
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

THINK TWICE, ACT ONCE: TOKEN-AWARE COMPRESSION
AND ACTION REUSE FOR EFFICIENT INFERENCE IN VISION-
LANGUAGE-ACTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have emerged as a powerful paradigm for robot con-
trol through natural language instructions. However, their high inference cost—stemming
from large-scale token computation and autoregressive decoding—poses significant chal-
lenges for real-time deployment and edge applications. While prior work has primarily
focused on efficient architectural optimization, we take a different and innovative per-
spective by identifying a dual form of redundancy in VLA models: (i) high similarity
across consecutive action steps, and (ii) substantial redundancy in visual tokens. Motivated
by these observations, we propose FLASHVLA, the first training-free and plug-and-play
acceleration framework that enables action reuse in VLA models. Specifically, FLASHVLA
improves inference efficiency through a token-aware action reuse mechanism that avoids
redundant decoding across stable action steps, and an information-guided visual token se-
lection strategy that prunes low-contribution tokens. Extensive experiments on the LIBERO
benchmark show that FLASHVLA reduces FLOPs by 55.7% and latency by 36.0%, with
only a 0.7% drop in task success rate. These results demonstrate the effectiveness of
FLASHVLA in enabling lightweight, low-latency VLA inference without retraining.

1 INTRODUCTION

In the development of embodied intelligence systems, Vision-Language-Action (VLA) models are rapidly
emerging as a key technology for enabling general-purpose behavior control. By integrating visual perception,
language understanding, and action generation, VLA models empower embodied agents to execute complex
tasks based on natural language instructions, demonstrating strong generalization and task adaptability Brohan
et al. (2022); Nair et al. (2022); Bai et al. (2023); Chen et al. (2023); Cheang et al. (2024); Li et al. (2023);
Jiang et al. (2023); Kim et al. (2024); Chen et al. (2024d); Chi et al. (2023); Duan et al. (2024); Singh et al.
(2023). However, despite their impressive performance in task execution, VLA models often involve heavy
computational loads and high latency during inference, making them difficult to deploy in high-frequency
control settings and limiting their applicability in more dexterous and complex bimanual manipulation
tasks Kim et al. (2025); Liu et al. (2024b); Wen et al. (2025); Li et al. (2024a).

Current VLA architectures typically fall into two paradigms: the autoregressive generation paradigm, such
as OpenVLA Kim et al. (2024), which encodes multimodal inputs into tokens and decodes actions step-
by-step using a language model; and the diffusion policy paradigm Wen et al. (2024); Li et al. (2024b);
Yan et al. (2024); Chi et al. (2023); Hou et al. (2024), which formulates action generation as a conditional
denoising process and enables parallel trajectory sampling. Both paradigms rely heavily on Transformer
architectures, where each inference step incurs a quadratic complexity O(N2) with respect to sequence
length N , leading to high computational cost. To mitigate this, recent work focuses on architectural-level

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

… …

transformation area

(≥175% Mean Value)

slight transformation area

(75~175% Mean Value)

stable area

(≤75% Mean Value)

Action Step
0 40 80

A
n

g
le

 V
a

lu
e
∆
x

B
et

w
ee

n
 A

ct
io

n
s

(°
)

0

40

80

120
Angle Change

Median Value = 8.32°

Mean Value = 16.16°

Action Step

Baseline

FlashVLA

Thinking Thinking Thinking Thinking

Thinking Thinking

Figure 1: Motivation behind our proposed FLASHVLA. (Left) Illustration of action computation frequency:
the baseline triggers frequent “thinking” events, while FLASHVLA reduces such computations. (Right)
Analysis of action-transition dynamics: the figure shows the change in the VLA model’s output vector at each
time step relative to the previous one; the vertical axis indicates the directional difference between consecutive
actions, with most steps in the stable area and only a few entering transformation regions.

optimizations, including action chunking Song et al. (2025); Liu et al. (2024d), parallel decoding Kim et al.
(2025), low-rank adaptation Wen et al. (2025), and model quantization Park et al. (2024). While effective,
these methods typically require additional training overhead.

Unlike prior work that focuses on architectural optimizations, we take a new perspective by analyzing the
temporal behavior of VLA models at the action level. We observe that in many tasks (e.g., OpenVLA Kim et al.
(2024)), consecutive action steps show minimal directional change, suggesting semantic redundancy
(see Fig. 1). This indicates that actions in stable phases can be reused to avoid redundant computation. We
further find significant redundancy in visual tokens (see Appendix F), consistent with observations in
vision-language models (VLMs) Chen et al. (2024c); Yang et al. (2024); Zhang et al. (2025); Chen et al.
(2024a), which reveals potential for reducing computational cost along another computational dimension.

Building on these observations, we propose FLASHVLA, a training-free, plug-and-play dual-path acceleration
framework that improves VLA inference efficiency via action reuse and token pruning. The first component
is a token-aware reuse mechanism that compares both action similarity and visual token stability to decide
whether to skip computation and reuse the previous action. The second is a visual token selection strategy
based on information contribution scores, retaining informative tokens while discarding low-impact ones. The
proposed FLASHVLA integrates seamlessly with Flash Attention-based VLA models and follows a “Think
Twice, Act Once” paradigm: it performs lightweight assessment before execution, selecting between skipped
execution and lightweight execution, as illustrated in Fig. 1 by reducing the frequency of action computations,
significantly reducing FLOPs and latency while maintaining control accuracy.

To evaluate the effectiveness of FLASHVLA, we conduct systematic experiments on the LIBERO benchmark
using OpenVLA as the primary backbone. To further examine generality across different architectures and
environments, we additionally validate on UniVLA and VLAbench. FLASHVLA achieves a 55.7% reduction
in FLOPs and a 36.0% reduction in latency without any additional training, while reducing the number of
visual tokens to 62.5% of the original input. Notably, the average success rate drops by only 0.7% compared to
the baseline VLA model. Ablation studies and benchmark results collectively demonstrate that FLASHVLA
significantly reduces computational cost while preserving task performance, enabling efficient VLA inference
with minimal performance drop. Our key contributions are summarized as follows:

1. We identify a novel form of action-level and token-level redundancy in VLA inference. Specifically,
we observe that most consecutive action steps yield highly similar outputs with only minor directional

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

changes, allowing action reuse in stable phases. Additionally, many visual tokens contribute little to
the inference process, revealing a degree of visual redundancy similar to that observed in MLLMs.

2. We introduce FLASHVLA, the first training-free and plug-and-play acceleration framework that
enables action reuse in VLA models. It integrates a token-aware action reuse mechanism to
skip redundant computation in stable action steps, and a visual token selection strategy based on
information contribution scores to retain informative tokens. It is worth noted that FLASHVLA is
fully compatible with Flash Attention-based VLA backbones.

3. We conduct comprehensive experiments on four representative tasks from the LIBERO benchmark.
When visual tokens are reduced to 62.5% of the original input, FLASHVLA lowers inference latency
by 36.0% and decreases the FLOPs of visual token computation by 55.7%, while incurring only a
0.7% drop in success rate. These results demonstrate that FLASHVLA achieves significant efficiency
gains with limited performance trade-off.

2 RELATED WORK

Recent advances in VLA models highlight the critical role of architecture in determining both performance
and efficiency. To address the computational challenges inherent in these models, a variety of acceleration
methods Kim et al. (2025); Song et al. (2025); Li et al. (2024b); Wen et al. (2025); Liu et al. (2024a); Xu
et al. (2025); Yue et al. (2024); Park et al. (2024) have been proposed across two dominant paradigms:
autoregressive generation and diffusion policy Zitkovich et al. (2023); Kim et al. (2024); Black et al.; Liu
et al. (2024b); Wen et al. (2024); Yan et al. (2024); Li et al. (2024b); Chen et al. (2023).

Vision-language-action models. Vision-language-action (VLA) models provide a promising direction for
training generalist robot policies Ahn et al. (2022); Brohan et al. (2022); Black et al.; Duan et al. (2024) and are
built on large-scale robot learning datasets Liu et al. (2023); O’Neill et al. (2024); Fang et al. (2023); Khazatsky
et al. (2024); Li et al. (2024c). Most VLA models follow one of two paradigms: autoregressive generation
and diffusion policy. Autoregressive models, such as RT-2 Zitkovich et al. (2023) and OpenVLA Kim et al.
(2024), encode multimodal inputs into tokens and decode actions step-by-step using a language model.
RT-2 treats actions as text tokens and trains them alongside natural language, while OpenVLA combines a
vision backbone with a language model trained on large-scale robot trajectories. Pi0 Black et al. is another
autoregressive model that uses flow matching for faster action generation. Diffusion-based models, including
RDT-1B Liu et al. (2024b), Diffusion-VLA Wen et al. (2024), DNACT Yan et al. (2024), and CogACT Li et al.
(2024b), formulate action generation as conditional denoising. Diffusion-VLA combines autoregressive and
diffusion methods to improve robustness. DNACT focuses on multi-task 3D policy learning, while CogACT
generates diverse action sequences to improve flexibility. However, the large size of VLA models leads to
high computational cost, limiting real-time deployment and high-frequency control.

Acceleration for VLA models. Existing methods mainly focus on architectural-level optimizations tailored
to the two main VLA paradigms, including action chunking Song et al. (2025); Kim et al. (2025), which
splits complex actions into smaller segments to reduce per-step computation; parallel decoding Song et al.
(2025); Kim et al. (2025), which enables simultaneous generation of multiple actions; low-rank adapta-
tion Wen et al. (2025); Hu et al. (2022), which compresses model weights to reduce parameters; and model
quantization Pertsch et al. (2025); Park et al. (2024), which lowers numerical precision to save memory
and computation. While these techniques improve efficiency, they require additional training or fine-tuning.
Training-free acceleration remains underexplored. Although some pruning methods from VLMs Chen et al.
(2024b); Zhang et al. (2024b); Yang et al. (2024); Liu et al. (2024c) are training-free, they are incompatible
with Flash Attention and do not sufficiently consider the structural characteristics of VLA models. To
address these limitations, we propose a training-free, plug-and-play dual-path framework that accelerates
VLA inference through action reuse and token pruning.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Figure 2: Framework of our FLASHVLA. We illustrate how our method works as action steps change. Before
each inference, FlashTrigger will think about whether it can reuse the output of the previous action based on
action memory and token memory (as shown in blue block). If the trigger condition is met, this inference is
skipped. If the trigger condition is not met, proceed to the pruned inference step. In pruned inference step, we
select the set of important visual tokens in the prefill stage and prune the other unimportant tokens. After
inference, action information and token information are used to update action memory and token memory.

3 FLASHVLA

The FLASHVLA architecture is illustrated in Fig.2. In the following, we first introduce the standard
formulation of VLA models in Section3.1. We then detail our visual token selection strategy and action
reuse mechanism in Section 3.2 and Section 3.3, respectively. The overall algorithmic flow of FLASHVLA is
provided in Appendix A (Algorithm 1).

3.1 PRELIMINARIES

VLA models extend vision-and-language foundation models for robotic control by generating actions from
visual inputs and language prompts. A representative example is OpenVLA Kim et al. (2024), a 7B-parameter
open-source model that establishes a strong baseline for general-purpose manipulation. It consists of a vision
encoder that combines DINOv2 Oquab et al. (2023) and SigLIP Zhai et al. (2023) features, a projector that
maps visual features into the language embedding space, and a LLaMA Touvron et al. (2023) language model
as the backbone. Given an image and a text prompt, the encoder and projector produce a sequence of visual
tokens T v = {T v

1 , T
v
2 , ...T

v
N}, while the prompt is tokenized into T l = {T l

1, T
l
2, ..., T

l
M}. These tokens

are concatenated and passed to the language model, which autoregressively generates actions as control
outputs. However, the large number of visual tokens, combined with highly repetitive action outputs, leads to
significant computational overhead. These observations highlight two key sources of inefficiency in VLA

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

models: visual token redundancy and temporal redundancy in action generation. In the following sections, we
introduce methods to address both aspects and improve inference efficiency without additional training.

3.2 VISUAL TOKEN SELECTION STRATEGY VIA INFORMATION CONTRIBUTION THEORY

We observe that VLA models exhibit visual token redundancy patterns similar to those found in VLMs Chen
et al. (2024c), where attention distributions are highly sparse beyond the initial few transformer layers (see
Appendix F). This motivates our token selection strategy based on information contribution theory, which
identifies tokens that best preserve the structure of the visual feature space. However, most recent architectures
(e.g., OpenVLA) rely on Flash Attention Dao et al. (2022), making traditional attention score-based selection
infeasible. To address this, we directly operate on the attention output matrix and rank tokens by their
estimated contribution to the global feature representation.

Let T̂ v ∈ RN×d denote the attention output matrix corresponding to the visual tokens, where N is the number
of tokens and d is the hidden dimension. To quantify the amount of information contained in T̂ v , we perform
singular value decomposition (SVD), where T̂ v = UΣV ⊤. Here, U ∈ RN×N contains the left singular
vectors, V ∈ Rd×d contains the right singular vectors, and Σ ∈ RN×d is a diagonal matrix of singular values
σi sorted in descending order. Each token representation T̂ v(x) corresponds to a row of T̂ v and can be
expressed as:

T̂ v(x) =

r∑
i=1

uxiσiv
⊤
i (1)

where r is the effective rank of the matrix. We define the information contribution score (ICS) of the x-th
token as:

C(x) =

r∑
i=1

|uxiσi| (2)

This score measures the magnitude of the token’s projection onto the dominant singular directions, weighted
by their corresponding singular values. Tokens with higher C(x) values are expected to contribute more
significantly to the overall representation. As shown in Fig. 3, ICS-selected tokens can better focus on
information-rich regions compared with random selection. A theoretical justification of ICS is provided in
Appendix C.

3.3 TOKEN-AWARE ACTION REUSE STRATEGY

Prompt: pick up the aphabet soup and place it in the basket.

Figure 3: Comparison of token selection
strategies on a robot-view image. Left:
selection by the proposed ICS method.
Right: uniform random selection. ICS
typically focuses on semantically mean-
ingful and information-dense regions.

Action outputs in VLA models often exhibit minimal variation
or remain identical across frames (Fig.1), and can be regarded as
redundant actions suitable for direct reuse to accelerate inference.
As shown in Fig.2, FlashTrigger decides whether to reuse the
previous action or perform a new pruned inference. It consists of
Action Memory, Token Memory, and a Trigger Thinking module.
To ensure stability, reuse is not applied in the first two frames;
the current frame is denoted as the s-th with s > 2. At the
action level, consistency is measured by the variation in action
vectors A⃗. Action Memory stores the outputs from the previous
two frames, A⃗(s− 2) and A⃗(s− 1), and computes the angle α
between them to quantify the change:

α(s) = Arccos(
A⃗(s− 2) · A⃗(s− 1)

||A⃗(s− 2)|| × ||A⃗(s− 1)||
) (3)

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

In token level, the change of set I computed in Section 3.2 is used to determine the degree of change
in environment with a VLA model perspective. The Token Memory dynamically updates and stores the
computed I from the previous two frames: I(s − 2) and I(s − 1). We calculate the intersection ratio ϕ
between I(s− 2) and I(s− 1) to determine the extent of the change of I:

ϕ(s) =
Len [I(s− 2) ∩ I(s− 1)]

Len [I(s− 1)]
(4)

where Len(·) returns the number of elements in the set.

At the same time, the lower limit of α(s) change is denoted by ε1. We define δ as the maximum number of
allowed changes in the set of visual tokens at the two action steps before and after. Thus the lower limit of the
threshold ε2 at which ϕ(s) is allowed to change can be defined:

ε2 = 1− δ

Len [I(s− 1)]
(5)

Before each inference, the Trigger Thinking module thinks ahead about whether this inference should directly
reuse A⃗(s− 1) or recalculate how to act. It can be represented as:

Trigger Thinking =

{
Reuse Action, if α(s) > ε1 and ϕ(s) > ε2

Pruned Inference, else
(6)

When the reuse condition is not met, VLA performs pruned inference using the informative visual token set
I instead of the full token set. In other words, FLASHVLA consistently accelerates the inference process,
regardless of whether the action is reused.

Table 1: Main results of FLASHVLA under different visual token budgets across four task suites in the
LIBERO. We report SR, visual-token FLOPs, and latency at five token settings. With 160 visual tokens,
FLASHVLA achieves a strong balance between SR and efficiency—reducing FLOPs by 55.7% and latency
by 36.0%—while maintaining comparable or even improved success rates across most tasks.

Task / Visual token 256
(Baseline)

192
(75%)

160
(62.5%)

128
(50%)

96
(37.5%)

SR (%) 84.2 81.8 (− 2.4) 82.6 (− 1.6) 75.4 (− 8.8) 67 (− 17.2)
LIBERO-Spatial Flops (1012) 1.31 0.8 (↓ 38.9%) 0.66 (↓ 49.6%) 0.51 (↓ 61.1%) 0.43 (↓ 67.2%)

Latency (ms) 82.7 62.7 (↓ 24.2%) 61.2 (↓ 26.0%) 58.1 (↓ 29.7%) 58.9 (↓ 28.8%)
SR (%) 86.4 86.6 (+ 0.2) 86.6 (+ 0.2) 85.2 (− 1.2) 83.6 (− 2.8)

LIBERO-Object Flops (1012) 1.31 0.74 (↓ 43.5%) 0.57 (↓ 56.5%) 0.42 (↓ 67.9%) 0.33 (↓ 74.8%)
Latency (ms) 82.7 58.8 (↓ 28.9%) 53.1 (↓ 35.8%) 45.3 (↓ 45.2%) 47.2 (↓ 42.9%)

SR (%) 75.4 76.2 (+ 0.8) 78.8 (+ 3.4) 76.8 (+ 1.4) 70.2 (− 5.2)
LIBERO-Goal Flops (1012) 1.31 0.71 (↓ 45.8%) 0.6 (↓ 54.2%) 0.49 (↓ 62.6%) 0.37 (↓ 71.8%)

Latency (ms) 82.7 55.2 (↓ 33.3%) 56.8 (↓ 31.3%) 54.1 (↓ 34.6%) 53.8 (↓ 34.9%)
SR (%) 51.4 50.2 (− 1.2) 46.8 (− 4.6) 46.4 (− 5.0) 45.2 (− 6.2)

LIBERO-Long Flops (1012) 1.31 0.54 (↓ 58.8%) 0.47 (↓ 64.1%) 0.4 (↓ 69.5%) 0.32 (↓ 75.6%)
Latency (ms) 82.7 42.43 (↓ 48.7%) 40.35 (↓ 51.2%) 38.31 (↓ 53.7%) 44.05 (↓ 46.7%)

SR (%) 74.4 73.7 (− 0.7) 73.7 (− 0.7) 71.0 (− 3.4) 66.5 (− 7.9)
Average Flops (1012) 1.31 0.70 (↓ 46.6%) 0.58 (↓ 55.7%) 0.46 (↓ 64.9%) 0.36 (↓ 72.5%)

Latency (ms) 82.7 54.8 (↓ 33.7%) 52.9 (↓ 36.0%) 49.0 (↓ 40.7%) 51.0 (↓ 38.3%)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate FLASHVLA on the LIBERO benchmark using OpenVLA, following standard protocols. Detailed
experimental environment, implementation settings, and hyperparameters are provided in Appendix D.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

192 160 128 96
Token Budget

0

50

100

150

200

250

300

A
ct

io
n

C
om

pu
ta

tio
ns

 p
er

 E
pi

so
de

(T

im
es

)

86

107

83

107

80

107

84

107
108

147

99

147

89

147

90

147

79

113

81

113

81

113

82

113

155

281

162

281

168

281

169

281
LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long FlashVLA (actual)

Figure 4: Average number of action computations per episode under different token budgets on LIBERO
tasks. FlashVLA consistently requires fewer actions than the 256-token baseline.

4.2 MAIN RESULTS ON LIBERO BENCHMARK

We evaluate the performance of FLASHVLA across four task suites in the LIBERO benchmark under varying
visual token budgets. As shown in Table 1, the 160-token configuration (62.5% of the original) offers the best
accuracy–efficiency trade-off. Compared to the full 256-token baseline, it reduces visual-token FLOPs by
55.7% (from 1.31 to 0.58 ×1012) and lowers inference latency by 36.0% (from 82.7ms to 52.9ms), while
maintaining the same average success rate (73.7% vs. 74.4%). Interestingly, we observe a slight gain at 160
tokens in both LIBERO-Object and LIBERO-Goal, where the success rate increases from 86.4% to 86.6%
and from 75.4% to 78.8%, respectively. This suggests that modest token pruning may even help mitigate
redundancy and stabilize policy execution. In contrast, LIBERO-Long is more sensitive to pruning, showing
a larger SR decline when the token count drops below 160. Nevertheless, even in such cases, FLASHVLA
achieves substantial savings in computational cost (e.g., 64.1% FLOPs reduction at 160 tokens).

These results highlight that FLASHVLA, particularly at the 160-token configuration, significantly improves
inference efficiency without compromising performance, making it suitable for real-world deployment across
diverse embodied tasks. Moreover, as illustrated in Fig. 4, FlashVLA consistently requires fewer action
computations per episode compared to the 256-token baseline, demonstrating its holistic efficiency advantage.
Further, we visualize the trajectories of FlashVLA and the baseline during successful task executions (Fig. 5),
showing that FlashVLA exhibits smoother and more stable motion while achieving comparable outcomes.

Table 2: Ablation on the two core modules—Pruned Inference and Ac-
tion Reuse—and the ActionVector/TokenSet components within the reuse
mechanism. At the baseline of 256 tokens, SR is 84.2% and FLOPs are
1.31× 1012. FlashVLA achieves the best trade-off, while removing mod-
ules or components leads to either higher FLOPs or lower SR.

Method
192 Tokens 160 Tokens 128 Tokens 96 Tokens
SR
(%)

FLOPs
(1012)

SR
(%)

FLOPs
(1012)

SR
(%)

FLOPs
(1012)

SR
(%)

FLOPs
(1012)

w/o Action Reuse 84.6 1.00 83.6 0.85 78.2 0.69 67.8 0.54
w/o Pruned Inference 82.2 1.04 80.6 1.01 81.0 0.97 80.2 0.97

w/o ActionVector 81.6 0.68 79.6 0.56 73.2 0.44 65.4 0.35
w/o TokenSet 76.4 0.52 74.8 0.44 73.4 0.37 62.2 0.29

FlashVLA 81.8 0.80 82.6 0.66 75.4 0.51 67.0 0.43

Table 3: Overall Evaluation
Performance of FLASHVLA
in VLAbench Zhang et al.
(2024a) under different visual
token budgets.

Visual token SR
(%)

FLOPs
(1012)

256 (baseline) 7.0 1.31
192 8.0 0.62
160 5.0 0.62
128 6.0 0.41
96 7.0 0.30

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

Effect of Token Pruning and Action Reuse. We evaluate the contribution of each FLASHVLA component
via ablations on LIBERO-Spatial, disabling Pruned Inference or Action Reuse. As shown in Table 2, both
are crucial for efficient inference with minimal performance loss. Removing Action Reuse preserves token
pruning benefits and still reduces FLOPs (e.g., 0.66 at 160 tokens vs. 0.85), while maintaining similar SR,
indicating that Action Reuse mainly improves efficiency. In contrast, disabling Pruned Inference yields
consistently higher FLOPs with only marginal SR gains—for example, at 128 tokens, FLOPs rise from 0.51
(FlashVLA) to 0.97 (×1012), while SR improves from 75.4% to 81.0%. The full FlashVLA combines both
strategies and achieves the best performance–efficiency trade-off.

— baseline

— baseline + FlashVLA

Figure 5: Trajectory of action. We visualize the tra-
jectory of action in 3-dimensional space. The location
of red dashed box illustrates the smoother trajectory of
FLASHVLA for the same task.

a

b

Figure 6: Hyperparameter Sensitivity. Experi-
ments are conducted to investigate the effect of
parameter ε1 and δ. The size of point represents
the size of the FLOPs.

Component Analysis of Action Reuse Module. We assess the Action Reuse module in FLASHVLA via
ablations on LIBERO-Spatial, removing either the action vector (w/o ActionVector) or token information (w/o
TokenSet). As shown in Table 2, disabling either degrades performance. Without the action vector, SR drops
under tight budgets (e.g., 82.6% → 65.4% at 96 tokens), showing temporal consistency is critical. Without
token stability, the model reuses too aggressively, yielding lowest FLOPs (0.29 at 96 tokens) but unstable
control (SR 62.2%). These results underscore their complementarity: the action vector ensures temporal
continuity, while token stability reflects environmental change, jointly balancing efficiency and robustness.

Hyperparameter Sensitivity. We conduct experiments to analyze the impact of two hyperparameters, ε1
and δ, on performance and efficiency, as shown in Fig.6. Fig.6(a) shows that varying ε1 has negligible effect
on both success rate and FLOPs, indicating that our method is largely insensitive to this parameter. In contrast,
Fig. 6(b) shows that δ significantly affects both metrics: increasing δ reduces computation cost but leads to a
drop in performance. This provides flexibility to trade-off accuracy and efficiency based on application needs.

4.4 COMPARISON WITH TOKEN PRUNING METHODS

FLASHVLA is compared with FastV Chen et al. (2024c), a dynamic pruning baseline, and SparseVLM Zhang
et al. (2024b), a structured pruning approach, on the LIBERO-Object suite under varying visual token
budgets. As shown in Table 4, FLASHVLA consistently achieves comparable or better performance with
lower FLOPs. At 160 tokens, for example, it attains a higher success rate (86.6% vs. 84.8%) while reducing

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 4: Detailed Comparison between FLASHVLA,
FastV Chen et al. (2024c), and SparseVLM Zhang
et al. (2024b) on the LIBERO-Object task suite under
various visual token budgets.

Method / Visual token 256 192 160 128 96

FastV
SR (%) 86.4 86.2 84.8 85.2 85.2

FLOPs (1012) 1.3 1.0 0.9 0.7 0.5
Latency (ms) 82.7 81.3 79.9 78.9 77.8

SparseVLM
SR (%) 86.4 85.8 86.0 85.8 86.0

FLOPs (1012) 1.3 1.0 0.9 0.7 0.5
Latency (ms) 82.7 75.9 75.9 75.5 75.8

FlashVLA
SR (%) 86.4 86.6 86.6 85.2 83.6

FLOPs (1012) 1.3 0.7 0.6 0.4 0.3
Latency (ms) 82.7 58.8 53.1 45.3 47.2

Table 5: Performance of FLASHVLA applied to
UniVLA Bu et al. (2025), a VLA model with implicit
action chunking and amortized planning, across four
LIBERO tasks under different visual token budgets.

Task / Visual token 256 192 160 128 96

Spatial
SR (%) 97.8 95.6 95.6 93.4 82.6

FLOPs (1012) 1.3 0.8 0.7 0.6 0.5

Object
SR (%) 95.8 95.8 94.8 86.4 51.2

FLOPs (1012) 1.3 0.7 0.5 0.4 0.3

Goal
SR (%) 95.0 94.8 95.2 93.2 94.0

FLOPs (1012) 1.3 0.6 0.5 0.4 0.3

Long
SR (%) 91.0 90.6 88.8 83.8 61.4

FLOPs (1012) 1.3 0.6 0.5 0.4 0.4

FLOPs from 0.85 to 0.57 (×1012). While SparseVLM maintains stable SR across token budgets, its FLOPs
reduction is limited compared to FLASHVLA. Overall, while both FastV and SparseVLM fall under the token
pruning paradigm, a key advantage of FLASHVLA is compatibility with FlashAttention Dao et al. (2022), a
memory-efficient and GPU-optimized attention kernel widely used in LLMs. This enables FLASHVLA to
achieve lower memory overhead and faster inference, making it suitable for real-time deployment.

4.5 GENERALIZATION TO DIVERSE VLA ARCHITECTURES

To assess the generality of FLASHVLA, we apply it to UniVLA Bu et al. (2025), a VLA model with implicit
action chunking and amortized planning. As shown in Table 5, FLASHVLA preserves strong performance
under different token budgets, maintaining high success rates while substantially reducing FLOPs. For
instance, on the Spatial task it achieves 95.6% SR with only 0.74×1012 FLOPs at 160 tokens, compared to
97.8% SR with 1.31×1012 FLOPs at 256 tokens. These results demonstrate that FLASHVLA generalizes
effectively to architectures with latent planning structures without requiring retraining.

4.6 GENERALIZATION TO OTHER ENVIRONMENTS

To assess the generality of our approach, we evaluate it on VLAbench Zhang et al. (2024a), a simulated
robot environment featuring more diverse and challenging tasks. Specifically, we test on the Select Painting
task using OpenVLA with LoRA-fine-tuned weights Hu et al. (2022) provided by the authors. As shown
in Table 3, although the overall success rate is low due to task difficulty, our method significantly reduces
computational cost while preserving baseline performance.

5 CONCLUSION

We propose FLASHVLA, the first training-free and plug-and-play acceleration framework that enables action
reuse in VLA models. By exploiting two forms of redundancy—temporal coherence across consecutive
actions and visual token redundancy—FLASHVLA improves inference efficiency through token-aware action
reuse and information-guided token pruning, reducing unnecessary computation across action steps and
within inputs. Experiments on the LIBERO benchmark show that FLASHVLA reduces FLOPs by 55.7%
and latency by 36.0%, with only a 0.7% drop in success rate—demonstrating practicality, effectiveness,
and scalability for efficient VLA inference. Moreover, FLASHVLA generalizes to other VLA architectures
such as UniVLA, maintaining high success rates with reduced FLOPs. In future work, we plan to explore
additional inference acceleration techniques further tailored to the unique characteristics of VLA models.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 1(2):3, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for general robot
control, 2024. URL https://arxiv. org/abs/2410.24164.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and
Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. arXiv preprint
arXiv:2505.06111, 2025.

Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu,
Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model with web-scale knowledge
for robot manipulation. arXiv preprint arXiv:2410.06158, 2024.

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, and Alan Yuille. Efficient large
multi-modal models via visual context compression. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang. An image
is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models. In
European Conference on Computer Vision, pp. 19–35. Springer, 2024b.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang. An image
is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models. In
European Conference on Computer Vision, pp. 19–35. Springer, 2024c.

Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan, and Tao
Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding reasoning and planning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26428–26438,
2024d.

Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your commands
via motion diffusion in latent space. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 18000–18010, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, pp. 02783649241273668, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in neural information processing systems, 35:16344–16359,
2022.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ranjay Kr-
ishna. Manipulate-anything: Automating real-world robots using vision-language models. arXiv preprint
arXiv:2406.18915, 2024.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu
Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot. arXiv preprint
arXiv:2307.00595, 2023.

Zhi Hou, Tianyi Zhang, Yuwen Xiong, Hengjun Pu, Chengyang Zhao, Ronglei Tong, Yu Qiao, Jifeng Dai,
and Yuntao Chen. Diffusion transformer policy. arXiv preprint arXiv:2410.15959, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a foreign
language. Advances in Neural Information Processing Systems, 36:20067–20079, 2023.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth Karamcheti,
Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action model.
arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing speed
and success. arXiv preprint arXiv:2502.19645, 2025.

Kevin Y Li, Sachin Goyal, Joao D Semedo, and J Zico Kolter. Inference optimal vlms need only one visual
token but larger models. arXiv preprint arXiv:2411.03312, 2024a.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng, Sicheng Xu,
Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for synergizing cognition and
action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024b.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing,
Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot imitators. arXiv
preprint arXiv:2311.01378, 2023.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024c.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero: Benchmark-
ing knowledge transfer for lifelong robot learning. Advances in Neural Information Processing Systems,
36:44776–44791, 2023.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang, Renrui
Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model for efficient
robot reasoning and manipulation. arXiv preprint arXiv:2406.04339, 2024a.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024b.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Ting Liu, Liangtao Shi, Richang Hong, Yue Hu, Quanjun Yin, and Linfeng Zhang. Multi-stage vision token
dropping: Towards efficient multimodal large language model. arXiv preprint arXiv:2411.10803, 2024c.

Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn. Bidirectional
decoding: Improving action chunking via closed-loop resampling. arXiv preprint arXiv:2408.17355,
2024d.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang, Hu Xu,
Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas, Gabriel
Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision, 2023.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee,
Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment: Robotic learning
datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang, Byeongwook Jeon, Yoonseon Oh, and
Jungwook Choi. Quantization-aware imitation-learning for resource-efficient robotic control. arXiv
preprint arXiv:2412.01034, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea
Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action models. arXiv
preprint arXiv:2501.09747, 2025.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language
models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530.
IEEE, 2023.

Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun Ma,
and Haoang Li. Accelerating vision-language-action model integrated with action chunking via parallel
decoding. arXiv preprint arXiv:2503.02310, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li, Xiaoyu Liu,
Yaxin Peng, Chaomin Shen, et al. Diffusion-vla: Scaling robot foundation models via unified diffusion and
autoregression. arXiv preprint arXiv:2412.03293, 2024.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action models for robotic
manipulation. IEEE Robotics and Automation Letters, 2025.

Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
efficient vision-language-action model via adaptive token caching in robotic manipulation. arXiv preprint
arXiv:2502.02175, 2025.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Ge Yan, Yueh-Hua Wu, and Xiaolong Wang. Dnact: Diffusion guided multi-task 3d policy learning. arXiv
preprint arXiv:2403.04115, 2024.

Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia. Visionzip:
Longer is better but not necessary in vision language models. arXiv preprint arXiv:2412.04467, 2024.

Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao Huang.
Deer-vla: Dynamic inference of multimodal large language models for efficient robot execution. Advances
in Neural Information Processing Systems, 37:56619–56643, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-
training. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11975–11986,
2023.

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video large
multimodal models with one vision token. arXiv preprint arXiv:2501.03895, 2025.

Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin, Zuxuan
Wu, Yu-Gang Jiang, and Xipeng Qiu. Vlabench: A large-scale benchmark for language-conditioned
robotics manipulation with long-horizon reasoning tasks, 2024a. URL https://arxiv.org/abs/
2412.18194.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gudovskiy,
Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsification for efficient
vision-language model inference. arXiv preprint arXiv:2410.04417, 2024b.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

13

https://arxiv.org/abs/2412.18194
https://arxiv.org/abs/2412.18194

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Appendix for FLASHVLA

A ALGORITHM FLOW OF FLASHVLA

This section provides a detailed description of the algorithmic workflow of FLASHVLA, as outlined in
Algorithm 1. The overall execution is divided into two phases: initialization and iterative reasoning.

During the initialization phase (lines 1–5), the agent executes the first two steps without action reuse to
establish initial context. For each of the first two frames, the model selects a subset of informative visual
tokens using the strategy described in Section 3.2, performs pruned inference based on the selected tokens,
executes the resulting action, and updates the Action Memory and Token Memory with the new observations
and outputs.

The iterative phase begins thereafter (lines 6–19), and continues until the task is successfully completed.
At each step, the FlashTrigger mechanism (Section 3.3) determines whether the previous action can be
reused. If reuse is triggered and the last step did not already reuse an action, the model directly reuses the
previous output and sets the reuse flag. Otherwise, the model selects a new visual token subset, runs pruned
inference, updates both memories, and resets the reuse flag. Regardless of reuse, the action is executed in the
environment and the task state is updated.

Once the task is complete, the loop exits.

Algorithm 1 FLASHVLA

1: for i in range(2) do
2: ▷ Select important visual token set, according to Section. 3.2
3: ▷ Reasoning using these important visual token sets to get action
4: ▷ Perform the action
5: ▷ Update Action Memory and Token Memory, according to action and visual token set
6: end for
7: while Task State is False do
8: ▷ Calculate flag Reuse Action, according to Flashtrigger in Section. 3.3
9: if Reuse Action is True and last reuse is False then

10: ▷ Reuse last action
11: ▷ Set flag last reuse as True
12: else
13: ▷ Select important visual token set, according to Section. 3.2
14: ▷ Reasoning using these important visual token sets to get action
15: ▷ Update Action Memory and Token Memory, according to action and visual token set
16: ▷ Set flag last reuse as False
17: end if
18: ▷ Perform the action
19: ▷ Update Task State
20: if Task State is True then
21: ▷ break
22: end if
23: end while

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

B COMPUTATION COST ESTIMATION

To analyze the computational efficiency of FlashVLA, we estimate the FLOPs consumed by the Multi-Head
Attention (MHA) and Feed-Forward Network (FFN) modules, which dominate the cost of Transformer-based
architectures. In VLA models, visual tokens typically account for more than 80% of the input, making
them the primary contributor to overall inference cost. Since the number of language prompt tokens varies
across tasks, we use the FLOPs associated with visual tokens as a consistent and representative measure of
complexity.

The total FLOPs are estimated as:

FLOPs = (1−R)×
[
Lp · (4nd2 + 2n2d+ 2ndm) + (L− Lp) · (4npd

2 + 2n2
pd+ 2npdm)

]
(7)

where:

• n: total number of input tokens (visual + language),
• d: hidden dimension,
• m: intermediate dimension in the FFN module,
• L: total number of Transformer layers,
• Lp: layer index at which visual token pruning starts,
• np: number of visual tokens after pruning,
• R: action reuse rate.

By default, we set Lp = 2 during the prefill stage, meaning that full-token computation is retained in the first
two layers to preserve early-layer representation quality. During decoding, FlashVLA reuses token selections
from the prefill stage and sets Lp = 0. Therefore, the actual FLOPs of FlashVLA are slightly lower than the
values reported in this paper, as both prefill and decoding stages are estimated using Lp = 2 for consistency.

C THEORETICAL JUSTIFICATION OF INFORMATION CONTRIBUTION SELECTION

To theoretically justify the superiority of ICS-based token selection over random sampling, we analyze the
information retention in the top-K selected tokens. Let S ⊂ {1, . . . , N} with K ⊂ (1, N) be the indices of
selected tokens, and let T v

S ∈ RK×d denote the corresponding token matrix. The retained information is
measured by the Frobenius norm of its projection onto the top-r singular directions:

I(S) = ∥T v
SVr∥2F =

∑
x∈S

r∑
i=1

(uxiσi)
2. (8)

Maximizing I(S) ensures the preservation of the dominant subspace of T̂ v. Although C(x) is defined via
absolute values, it provides a greedy approximation to maximizing I(S). Specifically, by the Cauchy–Schwarz
inequality:

C(x)2 ≤ r

r∑
i=1

(uxiσi)
2. (9)

Thus, ranking tokens by C(x) identifies those with high energy in the top singular directions. The retained
information of the top-K tokens is:

I(SC) =
∑
x∈SC

r∑
i=1

(uxiσi)
2, (10)

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

while for uniformly random selection, the expected retention is:

E[I(Srand)] =
K

N

N∑
x=1

r∑
i=1

(uxiσi)
2. (11)

Since the top-K tokens ranked by C(x) dominate this global sum, we have I(SC) ≥ E[I(Srand)]. Therefore,
ICS-based selection guarantees better structural preservation in expectation.

D EXPERIMENTAL SETUP (DETAILS)

Evaluation Environment. We evaluate FLASHVLA on the LIBERO simulation benchmark, which uses
a simulated Franka Emika Panda arm and provides multimodal demonstration data, including camera
observations, robot states, task labels, and delta end-effector pose actions. The benchmark contains four
task suites—LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long—each with 500 expert
demonstrations across 10 tasks. These suites are designed to test policy generalization under variations in
spatial layouts, object types, goal specifications, and long-horizon task sequences.

Implementation Details. We apply FLASHVLA to accelerate the OpenVLA model fine-tuned on LIBERO.
All experiments are conducted on a single NVIDIA H100 GPU. We evaluate under different visual token
configurations using three metrics: success rate (SR), inference latency, and visual-token FLOPs. Latency is
measured via wall-clock time, and FLOPs are estimated following Appendix B. Real-world runtime profiling
is performed with torch.profiler.

FLASHVLA employs a threshold-based action reuse mechanism controlled by two hyperparameters, ε1
and ε2. Unless specified otherwise, we set ε1 = 2 and use the following δ values for different token
counts: (192, 3), (160, 4.5), (128, 5), (96, 5.5). These δ values are converted to ε2 using Equation 5. A full
sensitivity analysis is provided in Section 4.3.

E FLOPS ANALYSIS OF FLASHVLA

To further analyze the efficiency of FlashVLA, we provide a detailed FLOPs breakdown across the four
LIBERO task suites (Spatial, Object, Goal, and Long-horizon). This complements the main results by
explicitly showing how computation savings arise from both token pruning and computation reuse.

As shown in Figure 7, FlashVLA maintains substantial efficiency improvements under different token budgets.
The decomposition into effective FLOPs, reuse action, and pruned inference highlights the contribution of
each component. This analysis provides further evidence that the dual-path acceleration strategy effectively
reduces computational cost while preserving strong task performance.

F VISUAL REDUNDANCY IN VLA MODELS

To better understand the presence of visual redundancy in VLA models, we analyze the behavior of attention
maps and attention scores across transformer layers. Figure 8 shows the average attention maps of VLA and
VLM models across different layers. We observe that both types of models exhibit similar patterns: in early
layers, attention is distributed relatively uniformly across visual tokens, while starting from the second layer,
the attention maps become increasingly sparse and concentrated on fewer regions. This layer-wise transition
suggests that redundancy accumulates early in the encoding process, making some tokens less informative in
deeper layers.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

0.0

0.4

0.8

1.2

FL
O

Ps
 (1

012
)

19
2

16
0

12
8 96 19

2
16

0
12

8 96 19
2

16
0

12
8 96 19

2
16

0
12

8 96

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long

Effective FLOPs Reuse Action Pruned Inference baseline = 1.31

Figure 7: FLOPs breakdown of FlashVLA across four LIBERO tasks under different visual token budgets.
Each bar shows the cumulative reduction in FLOPs contributed by token pruning and computation reuse.
FlashVLA consistently operates below the baseline FLOPs (dashed line), demonstrating the effectiveness of
the dual-path acceleration strategy.

To further quantify this sparsification effect, we examine the attention scores of visual tokens computed
from the last transformer layer. Specifically, we extract the raw attention weights from the model outputs as
follows:

layer_attention = layer_outputs[1]
layer_attention_avg = torch.mean(layer_attention, dim=1)[0]
attention_score = layer_attention_avg[-1]

Here, the attention weights are averaged over all heads, and the final row corresponds to the attention received
by each visual token when queried by the final position (e.g., the action token or decoder query). We use this
vector as the attention score distribution.

As shown in Figure 9, the attention scores are nearly uniform across token positions in the first two layers.
However, starting from the second layer, we observe a clear increase in variance, with attention values
increasingly concentrated on a small subset of tokens. This indicates a growing redundancy among visual
tokens in deeper layers—a phenomenon also observed in recent studies on VLMs Chen et al. (2024c). These
observations provide empirical evidence for the existence of token-level redundancy in VLA models and
motivate our token pruning strategy.

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 LIBERO SIMULATED ENVIRONMENT BENCHMARK

LIBERO is a novel benchmark designed for studying knowledge transfer in multitask and lifelong robot
learning. It addresses the challenge of benchmarking knowledge transfer capabilities in robot learning
systems, with a focus on manipulation tasks that require both declarative knowledge (about objects and spatial
relationships) and procedural knowledge (about motion and behaviors) .

LIBERO provides four main task suites, each designed to evaluate different aspects of knowledge transfer:

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Figure 8: Attention Map: Layer-wise attention map visualizations in VLA and VLM models. Both models
exhibit uniform attention distribution in the first layer, while attention becomes increasingly sparse from
the second layer onward. This pattern suggests growing redundancy in token interactions, motivating token
pruning strategies in deeper layers

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Figure 9: Attention Score: Attention score distributions across transformer layers in a VLA model. The
scores are computed by averaging attention weights over heads and selecting the attention received by each
token from the final query position. The results show increasing sparsity from the second layer onward, where
attention becomes concentrated on a small subset of tokens.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

LIBERO-ObjectLIBERO-Spatial LIBERO-Goal LIBERO-Long

Figure 10: Sample Frame of Four Main Task Suites.

LIBERO-Spatial It contains 10 tasks that focus on transferring knowledge of spatial relationships. These
tasks require robots to understand the spatial relationship between different objects and use this knowledge
to complete the task. For example, the robot need to place objects according to a certain spatial layout, or
navigate to the target position according to spatial clues in a complex environment. Through these tasks, its
ability to master and apply the knowledge of spatial relationship is investigated.

LIBERO-Object It consists of 10 tasks that require transferring object-related knowledge. Robots are
expected to identify different objects, comprehend their attributes (e.g., color, shape, material) and functions
(e.g., tool usage, container functionality), and manipulate the objects accordingly. Examples include classify-
ing objects based on their attributes or utilizing tools to perform specific tasks. These tasks serve to measure
the robot’s capability to transfer knowledge related to objects.

LIBERO-Goal It has 10 tasks that emphasize transferring goal-oriented knowledge. Robots must precisely
comprehend the task objectives, determine the essential steps and strategies for achieving them. For example,
it should be able to accurately prioritize goals in multi - task scenarios or break down complex goals into
manageable sub - goals and accomplish them step by step. The evaluation aims to assess the robot’s ability to
transfer and apply goal - oriented knowledge effectively.

LIBERO-Long It has 10 tasks primarily designed to evaluate the robot’s knowledge transfer ability over
extended learning periods. These tasks typically involve learning and integrating knowledge across multiple
tasks. The investigation focuses on whether the robot can effectively apply the experience, skills, and
knowledge acquired from previous tasks to new subsequent tasks, thereby achieving continuous performance
enhancement and improved adaptability. Furthermore, it emphasizes the accumulation, updating, transfer,
and application of knowledge throughout the long - term learning process.

H LIMITATIONS AND FUTURE WORKS

We propose FLASHVLA, the first training-free and plug-and-play acceleration framework that enables action
reuse in VLA models. Although our approach maintains the performance of the model while greatly reducing
the amount of modeling operations and the actuallatency, there are limitations and shortcomings in our
approach. First of all we have only tested in a simulated environment, lacking further validation in the real
world. Second, we only performe experimental validation of a single-arm robot. In the future, we will further
validate the advantages of our approach in extending our method to more robotic arms with more degrees of
freedom.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

I USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that we used an LLM (ChatGPT by OpenAI)
only after completing the full manuscript draft, and solely for surface-level proofreading: correcting grammar,
punctuation, and minor phrasing for clarity and consistency. The LLM did not contribute to research ideation,
problem formulation, method or experiment design, data collection or labeling, or analysis. Every suggested
edit was manually reviewed and selectively adopted by the authors.

We understand and accept full responsibility for all content written under our names, including any text that
may have been revised with LLM assistance. We took care to avoid plagiarism and factual errors, and we
did not provide the LLM with proprietary or personally identifiable data beyond de-identified manuscript
excerpts necessary for proofreading. The LLM is not an author or contributor under ICLR authorship criteria.

21

	Introduction
	Related Work
	FlashVLA
	Preliminaries
	Visual Token Selection Strategy via Information Contribution Theory
	Token-Aware Action Reuse Strategy

	Experiment
	Experimental Setup
	Main Results on LIBERO Benchmark
	Ablation Study
	Comparison with Token Pruning Methods
	Generalization to Diverse VLA Architectures
	Generalization to Other Environments

	Conclusion
	Algorithm flow of FlashVLA
	Computation Cost Estimation
	Theoretical Justification of Information Contribution Selection
	Experimental Setup (Details)
	FLOPs Analysis of FlashVLA
	Visual Redundancy in VLA Models
	Additional Experimental Details
	LIBERO Simulated Environment Benchmark

	Limitations and future works
	Use of Large Language Models (LLMs)

