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Fig. 1: Top: millimeter-accurate 3D ground truth of Bodleian Library from Oxford Spires dataset. Bottom: egocentric video data captured
across different lighting conditions throughout the day from Oxford Day and Night dataset.

Abstract—For robots operating across day and night, the
ability to localize and model the environment under varying il-
lumination is essential. We present two complementary datasets
for developing and benchmarking perception algorithms, in-
cluding localization, 3D reconstruction, and novel-view synthe-
sis in large-scale indoor and outdoor environments. The first,
Oxford Spires Dataset, provides multi-sensor recordings around
historical Oxford landmarks, paired with millimeter-accurate
3D ground-truth maps enabling precise trajectory estimation.
The second, Oxford Day and Night Dataset, captures egocentric
video in the same areas under diverse lighting conditions, from
daylight to nighttime. Together, these datasets offer a unique
platform for advancing robust perception methods capable of
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handling challenging illumination changes.

I. INTRODUCTION

Robust localization and 3D reconstruction under varying
illumination are fundamental for robot navigation in both
indoor and outdoor environments. To avoid obstacles and
plan effectively, a robot must estimate its position while
modeling the surrounding 3D structure. Recent advances
in radiance field methods, such as Neural Radiance Fields
(NeRF) [1] and 3D Gaussian Splatting (3DGS) [2], further
enable photorealistic rendering that can support learning-
based navigation.

Despite progress in SLAM and reconstruction, existing
datasets often lack the combination of large-scale coverage,
accurate 3D ground truth, and illumination diversity. Outdoor
3D ground truth is especially rare, as survey-grade reference



TABLE I: ATE result (using RMS) versus the provided ground truth for several open source algorithms (using OSD). Best results are
maked with blue tints (darker is better). SC-LIO-SAM fails on some sequences. COLMAP gives incomplete results on some sequences.

Site Sec Len || VILENS-SLAM  Fast-LIO-SLAM  SC-LIO-SAM  ImMesh || Fast-LIVO2 || HBA COLMAP

Blenheim Palace 01 490 0.47 0.18 6.74 0.27 0.14 0.21 0.08
02 390 0.16 0.12 441 0.36 0.22 0.08 0.05

05 390 1.05 0.28 X 0.22 0.26 0.14 0.26

Keble College 02 290 0.06 0.25 1.26 0.08 0.95 0.11 0.05
03 280 0.14 0.11 4.02 0.14 0.06 0.12 0.05

04 780 0.16 0.49 X 3.67 0.09 0.12 0.07

05 710 0.11 0.29 X 0.13 0.11 0.13 0.09

Observatory Quarter 01 400 0.06 0.17 0.23 0.20 0.04 0.05 0.07
02 390 0.09 0.24 0.14 0.27 0.07 0.08 0.08

models are costly and difficult to obtain. This limits rigorous
benchmarking of SLAM and mapping, and constrains evalu-
ation of radiance field methods, which require precise poses
and geometry. Most available datasets either provide large-
scale coverage without illumination variation, or egocentric
recordings without reliable geometric ground truth.

To address these gaps, we introduce two complementary
datasets. The Oxford Spires Dataset (OSD)' [3] provides
multi-sensor recordings around historical Oxford landmarks,
paired with millimeter-accurate 3D ground truth for bench-
marking localization and reconstruction (Fig. 1Top). The
Oxford Day-and-Night Dataset (OXDAN)? [4] captures ego-
centric video across times of day to evaluate robustness to
illumination changes (Fig. la-d). Together, these datasets
enable research in SLAM, 3D reconstruction, radiance field
learning, and visual relocalization under open-world condi-
tions.

II. DATASETS

A. Oxford Spires Dataset - Frontier Device

The Oxford Spires Dataset is a large-scale, multi-sensor
resource covering both indoor and outdoor environments
with dynamic motion and diverse lighting. It spans multiple
historical landmarks in Oxford, each averaging one hectare
in area, with sequence lengths typically exceeding 400 m.

Data were collected using a custom handheld perception
unit, Frontier, equipped with a 64-beam LiDAR, a high-
frequency IMU, and three wide-angle global-shutter cameras
(Fig. 2i). All sensors are hardware-synchronized to ensure
precise temporal alignment. The cameras are arranged for-
ward, left, and right to provide a panoramic field of view with
substantial overlap with LiDAR, facilitating robust multi-
sensor fusion.

Each site is paired with a millimeter-accurate ground-
truth scan obtained from a survey-grade Terrestrial LiDAR
Scanner (TLS). These scans enable rigorous evaluation of
3D reconstruction and novel-view synthesis. By registering
Frontier LIDAR data to the TLS model, centimeter-accurate
ground-truth trajectories can also be derived for SLAM
evaluation [5].

website: https:/dynamic.robots.ox.ac.uk/datasets/oxford-spires
2website: https://oxdan.active.vision/

)] i)
Fig. 2: These two Oxford-based datasets use these multi-sensor

perception units for data recording i) Frontier and ii) Meta Aria
glasses.

B. Oxford Day and Night Dataset - Meta Aria

The Oxford Day-and-Night Dataset complements the
sensor-rich Frontier platform with a large-scale, vision-only
resource captured from an egocentric perspective. Record-
ing sites overlap with those of the Oxford Spires Dataset,
enabling reuse of the same ground-truth scans. Its primary
purpose is to benchmark visual relocalization and novel-view
synthesis (NVS) algorithms under the extreme challenge of
day-to-night illumination changes.

Data were collected using Meta Aria glasses [6], a research
platform well suited for large-scale egocentric recording
(Fig. 2ii). The glasses integrate a high-resolution RGB
camera, two global-shutter grayscale cameras for motion
tracking, and dual high-frequency IMUs. Sensor data are
processed by a cloud-based, multi-session SLAM service that
robustly aligns trajectories recorded at different times—from
bright daylight to complete darkness—into a unified coordi-
nate frame.

These trajectories are further registered to the survey-grade
TLS scans from the Oxford Spires Dataset, providing an
accurate reference for evaluating visual relocalization and
NVS methods.

III. BENCHMARKS

In this section, we introduce four benchmarks—SLAM
& SfM, 3D reconstruction, visual relocalization, and novel
view synthesis—to demonstrate the capabilities that can
be evaluated when using our dataset. These benchmarks



TABLE II: Quantitative evaluation of the 3D reconstructions from VILENS-SLAM, OpenMVS and Nerfacto - using the Oxford Spires
Dataset (OSD). We indicate the best results with a dark blue background.

. . Scm 10cm
Site SEC.  Method Accuracy] Completeness Precision  Recall F-score | Precision Recall F-score
VILENS-SLAM 0.070 0.506 0.670 0.392 0.495 0.867 0.661 0.750
Blenheim Palace 05 OpenMVS 0.126 1.045 0.451 0.251 0.323 0.574 0.381 0.458
Nerfacto 0.302 0.676 0.232 0.094 0.134 0.388 0.257 0.309
VILENS-SLAM 0.067 0.342 0.527 0.527 0.527 0.816 0.779 0.797
Keble College 04 OpenMVS 0.050 0.409 0.766 0.606 0.677 0.918 0.718 0.806
Nerfacto 0.137 0.150 0.418 0.484 0.449 0.654 0.709 0.680
VILENS-SLAM 0.047 0.233 0.708 0.536 0.610 0.909 0.806 0.854
Observatory Quarter 01 OpenMVS 0.048 0.622 0.745 0.470 0.577 0.902 0.618 0.734
Nerfacto 0.197 0.398 0.415 0.395 0.405 0.587 0.598 0.592

highlight the dataset’s versatility and its potential to support
a wide range of research directions.

A. SLAM & SfM Benchmark (OSD)

This benchmark evaluates the pose estimation accuracy of
LiDAR-based SLAM and vision-based SfM systems.

1) Benchmarked Methods: We evaluate several represen-
tative approaches: online LiDAR-based methods (VILENS-
SLAM [7], Fast-LIO-SLAM [8], SC-LIO-SAM [9], Im-
Mesh [10]), offline LiDAR bundle adjustment (HBA) [11]),
and a vision-only SfM pipeline (COLMAP [12]).

2) Evaluation Metrics: Predicted trajectories are com-
pared against ground truth trajectories derived from survey-
grade TLS scans by registering LiDAR point clouds to
the TLS map using Iterative Closest Point (ICP) [13]. We
report Absolute Trajectory Error (ATE) and Relative Pose
Error (RPE) using the evo package [14]. ATE measures
global consistency after SE(3) Umeyama alignment, while
RPE captures local drift and is recommended for evaluating
odometry-style systems. The results are reported in Table I.

B. 3D Reconstruction Benchmark (OSD)

This benchmark evaluates reconstruction completeness
and accuracy across multi-sensor SLAM, multi-view stereo,
and radiance field methods.

1) Benchmarked Methods: We compare three represen-
tative approaches: VILENS-SLAM [7], OpenMVS [15], and
Nerfacto [16]. All produce 3D point clouds. For Nerfacto, the
cloud is extracted by estimating expected depth and color

along training rays from the radiance field and projecting
these into 3D space.

2) Evaluation Metrics: We adopt the F-score, the har-
monic mean of precision and recall, to jointly measure
reconstruction accuracy and completeness. A reconstructed
point is treated as a true positive (TP) if it lies within 5cm
or 10cm of a ground-truth point, and as a false positive
(FP) otherwise. False negatives (FN) arise when ground-truth
points are missing in the reconstruction, while true negatives
(TN) correspond to valid gaps. From these definitions we
compute precision, recall, and F-score, and additionally re-
port point-to-point distances as a direct measure of geometric
accuracy. Results are presented in Table II.

C. Novel View Synthesis Benchmark (OSD & OXDAN)

This benchmark evaluates the ability of neural render-
ing methods to generate photorealistic novel views under
controlled conditions (OSD) and in-the-wild illumination
changes (OXDAN).

1) Benchmarked Methods: On OSD, we test Nerfacto [16]
and Splatfacto [30], an implementation of 3D Gaussian
Splatting [2] with performance comparable to the original.
To assess model scalability, we also include larger-capacity
variants: Nerfacto-big (with expanded hash grids, proposal
networks, and ray samples) and Splatfacto-big (with reduced
densification thresholds, producing more Gaussians). On
OXDAN, we evaluate in-the-wild NVS systems Splatfacto-
W [28] and Gaussian-Wild [29].

TABLE III: Quantitative evaluation of Novel View Synthesis (OSD). Results for Nerfacto-big and Splatfacto-big are reported in the original
paper [3]. Best results are highlighted in blue with different tints. Test images are drawn from the training trajectory (In-Sequence) as
well as from a separate trajectory with viewpoints far from training poses (Out-of-Sequence).

Sequence Method In-Sequence Out-of-Sequence
d PSNR? SSIM1 LPIPS| | PSNR? SSIM 1 LPIPS|
Blenheim Palace Nerfacto 18.42 0.716 0.506 17.09 0.682 0.537
Splatfacto 19.34 0.726 0.589 16.02 0.668 0.659
Keble College Nerfacto 21.10 0.731 0.397 20.29 0.748 0.368
& Splatfacto 20.47 0.651 0.514 19.92 0.658 0.500
Observatory Quarter Nerfacto 23.40 0.807 0.336 21.25 0.786 0.370
’ y Splatfacto 22.76 0.791 0.373 19.47 0.736 0.445




TABLE IV: Visual Relocalization Results on Day and Night Queries (OXDAN). We report the percentage of query images correctly
localized within three thresholds: (0.25m, 2°), (0.5m, 5°) and (Im, 10°). Results are shown for both feature-matching (FM) and scene
coordinate regression (SCR) approaches. For FM approaches, the top 50 images retrieved using NetVLAD [17] are used for matching.

Day Queries

Night Queries

Keble College

Observatory Quarter

Keble College

Observatory Quarter

89.86 / 92.69 / 92.92
94.81 /95.99 / 95.99
94.34 /9575 /1 95.99
92.45 /1 95.05 / 95.28
94.81/95.28 /1 95.99
91.27 / 93.87 / 93.87
89.39 /9292 / 94.58

0.40/0.79 / 1.39
10.66 / 13.57 / 17.27
9.99/14.16 / 18.27

0.53/70.79 / 1.06
10.39 / 13.63 / 17.01
14.96 / 22.63 / 30.91
12.24 / 16.08 / 19.66

2.38/3.35/4.55
48.14 / 54.40 / 58.05
4791 / 53.50 / 57.68
16.77 / 20.42 / 22.95
50.00 / 57.00 / 60.13
58.94 /1 66.92 / 70.79
48.66 / 54.47 1 59.91

SIFT [18] 84.98 / 88.78 / 91.06
SP+SG [19] 94.68 / 97.34 / 98.10
SP+LG [20] 92.78 /1 96.20 / 97.15
FM DISK+LG [21]  85.74 / 89.54 / 91.25
LoFTR [22] 94.30 / 96.96 / 97.91
RoMA [23] 91.83/96.20 / 97.15
MASIt3R [24] 94.68 / 97.91 / 98.86
ACE [25] 0.57/3.80/22.24
SCR  GLACE [26] 0.19 / 4.18 / 35.93

R-SCoRe [27] 60.46 / 75.10 / 85.74

0.24 /8.02/25.24
0.24 / 6.13 / 33.02
45.52/58.02 /71.23

0.00 / 0.00 / 0.00
0.00 7 0.00 7 0.99
0.20/0.99/1.92

0.00 / 0.00 / 0.00
0.00 7 0.00 / 0.00
3.06/7.75/13.34

TABLE V: 3DGS In-the-Wild Results (OSD). We report image rendering and geometry quality using the following metrics: PSNR (1) /
LPIPS ({) / point-to-point distance ({). The 3DGS geometry is derived by extracting the centers of all Gaussian primitives, with point-to-
point distance (meter) computed against the ground truth laser-scanned point cloud. Symbol ”-” denotes the system produces a degenerated

point cloud (less than 2000 gaussians after training).

Method Bodleian Library  H.B. Allen Centre

Keble College Observatory Quarter  Robotics Institute

Splatfacto-W [28]
Gaussian-Wild [29]

2598 /0.60 / -
28.38 /0.56 / 1.44

25.65/0.59/0.75
2494 /059 /1.48

30.92 /0.56 / 0.69

279671059/ - 25.83/0.63/0.36

28.57 /0.60 / 0.69

22737 0.61/0.42
25.05/0.57/0.76

2) Evaluation Metrics: For OSD, we report Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM) [31],
and Learned Perceptual Image Patch Similarity (LPIPS) [32].
For OXDAN, we additionally evaluate geometry by comput-
ing point-to-point distances against TLS scans.

Results in Table V show Splatfacto-W outperforming
Gaussian-Wild on the H.B. Allen Centre scene but underper-
forming on the other four. However, both methods struggle
overall, as indicated by LPIPS scores, due to the dataset’s
large scale and extreme lighting variations from daylight to
poorly illuminated night conditions.

D. Visual Relocalization Benchmark (OXDAN)

This benchmark evaluates the ability of relocalization
methods to recover accurate poses from egocentric images,
particularly under challenging day-to-night variations.

1) Benchmarked Methods: We benchmark both feature
matching (FM) and scene coordinate regression (SCR) ap-
proaches on OXDAN. For FM, we use the HLoc pipeline,
retrieving top images with NetVLAD and estimating poses
via PnP-RANSAC. We evaluate four sparse methods: SIFT,
SuperPoint (SP) with SuperGlue (SG) or LightGlue (LG),
and DISK with LightGlue, as well as three dense methods:
LoFTR, RoMA, and MASt3R. For SCR, we test ACE,
GLACE, and R-SCoRe, which regress dense 2D-3D cor-
respondences.

2) Evaluation Metrics: Performance is measured on both
daytime and nighttime queries, reporting the percentage of
images localized within thresholds of (0.25m, 2°), (0.5m,
5°), and (1m, 10°). Overall, FM approaches outperform
SCR, which frequently fails under low-light conditions. FM

methods perform strongly in daytime but degrade at night,
while RoMA achieves the best overall robustness across
lighting conditions.

IV. CONCLUSION

We have presented two complementary datasets—Oxford
Spires (OSD) and Oxford Day-and-Night (OXDAN)—that
together enable comprehensive benchmarking of localization,
3D reconstruction, visual relocalization, and neural radiance
field methods under both controlled and in-the-wild illu-
mination. By pairing sensor-rich ground truth with egocen-
tric recordings across day-to-night transitions, these datasets
provide a unique platform for developing and evaluating
perception algorithms that must remain robust in realistic
navigation scenarios. We hope they will serve as a valuable
resource for advancing open-world robotic perception and
long-term autonomy.
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