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Abstract

One of the major challenges in causal inference with observational data
is handling missing confounders. Latent variable modeling offers a valid
framework to address this challenge, but existing approaches within this
framework often suffer from consistency issues in causal effect estimation
and are difficult to extend to more complex application scenarios. To bridge
this gap, we propose a new latent variable modeling approach, Confounder
Imputation with Stochastic Neural Networks (CI-StoNet). The CI-StoNet
utilizes a stochastic neural network to jointly model the outcome function
and the missing confounders, and employs an adaptive stochastic gradi-
ent Hamiltonian Monte Carlo (SGHMC) algorithm to impute the missing
confounders and train the neural networks simultaneously. Under mild
conditions, we show that the causal effect remains identifiable through
CI-StoNet, even though the missing confounders are non-identifiable – these
confounders can only be identified up to an unknown loss-invariant trans-
formation due to the non-identifiability inherent in neural network models.
The CI-StoNet provides state-of-the-art performance on benchmarks for
causal effect estimation and showcases its adaptability to proxy variable
and multiple-cause scenarios. This new approach also serves as a versatile
tool for modeling various causal relationships, leveraging the flexibility of
stochastic neural networks in natural process modeling.

1 Introduction

Causal inference from observational studies is a topic of significant interest in fields such
as genetics, economics, and social science. Under the potential outcome framework (Rubin,
1974), a fundamental condition for identifying causal effects is the strong ignorability condition
(Rosenbaum & Rubin, 1983):

A |= {Y (a) : a ∈ A} | Z, (1)
where A denotes the treatment variable taking values in the space A, Y (·) denotes the
outcome function, and Z denotes confounders. A confounder refers to a variable that
influences both the treatment and the outcome. For the strong ignorability condition to
hold, all confounders must be observed. However, this requirement is rarely satisfied in
observational data, leading to potentially severe bias in causal effect estimation.
One strategy to address the issue of missing confounders is to model them as latent variables.
Wang & Blei (2018) proposed using a latent factor model to obtain a latent representation
for multiple causes, enabling the capture of multiple-cause confounders under the assumption
that no single-cause confounder exists. Kallus et al. (2018) tackled this problem under a
proxy variable setting by leveraging the low-rank components of the proxy variables, obtained
through matrix factorization, as an approximation to the true confounders. Louizos et al.
(2017) also addressed the issue with proxy variables and introduced the causal effect variational
autoencoder (CEVAE) to infer missing confounders from the observational distribution of the
proxy, treatment, and outcome. These works represent significant advancements in causal
inference using observational data; however, they have notable limitations. For instance,
Imai & Jiang (2019) pointed out that Wang & Blei (2018) essentially models the substitute
confounder as a deterministic function of treatments, leading it to converge to a function
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of the observed treatments rather than the true confounder. Kallus et al. (2018) focuses
primarily on the linear regression setting, limiting its applicability to nonlinear models unless
many proxies are available for a small number of latent variables. Rissanen & Marttinen
(2021) examined the consistency of the causal effect estimator in Louizos et al. (2017) and
showed that it fails to correctly estimate cause effects when the latent variable is misspecified
or the data distribution is overly complex.
In this paper, we propose a latent variable imputation approach to address the issue of
missing confounders. This new approach is built on the stochastic neural network (StoNet)
(Sun & Liang, 2022; Liang et al., 2022) and sparse deep learning theory (Sun et al., 2022),
effectively overcoming the limitations of existing approaches. The core idea involves modeling
the causal directed acyclic graph (causal DAG), which forms the foundation for causal
inference, using a StoNet and impute the missing confounders according to the conditional
distribution formed by the StoNet. This makes causal effect identifiable by leveraging StoNet’s
universal approximation capability, its inherent Markovian structure, and its parameter
estimation consistency in a sparse learning mode. The StoNet is trained using an adaptive
stochastic gradient MCMC algorithm (Liang et al., 2022; Deng et al., 2019), which allows
for the simultaneous imputation of missing confounders and estimation of sparse StoNet
parameters. We refer to the proposed approach as Confounder Imputation with Stochastic
Neural Networks (CI-StoNet). In summary, it offers the following advantages in addressing
the missing confounder issue:
(i) Accurate Causal Effect Estimation: This property is supported by StoNet’s inherent
ability to handle missing data, the consistency of sparse deep learning, and the convergence
guarantee offered by the adaptive stochastic gradient MCMC algorithm. Under mild
conditions, we show that the causal effect remains identifiable through CI-StoNet, even
though the missing confounders can only be identified up to some unknown loss-invariant
transformations (due to non-identifiability of neural network models).
(ii) Complex nonlinear modeling. CI-StoNet inherits the universal-approximation prop-
erty of deep neural networks (DNNs), enabling effective modeling of complex nonlinear
relationships across diverse applications.
(iii) Structural flexibility. The Markovian architecture of CI-StoNet provides structural
flexibility for representing diverse dependency patterns in causal DAGs. It supports localized
updates to each DNN module, promoting modular design and easy adaptation to varying
causal relationships.

2 CI-StoNet for Missing Confounders

2.1 The CI-StoNet Approach

This section introduces the CI-StoNet approach or, more generally, a deep learning framework
for performing causal inference in presence of missing confounders.

Figure 1: simple confounding

Consider the scenario of simple confounding, as depicted
by Figure 1, which involves treatment A ∈ {a1, . . . , am},
missing/latent confounders Z, and an outcome Y . The
corresponding model is given by

A = g1(Z, ea),
Y = g2(Z, A) + ey,

(2)

where g1(·) and g2(·) are unknown functions that can be
nonlinear and highly complex, and ea and ey are random errors. In this paper, we assume
ey ∼ N(0, σ2

yIdy
), where dy denotes the dimension of Y . There is flexibility in specifying

the distribution of ea. If each component of A takes values in the binary space {0, 1}, then
ea follows a Logistic distribution. If A is continuous, then ea can be assumed to follow a
Gaussian distribution or any other continuous distribution. Furthermore, if A is mixed, the
distribution of each component of ea can be specified accordingly. This scenario has included
multiple causes considered in Wang & Blei (2018), where ai is a multi-dimensional vector,
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as a special case. Since Z is missing, we impute it from the conditional distribution:
π(Z|A, Y ) ∝ π(Z)π(A|Z)π(Y |Z, A) ∝ π(Z|A)π(Y |Z, A), (3)

where π(·) denotes a distribution or conditional distribution in the appropriate context.

Treatment A

Outcome Y

Treatment A Z

Figure 2: Diagram of CI-StoNet under simple confound-
ing, where white rectangles represent variables from
observed data; light-grey rounded-rectangles represent
latent variable to impute; and dark-grey rectangles rep-
resent neural network modules to learn respective con-
ditional distributions.

The latter part of Eq. (3) suggests
that, mathematically, A, Z, and
Y can be interpreted as the exoge-
nous input, latent state and output
of a stochastic model. Motivated
by this view, we propose to perform
the imputation using a CI-StoNet
(see Figure 2 for its structure), for-
mulated as:

Z = µ1(A, θ1) + ez,

Y = µ2(Z, A, θ2) + ey,
(4)

where µ1(·) and µ2(·) are two neu-
ral network functions, parameter-
ized by θ1 and θ2, respectively;
ez ∼ N(0, σ2

zIdz ); and ey is as de-
fined in (2). The two neural networks are interconnected through the latent variable Z.
Additionally, we impose the following assumptions on the models (2) and (4):
Assumption 1. (i) ea |= ey, ea |= Z, ey |= (Z, A); (ii) there exist sparse DNNs µ1(·) and
µ2(·) such that (4) holds, ez ∼ N(0, σ2

zIdz ), ey ∼ N(0, σ2
yIdy ), ez |= ey, and ez |= A;

Part (i) of Assumption 1 ensures that strong ignorability (1) holds. Part (ii) assumes that
the true model is a sparse StoNet (as Z is random), which greatly facilitates the subsequent
theoretical studies. Otherwise, the DNN approximation errors in relation to model (2)
would need to be considered in the subsequent analysis. Refer to Remark 2 (in Section 2.2)
regarding the expressivity of sparse DNNs.
Notably, the functional expression in (4) does not imply a causal mechanism A → Z. For
example, rain (Z) causes a wetland (A), but a wetland does not cause rain. Similarly, Z
cannot be interpreted as a mediator due to the nonexistence of a causal mechanism A → Z,
although (4) has a mathematical structure similar to mediation models. For the time being,
we assume that there is no mediator in the causal pathway between the treatment A and the
outcome Y , thereby ruling out any potential misinterpretation for the role of Z. However, if a
mediator does exist, issues related to the total causal effect estimation and the interpretation
of Z will be addressed at the end of Section 2.2.
Under the missing data framework, the CI-StoNet can be trained by solving the following
equation, which represents a Bayesian version of Fisher’s identity (Song et al., 2020):

∇θ log π(θ|A, Y ) =
∫

∇θ log π(θ|Z, A, Y )π(Z|A, Y , θ)dZ, (5)

where θ = {θ1, θ2}, Z is missing, π(θ|Z, A, Y ) ∝ π(θ1)π(θ2)π(Z|A, θ1)π(Y |Z, A, θ2),
π(Z|A, Y , θ) ∝ π(Z|A, θ1)π(Y |Z, A, θ2), and π(θ1) and π(θ2) denote the prior distribu-
tions imposed on θ1 and θ2, respectively. In this paper, we assume that the components of
θ are a priori independent and are subject to the following mixture Gaussian prior (Sun
et al., 2022):

π(θ) =
Kn∏
i=1

(1 − λn)ϕ(θi/σ0) + λnϕ(θi/σ1), (6)

where λn is the mixture proportion, Kn is the total number of connections in the StoNet (i.e.,
the dimension of θ), ϕ(·) represents the density function of the standard normal distribution,
and σ0 and σ1 are the standard deviations of the two Gaussian components, respectively.
The identity (5) further suggests that the target equation

∇θ log π(θ|A, Y ) = 0, (7)
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can be solved using an adaptive stochastic gradient MCMC algorithm, which iteratively
alternates between latent variable imputation and parameter updates. In this paper, we
employ the adaptive stochastic gradient Hamiltonian Monte Carlo (SGHMC) (Liang et al.,
2022), as given in Algorithm 1, to solve equation (7).

Algorithm 1: Adaptive SGHMC
0. Set the prior hyperparameters: λn, σ0, and σ1.
1. (Latent variable imputation) Simulate Z from π(Z|A, Y , θ) via Hamiltonian Monte

Carlo updates:

v(k+1) = (1 − ϵk+1η)v(k) + ϵk+1∇Z log π(Z(k)|A, θ
(k)
1 ) + ϵk+1∇Z log π(Y |Z(k), A, θ

(k)
2 ))

+
√

2ϵk+1ηe(k+1),

Z(k+1) = Z(k) + ϵtv(k),

where e(k+1) ∼ N(0, Idz ), dz is the dimension of Z, and ϵk+1 is the learning rate.
2. (Parameter update) Given Z(k+1), update θ1 and θ2 separately:

θ
(k+1)
1 = θ

(k)
1 + γk+1∇θ1 log π(Z(k+1)|A, θ

(k)
1 ) + γk+1∇θ1 log π(θ(k)

1 ),

θ
(k+1)
2 = θ

(k)
2 + γk+1∇θ2 log π(Y |Z(k+1), A, θ

(k)
2 ) + γk+1∇θ2 log π(θ(k)

2 ).

In model (4), both σz and σy are scalar. They can be treated as hyperparameters to specify
in simulations, while having minimal impact on the downstream inference. Notably, σz is
essentially non-identifiable in model (4), due to the universal approximation property of
neural networks. In the inference stage, see equation (9), we provide a Bayesian estimator
for σ2

z to facilitate imputation of missing confounders. Specifically, we impose an inverse
gamma prior σ2

z ∼ InvGamma(α, β), leading to the Bayesian estimator:

σ̂2
z =

β + 1
2

∑n
j=1(zj − µ1(Aj , θ1))2

n
2 + α − 1 , (8)

where we set α = β = 1 for a flat prior, and Aj denotes the value of A in sample j. In
simulations, its value can also be updated as in (8) along with iterations, while having
minimal impact on the performance of the algorithm.
To enable causal inference, we introduce the following additional assumptions, which are
standard conditions for causal effect identification:
Assumption 2. 1. Stable unit treatment value assumption (SUTVA): the

potential outcome of one subject are independent of the assigned treatment of another
subject; that is, there is no interference between subjects and there is only a single
version of each assigned treatment.

2. Overlap: The substitute confounder Z satisfies the overlap condition: p(A ∈
A|Z) > 0 for all sets A with positive measure, i.e., p(A) > 0.

Under Assumptions 1 and 2, the causal effect can be estimated in the following procedure:

Causal effect estimation. After Algorithm 1 converges, with learned parameters θ̂
∗
1 and

θ̂
∗
2, draw M samples {z(l)}M

l=1 from π(z | a; θ̂
∗
1). The expected outcome E{Y (a) | θ∗} =∫

µ2(z, a; θ∗
2) π(z | a; θ∗

1) dz is then approximated by the Monte Carlo average

̂E(Y (a)|θ̂∗) = 1
M

M∑
l=1

µ2(z(l), a, θ̂
∗
2). (9)

The direct causal effect for a binary treatment can be estimated by

τ̂ := ̂E(Y (a1)|θ̂∗) − ̂E(Y (a0)|θ̂∗), (10)
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where a0 and a1 denote the control and treatment, respectively. In the case of multiple
causes (Wang & Blei, 2018), where each a = (a1, . . . , am)T is a continuous multi-dimensional
vector, one might be interested in estimating the causal effect of each individual cause. In
this case, the marginal causal effect of aj can be estimated as:

τ̂aj
= 1

M

M∑
l=1

∂µ2(z(l), a, θ̂
∗
2)

∂aj
, (11)

analogous to the estimator given in (9).

2.2 Theoretical Guarantees

The consistency of the estimator (9) can be established through several steps, with all proofs
deferred to Appendix A3. First, we show that the estimator θ(k) = {θ

(k)
1 , θ

(k)
2 } obtained

from Algorithm 1 converges in probability to a solution of (7), denoted by θ̂
∗
n (see Lemma 1)

A discussion on how to address the non-uniqueness of θ̂
∗
n is followed. Next, we show that θ̂

∗
n

is a consistent estimator of θ∗, the true parameter vector of the sparse StoNet defined in (4)
(see Theorem 1). Building on this result, we establish the consistency of the estimator (9)
(see Theorem 2). These results are presented in the following.
Lemma 1. (Theorem S1, Liang et al. (2022)) Suppose Assumptions A3-A5 (given in
Supplement A3) hold. For Algorithm 1, if we set ϵk = Cϵ/(ce + kα) and γk = Cγ/(cg + kα)
for some constants α ∈ (0, 1), Cϵ > 0, Cγ > 0, ce ≥ 0 and cg ≥ 0, then there exists an
iteration k0 and a constant Λ0 > 0 such that for any k > k0,

E(∥θ(k) − θ̂
∗
n∥2) ≤ Λ0γk, (12)

where θ̂
∗
n denotes a solution to Eq. (7), i.e., θ̂

∗
n ∈ L = {θ : ∇θ log π(θ|A, Y ) = 0}; and

Λ0 = Λ′
0 + 6

√
6C

1/2
θ ((3M2 + ς2)CZ + 3M2Cθ + 3B2 + ς2

2 )1/2 for some positive constants Λ′
0,

Cθ, and CZ .

Refer to Lemma S1 of Liang et al. (2022) for the derivation of the constants Cθ and CZ ,
which indicate the dependence of the convergence of θ(k) on the structure of the StoNet
(4). As a consequence of the l2-convergence (12), we immediately have ∥θ(k) − θ̂

∗
n∥ p→ 0 as

k → ∞, where p→ denotes convergence in probability.
Remark 1. For neural networks, it is known that their loss function is invariant under
certain transformations of the connection weights, such as reordering hidden neurons within
a layer or jointly changing the signs or scales of specific weights and biases, refer to, e.g.,
Liang et al. (2018b) and Sun et al. (2022) for detailed discussions. As a result, the solution
θ̂

∗
n is not unique, and all such solutions can be viewed as belonging to an equivalence class of

unique solutions, defined by loss-invariant transformations. This equivalence class forms a
reduced representation of the parameter space, where each member corresponds to a distinct
network (i.e., not transformable into another via loss-invariant operations) and may have a
different loss value. The consistency results established in this paper apply specifically to this
reduced space of neural networks.
Theorem 1. Suppose the regularity conditions give in Lemma A1 and Assumptions A6-
A7 (given in Supplement A3) hold. Additionally, assume that the dimension of θ, denoted
by Kn, increases with n in a polynomial rate Kn = O(nζ) for some constant ζ > 1, while
the true StoNet is sparse with the number of nonzero connections mn ≺ n

c log(Kn/n) for some
constant c > 1. Set the hyper-parameters of the prior (6) to satisfy the conditions:

( n

Kn
)c ≺ λn ≺ n

Kn
, σ1 = O(1), ( n

Kn
)c ≺ σ0 ≺ min

{
1 − n

Kn
,

δn√
c log(Kn) − (c − 1) log(n)

}
.

(13)
Then ∥θ̂

∗
n − θ∗∥ p→ 0 holds as n → ∞, where θ∗ denotes the true parameter of the StoNet

(4), and θ̂
∗
n is up to a loss-invariant transformation.
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Remark 2. In Theorem 1, we assume that the true sparse StoNet is of size mn = o(n).
This assumption can be justified based on the theory established in Bölcskei et al. (2019),
Schmidt-Hieber (2017), and Petersen & Voigtlaender (2018), where it is shown that a DNN
of this size has been large enough to approximate many classes of functions, including affine,
piecewise smooth, and α-Hölder smooth functions. See Sun et al. (2022) for discussions on
this issue. Additionally, Sun et al. (2022) showed that a sparse neural network of this size has
been large enough to achieve the desired function approximation and posterior consistency,
with the mixture Gaussian prior (6), as the sample size n becomes large. Our theory allows
Kn to increase polynomially with n, which is typically satisfied by deep neural networks.
Theorem 2. Suppose Assumptions 1-2 and the conditions in Lemma 1 and Theorem 1 hold.
Then

∥ ̂E(Y (a)|θ̂∗
n) − E(Y (a)|θ∗)∥ p→ 0, as M → ∞ and n → ∞.

Remark 3. As shown in the proof of Theorem 2, the consistency of the estimator (9)
arises from the existence of the true sparse StoNet as well as the consistency of θ̂

∗
n. It

is important to note that, due to the non-uniqueness of θ̂
∗
n as discussed in Remark 1, the

imputed latent confounders may differ from their true values. However, π(z|A, θ̂
∗
1) still

serves as a consistent estimator (in terms of the density function) of π(z|A, θ∗
1), up to a

loss-invariant transformation of θ̂
∗
n. Nevertheless, this does not affect the consistency of the

estimator (9), which is a remarkable property.

Notably, due to the universal approximation power of DNNs, CI-StoNet can capture all
confounders, including both multiple-cause and single-cause confounders. This brings less
restrictions on the confounding structure compared to the models considered in Wang & Blei
(2018). CI-StoNet also differs from the variational autoencoder approach proposed in Louizos
et al. (2017). When large neural networks are used to fit the functions µ1(·) and µ2(·), the
extracted latent variable may fail to capture the information encoded in the observed data.
CI-StoNet addresses this issue by leveraging its parameter estimation consistency, which is
achieved through sparse deep learning under a Bayesian setting.

(a) Collider (b) Mediator

Figure 3: Other examples of causal structures: (a)
existence of colliders, represented by C ; (b) exis-
tence of mediators, represented by M .

Additionally, we note that the latent
variable imputed in step (i) of Algo-
rithm 1 cannot be used for causal effect
estimation, as it may contain informa-
tion related to colliders. Figure 3(a) il-
lustrates this concept, where the collider
variable C is influenced by both A and
Y . In step (i), we impute Z conditioned
on both A and Y . If a collider variable
exists, the imputed latent variable may
introduce spurious associations between
A and Y , potentially biasing the causal
effect estimation. To mitigate this issue,
we specifically impute the latent vari-
ables from π(Z|A, θ̂

∗
1), ensuring that

any collider-related information is excluded from the analysis.
In Section 2.1, we assumed the absence of mediators to enable a clear interpretation of Z
as a latent confounder. However, if a mediator M does exist, as illustrated in Figure 3(b),
the imputed latent variable Z may inadvertently encapsulate information related to M .
Mathematically, the conditional distribution can be expressed as:

π(Y | A, Z) =
∫

π(Y | A, Z, M) π(M | A) dM ,

which indicates that, without observing M , its effect will be absorbed into Z, making them
statistically indistinguishable within the CI-StoNet framework. In this case, (10) serves as an
estimator for the total causal effect of A on Y , while Z acts as a latent adjustment variable
that facilitates estimation of the total causal effect. Although this precludes pathway-specific
interpretations, it does not invalidate estimation of the total causal effect. If, however,
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the mediator M is known from domain knowledge or experimental design and there is no
unmeasured confounding between A and M , or between M and Y , then the front-door
criterion (Pearl, 2009) can be applied. In this case, M can be included as part of the latent
confounder layer in the CI-StoNet to enable identification of the direct causal effect via
front-door adjustment.

2.3 A Simulation Study

As a concept-proof example, we evaluated CI-StoNet using a simulation study with a nonlinear
data-generating process for A and Y under both separable and non-separable confounding
scenarios. We generate the latent confounders Z1, . . . , Z6 as independent standard Gaussian
random variables, and then draw A1, . . . , A9 independently from the distribution, using
inverse CDF:

p(ai|Z) = expit(ξ(Z)ai)∫ 1
−1 expit(ξ(Z)ai)

1{−1≤ai≤1}, i = 1, . . . , 9,

where expit(ξ(Z)ai) = exp{ξ(Z)ai}
1+exp{ξ(Z)ai} , and ξ(Z) =

∑2
i=1 βi sin zi +

∑4
j=3 βj cos zj +∑6

k=5
1

1+exp{−βkzk+0.5} . We set f1(A) = θT A⊗2 and f2(A) =
∑

i<j aiaj , where A⊗2

represent an element-wise square operation, and generate Y in two settings: (i) Sep-
arable confounding. the treatment and confounder impact the outcome separately:
Y = f1(A) − θ0f2(A) + ξ(Z) + ϵ, where θ0 ∼ U(−1, 1) and ϵ ∼ N(0, 1). (ii) Non-
separable confounding. there exists interaction between the treatment and confounder:
Y = f1(A) − ξ(Z)f2(A) + ξ(Z) + ϵ, where ϵ ∼ N(0, 1).
For each setting, the experiment was conducted on 10 simulated datasets, each comprising
1000 training samples, 500 validation samples, and 500 test samples. The marginal treatment
effects were calculated using the test set. Figure S1 compares the true and estimated marginal
treatment effects across the 10 datasets. The plots show that most of the estimated marginal
effects lie within half a standard deviation of the true marginal effects, indicating that
CI-StoNet is able to estimate the marginal effect of each treatment with small bias.

3 Causal StoNet for Proxy Variables

For some problems, it is possible to obtain proxies for a missing confounder, which may
be noisy or provide only partial measurements of the missing confounder. Conditioning on
these proxy variables helps control, though not fully eliminate, the confounding bias. It
is natural to incorporate the proxy variable into the model as a substitute for the missing
confounder. Kuroki & Pearl (2014) introduces conditions to use proxies effectively even when
the exact distribution of the measurement errors is unknown. Specifically, it proposes to use
matrix adjustments to estimate causal effects when external information is available, while
eigen-decomposition methods can be used to identify causal effects under specific assumptions
about the proxies when external information is absent. Tchetgen et al. (2020) and Miao
et al. (2018) proposed the proximal causal inference framework. They demonstrated that,
under mild conditions, the identification of causal effects with missing confounders is possible,
provided that two types of proxy variables can be measured: one serving as a treatment
confounding proxy, and the other as an outcome confounding proxy. Louizos et al. (2017)
proposed an algorithm based on a variational autoencoder to model causal relationships
using a single proxy.
Consider the causal structure with a single proxy, as depicted in Figure 4(a). This causal
structure suggests that Z can be imputed based on the following conditional distribution:

π(Z|A, Y , X) ∝ π(Z)π(X|Z)π(A|Z)π(Y |Z, A) ∝ π(Z|X)π(A|Z)π(Y |Z, A). (14)

The decomposition of the conditional distribution (14) further suggests the StoNet structure:
Z = µ1(X, θ1) + ez, A = µ2(Z, θ2, ea), Y = µ3(Z, A, θ3) + ey, (15)

where ez and ey are Gaussian random errors, while the form of ea can be determined
according to the types of treatments. These random errors are mutually independent and

7
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(a) (b)

Proxy X Z

Treatment A

Outcome Y

Figure 4: (a) Causal DAG: without dependence on the proxy; (b) Diagram of CI-StoNet
under the proxy setting: white rectangles represent variables from observed data; light-grey
rounded-rectangles represent hidden neurons; dark-grey rectangles represent network modules
to learn respective conditional distributions.

are also independent of X. Figure 4(b) illustrates the corresponding CI-StoNet structure.
Alternatively, we can consider the following StoNet model:

Z = µ1(X, θ1) + ez, A = µ2(Z, θ2) + ea, Y = µ3(Z, A, θ3) + ey, (16)

where ez, ea and ey are Gaussian random errors. Notably, the model (15) and the model
(16) are asymptotically equivalent, even when A is a binary vector. In the binary case, their
equivalence is supported by the result that, as shown in Liang (2003) and Duda et al. (2001),
µ2(Z, θ2) converges to the probability function P (A = 1|Z, θ2) as n → ∞.
In this paper, we adopt the model (16) for computational simplicity. A gradient equation
analogous to (7) can be constructed for the model. An adaptive SGHMC algorithm, similar
to Algorithm 1, can be employed for its solution. Let {z(l) : l = 1, 2, . . . , M} denote the
samples simulated from π(z|X, a, θ̂

∗
1). Then the expected outcome function E(Y (a)|x) can

be estimated by the Monte Carlo average as

̂E(Y (a)|x, θ̂
∗
3) = 1

M

M∑
l=1

µ3(z(l), a, θ̂
∗
3). (17)

In the case that the treatment a is continuous and multi-dimensional, the marginal causal
effect can be estimated as in (11).

3.1 Numerical Experiments

For simplicity, we consider a single binary treatment in our experiments. CI-StoNet is
compared with the following baselines:
(i) Designed for average treatment effect (ATE): double selection estimator (DSE)(Belloni
et al., 2014), approximate residual balancing estimator (ARBE) (Athey et al., 2018), targeted
maximum likelihood estimator (TMLE) (van der Laan & Rubin, 2006), and deep orthogonal
networks for unconfounded treatments (DONUT) (Hatt & Feuerriegel, 2021).
(ii) Designed for heterogeneous treatment effect: X-learner (Künzel et al., 2017), Drag-
onnet(Shi et al., 2019), causal multi-task deep ensemble (CMDE) (Jiang et al., 2023)),
causal multi-task gaussian processes (CMGP (Alaa & van der Schaar, 2017)), causal effect
variational autoencoder (CEVAE) (Louizos et al., 2017), generative adversarial networks
(GANITE) (Yoon et al., 2018), and counterfactual regression net (CFRNet (Shalit et al.,
2017)). For the baselines in part (ii), we use the code of Jiang et al. (2023) at GitHub.
For performance evaluation, we consider two metrics: (i) estimation accuracy of ATE, which
is measured by the mean absolute error (MAE) of the ATE estimates; and (ii) estimation
accuracy of CATE, which is measured by precision in estimation of heterogeneous effect
(PEHE).

3.1.1 Simulated Examples
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Table 1: Comparison of different methods for estimation of het-
erogeneous treatment effects with proxy variables, where PEHE
was computed over 10 datasets, ‘In-sample PEHE’ was computed
with training and validation samples, and ‘Out-of-sample PEHE’
was computed with test samples.

In-Sample PEHE Out-of-Sample PEHE
CI-StoNet 0.3614(0.0328) 0.3731(0.0350)

CMDE 0.9019(0.0746) 0.9059 (0.0699)
CMGP 1.8823(0.0836) 2.2116 (0.1682)
CEVAE 0.6190(0.0350) 0.6246 (0.0384)
Ganite 1.2099(0.0558) 1.1797 (0.0499)

X-learner-RF 0.8308(0.0200) 1.4272 (0.0132)
X-learner-Bart 0.6489(0.0168) 0.6570 (0.0151)
CFRNet-Wass 1.7127(0.1668) 1.7258 (0.1667)
CFRNet-MMD 2.0238(0.0537) 2.0250 (0.0582)

DragonNet 0.4217(0.0356) 0.4305 (0.0361)

This example is designed
to compare methods on
problems with nonlinear
treatment effect and non-
linear outcome function.
We generated 10 datasets
using the procedure as de-
scribed in Section A1.2,
with each dataset consist-
ing of 2000 training sam-
ples, 500 validation sam-
ples, and 500 test sam-
ples. Table 1 shows that
CI-StoNet provides accu-
rate estimates for the het-
erogeneous treatment ef-
fect and outperforms the
baselines.

3.1.2 Benchmark Datasets

We evaluated CI-StoNet on some benchmark datasets, including the Twins dataset and
10 datasets from Atlantic Causal Inference Conference (ACIC) 2019 Data Challenge. The
results reported in Section A1.3 indicate that CI-StoNet outperforms the baselines.

4 Conclusion

By integrating StoNets with adaptive stochastic gradient MCMC, this paper presents a
practical, flexible, and theoretically rigorous framework for addressing the issue of missing
confounders in causal inference from observational data. Specifically, the proposed CI-StoNet
approach utilizes StoNet to model the dependence structure in the underlying causal DAG
while estimating its parameters using adaptive stochastic gradient MCMC algorithms. The
validity of this approach is supported by the convergence theory of adaptive stochastic
gradient MCMC and the consistency theory of sparse StoNets, even though the missing
confounders can only be identified up to an unknown loss-invariant transformation (due to
the non-identifiability of neural network models). Furthermore, we have demonstrated that
CI-StoNet can effectively handle causal inference problems that involve multiple causes or
proxy variables, showcasing its broad applicability.
Despite its advantages, this study has some limitations. First, the structure and parameter
estimation of CI-StoNet rely on the correct identification of the underlying causal DAG. For
instance, in the case of multiple treatments, if an unknown mediator exists, CI-StoNet may
inadvertently incorporate mediator information into the learned substitute confounder. This
occurs because the model only considers the joint distribution of (A, Y , Z) when defining
the dependence structure in the causal DAG. Including post-treatment variables such as
mediators can introduce bias into causal effect estimation. However, if a mediator is correctly
identified in the causal DAG, the structure of CI-StoNet can be adjusted to accommodate
its information appropriately. Another limitation is that the current version of CI-StoNet
does not explicitly quantify the causal effect uncertainty. This limitation, however, can be
addressed by extending existing methods for uncertainty quantification. For example, instead
of using a standard DNN module, the original version of the StoNet (Liang et al., 2022) can
be employed to model each conditional distribution for the treatment and confounder. In
this setup, uncertainty quantification can be achieved based on the properties of StoNet, as
detailed in Liang et al. (2022).
Finally, the Markovian structure of CI-StoNet affords substantial flexibility for modeling a
wide range of causal structures. Section A2 extends CI-StoNet to two proxy-variable settings:
(i) outcome depending on the proxy and (ii) treatment depending on the proxy. See that
section for details.
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A Appendix

A1 Supplementary Examples

A1.1 Figures for the Simulation Study in Section 2.3

(a) (b)

Figure S1: CI-StoNet Results for the simulation study: (a) separable confounding; (b)
non-separable confounding, where the point shows the true marginal effect, and the error
bar represents one standard error of the marginal effect estimator.

A1.2 Simulated Examples

The simulated examples are used to compare the performance of different methods for
problems with nonlinear treatment effect and nonlinear outcome function. We generated ten
datasets using the following procedure, with each dataset comprising 2000 training samples,
500 validation samples, and 500 test samples.

1. Generate the confounder zi = (zi,1, · · · , zi,5) independently from N(0, 1).
2. Generate γi, ri,1, · · · , ri,100 independently from N(µi, 1) truncated in the interval

[−10, 10], with µi = 1
5

∑5
k=1 zi,k. Set the proxy variable xi = (xi,1, . . . , xi,100), with

xi,j = γi+ri,j√
2 , where x and z are dependent through µ.

3. The propensity score p(zi) = 1
4 (1 + β2,4( 1

3 (Φ(zi,1) + Φ(zi,3) + Φ(zi,5)))), where β2,4
is the CDF of the beta distribution with shape parameters (2, 4), and Φ denotes
the CDF of the standard normal distribution. This ensures that p(zi) ∈ [0.25, 0.5],
thereby providing sufficient overlap. Treatment Ai is hence generated from a
Bernoulli distribution with the success probability p(zi). Resampling from the
treatment and control groups has been performed for ensuring that the dataset
contains balanced samples for treatment group and control group.

4. To simulate the outcome, we set

yi = c(zi) + (τ + η(zi))Ai + σyei,

c(zi) = 5zi3

1 + z2
i4

+ 2zi5,

where η(zi) = f(zi1)f(zi2) − E(f(zi1)f(zi2)) and f(w) = 2
1+exp(−w+0.5)) . That is,

we set the treatment effect τ(zi) = τ + η(zi), which is homogeneous for different
individuals. We generated the samples under the setting τ = 3, σy = 0.25, and
ei ∼ N(0, 1).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A1.3 Benchmark Datasets

We compare the performance of the proposed method on some benchmark datasets, including
the Twins dataset and 10 datasets from Atlantic Causal Inference Conference (ACIC) 2019
Data Challenge.

ACIC 2019 Datasets. We first worked on 10 ACIC 2019 datasets. This experiment
focuses on comparing CI-StoNet with the baselines designed for ATE estimation. The results
are summarized in Table S1, which indicates that CI-StoNet outperforms the baselines.

Table S1: ATE estimation across 10 ACIC 2019 datasets, where the number in the parentheses
represents the standard deviation of the MAE.

Method In-Sample Out-of-Sample
CI-StoNet 0.0669 (0.0166) 0.0709 (0.0133)

DSE 0.0776 (0.0193) 0.1632 (0.0251)
ARBE 0.0729 (0.0166) 0.1335 (0.0179)

TMLE(Lasso) 0.0869 (0.0164) 0.0867 (0.0165)
TMLE(ensemble) 0.1140 (0.0394) 0.1316 (0.0429)

DONUT 0.5294 (0.2640) 0.5290(0.2642)

Twins Data. We analyzed a real-world dataset of twin births from 1989 to 1991 in the
United States. The treatment variable is binary, with ‘1’ denoting the heavier twin at birth.
The dataset contains 46 variables that include clinical information and socioeconomic status
of parents, and we regard them as proxy variables for latent confounders. The outcome
variable is binary, with ‘1’ indicating twin mortality within the first year. We regard each
twin-pair’s records as potential outcomes, allowing us to find the true ATE. After data
pre-processing, we obtained a dataset with 4,821 samples. In this final dataset, mortality
rates for lighter and heavier twins are 16.9% and 14.42%, respectively, resulting in a true
ATE of −2.48%.
We conducted the experiment in three-fold cross validation, where we partitioned the dataset
into three subsets, trained the model using two subsets and estimated the ATE using the
remaining one. Table S2 (left panel) reports the averaged ATE over three folds and the
standard deviation of the average. CI-StoNet yields a more stable ATE estimate (in RMSE)
compared to the baseline methods.

Table S2: Comparison of different methods in average treatment effect (ATE) estimation for
Twins data, where the number in the parentheses represents the standard deviation of the
absolute error of ATE, and RMSE denotes the root mean squared error.

With confounder gestat10 Missing confounder gestat10
Methods Absolute Error of ATE RMSE Absolute Error of ATE RMSE

CI-StoNet 0.0099(0.0089) 0.0133 0.0135(0.0071) 0.0153
DSE 0.0157(0.0176) 0.0236 0.0211(0.0193) 0.0286

ARBE 0.0152 (0.0201) 0.0252 0.0168(0.0257) 0.0307
TMLE(Lasso) 0.0855 (0.0599) 0.1044 0.0932(0.0791) 0.1222

TMLE(ensemble) 0.1042 (0.0779) 0.1301 0.1238(0.0607) 0.1379
DONUT 0.0490 (0.0128) 0.0506 0.0490(0.0124) 0.0505
CMDE 0.0108(0.0905) 0.0911 0.0635(0.0905) 0.1106
CEVAE 0.0249(0.0002) 0.0249 0.0327(0.0633) 0.0712
Ganite 0.3519 (0.1533) 0.3838 0.4198(0.2278) 0.4776

X-learner-RF 0.0056 (0.0257) 0.0252 0.0157(0.0257) 0.0301
X-learner-Bart 0.0194 (0.0192) 0.0273 0.0251(0.0312) 0.0400
CFRNet-Wass 0.0189 (0.0425) 0.0465 0.0211(0.0254) 0.0330
CFRNet-MMD 0.0439 (0.0146) 0.0463 0.0619(0.0158) 0.0639
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Finally, to provide more convincing evidence that the proposed method performs well when
confounders are missing, we conducted an experiment where a significant confounder, gestat10
(gestational age), is intentionally omitted. In preprocessing the dataset, we followed Louizos
et al. (2017) to focus on the same-sex twin pairs with birth weights less than 2 kg, and used
the variable gestat10 to generate “pseudo treatment assignments”. Since gestat10 is also an
important factor for newborn mortality, it serves as a significant confounder. We removed
gestat10 from the dataset. The results in Table S2 (right panel) show that CI-StoNet exhibits
robust performance in presence of missing confounders. In this scenario, it outperforms
all baselines in both the absolute error of ATE and RMSE, indicating the superiority of
CI-StoNet gained from latent confounder imputation.

A2 Extension to other Causal Structures

The Markovian structure embedded in CI-StoNet provides it with great flexibility to model a
wide range of causal structures. In this section, we extend CI-StoNet to handle other causal
structures involving proxy variables. Specifically, we consider two scenarios: the outcome
depending on the proxy, and the treatment depending on the proxy.

A2.1 Outcome Depending on Proxy

When outcome depends on proxy, see Figure S2(a), the imputation of Z is based on the
following decomposition:

π(Z|A, Y , X) ∝ π(Z)π(X|Z)π(A|Z)π(Y |Z, A, X) ∝ π(Z|X)π(A|Z)π(Y |Z, A, X).
Accordingly, the structure of the CI-StoNet can be arranged as follows:

Z = µ1(X, θ1) + ez,

A = µ2(Z, θ2) + ea,

Y = µ3(X, Z, A, θ3) + ey,

(A1)

where ez, ea, and ey denote Gaussian random errors. The corresponding diagram is shown
in Figure S2(b).

(a) (b)

Proxy X Z

Treatment A

Proxy X

Outcome Y

Figure S2: (a) Causal structure: outcome depends on the proxy; and (b) CI-StoNet structure
for the scenario where outcome depends on the proxy.

A2.2 Treatment Depending on Proxy

When the treatment depends on the proxy, see Figure S3(a), the imputation of Z is based
on the decomposition:

π(Z|A, Y , X) ∝ π(Z)π(X|Z)π(A|Z, X)π(Y |Z, A) ∝ π(Z|X)π(A|Z, X)π(Y |Z, A).
The structure of the CI-StoNet can be arranged as follows:

Z = µ1(X, θ1) + ez,

A = µ2(Z, X, θ2) + ea,

Y = µ3(Z, A, θ3) + ey,

(A2)
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where ez, ea, and ey denote Gaussian random errors. The corresponding diagram is shown
in Figure S3(b).

Proxy X Z

Treatment A

Outcome Y

Proxy X

Figure S3: (a) Causal structure and (b) CI-StoNet structure for the scenario where treatment
depends on the proxy.

Both models can be trained using an adaptive stochastic gradient MCMC algorithm, and
the corresponding causal effects can be estimated based on the imputed confounders from
π(z|X, θ̂

∗
1).

For causal structures shown in Figures S2(a) and S3(a), X is the proxy variable, Z represents
the missing confounder, and A and Y represents the treatment variable and outcome
variable, respectively. The white nodes represent observed variables, while the light-grey
node represent the unobserved variables. For the CI-StoNet structures shown in Figures
S2(b) and S3(b), white rectangles represent variables from observed data; light-grey rounded-
rectangles represent hidden neurons; and dark-grey rectangles represent network modules to
learn respective conditional distributions.

A3 Theoretical Proofs

A3.1 Convergence of θ(k)

To train the CI-StoNet using the IRO algorithm, it requires that the full dataset is used at
each iteration, making the algorithm difficult to scale up to large-scale neural networks. In
contrast, the adaptive SGHMC algorithm can use mini-batch data in parameter updating.
As shown in Liang et al. (2022), the adaptive SGHMC algorithm solves equation (7) under
the following conditions.
Notations: We let D denote a dataset of n observations, and let Di denote the i-th
observation of D. For StoNet, Di has included both the input and output variables
of the observation. For the CI-StoNet, Di includes the treatment and outcome, i.e.,
Di = {Ai, Y i}. For simplicity of notation, we re-denote the latent variable corresponding
to Di by Zi, and denote by fDi

(Zi, θ) = − log π(Zi|Di, θ) the negative log-density func-
tion of Zi. Let Z = (Z1, Z2, . . . , Zn), let z = (z1, z2, . . . , zn) be a realization of Z, let
FD(Z, θ) =

∑n
i=1 fDi

(Zi, θ), and let H(Z, θ) = ∇θ log π(Z|A, θ). To study the conver-
gence of the adaptive SGHMC algorithm presented in Algorithm 1, we make the following
assumptions:

Assumption A3. (i) (Boundedness) The function FD(·, ·) takes nonnegative real val-
ues, and there exist constants A, B ≥ 0, such that |FD(0, θ∗)| ≤ A, ∥∇ZFD(0, θ∗)∥ ≤
B, ∥∇θFD(0, θ∗)∥ ≤ B, and ∥H(0, θ∗)∥ ≤ B.
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(ii) (Smoothness) FD(·, ·) is M-smooth and H(·, ·) is M-Lipschitz: there exists some
constant M > 0 such that for any Z, Z ′ ∈ Rdz and any θ, θ′ ∈ Θ,

∥∇ZFD(Z, θ) − ∇ZFD(Z ′, θ′)∥ ≤ M∥Z − Z ′∥ + M∥θ − θ′∥,

∥∇θFD(Z, θ) − ∇θFD(Z ′, θ′)∥ ≤ M∥Z − Z ′∥ + M∥θ − θ′∥,

∥H(Z, θ) − H(Z ′, θ′)∥ ≤ M∥Z − Z ′∥ + M∥θ − θ′∥.

(iii) (Dissipativity) For any θ ∈ Θ, the function FD(·, θ∗) is (m, b)-dissipative: there
exist some constants m > 1

2 and b ≥ 0 such that ⟨Z, ∇ZFD(Z, θ∗)⟩ ≥ m∥Z∥2 − b.

(iv) (Gradient noise) There exists a constant ς ∈ [0, 1) such that for any Z and θ,
E∥∇Z F̂D(Z, θ) − ∇ZFD(Z, θ)∥2 ≤ 2ς(M2∥Z∥2 + M2∥θ − θ∗∥2 + B2).

Assumption A4. The step size {γk}k∈N is a positive decreasing sequence such that γk → 0
and

∑∞
k=1 γk = ∞. In addition, let h(θ) = E(H(Z, θ)), then there exists δ > 0 such that for

any θ ∈ Θ, ⟨θ − θ∗, h(θ))⟩ ≥ δ∥θ − θ∗∥2, and lim infk→∞ 2δ γk

γk+1
+ γk+1−γk

γ2
k+1

> 0.

Assumption A5. (Solution of Poisson equation) For any θ ∈ Θ, z ∈ Z, and a function
V (z) = 1 + ∥z∥, there exists a function µθ on Z that solves the Poisson equation µθ(z) −
Tθµθ(z) = H(θ, z) − h(θ), where Tθ denotes a probability transition kernel with Tθµθ(z) =∫
Z

µθ(z′)Tθ(z, z′)dz′, such that
H(θk, zk+1) = h(θk) + µθk

(zk+1) − Tθk
µθk

(zk+1), k = 1, 2, . . . . (A3)
Moreover, for all θ, θ′ ∈ Θ and z ∈ Z, we have ∥µθ(z) − µθ′(z)∥ ≤ ς1∥θ − θ′∥V (z) and
∥µθ(z)∥ ≤ ς2V (z) for some constants ς1 > 0 and ς2 > 0.

Proof of Lemma 1

Proof. Lemma 1 is a restatement of Theorem S1 of Liang et al. (2022), and its proof is thus
omitted.

A3.2 Consistency of θ̂
∗
n

A3.2.1 Consistency of the IRO Algorithm

The IRO Algorithm The IRO algorithm (Liang et al., 2018a) starts with an initial weight
setting θ̂

(0) = (θ̂(0)
1 , θ̂

(0)
2 ) and then iterates between the imputation of latent confounders

and regularized optimization for parameter updating:

• Imputation: simulate z
(t+1)
i from the predictive distribution:

π(zi | yi, ai, θ̂
(t)

, σ2
CI) ∝ π(zi | ai, θ̂

(t)
1 , σ2

z)π(yi | zi, ai, θ̂
(t)
2 , σ2

y)
where t indexes iterations, and σ2

CI = (σ2
z , σ2

y).

• Regularized optimization: Given the pseudo-complete data {(yi, z
(t+1)
i , ai) : i =

1, 2, . . . , n}, update θ̂
(t+1) by maximizing the penalized log-likelihood function as

follows:

θ̂
(t+1) = arg max

θ

{ 1
n

n∑
i=1

log π(yi, z
(t+1)
i |ai, θ, σ2

CI) − 1
n

log Pλn
(θ)

}
. (A4)

The penalty function 1
n log Pλn(θ) satisfies some conditions (see Assumption A8) such that

θ̂
(t+1) forms a consistent estimator, uniformly over iterations, for the working parameter

θ(t+1)
∗ = arg max

θ
E

θ̂
(t) log π(y, z|a, θ, σ2

CI)

= arg max
θ

∫
log π(y, z|a, θ, σ2

CI)π(z | y, a, θ̂
(t)

, σ2
z)π(y | a, θ∗, σ2

y)dzdy,
(A5)

where θ∗ denotes the true parameter value of the CI-StoNet model.
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Consistency of Parameter Estimation The main proof for the consistency of parameter
estimation is built on the theoretical framework developed in Liang et al. (2018a). Let
x̃ = (A, Y , Z) be the complete data, which is a collection of observed variable and latent
variables. Define

Gn(θ | θ̂
(t)) =

∫
log π(y, z|a, θ, σ2

CI)π(z | y, a, θ̂
(t)

, σ2
z)π(y | a, θ∗, σ2

y)dzdy,

Ĝn(θ | x̃, θ̂
(t)) = 1

n

n∑
i=1

log π(yi, zi|ai, θ, σ2
CI), zi ∼ π(z|yi, ai, θ̂

(t)
, σ2

z),

Lemma A1. (Theorem 1; Liang et al. (2018a)) Let T denote the total number of iterations
of the IRO algorithm. Under mild regularity conditions (See Assumptions 1-3 in Liang et al.
(2018a)), the following uniform law of large numbers holds for any T , with log(T ) = o(n):

sup
θ̂

(t)∈θT supθ∈Θ

∣∣∣Ĝn(θ | x̃, θ̂
(t)) − Gn(θ | θ̂

(t))
∣∣∣ p→ 0, (A6)

as the sample size n → ∞.

Assumption A6. For each t = 1, 2, . . . , T , Gn(θ | θ̂
(t)) has a unique maximum (up to

loss-invariant transformations) at θ(t)
∗ ; for any ϵ > 0, supθ∈Θ\Bt(ϵ) Gn(θ | θ̂

(t)) exists, where

Bt(ϵ) = {θ ∈ Θ : ∥θ − θ(t)
∗ ∥ < ϵ}. Let δt = Gn(θ(t)

∗ | θ̂
(t)) − supθ∈Θ\Bt(ϵ) Gn(θ | θ̂

(t)),
δ = mint∈{1,2,...,T } δt > 0 holds.

Assumption A6 restricts the shape of Gn(θ|θ̂
(t)) around the global maximizer, ensuring that

it is neither discontinuous nor too flat. Given the nonidentifiability of neural network models,
Assumption A6 implicitly assumes that each θ is unique up to loss-invariant transformations,
such as reordering the hidden neurons within the same layer or simultaneously altering the
signs or scales of certain weights and biases, see e.g., Liang et al. (2018b) and Sun et al.
(2022) for further discussions. Alternatively, the optimal solutions can be considered as
belonging to an equivalence class, subject to appropriate loss-invariant transformations, with
the uniqueness assumption applying to this equivalence class.
Furthermore, consider the mapping M(θ) defined by

M(θ) = arg max
θ′

Eθ log π(Y , Z|a, θ′, σ2
CI).

As argued in Liang et al. (2018a) and Nielsen (2000), it is reasonable to assume that the
mapping is a contraction, as a recursive application of the mapping, i.e., setting

θ̂
(t+1) = θ(t+1)

∗ = M(θ̂(t)),

leads to a monotone increase of the target expectations E
θ̂

(t) log π(Y , Z|a, θ, σ2
CI) for t =

1, 2, . . ..
Assumption A7. The mapping M(θ) is differentiable. Let ρn(θ) be the largest singular
value of ∂M(θ)/∂θ. There exists a number ρ∗ < 1 such that ρn(θ) ≤ ρ∗ for all θ ∈ Θ for
sufficiently large n and almost every observed sequence of (A, Y ).
Assumption A8. The penalty function 1

n log Pλn
(θ) converges to 0 uniformly over the set

{θ(t)
∗ : t = 1, 2, . . . , T} as n → ∞, where λn is a regularization parameter and its value can

depend on the sample size n.
Lemma A2. (Theorem 4; Liang et al. (2018a)) Suppose the conditions of Lemma A1,
Assumptions A6-A8 hold, and supn,t E∥θ̂

(t)
n ∥ < ∞ hold. Then for sufficiently large t and

almost every (A, Y )-sequence, ∥θ̂
(t)
n − θ∗∥ p→ 0, as n → ∞.

A3.2.2 Verification of Assumption A8

To verify Assumption A8, we prove the following lemma.
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Lemma A3. Let θ = (θ1, θ2, . . . , θKn
)T . Suppose that all components of θ are a priori

independent and they are subject to the following mixture Gaussian prior (6). Suppose
Kn ≻ n, θ is sparse at a level of mn ≺ n

c log(Kn/n) for some constant c > 1, and min{|θi| :
θi ≠ 0, i = 1, 2, . . . , Kn} > δn for some constant δn = o(1). If we set σ1 = O(1) and set
(λn, σ0) to satisfy the conditions:

( n

Kn
)c ≺ λn ≺ n

Kn
,

( n

Kn
)c ≺ σ0 ≺ min

{
1 − n

Kn
,

δn√
c log(Kn) − (c − 1) log(n)

}
,

(A7)

then the following result holds:
1
n

∣∣∣log π(θ) + Kn log
(√

2πσ0

)∣∣∣ → 0, as n → ∞. (A8)

Proof. A straightforward calculation shows that

|log π(θ) + Kn log(σ0)| ≲ Kn| log(1 − λn)| + (Kn − mn) σ0λn

σ1(1 − λn) + mn

∣∣∣∣log
(

σ0λn

1 − λn

)∣∣∣∣
− mn

δ2
n

2σ2
1

+ mn(1 − λn)σ1

λnσ0
e

− δ2
n
2 ( 1

σ2
0

− 1
σ2

1
)
.

To ensure Kn| log(1 − λ)| ≺ n, we set

λn ≺ 1 − e−n/Kn ≍ n

Kn
. (A9)

To ensure mn

∣∣∣log
(

σ0λn

1−λn

)∣∣∣ ≺ n, we set

σ0 ≻ ( n

Kn
)c ≻ e−n/mn , λn ≻ ( n

Kn
)c ≻ e−n/mn . (A10)

To ensure (Kn − mn) σ0λn

σ1(1−λn) ≺ n, we set

σ0 ≺ 1 − n

Kn
≺ n

Kn

(1 − λn)
λn

. (A11)

To ensure mn(1−λn)σ1
λnσ0

e
− δ2

n
2 ( 1

σ2
0

− 1
σ2

1
)

≺ n, we set

σ0 ≺ δn√
c log(Kn) − (c − 1) log(n)

≺ δn√
| log(nλn/mn))|

. (A12)

Since δn ≺ o(1) and mn ≺ n, we have mn
δ2

n

2σ2
1

≺ n.

As a summary of (A9)-(A12), we can set (λn, σ0) as stated in (A7), which ensures (A8)
holds.

A3.2.3 Proof of Theorem 1

Proof. Since θ̂
∗
n is a solution to equation (7), it serves as the maximum a posteriori (MAP)

estimator of θ with respect to the incomplete data (by treating Z as missing). By Lemma
A2, we immediately have its consistency with respect to θ∗, i.e.,

∥θ̂
∗
n − θ∗∥ p→ 0, as n → ∞. (A13)

Among the conditions of Lemma A2, we only need to verify Assumption A8, since the others
are generally satisfied. Recall that we adopt the mixture Gaussian prior (6) in computing
the MAP of θ. By Lemma A3, Assumption A8 is satisfied. This concludes the proof.
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A3.3 Proof of Theorem 2

Proof. Consider the joint density function:

π(Z, Y |A, θ∗) = π(Z|A, θ∗
1)π(Y |Z, A, θ∗

2),

under the assumption that the true model is a sparse StoNet (4) parameterized by θ∗. Then
we have

E(Y (a)|θ∗) =
∫

yπ(z|A, θ∗
1)π(y|z, a, θ∗

2)dzdy =
∫

µ2(z, a, θ∗
2)π(z|a, θ∗

1)dz.

Let z(l), for l = 1, 2, . . . , M, denote M independent samples drawn from π(z|a, θ̂
∗
1). Let

̂E(Y (a)|θ̂∗
n) = 1

M

M∑
l=1

µ2(z(l), a, θ̂
∗
2).

By the standard property of Monte Carlo averages, we have

∥ ̂E(Y (a)|θ̂∗
n) − E(Y (a)|θ̂∗

n)∥ p→ 0, as M → ∞. (A14)

On the other hand, by the consistency of θ̂
∗
n = (θ̂∗

1, θ̂
∗
2) (with respect to θ∗) as established

in Lemma 1, we have

∥E(Y (a)|θ̂∗
n) − E(Y (a)|θ∗)∥ p→ 0, as n → ∞, (A15)

since µ2(·) is continuous respect to the parameters (as assumed for the neural network
model).
Combining the convergence results in (A14) and (A15), we have

∥ ̂E(Y (a)|θ̂∗
n)−E(Y (a)|θ∗)∥ ≤ ∥ ̂E(Y (a)|θ̂∗

n)−E(Y (a)|θ̂∗)∥+∥E(Y (a)|θ̂∗)−E(Y (a)|θ∗)∥ p→ 0,

as n → ∞ and M → ∞. This concludes the proof.

A4 Experimental Settings

A4.1 Simulated Examples

A4.1.1 Missing confounders

For case with missing confounders, the hidden layers of the network consists of two modules.
The first module takes the treatment variables as input and imputes the latent confounder,
and the second module takes the concatenated vector of the imputed confounder and the
treatment as input to model the outcome. For separable confounding and non-separable
scenario, the first module contains two layers with size 32 and 6, and the second layer
contains two layers with size 8 and 4. The variance of the noise term ez and ey in (4)
are set as 10−5 and 10−3, respectively. The training consists of three stages - pre-training,
training, and finetuning after pruning, with epochs being 100, 500, and 100, respectively.
The network is trained like a plain vanilla DNN for pre-training and training, but the decay
of imputation learning rate ϵk and network parameter learning rate γk only starts at training.
After training, the network is pruned and refined during the fine-tuning stage with smaller
learning rate. Finetuning stage is usually optional and doesn’t have dramatic improvement
to the overall performance.
The initial imputation learning rate ϵ is set at 5 × 10−4 for non-separable confounding and
10−3 for separable confounding, and decays with ϵk = ϵk

1+ϵk×k0.95 . The initial parameter
learning rate γ is set as 5 × 10−7 and 5 × 10−6, for the first module and the second module,
respectively, and decays with γk = γk

1+γk×k0.7 . For the mixture Gaussian prior 6, λn = 10−6,
σ2

0 = 10−4, and σ2
1 = 10−1.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A4.1.2 Proxy Variable

For case with proxy variable, the hidden layers of the network consists of three modules.
The first module takes the proxy variables as input and imputes the latent confounder, the
second module takes the concatenated vector of the imputed confounder as input to model
the treatment variable, and the third module takes the treatment variable as input and
model the outcome. The first module contains two layers with size 64 and 32, the second
layer contains one layer with size 16, and the third layer contains one layer with size 8.
The variance of the noise term ez, ea, and ey in (16) are set as 10−5, 10−4, and 10−3,
respectively. The training consists of three stages - pre-training, training, and finetuning
after pruning, with epochs being 50, 100, and 50, respectively.
The initial imputation learning rate are ϵ1 = 10−3 and ϵ2 = 10−4, and decays with ϵk =

ϵk

1+ϵk×k0.8 . The initial parameter learning rates are set as γ1 = 5 × 10−6, γ2 = 5 × 10−5, and
γ3 = 5 × 10−7, for three modules, respectively, and decays with γk = γk

1+γk×k0.6 . For the
mixture Gaussian prior (6), λn = 10−6, σ2

0 = 10−4, and σ2
1 = 10−2.

A4.2 Benchmark Dataset

The network structures for benchmark dataset is similar to proxy variable.

A4.2.1 ACIC

The first module contains two layers with size 64 and 32, the second layer contains one layer
with size 16, and the third layer contains one layer with size 8.
The variance of the noise term ez, ea, and ey in (16) are set as 10−5, 10−4, and 10−3,
respectively. The training consists of three stages - pre-training, training, and finetuning
after pruning, with epochs being 50, 100, and 50, respectively.
The initial imputation learning rate are ϵ1 = 5 × 10−3 and ϵ2 = 5 × 10−4, and decays with
ϵk = ϵk

1+ϵk×k0.8 . The initial parameter learning rates are set as γ1 = 10−6, γ2 = 10−5, and
γ3 = 10−7, for three modules, respectively, and decays with γk = γk

1+γk×k0.6 . For the mixture
Gaussian prior (6), λn = 10−6, σ2

0 = 2 × 10−4, and σ2
1 = 10−2.

A4.2.2 Twins

The first module contains two layers with size 64 and 32, the second layer contains one layer
with size 16, and the third layer contains one layer with size 8.
The variance of the noise term ez, ea, and ey in (16) are set as 10−3, 10−5, and 10−7,
respectively. The training consists of three stages - pre-training, training, and finetuning
after pruning, with epochs being 100, 1000, and 200, respectively.
The initial imputation learning rate are ϵ1 = 3 × 10−3 and ϵ2 = 5 × 10−5, and decays with
ϵk = ϵk

1+ϵk×k0.8 . The initial parameter learning rates are set as γ1 = 10−3, γ2 = 10−5, and
γ3 = 10−10, for three modules, respectively, and decays with γk = γk

1+γk×k0.95 . For the
mixture Gaussian prior (6), λn = 10−6, σ2

0 = 2 × 10−5, and σ2
1 = 10−2.

20


	Introduction
	CI-StoNet for Missing Confounders
	The CI-StoNet Approach
	Theoretical Guarantees
	A Simulation Study

	Causal StoNet for Proxy Variables
	Numerical Experiments
	Simulated Examples
	Benchmark Datasets


	Conclusion
	Appendix
	Supplementary Examples
	Figures for the Simulation Study in Section 2.3
	Simulated Examples
	Benchmark Datasets

	Extension to other Causal Structures
	Outcome Depending on Proxy
	Treatment Depending on Proxy

	Theoretical Proofs
	Convergence of bold0mu mumu (k)
	Consistency of n*
	Consistency of the IRO Algorithm
	Verification of Assumption A8
	Proof of Theorem 1

	Proof of Theorem 2


	Experimental Settings
	Simulated Examples
	Missing confounders
	Proxy Variable

	Benchmark Dataset
	ACIC
	Twins



