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Abstract
Recent advancements in protein design involve
generating backbone structures first, followed by
sequence design. Among these methods, one of
the most popular is ProteinMPNN. A key limita-
tion of ProteinMPNN is its inability to account
for varying backbone quality at a per-position
level, which is often problematic with structures
containing both highly certain and relatively low-
certainty regions. To address this, we propose
introducing (1) a larger amount of Gaussian noise
at a per-residue level and (2) labeling the amount
of noise added to each residue as a new feature
called a “noise label” to inform the model about
backbone uncertainty or resolution. This enhance-
ment improves sequence design success rates, as
measured by the TM-score between the desired
and predicted structures from the sequence. For
partially redesigned scaffolds (i.e., motif scaffold-
ing for enzymes or functional proteins), we in-
troduce noise labels to the redesigned scaffolds
while maintaining a fixed noise label of 0 for mo-
tif residues. This results in higher success rates
for motif scaffolding structures, with reduced mo-
tif RMSD and overall structure RMSD. Incor-
porating residue-level noise label improves the
designability of input protein backbones, as mea-
sured by correct prediction of the desired structure
by AlphaFold2, from single sequence input.

1. Introduction
Recent advancements in de novo protein generation using
deep learning have led to notable progress in addressing var-
ious challenges associated with generating diverse and func-
tional proteins (Notin et al., 2024; Pan & Kortemme, 2021).
One exemplary approach is diffusion models for protein
design, exemplified by RFdiffusion and Chroma.(Watson
et al., 2023; Ingraham et al., 2023). These models randomly
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<anon.email@domain.com>.

Figure 1. Overview of the protocol: (A) The model is trained to
predict wild-type sequences given PDB structures with residue-
wise Gaussian noise and noise labels as inputs. (B) For motif
scaffolding, to maximize designiability of sequences, we set 0 Å
noise labels for motif residues and set non-zero noise labels for
scaffolding residues to reflect lower confidence of backbone.

initialize residue frames and refine the structure through
iterative structure predictions, gradually reducing noise to
achieve biophysically feasible structures. The resulting pro-
tein structures demonstrate highly diverse structures, show-
casing substantial generalization capabilities beyond the
domain of natural proteins.

Generative models have been widely applied to two pro-
tein design tasks: (i) unconditional, and (ii) conditional
backbone generation. The unconditional regime generates
novel and biologically feasible proteins (Yim et al., 2024).
The conditional regime produces proteins conditioned on
partial structural information or other functional properties.
One common task, known as motif scaffolding (Wang et al.,
2022), designs a backbone around a desired motif by fixing
the coordinates of motif residues. This strategy is widely
used in various fields, such as vaccine and enzyme design
(Walls et al., 2020; Procko et al., 2014; Correia et al., 2015).
Experimental validation has shown that motif scaffolding
using diffusion models can generate high-quality structures
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(Watson et al., 2023; Ingraham et al., 2023).

Once backbone structures are designed, sequence design
models can generate amino acid sequences likely to fold into
the provided structure. ProteinMPNN has been experimen-
tally validated as a robust sequence design model that can be
extended to de novo structures (Dauparas et al., 2022; Sum-
ida et al., 2024). In sequence design models, “robustness”
often refers to the ability to tolerate minor perturbations in
atomic coordinates. This consideration is important when
the protein backbone geometry is uncertain at atomic resolu-
tion (Dauparas et al., 2022). This robustness is achieved by
adding Gaussian noise to backbone coordinates during train-
ing, which prevents the model from memorizing the input
structures and designs sequences less sensitive to structural
artifacts. In the training process of ProteinMPNN, backbone
atoms are subjected to minor perturbations using Gaussian
noise with a standard deviation of 0.1 Å to 0.3 Å. The model
trained using 0.3 Å noise levels achieves the highest success
rates, measured by RMSD between AlphaFold2 predicted
structure and the desired structure.

However, challenges arise when utilizing ProteinMPNN for
de novo designed proteins, particularly in large proteins
and specific motif scaffolds. This becomes apparent as se-
quences designed by ProteinMPNN with RFdiffusion motif
scaffolding structures can still result in low success rates
for some designs (Watson et al., 2023). We hypothesize
that this is due to the model being predominantly trained on
experimentally determined crystal structures with a small
amount of noise. This may not adequately capture the un-
certainty arising from structures with a higher degree of
noise. Thus, ProteinMPNN trained on uniform Gaussian
noise may not be able to distinguish which regions of the
structure are more uncertain than others. For example, in
motif scaffolding, the coordinates of motifs from experi-
mental results may be more accurate than the surrounding
backbone structure generated by the model.

To address the challenge of sequence design robustness, we
propose a novel strategy incorporating per-position labeling
noise during training, with the amount of noise included
as an additional feature. As illustrated in Figure 1, our
approach integrates noise labels into the training process
unlike the original ProteinMPNN, which is trained using
uniformly distributed Gaussian noise on every atom without
noise labels. During inference, instead of adding actual
noise to the backbone, we introduce noise labels to modu-
late the resolution of the backbone at individual positions,
thereby enhancing sequence designability and diversity. We
can decrease or eliminate noise from specific motifs, ensur-
ing the fidelity of crucial structural elements.

Our primary contributions are:

1. Enhancing the model’s ability to sample better sequences

for the query structure by incorporating a noise label for
each residue, thereby increasing the success rate of designs.

2. Facilitating the generation of partially fixed structures,
such as motif scaffolding, by assigning different noise labels
to the fixed motif and the freely generated parts.

2. Related Work
2.1. Generative models of protein backbones

RFdiffusion is a protein backbone design model achieved
through fine-tuning the RoseTTAFold structure prediction
network (Baek et al., 2021) on protein structure denois-
ing tasks (Watson et al., 2023). It demonstrates high per-
formance across various protein design tasks, including
monomer, binder, oligomer, and active site design, show-
casing its versatility and efficacy through experimental char-
acterization of numerous designed protein assemblies and
functions. For each frame representing a residue, the model
updates it by moving in the predicted direction, introducing
some level of noise to create input for the subsequent step.
The type and magnitude of this noise, along with the size
of the reverse step, are selected to ensure that the process
of removing noise matches the distribution of the original
noise.

Chroma employs a method that combines non-equilibrium
reverse diffusion with equilibrating Langevin dynamics to
design backbone structures by numerically integrating a
stochastic differential equation (Ingraham et al., 2023). The
result indicates that near-exact design often significantly im-
proves one-shot refolding across AlphaFold and ESMFold.
A diffusion time parameter (t) of 0.5 for generated struc-
tures yields robust refolding results. However, a value of 0
for t may be more appropriate for experimentally precise
structures. Intermediate values can offer a useful balance
between robustness and precision.

AlphaFold2 Hallucination By inverting the AlphaFold2
(AF2) structure prediction model, sequence generation is
guided towards adopting a desired fold, through a process
termed “hallucination” (Anishchenko et al., 2021). This pro-
cess optimizes a randomly initialized amino acid sequence
using a specified loss function and the gradient descent al-
gorithm to find the desired sequence. Then, the method
backpropagates through AF2 to generate sequences that
refold into a target protein structure with high AF2 confi-
dence pLDDT (per-residue model confidence score) and
low pAE (predicted aligned error). Experimental evidence
has validated that numerous generated proteins fold into
their intended structures (Goverde et al., 2023). Though
AF2 hallucination itself generates sequences, we redesigned
it with ProteinMPNN to compare success rates based on
backbone structures with other models.
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2.2. Sequence designs Models

ProteinMPNN is a message-passing neural network de-
signed for protein sequence design based on a given pro-
tein structure (Dauparas et al., 2022). Given a backbone
protein structure, it utilizes an encoder that takes in node
features representing residues and edge features, encom-
passing Euclidean distances and primary sequence space
distances between residues. This encoder updates nodes and
edges by gathering information from neighboring residues
through message passing, with edges also undergoing up-
dates. The decoder then decodes per-position amino acid
residues in an autoregressive manner. Influenced by exist-
ing sequence and structural data, ProteinMPNN has been
shown to enhance natural proteins’ expression, stability, and
functionality (Sumida et al., 2024).

3. Method
3.1. Incorporate per residue Gaussian noise labels

ProteinMPNN initializes node embeddings for every residue
with a 128-dimensional zero vector. For the edge embed-
ding, it computes the distance between backbone atoms,
applying randomly sampled noise from a standard normal
distribution to these atoms. Here, we re-trained Protein-
MPNN with per-residue Gaussian noise, sampled from a
normal distribution multiplied by a maximum noise label
constant. The 128th dimension of each vector was replaced
with the applied noise level. As shown in Algorithm 1, we
apply the same noise to five atoms within a single residue
rather than assigning different noise levels to each atom. We
train the ProteinMPNN model with PDB multimer datasets
with 48 nearest neighbors. For the baseline model, we train
using the same noise-adding method but without noise la-
bels. During validation, the label noise remains consistent
with the training set, and we refrain from adding any back-
bone noise to the structure.

4. Experiments
We analyze the effectiveness of our approach in the context
of two sequence design tasks: 1) unconditional protein de-
sign and 2) motif scaffolding. For the baseline experiments,
we compare with the v 48 030 model, which is the origi-
nal ProteinMPNN model trained with 0.3 Å and 48 nearest
neighbor residues.

4.1. Sequence Design on Unconditional Protein Design

To evaluate on a wide range of length scales, we sampled 20
unconditional structures from each length scale: 100, 200,
300, 400, 500, 600, 700, 800, and 1000, for each model -
AlphaFold2 Hallucination, RFDiffusion, and Chroma. Then
for each unconditional structure, we generate 8 sequences

Algorithm 1 Modified Sequence Design with Label Noise
Input: X (backbone coordinates), η (noise label), ϵmax
(maximum noise level)
if training then

r ∼ N (0, 1)
n = r

∥r∥
s = (N (0, 1) · ϵmax)
Nscaled = n · s
η = reshape(s)
X = X +Nscaled

else if inference then
s = (N (0, 1) · ϵmax)
η = reshape(s)

end if
Return X , η

Table 1. Comparing sequence diversity across noise labels, no
noise labels, and v 48 030 model for designs from AlphaFold2
Hallucination (AD), RFdiffusion (RFD), and Chroma.

DIVERSITY (↑)
METHOD AD RFD CHROMA

TRAINED W/ NOISE LABEL 0.3975 0.4165 0.4183
TRAINED W/O NOISE LABEL 0.3474 0.4006 0.4096
V 48 030 0.3355 0.3853 0.3973

and refold them using AlphaFold2 and ESMFold based on
a single-sequence prediction of the structure, allowing for
three recycling steps. We obtained the TM score (Zhang
& Skolnick, 2005) between the original design structure
and the predicted structure, then plotted the average TM
score. The backbone scaffolds generated from different
models may embed varying amounts of noise or uncertainty.
To calibrate the optimal range of noise for inference, we
compute unconditional logits from the ProteinMPNN using
different levels of constant noise labels, and calculate the
cross-entropy score between the unconditional logits and
sampled sequences 4, measures the dissimilarity between
the model’s predicted logits and the sampled sequences. By
comparing the scores between a model trained without noise
labels and one trained with noise labels, we can approxi-
mate the optimal range of noise labels that may reflect the
model’s certainty with the sampled sequences when sam-
pled with a noise label. A noise level showing a lower
cross-entropy score with designs may inherently indicate
quality or resolution of the input backbone.

4.2. Sequence Design on Motif Scaffolding

We collect motif scaffold designs from the RFdiffusion pa-
per (Watson et al., 2023). These designs maintain the fixed
3D structure of the motif while redesigning the scaffold with
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Figure 2. Average TM score of designs between the AlphaFold2-predicted structure and the input structure: (A) AlphaFold2 Hallucination,
(B) RFDiffusion, (C) Chroma.

Figure 3. ∆TM score between sampled sequences from the noise label model and the v 48 030 model: (A) AlphaFold2 hallucination, (B)
RFDiffusion, and (C) Chroma designs. For each backbone, 8 sequences are generated, and the maximum TM score is computed.

varied lengths, without fixing the motif’s position within the
proteins. Proteins are generated either by adding noise or
without noise using reverse diffusion. In sequence design,
we compare two scenarios: one where we add the same
noise label to all positions, and another where we add the
same noise label to all positions except the motif position,
where we set the noise label to 0 to indicate that the region
is highly certain. We refold the generated sequences using
ESMFold to evaluate designability by metrics pLDDT and
root mean squared distance (RMSD). The RMSD quantifies
the disparity between the structure predicted by ESMFold
and the original structure from which the sequence origi-
nated. Here, we evaluate either motif RMSD, total RMSD,
or both between the predicted and input structures.

5. Results
5.1. Noise label model enhances refolding success

Figure 2 illustrates that the inclusion of noise labels during
sequence sampling leads to a higher average TM score com-
pared to the v 48 030 model. For each individual backbone,
∆ TM score between sequences sampled by the noise label
model and v 48 030 were frequently positive, implying that
the sequences from the noise label model often have higher
TM scores than those from v 48 030 (Figure 3). In the case
of AF2 hallucination designs, the efficacy of noise labels

is limited, possibly due to the high certainty of input struc-
tures; informing the model about noisy positions does not
significantly enhance sequence sampling for better-designed
sequences. However, for RFdiffusion and Chroma designs,
moderate noise labels improve the average TM score of gen-
erated sequences, surpassing models without noise labels
and the v 48 030 model. Furthermore, sequences generated
from the noise label model show higher sequence diversity
than the v 48 030 model. Sequence diversity is measured
by the Levenshtein distance.(Berger et al., 2020) between
sequences of the same length (Table 1).

To find the optimal noise label for each design, considering
that designs sampled from different generating methods
with varying quality, one strategy is to evaluate the cross-
entropy between sequences sampled with varying noise
labels, ranging from 0 to 1. Based on the ProteinMPNN
cross-entropy between output logits and sampled sequences,
this evaluation approximates the model’s confidence for a
sampled sequence. It helps determine the optimal noise
label for specific design types. As shown in Figure 4, we
evaluate the cross-entropy of all designs in Figure 2 with
varied noise labels. AF2 hallucination designs achieve the
lowest cross-entropy, indicating the highest confidence at
a zero noise label. However, RFDiffusion and Chroma
designs achieve the lowest cross-entropy between noise
levels of 0 to 0.5, indicating that these generated backbones
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Figure 4. Cross-entropy scores between model-predicted logits and sampled sequences at varied noise inputs (A) AlphaFold2 hallucination,
(B) RFDiffusion, and (C) Chroma designs.

may be of lower quality compared to those generated by
AlphaFold2 hallucination. This may explain why we do not
see a significant improvement by increasing the noise label
for AF hallucinated backbones, compared to RFDiffusion
and Chroma (Figure 2, 3).

5.2. Noise label model helps specify motifs in motif
scaffolding designs

In Figure 5A, we plot the success rate of motif scaffold-
ing designs. Compared to the success rate of the v 48 030
model (marked by an ‘x’), sequences generated from the
noise-labeled model achieved an overall higher success rate
for the motif scaffolds. As shown in the right plot of Fig-
ure 5B, sequences generated by the noise label model with
an input of motif noise label 0 achieved a higher success
rate for the motif compared to the sequences generated by
the model with a constant sequence recovery rate for all
residues. For an overall scaffold RMSD < 2, the success
rate of the noise model with zero motif noise shows that 60%
of data points have a higher success rate than noise applied
to all residues. Notably, for motif RMSD < 1, 85.0% of data
points have higher success rates. It supports our hypothesis
that assigning zero noise labels to the motif residues helps
to increase precise sampling around the motif while main-
taining overall robustness. Adding label noise to the entire
structure still helps in sampling better sequences compared
to the v 48 030 model and zero noise label models.

6. Conclusion
In summary, our study presents a robust sequence design
method that incorporates a noise label during training to
inform the model about backbone certainty. This integration
significantly improves the success rate of sequence design,
as evidenced by the TM score between input and refolded

structures. Our experiments demonstrate that including
noise labels during inference yields the highest success rates,
particularly in backbone generation using hallucination and
diffusion models. Additionally, in motif scaffolding designs,
we introduce noise selectively to the backbone while main-
taining a fixed noise label of 0 for motif regions, ensuring
motif certainty. This approach increases the success rate
by reducing both the total backbone RMSD and the motif
RMSD. We anticipate that our model will facilitate the gen-
eration of robust sequences for de novo protein backbones
across various protein generation methods.
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