy

	Experiment
	Experimental Setup
	Main Results on LIBERO Benchmark
	Ablation Study
	Comparison with Token Pruning Methods
	Generalization to Diverse VLA Architectures
	Generalization to Other Environments

	Conclusion
	Algorithm flow of FlashVLA
	Computation Cost Estimation
	Theoretical Justification of Information Contribution Selection
	Experimental Setup (Details)
	FLOPs Analysis of FlashVLA
	Visual Redundancy in VLA Models
	Additional Experimental Details
	LIBERO Simulated Environment Benchmark

	Limitations and future works
	Use of Large Language Models (LLMs)

