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Abstract

Reinforcement learning trains policies specialized for a single task. Meta-reinforcement
learning (meta-RL) improves upon this by leveraging prior experience to train policies for
few-shot adaptation to new tasks. However, existing meta-RL approaches often struggle to
explore and learn tasks effectively. We introduce a novel meta-RL algorithm for learning
to learn task-specific, sample-efficient exploration policies. We achieve this through task
reconstruction, an original method for learning to identify and collect small but informative
datasets from tasks. To leverage these datasets, we also propose learning a meta-reward
that encourages policies to learn to adapt. Empirical evaluations demonstrate that our al-
gorithm achieves higher returns than existing meta-RL methods. Additionally, we show that
even with full task information, adaptation is more challenging than previously assumed.
However, policies trained with our meta-reward adapt to new tasks successfully.

1 Introduction

Research in reinforcement learning (RL) has led to many impressive achievements and powerful methods in
the past decade (Sutton, 2018). However, real-world usage is still not widespread, as the algorithms used to
solve RL problems often suffer from low sample efficiency and poor generalization to new tasks (Hospedales
et al., 2021; Beck et al., 2023b). Meta-reinforcement learning (meta-RL) is a re-emerging approach that
tackles these issues. It follows the meta-learning approach of ’learning to learn’ (Schmidhuber, 1987; Thrun
& Pratt, 1998), making it well-suited for few-shot adaptation settings. In few-shot adaptation, agents aim
to become optimal in any new task from a given distribution of tasks, after collecting only a few episodes.
Instead of directly learning to solve tasks from scratch, meta-RL finds RL algorithms that quickly learn the
optimal policy. While meta-RL agents are general, the algorithms they produce are task-specific. These meta-
learned algorithms contain prior knowledge of the task distribution. By leveraging this prior, they quickly
learn the optimal method of exploring or solving a task. Therefore, for any task in the distribution, meta-
learned algorithms are expected to be more sample-efficient than and outperform standard RL algorithms.

Meta-RL has already been successfully applied to ad hoc teamwork (Zintgraf et al., 2021a; He et al., 2023;
Mirsky et al., 2022), robotics (Nagabandi et al., 2018; Zhao et al., 2022), human-robot interaction (Gao et al.,
2019; Ballou et al., 2023), multi-agent RL (Yang et al., 2022; Xu et al., 2022), and sim-to-real transfer (Arndt
et al., 2020). Despite this, meta-RL has not yet fully addressed the challenges it aims to overcome (Stoican
et al., 2023). While recent years have seen several improvements, meta-RL still struggles with adapting to
complex tasks. A significant issue is the difficulty of designing sample-efficient exploration strategies for
solving complex, dynamic RL environments. The advantage of meta-RL is that these strategies do not have
to be manually crafted, but can be learned from data for each particular task distribution. Often, meta-RL
agents interact with a task for a few episodes, before being evaluated on that same task. These agents can
be seen as exploring the task by using an implicit or explicit meta-learned exploration strategy. However,
implicit exploration may be too sample inefficient for few-shot adaptation (e.g., agents that are not using
their task distribution priors effectively during exploration). Recent approaches have shown that explicitly
optimizing for sample-efficient exploration leads to more powerful few-shot adaptation agents (Beck et al.,
2023b). Moreover, the difficulties of few-shot adaptation extend beyond task exploration. Our empirical
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results complement those of Beukman et al. (2024) in showing that optimizing a policy that leverages
learned priors to solve new tasks can be non-trivial.

To get a clear high-level picture of how in-context meta-RL agents operate, we consider separating it into
three main parts, as shown in Fig. 1. The first phase is task exploration. After a task is sampled from the
task distribution, a policy πexplore collects a "few" episodes of data from it. Optionally, this policy may be
guided by an encoder fu. The goal of πexplore is to collect data that contains useful information about the
task. This information is then extracted by a second encoder g during the task learning stage, and encoded
into a task context vector. Finally, in the task-solving phase, a policy π attempts to optimally solve the task
at hand. This final stage is similar to standard RL, except that π is conditioned on the task context.
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Task Distribution
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ContextEncoder fu

Figure 1: A high-level overview of in-context meta-RL.

There are several ways of learning to reinforcement learn. The approach previously described, and used
in this work, is called in-context meta-RL. In-context policies πexplore and π use task context information
provided fu and g to explore and solve tasks, respectively. Note that this three-phase paradigm is not always
cleanly separated in practice, e.g., encoders fu and g may share information or not be separate encoders at
all, a single policy may be used for both task exploration and solving, etc. Nevertheless, this view helps form
an intuitive understanding of meta-RL. Besides aiding intuition, we will also be referencing Fig. 1 throughout
this paper to clarify which of the three components we are discussing.

We introduce Latent Space Exploration via Task Reconstruction (LaSER), a novel meta-RL algorithm
for few-shot adaptation.1 The primary objective of LaSER is to learn task-specific exploration strategies.
The core idea behind our method is to identify small datasets that capture rich task-specific information
with minimal redundancy. We achieve this by introducing a novel approach of meta-learning by linearly
reconstructing these small datasets into much larger datasets collected from the same task. We refer to this
process as task reconstruction. It serves as a measure of how effective a given small dataset is for few-shot
adaptation. Following this measure, LaSER meta-learns a latent space for directly identifying such small
datasets, without having to first collect a larger one. This allows training a sample-efficient exploration
policy that can collect task-specific data online. We then use the context vectors encoded from this data
to train a policy that solves tasks. However, we show that previous approaches to training such a policy
fail, even when using optimal task contexts provided by an oracle. Moreover, this failure persists even when
the task distribution is replaced by a pre-defined set of tasks. As a result, LaSER’s secondary objective
is to learn to use task contexts effectively. To achieve this, we propose an augmented RL objective that
encourages the task policy to continue exploring until contexts are effectively exploited.

We summarize our main contributions as follows.

1. We formalize an important assumption about the data required for few-shot adaptation. This forms
the basis of our task reconstruction method. We then show how an encoder built from these ideas
can learn representations that facilitate exploration.

1Our code is publicly available in an anonymized repository at https://anonymous.4open.science/r/LaSER-anon-4BBB.
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2. We leverage these representations to design an intrinsic reward for training a task-specific, sample-
efficient exploration policy.

3. We propose using our aforementioned augmented objective to improve the adaptability of task-
solving policies through directed exploration of the task context space. This simple change allows
meta-RL policies to be trained with standard RL algorithms.

4. We introduce a hybrid encoder architecture composed of a unidirectional and a bidirectional model.
The former is used for online task exploration, while the latter offers richer task contexts.

We formalize the meta-RL problem and introduce the necessary background in Sec. 2. In Sec. 3, we address
the objectives described above and introduce LaSER, our novel meta-RL algorithm. We position our work
within the meta-RL literature in Sec. 4. In Sec. 5, we provide empirical results by evaluating LaSER against
existing meta-RL algorithms. We first assess LaSER’s performance and adaptability to new tasks after a
short exploration phase (i.e., four episodes). We then analyze each individual component, i.e., exploration
policy, encoder, and task policy. Finally, we conclude and provide directions for future research in Sec. 6.

2 Preliminaries

Meta-Reinforcement Learning. Meta-RL extends the standard RL problem. Instead of learning from a
single task, a meta-RL agent trains on a distribution of tasks. Usually, the agent’s objective is adaptation
to new tasks. We consider a probability distribution p(M) over tasks and define each task Mi ∼ p(M) as
a Markov decision process (MDP) (S,A, Ti, Ri, γ, H). All MDPs share the set of states S, set of actions A,
discount factor γ, and horizon H. However, the transition function, given as the probability Ti(s′ | s, a,Mi)
of transitioning from state s to state s′ by taking action a in task Mi, is task-dependent. Similarly, the
reward function Ri is task-dependent. An episode τ = {st, at, rt}H

t=1 is a sequence of states, actions, and
rewards, such that at each time-step t a tuple (st, at, rt) is collected. For a distribution over episodes P π

Mi
(τ),

we denote τ ∼ P π
Mi

to be an episode collected by following a policy π(a | s) in task Mi. The return of an
episode τ is the accumulated discounted reward G(τ) =

∑H
t=1 γtrt.

In-Context Meta-RL A common approach to solving meta-RL problems is in-context meta-RL, where a
pretrained policy acts as an adaptable RL algorithm (Duan et al., 2016; Laskin et al., 2023; Moeini et al.,
2025). Formally, given a context vector ci that describes a task Mi, the goal is to train a policy π to
optimally solve Mi by taking in-context actions a ∼ π(· | s, ci), conditioned on both the state s and the
context ci. The meta-RL agent can therefore learn new policies from ci, even post-training. A standard
approach is to concatenate s and ci, then optimize the in-context policy π(a | s, ci) using standard RL
algorithms. However, this simple method may not generalize well across tasks in complex task distributions
(Beukman et al., 2024). To address this, we propose a novel meta-RL optimization algorithm that explicitly
uses ci to train in-context policies.

Meta-RL for Few-Shot Adaptation. In few-shot adaptation settings, in-context meta-RL attempts to
optimize π to solve previously unseen tasks Mi ∼ p(M) in a sample-efficient manner. However, because
the meta-RL agent lacks knowledge of the task-specific dynamics Ti and Ri, it must first collect data
from Mi. The few-shot constraint limits this to K episodes per task. We call this a K-shot adaptation
problem. Following Beck et al. (2023b), we refer to a sequence of K episodes collected in Mi as a meta-
episode D(K)

i = {τk}K
k=1. We can then compute a latent context vector ci = g(D(K)

i ) using an encoder g.
Importantly, ci should capture information about Ti and Ri, to allow generalization to new tasks. To collect
such meta-episodes, we follow Liu et al. (2021) and define a separate exploration policy πexplore, decoupled
from the task-solving policy π. For a given task, its goal is to collect an informative meta-episode, without
necessarily achieving a high return. We define πexplore(a | s, Γi) to be an in-context policy, where Γi is a
task representation encoded specifically for exploration. Although we can choose Γi to be the same as ci, it
is less restrictive to use a new representation. Given this setup, we generalize Liu et al. (2021) and consider
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agents that maximize the meta-RL objective

J (π, πexplore, g) = EMi∼p(M),D(K)
i

∼P πexplore
Mi

[
V π

i

(
g(D(K)

i )
)]

, (1)

where V π
i (ci) = E

τ∼P
π(ci)
Mi

[G(τ)]

is the expected return in task Mi for the in-context policy π conditioned on ci.

Training Setup. Meta-training is the process of training a meta-RL agent. The goal is to learn a sample-
efficient algorithm for optimizing policies for each task encountered from p(M). The agent’s ability to
generalize is evaluated during meta-testing, by solving new tasks from p(M). For each meta-testing task,
the agent is first allowed to collect and learn from K episodes. Then, it is evaluated according to Eq. 1. We
refer to collecting K episodes from P πexplore

Mi
as task exploration. This type of exploration is meta-learned to

be task-specific. Besides task exploration, the agent still performs the standard RL exploration. To achieve
their objectives, π and πexplore have to explore their environment during meta-training. This is commonly
referred to as meta-exploration (Beck et al., 2023b). During meta-testing, there is no meta-exploration.

Data Representation. States, actions, and rewards can be represented as vectors or scalars. So, a timestep
(st, at, rt) is a d-dimensional vector, where d is the sum of the dimensions of st, at, and rt. We extend this to
episodes. For H ′ = Hd, an episode τ ∈ RH′ is a vector of H concatenated timesteps. We can further extend
this to meta-episodes. For a meta-episode D(K) ∈ RH′×K composed of K episodes, the k-th column D(K)

:,k
corresponds to the k-th episode. Episodes and meta-episodes can therefore represented as tensors instead of
sequences, when convenient.

3 Methods

In this section, we present our approach to in-context meta-RL and use the ideas we introduce to design
the main components of our proposed algorithm, LaSER. We structure this section based on the three-stage
meta-RL paradigm in Fig. 1. Sec. 3.1 corresponds to the task-solving phase, while Secs. 3.2 and 3.3 focus on
the task exploration part. Sec. 3.4 continues task exploration but also discusses task learning, with Sec. 3.5
corresponding to the combination of these three stages into a complete meta-RL algorithm.

Specifically, in Sec. 3.1, we introduce a novel approach for in-context RL optimization. Given a context
vector ci for taskMi, we propose augmenting the standard RL objective with a term that encourages meta-
exploration whenever π can achieve better returns by improving its understanding of ci. Then, Sec. 3.2
discusses the training of an exploration policy πexplore for collecting the data required to compute ci. It
assumes a given encoder fu for training πexplore, with fu modeled as a unidirectional transformer (Vaswani
et al., 2017) of size dmodel. We propose a novel method of training fu for sample-efficient task-specific
exploration in Sec. 3.3. We first introduce an important assumption on the data collected for few-shot
adaptation, then show how a practical learning objective, i.e., task reconstruction, can be built from it.
Next, we describe our proposed architecture for encoders fu and g in Sec. 3.4. We model g as a transformer,
as their ability to process each timestep in the context of an entire meta-episode has been shown to be
advantageous in meta-RL settings (Melo, 2022; Shala et al., 2024). Finally, in Sec. 3.5, we introduce our
meta-training and meta-testing algorithms. From this point forward, we simplify notation and drop the task
subscript i whenever it is clear that we are referring to task-specific data or representations.

3.1 Task Solving

As discussed in Sec.2, Beukman et al. (2024) show that optimizing an in-context policy π(at | st, c) to
adapt to and solve tasks is non-trivial. We therefore introduce an approach for augmenting rewards with a
term that encapsulates performance in the meta-RL setting. The agent can leverage this term to perform
directed meta-exploration in the context of c. With this new reward, we could overcome the aforementioned
limitation by simply optimizing π(at | st, c) using standard RL algorithms.

We start from the hypothesis that the task policy π is suboptimal because it fails to understand that c offers
important information about the current task Mi. In a standard RL setting, a policy π(at | st) would need
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to explore enough to understand the (single) task it is expected to solve. In our meta-RL setting, we have
an additional meta-exploration objective. The policy π(at | st, c) must understand the relationship between
st and c, at any timestep t where the optimal action depends on both st and c. In other words, π needs to
meta-explore more than in a standard RL setting.

Following this idea, we propose a method that encourages π to meta-explore more if the task context c is
not properly used. Let V (st, c) and V (st) be the approximated value functions at state st, with and without
considering c, respectively. We make the assumption that, for an optimal policy, V (st) ≤ V (st, c) should
hold at any timestep t. That is, using c should never decrease performance. If this does not hold for π
in some state st, then the agent should meta-explore more from st. We adopt the standard approach of
encouraging exploration by maximizing entropy (Williams & Peng, 1991), with the important distinction
that this maximization is guided by the context c. This idea is implemented as a meta-reward

r+
t = rt + β w(st, c) S[π](st, c), (2)

where w(st, c) = max (0, tanh (V (st)− V (st, c)− ζ)) (3)

is a non-negative dynamic weight on the entropy S of π(· | st, c), rt is the environment reward, and β is a
constant. Note that w(st, c) is non-zero only when V (st)− V (st, c) ≥ ζ, for a given threshold ζ ∈ (−∞, 0].

Intuitively, w(st, c) > 0 means that the agent is disregarding the information provided by c and should
meta-explore more from state st. When w(st, c) = 0, i.e., V (st) ≤ V (st, c) + ζ, we recover the original
RL objective, with r+

t = rt. By simply replacing rt with r+
t , π can now be optimized using standard RL

algorithms. We use the proximal policy optimization (Schulman et al., 2017, PPO) algorithm in our work.
Furthermore, we stabilize PPO (Wang et al., 2020; Sun et al., 2022; 2023; Moalla et al., 2024) using proximal
feature optimization (Moalla et al., 2024, PFO). In Appendix A, we provide a short overview of PPO and
explain our method of applying it to meta-RL.

To get a better understanding of the meta-reward in Eq. 2, we analyze its effect on the gradient of the RL
objective. Consider a simple policy gradient objective Jt(π) = Est∼dπ

t ,at∼πt [Gt] computed at timestep t,
where dπ

t (st) is the distribution over states when following policy π, and Gt =
∑∞

l=0 γlrt+l is the discounted
return from action at onward. By replacing rt with r+

t , we can derive the augmented return G+
t (π) =

Gt + β
∑∞

l=0 γlw(st+l, c)S[π](st+l, c). Given the new meta-RL objective J +
t (π) = Est∼dπ

t ,at∼πt [G+
t (π)], the

gradient w.r.t. (the parameters of) π is

∇πJ +
t (π) = Est∼dπ

t ,at∼πt

[
Gt∇π log π(at | st, c)

+ β

( ∞∑
l=0

γlw(st+l, c)S[π](st+l, c)
)
∇π log π(at | st, c)

+ β

∞∑
l=0

γlw(st+l, c)∇πS[π](st+l, c)
]

(4)

The first term is the gradient of the standard RL objective Jt(π). The second term weighs the policy gradient
by the entropy of π in all future visited states, where w acts as a soft on-off switch, ignoring states that have
already been meta-explored properly. Intuitively, the update increases the likelihood of taking action at if it
leads to states in which π has both high entropy and a poor understanding of c. The agent may therefore
be directed towards states that benefit from additional meta-exploration. This is an advantage, as reaching
such states more often implies better learning of how c can be used there. The entropy in all of these states
is then increased in the third term, which is appropriately weighted by w and γl. This ensures sustained
meta-exploration from any st+l with w(st+l, c) > 0.

This section introduced a novel meta-exploration method for meta-training task policies. However, it does
not address task exploration. We tackle this distinct challenge in the next subsection.
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3.2 Task Exploration Policy

To create a context c for identifying a task, the meta-RL agent must first learn to explore tasks. The
objective of the exploration policy πexplore is to collect a single informative meta-episode D(K) for a task
Mi ∼ p(M). Specifically, πexplore should collect information about the task-specific dynamics of Mi while
avoiding irrelevant or redundant exploration. Ultimately, D(K) should enable a task policy π to become
optimal in Mi, assuming that π has enough prior knowledge about the task distribution p(M).

The encoder fu computes a matrix Γ = fu(D(K)) ∈ R(Hdmodel)×K . Here, Γ is a latent representation of the
K episodes in D(K), with Γ:,k denoting the representation of the k-th episode D(K)

:,k . We optimize fu such
that the similarity between Γ:,k and Γ:,k′ is inversely proportional to how useful it is to collect episode D(K)

:,k′ ,
after having already collected episode D(K)

:,k , for any k, k′ ∈ [K], k < k′.2 We measure similarity using the
pairwise cosine similarity matrix SC(ΓT, Γ) ∈ RK×K . Lower scores correspond to lower similarity between
the K episodes, which in turn corresponds to D(K) being more informative. In Sec. 3.3, we show how to
meta-train a function fu with this property.

We use this idea to optimize πexplore for task exploration. We begin by computing the average column-
wise similarity in D(K) as a vector d = 1

K SC(ΓT, Γ)T111 ∈ RK . Here, dk represents the average similarity
between the k-th episode and all other episodes. Therefore, a meta-episode D(K) contains an informative
and diverse set of episodes if d ≈ 0. Based on this, we define an intrinsic reward function for encouraging
task exploration. For the k-th exploration episode, the agent receives a task-dependent reward

R̃k(sk
t , ak

t ) =
{

exp
(
− 1

σ d2
k

)
if the k-th episode terminates at timestep t,

0 otherwise,
(5)

where σ is a constant, and sk
t and ak

t denote the state and action, respectively, at timestep t of episode
k. We use PPO to train πexplore to maximize this intrinsic reward. In practice, πexplore is meta-trained on
full meta-episodes. Therefore, we apply a causal mask when computing d to hide similarities between the
representation of an episode D(K)

:,k and those of any future episodes D(K)
:,k′ , for k < k′.

For πexplore to collect a useful episode, it must have knowledge of the episodes it has already collected. To
create an exploration-focused task context, we denote D(:k,:t) to be an incomplete meta-episode, containing
k−1 complete episodes, and the first t timesteps of the k-th episode, for k ∈ [K], t ∈ [H]. We then condition
the in-context policy πexplore on the history Γ(:k,:t) = fu(D(:k,:t)) and explore episode k by taking action
ak

t+1 ∼ πexplore(· | sk
t+1, Γ(:k,:t)). The overall task exploration process is visualized in Fig. 2.

D(:k,:t−1) fu

πexplore
Task Mi;
episode k

r̃k
t ∼ R̃k

Γ(:k,:t−1)
ak

t

sk
tsk

t , ak
t , rk

t

Figure 2: Task exploration. Policy πexplore explores a task Mi by collecting K episodes. At each timestep
t of each episode k, πexplore is conditioned on the current state sk

t and the latent representation Γ(:k,:t−1)

of previous timesteps and episodes. Its objective is to take actions that maximize the intrinsic exploration
reward function R̂k. Both Γ(:k,:t−1) and R̂k are computed by the encoder fu from the data collected.

3.3 Learning to Explore by Reconstructing Tasks

The final components of our meta-RL algorithms are encoders g and fu, which enable task-solving and task
exploration, respectively. Let B ∈ RQ×H′×K be the tensor of Q meta-episodes collected from Mi. That is,

2With a slight abuse of notation, we use [N ] to mean the sequence [1, 2, . . . , N ] for any integer N .
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for j ∈ [Q], Bj,:,: is the j-th meta-episode in B. For simplicity, we use Bj to denote Bj,:,:. Additionally, to
emphasize the relationship between Bj and B, we refer to meta-episodes as Bj instead of D(K).

Recall that, given Bj , we use c = g(Bj) for task-solving and Γ = fu(Bj) for task exploration. The LaSER
encoders g and fu are optimized based on a key assumption about the data used for few-shot adaptation.
Before describing this assumption, we first formalize the idea of K-shot adaptation.
Definition 1 (K-Shot Adaptation). A policy π is K-shot adaptable in a distribution p(M) over MDPs if,
for any Mi ∼ p(M), π becomes optimal in Mi after at most K episodes collected from Mi.

Finding these K episodes can be difficult. Instead, consider rearranging the tensor B ∈ RQ×H′×K into a
matrix B[2] ∈ RH′×(QK) via mode-2 matricization (Vasilescu, 2009). That is, (B[2]):,k represents the k-th
episode, for k ∈ [QK]. If a policy is K-shot adaptable in a task Mi when using the QK episodes in B[2],
Definition 1 implies that B[2] contains the K episodes required for K-shot adaptation. More precisely, there
exists a meta-episode B∗

[2] composed of these K episodes. To create a practical algorithm from this idea, we
make the following assumption on the relationship between B[2] and B∗

[2].
Assumption 1 (Linear Task Reconstruction). Let B[2] ∈ RH′×(QK) contain QK episodes collected from an
MDP Mi such that B[2] is sufficient for K-shot adaptation. Let B∗

[2] ∈ RH′×K be the submatrix of B[2] that
contains these K necessary episodes. Then, we assume there exists C[2] ∈ RK×(QK) such that

B∗
[2]C[2] ≈ B[2]. (6)

It follows from Assumption 1 that rank(B[2]) ≈ K. Let B∗
[2] be the submatrix containing K linearly

independent columns of B[2]. Then, B∗
[2] is an optimal full-rank approximation of B[2], and there exists

a coefficients matrix C[2] such that Eq. 6 holds. For efficiency and simplicity, we switch back to tensor
representations. We use B instead of B[2], represent B∗

[2] as the meta-episode Bj ∈ RH′×K for a given
j ∈ [Q], and rearrange C[2] into C ∈ RQ×K×K . Eq. 6 is then reframed as the batch matrix multiplication
Bj,:,:Cl,:,: ≈ Bl,:,: for all l ∈ [Q], which we denote compactly as BjC ≈ B.

To identify meta-episodes of interest during task exploration, we introduce a novel approach of reconstructing
tasks, based on Assumption 1. For a meta-episode Bj collected by πexplore, our method allows us to quantify
its effectiveness for K-shot adaptation. That is, for a given j, we measure how effective it is to compute
a task context vector c from Bj instead of B. Following Eq. 6, the problem is reduced to probing the
linear relationship between Bj and B, by attempting to find coefficients C. To this end, we define the
task-reconstruction loss

Lt-rec = EMi∼p(M), B∼P πexplore
Mi

, j∼U(Q) [MSE (BjC, B)] , (7)

where U(Q) is a uniform distribution over the integers {1, 2, . . . , Q}, MSE is the mean squared error, and C
is computed from B and Bj using encoder g (see Sec. 3.4). By minimizing this loss, the agent learns to find
C. This is then used to assess the quality of the meta-episode Bj .

Note that computing C is equivalent to finding an approximate solution to the system of linear equations
BjC = B. Therefore, g requiring B as an input is an unavoidable constraint. Consequently, C cannot be
computed during task exploration, where the agent is limited to collecting a single meta-episode. We present
an alternative approach for optimizing fu for sample-efficient exploration. Consider a target

δj = 1− exp
(
−ξ(BjC− B)2

)
, (8)

where ξ is a constant and T gives the element-wise mean of any tensor T. This target measures the linear
task reconstruction in Eq. 6, such that δj ≈ 0 implies Bj is a good approximation of B. We therefore
optimize fu to learn a latent space that encodes this information. Specifically, for a given Γ, we optimize
the similarity between any two episode representations Γ:,k and Γ:,k′ to be δj , for k, k′ ∈ [K]. As in Sec. 3.2,
we use cosine similarity. We can now define the loss

Lcontr = EMi∼p(M), B∼P πexplore
Mi

, j∼U(Q)
[
MSE

(
SC(ΓT, Γ), A(δj)

)]
, (9)

where Γ = fu(Bj),
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and A(δj) ∈ RK×K is the matrix in which off-diagonal elements are δj and diagonal elements are 1. Eq. 9
is a form of contrastive learning for RL (Eysenbach et al., 2022; Erraqabi et al., 2022), where Γ:,k and
Γ:,k′ are pushed apart or pulled together according to a soft similarity signal δj . This signal quantifies
the similarity between the corresponding inputs Bj,:,k and Bj,:,k′ . Since this contrastive objective operates
over cosine similarity, pushing dissimilar representations corresponds to maximizing the angle between them,
while pulling corresponds to aligning similar representations by minimizing the angle. Intuitively, given the
definition of similarity in Eq. 8, the angles between the K columns in Γ are optimized to encode how well
Bj reconstructs the task data B. Therefore, collecting a meta-episode where all vectors in {Γ:,k}K

k=1 are
approximately orthogonal to each other is now equivalent to searching for a Bj that closely approximates B.
The important advantage is that this method of finding Bj can be used for K-shot adaptation. In contrast,
the alternative approach of collecting Q meta-episodes would be much more sample-inefficient. The encoder
fu can now be used to train an exploration policy πexplore to find a meta-episode Bj , as described in Sec. 3.2.

3.4 Architecture and Optimization

We now introduce the architecture of our encoder g. Because of their close relation, we define fu to be a
sub-network of g (i.e., g and fu are optimized together). Recall that fu separates informative meta-episodes
from non-informative ones during task exploration. Moreover, fu is constrained to encode meta-episodes
online, timestep by timestep, as they are being collected. To satisfy this, we model fu as a unidirectional
transformer with parameters ωu and train it using autoregressive attention masks (Vaswani et al., 2017). To
obtain more informative contexts once all task data has been collected, we define an additional bidirectional
transformer fb of size dmodel, with parameters ωb. Finally, we set g to be composed of fu and fb.3

Given B, fb computes two new latent representations z, Z = fb(B; ωb). Importantly, fb is bidirectional, so
it encodes data "offline", i.e., after task exploration is over. Although B refers to a single-task collection of
meta-episodes, in practice, we meta-train on a batch of such tensors, each collected from a different task.
This batching accelerates learning. More importantly, it allows us to capture the shared task structure across
p(M) by computing the vector z ∈ Rdmodel from the full batch of meta-episodes. In contrast, the tensor
Z ∈ RQ×HK×dmodel is a task-specific representation ofMi, encoded solely from the dataset B collected inMi.
We use Zj to denote the matrix Zj,:,: ∈ R(HK)×dmodel encoding the meta-episode Bj , for any j ∈ [Q]. While
Z and Γ have similar roles, Γ is optimized to learn representations that are only useful for task exploration,
so it may fail to capture structure that is important for solving tasks, but irrelevant for exploration. For a
given meta-episode Bj , we compute the task context vector c ∈ R(HKdmodel) as a function of z, Zj , and Γ.4
Specifically, we use a function hωh

, parameterized by ωh, to encode Bj into

c = gω(Bj) = hωh
(z, Zj , Γ), (10)

where gω has the concatenated parameters ω = ωu⊕ωb⊕ωh. In practice, h consists of two attention layers.
Our encoder architecture is shown in Fig. 3.

To train our encoder g, we define two pre-training heads: ht-rec and hrec, parameterized by ωt-rec and ωrec,
respectively. The former is used to compute the coefficient tensor C = ht-rec(gω(B), gω(Bj); ωt-rec) required
in Eq. 7. That is, ht-rec combines the representations of Q meta-episodes, gω(B), with the representation of
the j-th meta-episode, gω(Bj). Note that, when using C to compute δj in Eq. 8, we instead use a tensor
encoded by target parameters ω̂t-rec. To increase training stability, we only update ω̂t-rec to ωt-rec every ν
iterations Mnih et al. (2015). The latter head is used during the optimization of gω to reconstruct data from
corrupted inputs. This is a common approach for pre-training bidirectional transformers. Since both ht-rec
and hrec are only used during meta-training, they are replaced by policies πexplore and π during meta-testing.
Fig. 4 gives an overview of the heads.

3Due to overlapping terminology, LaSER can be seen as performing in-context learning in two senses. From the meta-RL
perspective, LaSER uses in-context policies conditioned on contextual information. From a different perspective, these context
vectors are computed using transformers, which, due to their self-attention mechanism, are considered to be in-context learners.

4The reader might note that the (HKdmodel)-dimensional context vector c does not necessarily reduce the size of the input
Bj . A high dimensional c is beneficial since preserving the structure of Bj (i.e., the HK timesteps) makes it simpler to train
transformers fu and fb. Despite this, c is still a useful representation of Bj . Each of the HK output timesteps has been
computed from its corresponding input timestep and the rest of the input sequence. This enables dimensionality reduction later
on. Specifically, we use the task policy π to reduce c to a dmodel-dimensional vector.
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Figure 3: Two types of meta-RL encoders. (a) Unidirectional encoder, common in meta-RL. It processes task
exploration data online, step by step, as it is being collected. (b) LaSER’s encoder g. We enhance standard
architectures by adding a bidirectional encoder. Encoder g can be used online for task exploration or offline
to compute context c(i). We use ·(i) to differentiate between meta-episodes and representations belonging
to different tasks. Note that we define timesteps xk

t to contain the current state sk
t , but the previous action

ak
t−1 and reward rk

t−1, with xk
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1 , _, _). This simplifies the training of unidirectional encoders.
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Figure 4: LaSER’s pre-training and policy heads. (a) Task-reconstruction head ht-rec and reconstruction
head hrec, used for pre-training encoder g for task exploration and task learning, respectively. (b) Policies
πexplore and π, used for task exploration and task solving, respectively.

We train gω using masked self-supervision (Devlin et al., 2019; Lewis et al., 2019). The encoder learns
useful representations by adding noise to the input, reconstructing the original input, and optimizing a
reconstruction loss Lrec (see Appendix B for more details). We extend this idea and define the loss of gω as

LLaSER(ω, ωrec, ωt-rec) = crecLrec(ω, ωrec) + ct-recLt-rec(ω, ωt-rec) + ccontrLcontr(ω) + cRR(ω), (11)

where crec, ct-rec, ccontr, cR are weighting coefficients, and R is a regularization term. It regularizes the latent
spaces generated by fb and fu. Following Piratla et al. (2020), R enforces a soft orthogonality constraint
between the vector representations z and Zj,t,:, for each j ∈ [Q] and timestep t ∈ [HK], by minimizing
(zTZj,t,:)2. Intuitively, Z is encouraged to avoid capturing information already contained in z, and instead
focus on task-specific structure. Furthermore, R normalizes the vector representations z, Zj,t,:, and Γ:,k, for
all j ∈ [Q], t ∈ [HK], k ∈ [K].

3.5 Meta-Training and Meta-Testing

The LaSER meta-training algorithm is shown in Alg. 1. It contains two training phases. We first train
the exploration policy πexplore

ϕ , parameterized by ϕ, and the encoder gω, parameterized by ω, for Nexplore
iterations. Note that these components are trained together because they are interdependent. We alternate

9
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between optimizing one while keeping the other fixed. In the second stage, these two components are fixed
and only the task policy πθ, parameterized by θ, is optimized for Ntask iterations.

Algorithm 1 LaSER Meta-Training
Input p(M), task distribution
Output πθ, task policy; πexplore

ϕ , exploration policy; gω, encoder; ẑ, shared component
1: θ, ϕ, ω ← initialize randomly
2: for n = 1, 2, . . . , Nexplore do
3: ω ← train_encoder(p(M), πexplore

ϕ , gω) ▷ Alg. 3
4: ϕ← train_exploration_policy(p(M), πexplore

ϕ , gω) ▷ Alg. 4
5: end for
6: B ←

{
B ∼ P

πexplore
ϕ

Mi

∣∣∣∣Mi ∼ p(M)
}

▷ Collect a batch of data from multiple tasks

7: ẑ, _← fb(B; ωb)
8: for n = 1, 2, . . . , Ntask do
9: θ ← train_task_policy(p(M), πθ, πexplore

ϕ , gω, ẑ) ▷ Alg. 5
10: end for
11: return πθ, πexplore

ϕ , gω, ẑ

Recall that z is computed from multiple tasks, which is only feasible during pre-training. Therefore, we
compute a fixed ẑ from the pre-training data and use it to train the task policy and perform meta-testing.
During meta-testing, for any Mi ∼ p(M), the meta-trained agent first collects K episodes and computes
the latent context c. Then, it uses c to find the optimal policy for Mi. This is shown in Alg. 2.

Algorithm 2 LaSER Meta-Testing
Input p(M), task distribution; πθ, task policy; πexplore

ϕ , exploration policy; gω, encoder;
ẑ, shared component

1: for Mi ∼ p(M) do

2: Bj ∼ P
πexplore

ϕ

Mi
▷ Sample exploration meta-episode

3: c← gω(Bj) ▷ Compute c, using ẑ as the shared component
4: τ ∼ P

πθ(a|s,c)
Mi

5: Measure return in exploitation episode τ
6: end for

4 Related Work

Meta-RL. The earlier successes of modern meta-RL start with MAML (Finn et al., 2017) and RL2 (Duan
et al., 2016; Wang et al., 2016). MAML, together with other MAML-inspired algorithms (Sung et al., 2017;
Li et al., 2017; Gupta et al., 2018; Zintgraf et al., 2019), are gradient-based methods for meta-training
policies that can adapt to new tasks by taking a small number of task-specific gradient steps. Gradient-
based approaches usually implement an explicit dual-loop algorithm that follows the standard meta-learning
paradigm of adapting to tasks in an inner loop, while meta-learning adaptation strategies in an outer loop.
On the other side of the spectrum, RL2 is an in-context meta-RL approach, meta-training a policy to behave
like an RL algorithm that learns from collected task contexts (Laskin et al., 2023; Moeini et al., 2025). This
learning is usually represented by a forward pass through the pretrained policy, with no task-specific weight
updates. Recent meta-RL techniques, including ours, follow this paradigm of first identifying task dynamics,
and then adapting a task-agnostic policy to them. Generally, this in-context learning tends to be more
sample-efficient than gradient-based methods, which is ideal in few-shot adaptation (Beck et al., 2023b).

In-Context Policies. To learn task-specific policies, RL2 uses a recurrent architecture that implicitly
conditions the policy on task history. Later works make this conditioning more explicit (Rakelly et al.,

10
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2019; Zhou et al., 2019; Zintgraf et al., 2019). Specifically, they show that in-context policies can be trained
using standard RL optimization by simply augmenting the input state with task contexts. Similar ideas
have been explored in the closely related area of unsupervised representation learning for RL (Igl et al.,
2018; Papoudakis et al., 2021; Botteghi et al., 2025). This approach has since become standard in meta-RL,
with subsequent research focusing more on learning informative task contexts than on novel architectures or
optimization algorithms for in-context policies. Recently, Beukman et al. (2024) observed that this simple
method may struggle when there is high variation across the optimal task-specific policies, which can arise
in complex task distributions. As an alternative, Beck et al. (2023a) and Beukman et al. (2024) propose that
meta-training hypernetworks (Ha et al., 2017) may lead to better generalization. Therefore, they introduce
hypernetworks that take the task context as input and generate the weights of a context-dependent policy.
While this architectural change may better leverage task contexts, their approach is still limited by the use
of standard RL optimization, which constrains task space exploration. Additionally, this method inherits
issues related to hypernetworks, such as slow and unstable training (Ortiz et al., 2023; Chauhan et al., 2024;
Beukman et al., 2024). In contrast, our proposed meta-reward is not an adaptation of standard learning
methods to meta-RL, but is explicitly designed for the meta-RL setting. Moreover, it is architecture-agnostic,
introduces little overhead, and allows in-context policies to be optimized through standard RL. This may
simplify solving meta-RL problems, as practitioners can rely on stable and well-understood RL algorithms.

Exploration in Meta-RL. A considerable body of literature also focuses on exploration in meta-RL.
As opposed to standard RL, meta-RL exploration strategies can be learned from interactions with the
environment and then applied to new tasks. Since identifying and solving RL tasks requires exploration, all
meta-RL algorithms learn to explore, at least implicitly. However, several works have shown the benefits
of explicitly learning to explore. Rakelly et al. (2019) use posterior sampling to explore. Zintgraf et al.
(2021b) consider Bayes-optimal policies, which optimally trade-off exploration and exploitation, and meta-
learn approximations of such policies. They later extend their work in Zintgraf et al. (2021c) by encouraging
the agent to explore novel hyper-states during meta-training. Some other approaches make exploration more
efficient by structuring the exploration space through contrastive learning (Fu et al., 2021; He et al., 2024;
Yu et al., 2024), information gain (Liu et al., 2021; Jiang et al., 2021; Zhang et al., 2021), or task clustering
(Chu et al., 2024). Gradient-based meta-RL can also explicitly learn to explore. Gupta et al. (2018) explore
by adding structured, meta-learned noise to the policy. Similarly, Stadie et al. (2018) enhance MAML and
RL2 by adding an exploration term to the meta-RL objective. Gurumurthy et al. (2020) add self-supervised
objectives to lower variance during exploration. Finally, several of the works discussed improve exploration
even further by decoupling the exploration and task-solving policies (Zhou et al., 2019; Gurumurthy et al.,
2020; Liu et al., 2021; Fu et al., 2021; Norman & Clune, 2024). LaSER also collects data using a decoupled
exploration policy, and then meta-learns a structured exploration space. However, it uses a novel objective
that encourages the collection of a single meta-episode which serves as a low-rank linear representation of
a larger dataset drawn from the same task. An important distinction to numerous previous works is that
task exploration depends only on the structure of the data, while being agnostic to the RL objective of the
task policy. This may be advantageous for out-of-distribution adaptation, where meta-test tasks may have
goals that differ from those seen in meta-train tasks. Therefore, data collected for maximizing meta-training
return might not always be relevant during meta-testing.

Meta-Learning Contexts. Once task data has been collected, a straightforward way to obtain informative
contexts is through recurrent neural networks (Duan et al., 2016; Wang et al., 2016). More sophisticated
methods include meta-learning latent representations of value functions (Rakelly et al., 2019) or MDP dy-
namics (Zhou et al., 2019; Zintgraf et al., 2021b;c), model-based meta-RL (Clavera et al., 2018; Nagabandi
et al., 2018), hybrid techniques that combine in-context and gradient-based methods (Imagawa et al., 2022),
using permutation variant and invariant sequence models (Beck et al., 2024), or enhancing tasks by in-
corporating language instructions (Bing et al., 2023). Attention mechanisms (Bahdanau et al., 2015) and
transformers (Vaswani et al., 2017) have also been adopted by the meta-RL community. Their success in
in-context learning, long-sequence modeling, and efficient parallelizable training aligns well with the needs
of in-context meta-RL. Earlier research focused solely on meta-learning through attention (Mishra et al.,
2018), while more recent work used transformer architectures (Melo, 2022; Shala et al., 2024). A limita-
tion of previous works that attempt to meta-learn task dynamics is that only unidirectional encoders are
used. This constraint arises naturally since task exploration and task learning are coupled. Specifically,
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task data must be encoded online while it is being collected, in order to guide the exploration policy at the
next timestep. An obvious limitation is that only interactions between the current and past timesteps are
considered. LaSER improves this design by using an additional bidirectional encoder that also considers
future timesteps, which could possess useful information and lead to richer representations (Devlin et al.,
2019; Banino et al., 2022). While the aforementioned constraint cannot be avoided during task exploration,
it need not restrict the computation of the final task context once all exploration data has been collected.

5 Experiments

In this section, we present empirical results for LaSER. We first introduce the environment and algorithms
we use in Sec. 5.1. In Sec. 5.2, we compare LaSER with other types of meta-RL algorithms. Next, we
perform two ablation studies by analyzing individual stages of the meta-RL pipeline (Fig. 1). In Sec. 5.3
we evaluate our novel approach to meta-training in-context task policies. This corresponds to LaSER’s
task-solving phase, which we perform using ground-truth contexts instead of task exploration and learning.
Finally, we assess LaSER’s task exploration and task learning stages in Sec. 5.4 by visualizing the latent task
contexts computed during meta-testing.

5.1 Experimental Setup

5.1.1 Environments

We evaluate LaSER on the meta-RL benchmark MEWA (Stoican et al., 2023).5 MEWA provides a distri-
bution of tasks that share the same central idea: certain states, called critical states, can lead to mistakes.
These mistakes affect the final return negatively. The probability of a mistake happening depends on both
the type of critical state and the dynamics of the task. By exploring and learning a task, RL agents must
find the optimal policy for avoiding high-risk mistakes while minimizing task delay. Importantly, Stoican
et al. (2023) ensure MEWA’s task distribution has no globally optimal policy (i.e., no policy can zero-shot
solve all tasks). So, an agent can only be optimal by collecting new data and adapting. This property makes
MEWA ideal for our case, as it allows us to test LaSER’s ability to explore tasks.

MEWA evaluates agents on their ability to take optimal actions in different types of "critical" states. These
critical states provide agents with two options. Consider a critical state sx of type x. The agent’s first option
is to take a "risky" action. This may lead to a mistake of type x happening, which in turn leads to a large
delay in task completion. The probability of a type x mistake happening depends on the transition function
of the task. The second option is a "safe" action. This provides a guaranteed small delay and leads to a
state sx−1 of type x. An important feature shared by all MEWA tasks is that for any y < x, mistakes of
type y are less likely to happen than mistakes of type x. Therefore, depending on the task, taking several
safe actions before a risky action could be optimal.

We meta-train all meta-RL agents on the narrow task distribution analyzed by Stoican et al. (2023). This
corresponds to a distribution p(M) in which any task Mi ∼ p(M) has four different types of critical states
and can be described by a vector p(i) ∈ [0, 1]4. For each task Mi, the probability of making a mistake of
type x ∈ [4] is p

(i)
x ∼ N (µx, 0.12), where N is a normal distribution and µT = [0.38, 0.28, 0.19, 0.09]. Note

that we clip all p
(i)
x to [0, 1]. See Appendix E for a more formal definition of MEWA’s tasks.

We meta-test on the fixed set of 12 tasks proposed by Stoican et al. (2023). Their corresponding p(i) vectors
are listed in Appendix E, Table 3. We assign a score to each task, given by the average probability of a
mistake of any type happening, i.e., 1/4

∑4
x=1 p

(i)
x . We use this as a rough estimate of the similarity between

tasks, such that tasks with a similar score require similar (but not identical) optimal policies. Additionally,
note that half of the meta-testing tasks are out-of-distribution (OOD) tasks. OOD tasks lie outside the
meta-training distribution p(M), so they are more challenging to explore and solve during meta-testing.

5We use the publicly available code for the MEWA benchmark at https://github.com/RStoican/MEWA.
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Note that no globally optimal non-adaptive policy exists for these 12 meta-testing tasks. Additionally, the
difference in performance between the optimal non-adaptive and optimal adaptive policies is high enough to
evaluate the agent’s ability to generalize and adapt.

MEWA offers 3 baselines to compare our agents to during meta-testing. The random baseline represents
the expected performance of an agent that takes uniformly random actions. The task-agnostic baseline
represents an agent that always takes optimal actions in MEWA’s non-critical states. These are states in
which the optimal action can be computed even if the policy has no task information, i.e., for the optimal
value function V ∗, if V ∗(s, c) ≤ V ∗(s) for all c, then s is a non-critical state. For any critical state, the
task-agnostic baseline considers all actions that could potentially be optimal in a valid task, then takes one
at random. Finally, the optimal baseline shows the expected return of the optimal meta-RL agent, i.e., the
agent that adapts to and solves each task optimally.

5.1.2 Algorithms

We compare our method, LaSER, with four other meta-RL algorithms, MAML (Finn et al., 2017), PEARL
(Rakelly et al., 2019), VariBAD (Zintgraf et al., 2021b), and DREAM (Liu et al., 2021). We meta-train each
algorithm on 3, 000 tasks sampled from MEWA’s meta-training distribution (see Sec. 5.1.1). For each task
Mi, the agents are allowed to collect K = 4 episodes during the task exploration phase. Their performance
on Mi is then given by a single exploitation episode collected by the task policy. Besides this final return,
we also analyze an agent’s ability to improve its performance as more data is collected. All tasks have a
horizon of H = 50.

LaSER’s hyperparameters are listed in Appendix H. We selected these based on performance on MEWA’s
meta-training task distribution. For implementation details and hyperparameters for MAML, PEARL,
VariBAD, and DREAM, see Appendix F.

To ensure a fair evaluation, we first show that all algorithms converge during meta-training. For this, we
evaluate agents on MEWA’s meta-training distribution. As shown in Fig. 5, LaSER’s exploration policy,
encoder, and task policy converge across 10 seeds. The encoder loss is computed by Eq. 11, with Fig. 9
showing results for each of its terms. The exploration return is computed using intrinsic rewards (see Eq. 5)
collected by the exploration policy. We first meta-train πexplore

ϕ and gω for 220 million timesteps, and then πθ

for 7.5 million timesteps. Note, however, that for the first 50 million timesteps we only train fu (and thus gω),
without updating πexplore

ϕ since its training is conditioned on representations learned by fu. For these initial
updates, we use data collected by a uniformly random policy. Finally, Appendix G provides convergence
results for all the baseline algorithms. All their task policies converge (Fig. 10), together with PEARL’s,
VariBAD’s, and DREAM’s encoders (Fig. 11), and DREAM’s exploration policy (Fig. 12). Note that MAML
does not have an encoder, and DREAM is the only baseline algorithm with a separate exploration policy.

We also analyze the computational complexity of meta-training LaSER. Specifically, we measure the wall
clock time required to meta-train all three components of LaSER, averaging results over 10 seeds. We report
both the total meta-training time and the average time per timestep. For total time, we stop training once
performance (i.e., return or loss) stops improving in all seeds. We provide detailed measurements in Fig. 13.

In terms of total time, LaSER is the most expensive, being 1.34 times slower than the next slowest algorithm,
DREAM. This is followed by PEARL, and finally by MAML and VariBAD. Most of LaSER’s time complexity
comes from its transformer encoders. While transformers are powerful, they are also known to demand a
high amount of data. However, when considering the average time per timestep, LaSER is more efficient.
Specifically, LaSER is 11.93 and 5.86 times faster than DREAM and PEARL, respectively. Furthermore, it
is only 1.71 and 2.64 times slower than MAML and VariBAD, respectively.

5.2 Overall Performance

We first evaluate LaSER’s ability to solve MEWA’s meta-testing tasks. For each algorithm, we meta-test the
agent obtained at the end of meta-training. Note that before being evaluated on a task, each agent is allowed
to explore for K = 4 episodes. We report average returns over 10 seeds in Fig. 6 and Table 1. Because of
the inherent randomness in MEWA’s tasks, we take an additional step to ensure the results are not due to
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Figure 5: Performance on tasks from MEWA’s meta-training task distribution. For each metric, the shaded
areas report the standard error of the average return across 10 random seeds. We use exponential moving
average (EMA) smoothing yj = αEMAxj + (1 − αEMA)yj−1 for each point xj , with αEMA = 0.6. We
first meta-train the exploration policy and the encoders for 2.2e8 timesteps, then the task policy for 7.5e6.
Additionally, we only start exploring tasks after 50 million timesteps. (left) Undiscounted exploration return
of policy πexplore

ϕ for exploration reward function R̃. (middle) Encoder loss LLaSER. (right) Undiscounted
return of policy πθ.

random chance. For each seed, we collect 180 exploitation episodes per agent on each of the 12 meta-testing
tasks and average over all their returns. Finally, we also report per-task performance in Fig. 14.

Figure 6: Average returns achieved on MEWA’s meta-testing tasks. Each agent is meta-tested with an
exploration budget of K = 4. Results are averaged over 10 seeds, with error bars indicating standard error.
Note that we normalize results between the random and optimal baselines.

LaSER (ours) MAML PEARL VariBAD DREAM
0.8± 0.021 0.43± 0.072 0.67± 0.32 0.08± 0.262 0.6± 0.191

Table 1: MEWA returns averaged across 10 seeds (± std).

LaSER achieves the highest average returns among all meta-RL algorithms. It also proves to be the most
stable algorithm, with a post-adaptation standard deviation of just 0.02 across all seeds. LaSER is one
of only two methods to outperform the task-agnostic baseline. The other algorithms only outperform the
random baseline. PEARL learns a strong global policy, but is less stable and underperforms compared to

14



Under review as submission to TMLR

LaSER. While DREAM appears more stable, its performance is slightly below the task-agnostic baseline. In
contrast, MAML and VariBAD perform poorly, with VariBAD being both unstable and close in performance
to the random baseline.

5.3 Solving Tasks

As an ablation study, we evaluate our approach for meta-training in-context task policies, which was in-
troduced in Sec. 3.1. The results in this section correspond solely to the task-solving phase of Fig. 1. We
meta-test task policies by rolling them out before and after they receive a task context c. Our primary
objective is to assess adaptability, i.e., a policy’s ability to use c to improve its performance. We quantify
this as the difference between post-adaptation and pre-adaptation return.

We make two important simplifications to the standard MEWA benchmark.

• To ensure a fair comparison of task policies alone, we meta-train and meta-test without task explo-
ration or task learning. Instead, for each task, we use a ground truth, oracle-provided context vector
c, which is normally unavailable to the agent.

• To assess adaptability to non-stationary dynamics, we use a simpler, multi-task objective: we meta-
train and meta-test on MEWA’s 12 meta-testing tasks.

Despite these restrictions, MEWA’s guarantee for the nonexistence of a globally optimal policy still holds.
That is, only adaptive policies can achieve maximum return.

LaSER combines PPO and the proposed meta-reward r+
t (see Eq. 2) to optimize the in-context policy πθ.

We compare it to the simpler approach of using in-context policies optimized through standard PPO, as
well as to Decision Adapters (Beukman et al., 2024, DAs), which use hypernetworks to generate task-specific
policies.6 For a fair comparison, the in-context PPO policy has the same architecture as LaSER’s policy.
We also use PPO to optimize DAs, so the main difference between these and the other two methods is the
architectural change. Appendix F.4 provides implementation details and hyperparameters for DAs.

The meta-training results are shown in Fig. 7 and Table 2. Our method achieves the highest average return,
while also stabilizing meta-training. It is also the only method to find a policy that adapts optimally, which
occurred in 5/10 seeds. In-context PPO is slightly less stable, presumably because the agent is trying to
find a single policy that maximizes returns across all tasks. However, without task-specific adaptation, it
fails to find such a globally optimal policy. Hypernetworks, on the other hand, are highly unstable. This is
likely due to hypernetworks being inherently challenging to train (Ortiz et al., 2023; Chauhan et al., 2024;
Beukman et al., 2024). They also achieve the lowest average return.

LaSER Task In-Context PPO Decision Adapter
Policy (ours) Hypernetwork

Return 0.97± 0.006 0.93± 0.014 0.86± 0.149
Delta Return 0.47± 0.019 0.07± 0.067 0.12± 0.164

Table 2: Average returns and delta returns over the last 1e6 timesteps, averaged across 10 seeds (± std).
We meta-train and meta-test on the same 12 MEWA tasks, and use oracle-provided contexts vectors c.

The LaSER task policy also achieves greater task-adaptation success than the other two methods. After the
meta-exploration phase, the agent stabilizes towards the end of meta-training. The task-conditioned policy
then consistently outperforms the pre-adaptation policy. Hypernetwork-generated policies adapt better than
in-context PPO but are also more unstable. Additionally, their low average return limits the benefits of this
adaptability. In-context PPO does not explicitly optimize for adaptation, so its adaptability is approximately
five times lower than our method.

6Since Beukman et al. (2024) build and evaluate their DAs with ground-truth contexts in mind, their algorithm is agnostic
to the context-learning mechanism, and, as reported by the authors, sensitive to noisy contexts. We therefore only consider
DAs as baselines for LaSER’s task policy, and not for the entire LaSER algorithm.
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Figure 7: Task policy meta-training. We use oracle-provided task context c, and meta-train and meta-test
on the same set of 12 MEWA tasks. The shaded areas show the standard error of the average return across
10 random seeds. (left) Post-adaptation return of task policy πθ, given task context c. All returns are
normalized between MEWA’s random and optimal baselines. To improve readability, we restrict the plot
to the [0.3, 1.0] range and exclude the random baseline (which is positioned at 0). (right) Adaptability,
quantified as the difference in return achieved by πθ with and without access to c.

Note that our method learns more slowly initially. Compared to in-context PPO and hypernetworks, it
requires more samples to pass the average return thresholds of 0.9 (for PPO) and 0.85 (for hypernetworks).
We attribute this to additional meta-exploration in the state space, performed in the context of the task
space. The meta-reward r+

t encourages the policy to learn how to take in-context actions that increase the
gap between V (st) and V (st, c), for a state st and context c. This is in addition to the meta-exploration
required to only maximize the standard RL objective V (st). We hypothesize that in-context PPO and
hypernetworks cannot surpass our method due to their lack of explicit task-space meta-exploration. The
policies they produce optimize standard RL objectives, so they meta-explore accordingly.

Finally, we observe that our method is nearly as computationally efficient as in-context PPO and much faster
than hypernetworks. We measure the average wall-clock time to roll out and optimize πθ, per iteration. On
average, hypernetwork-based agents are approximately 3.3× slower than ours, while our method is only 1.3×
slower than in-context PPO. See Fig. 15 for a detailed comparison. We discuss how meta-rewards cause this
additional overhead in Appendix A.2.

5.4 Exploring and Learning Tasks

To better understand LaSER’s ability to explore and encode tasks during meta-testing, we visualize its
latent task space. We compare the task contexts computed by LaSER, PEARL, VariBAD, and DREAM
for each of the 12 meta-testing tasks in MEWA. For each algorithm, we show results for only one of the
meta-training seeds. However, we obtain similar representations for the other seeds. We first roll out the
corresponding agent’s meta-trained policy, collecting 100 meta-episodes per task, with K = 4 episodes per
meta-episode. Note that in the case of LaSER, we roll out the exploration policy πexplore

ϕ . We then encode
each meta-episode D(K) into a latent task context vector c using the agent’s meta-trained encoder. Similarly,
DREAM collects data using its exploration policy. We visualize two-dimensional projections of task contexts,
computed using t-SNE (Van der Maaten & Hinton, 2008), in Fig. 8. The 12 tasks are sorted by similarity,
i.e., average mistake probability, as in Table 3.

For LaSER, we can find clusters of task contexts. Specifically, meta-episodes collected from the first five
tasks, the next four tasks, and the final three tasks appear to be projected apart from each other. We note
that the tasks in each cluster share common traits. In the first cluster, mistakes of type x ∈ {3, 4} never
occur. In the third cluster, p

(i)
x ≥ 0.9 for any x ̸= 4. The second cluster’s average mistake probabilities lie

between those of the other two clusters. The separation appears to follow this trend. More details on the
tasks’ properties are shown in Table 3.
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Figure 8: Latent representations of meta-episodes collected and encoded by meta-trained agents. Each of the
1200 points is a context vector belonging to one of the 12 meta-testing tasks in MEWA. The two-dimensional
visualizations are computed using t-SNE. Different tasks have different colors.

In contrast, PEARL’s and VariBAD’s latent contexts lack clear clustering that could distinguish data col-
lected from different tasks. This low separation may make it more difficult to identify task-specific features.
DREAM, on the other hand, appears to follow a similar three-cluster separation as LaSER. A distinguishable
feature is that data collected from any of the first five tasks collapses into a single context representation.

We argue that learning higher-quality clusters is not trivial. The difficulty may come from the high variance
in episodes collected from the most difficult tasks. These tasks limit the exploration policy’s control over the
states it encounters. Additionally, the low adaptation budget of K can make it difficult to separate contexts
of similar tasks.

6 Conclusion

We introduced LaSER, a new approach for meta-learning RL exploration. Our results demonstrate that
LaSER outperforms previous meta-RL algorithms on the MEWA benchmark. They also show that LaSER
can meta-learn better task clustering during exploration. Additionally, we propose a novel meta-exploration
bonus for training task policies efficiently. This outperforms previous approaches of meta-training in-context
policies in both accumulated rewards and adaptability. Because our task-solving method is agnostic to how
tasks are explored or represented, it can also be integrated into any in-context meta-RL algorithm, and then
optimized using standard RL.

An important strength of LaSER is that, in the setting where contexts are meta-learned, it outperforms
other algorithms, despite none of the methods being optimally adaptive. We argue that this is a result
of meta-training with higher-quality task contexts. Note that the main role of these contexts remains to
provide task information for adaptation during meta-testing. However, our results suggest they may also
enhance performance and sample efficiency during meta-training. We believe this secondary role should also
be investigated in future work.

LaSER is built upon the unique properties and requirements of the meta-RL framework, which we approach
through the lens of few-shot adaptation. As a result, we tackle challenges that are specific to meta-RL, i.e.,
challenges that might not exist in the broader fields of RL or meta-learning. For example, our exploration
algorithm leverages a key assumption about the structure of data collected in few-shot RL environments.
Similarly, LaSER’s task policy is meta-trained with the explicit goal that in-context policies must outperform
context-agnostic policies in a meta-RL setting. This idea, realized as a form of extended meta-exploration
over the task context space, leads to almost-optimal adaptive policies when ground-truth contexts are avail-
able. We hope our findings inspire future research to leverage the meta-RL framework in novel ways.
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While LaSER outperforms other meta-RL algorithms, it still struggles to adapt to new tasks when task con-
texts are meta-learned. We discuss this from the perspective of LaSER’s three main components: exploration
policy, encoder, and task policy. Empirical results suggest that the first two components are well-optimized
for exploring and learning tasks effectively. For instance, the encoder learned to separate MEWA’s meta-
testing tasks into three groups. This suggests that LaSER should be able to outperform its pre-adaptation
policy in these tasks. Furthermore, our results show that the task policy can become more adaptive when
restricting the meta-training task distribution and using ground truth contexts. We therefore propose the
hypothesis that effectively combining these three components is non-trivial. Additionally, we suggest that
future research should seek to explore and understand this issue.
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A Policy Optimization in Meta-RL

LaSER uses the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) to optimize both its
task-exploration and task-solving policies. Therefore, we provide a short technical description of PPO in
Appendix A.1. Then, in Appendix A.2, we show a detailed overview of how PPO can be used in meta-RL,
by implementing the method proposed in Sec. 3.1.

A.1 PPO Background

For a policy πθ with parameters θ, Schulman et al. (2017) propose the objective

LPPO
t (θ) = Et

[
LCLIP

t (θ)− c1LVF
t (θ) + c2S[πθ](st, c)

]
, (12)

where c1, c2 are constants, LCLIP
t is the main PPO objective, and LVF

t and S[πθ] are additional objectives.
LVF

t is a squared-error loss on the value function Vθ(st, c), while S[πθ] is the policy entropy. Note that the
sole change from the original description of PPO is that πθ(at | st, c) and Vθ(st, c) depend not only on the
state st, but also on the task context c. The clipped surrogate objective LCLIP

t is defined as

LCLIP
t = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (13)

for a constant ϵ, policy probability ratio rt(θ), and estimated advantage Ât. The probability ratio rt(θ) =
πθ(at|st,c)

πθold (at|st,c) is computed using the parameters θold from before an update. Eq. 13 encourages small, stable
policy updates that keep πθ close to πθold , by constraining rt(θ) to remain within [1− ϵ, 1 + ϵ].

A popular choice for the advantage estimator Ât is the generalized advantage estimator (GAE) (Schulman
et al., 2015). In the meta-RL setting, the GAE can be defined as ÂGAE

t =
∑H−t

l=0 (γλ)lδV
t+l for an episode

τ with horizon H. Here, γ ∈ [0, 1] is the MDP’s discount factor, λ ∈ [0, 1] is an additional discount, and
δV

t = rt + γV (st+1, c)− V (st, c) is the temporal-difference (TD) error at timestep t for a reward rt.

A.2 PPO for Meta-RL

In Sec. 3.1, we propose a simple change to the policy optimization objective. By replacing the environment
reward rt with our proposed meta-reward r+

t , PPO can be used to optimize πθ to solve meta-RL tasks. That
is, we compute the TD error

δV
t (θ) = rt + β w(st, c) S[πθ](st, c) + γV (st+1, c)− V (st, c), (14)

where w(st, c) = max(0, tanh(V (st) − V (st, c) − ζ)). The estimated advantages can then be computed as
ÂGAE

t (θ) =
∑H−t

l=0 (γλ)lδV
t+l(θ). Note that, because ÂGAE

t (θ) is now a function of the parameters θ, the
advantages must be recomputed every time θ is updated, i.e., after each PPO minibatch update. This is in
contrast to standard PPO, where ÂGAE

t is computed only once, before an update, and then kept fixed until
new data is collected.

Intuitively, w(st, c) measures how effective the policy πθ is at using the context c, for each timestep t.
The assumption is that, while PPO-optimized policies in single-MDP settings might explore the state space
sufficiently, there is no guarantee that the task context space is explored enough in a meta-RL setting. By
introducing w(st, c), whenever c does not lead to an improvement above a threshold ζ, the policy is urged to
explore from state st, thus learning more about c. As the agent improves at using c to maximize return, the
exploration bonus w(st, c)S[πθ](st, c) at state st decreases. The standard PPO objective is only recovered
when V (st) ≤ V (st, c)+ζ. This signals that the agent has learned how to use c in state st, and no additional
exploration is required.

B Masked Self-Supervised Training

The bidirectional transformer encoder fb, introduced in Sec. 3, learns useful data representations by learning
to reconstruct its input. Since reconstructing a meta-episode Bj is trivial when the entire Bj is given as input,

23



Under review as submission to TMLR

we use masked self-supervised training. We create a masked meta-episode Bmasked
j by applying a stochastic

masking function, similarly to Devlin et al. (2019) and Lewis et al. (2019). More precisely, Bmasked
j is identical

to Bj , with the exception that each timestep (s, a, r) in Bmasked
j has a 15% chance of being corrupted. The

loss Lrec measures the ability of fb to predict the true value of each corrupted timestep. The encoder must
learn to compute these values from the non-corrupted timesteps in the input. We consider two types of
corruption.

• Masking: with a probability of 80%, the selected timestep is replaced by a special ⟨MASK ⟩ timestep,
which carries no information.

• Replacing: with a probability of 10%, the selected timestep is replaced by another timestep from
the same meta-episode.

The rest (i.e., 10%) of the selected timesteps are not corrupted but are still used when computing Lrec. To
optimize this loss, fb must learn general temporal relationships between the timesteps in a meta-episode.
We compute Lrec as the MSE between the unmasked tokens in Bj and the reconstructed meta-episode
B′

j = hrec(c; ωrec), where c = gω(Bmasked
j ). Note that masked meta-episodes are only used to train the

encoder. When training the task policy πθ or during meta-testing, we compute c using unmasked meta-
episodes.

C Algorithms

For the sake of completeness, but also to enable reproducibility and further analysis (Phuong & Hutter,
2022), we provide pseudocode for our proposed algorithm LaSER. Alg. 1 shows our meta-training process.
It is composed of three main parts. Each part optimizes one of the three LaSER components: the encoder
gω (Alg. 3), the exploration policy πexplore

ϕ (Alg. 4), and the task policy πθ (Alg. 5). Finally, we provide
details on how we meta-test a fully trained LaSER agent in Alg. 2.

Algorithm 3 train_encoder()
Input p(M), task distribution; πexplore

ϕ , exploration policy; gω, encoder
Output ω, updated parameters

1: B ←
{

B ∼ P
πexplore

ϕ

Mi

∣∣∣∣Mi ∼ p(M)
}

▷ Collect a batch of data from multiple tasks
2: for j = 1, 2, . . . , Nencoder do
3: for B ∈ B do
4: Bmasked ← mask(B)
5: for j ∈ [Q] do
6: c← gω(Bmasked

j )
7: Compute reconstructed input B′

j as hrec (c; ωrec)
8: end for
9: j ∼ U(Q)

10: C← ht-rec(gω(B), gω(Bj); ωt-rec)
11: δj ← use B, Bj , and C in Eq. 8
12: end for
13: LLaSER(ω, ωrec, ωt-rec)← compute using Eq. 7, 9, 11
14: ω, ωrec, ωt-rec ← update using ∇LLaSER
15: end for
16: return ω

D Implementation Details

We provide additional details on our implementation of the LaSER algorithm and our architecture.
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Algorithm 4 train_exploration_policy()
Input p(M), task distribution; πexplore

ϕ , exploration policy; gω, encoder
Output ϕ, updated parameters

1: D ← []
2: for Mi ∼ p(M) do
3: for k = 1, 2, . . . , K do
4: D(K) ← []
5: for t = 1, 2, . . . , H do
6: ak

t ∼ πexplore
ϕ

(
· | sk

t , Γ(:k,:t−1))
7: D(:k,:t) ← (sk

t , ak
t , rk

t )
8: Γ(:k,:t) ← fu

(
D(:k,:t); ωu

)
9: Collect sk

t+1, rk
t+1 by taking action ak

t in Mi

10: end for
11: end for
12: Γ← fu(D(K); ωu); d← 1

K SC(ΓT, Γ)T111
13: Compute R̃k(sk

t , ak
t ) using Eq. 5 for each k, t

14: Replace environment rewards in D(K) with the corresponding R̃k(st, at)
15: D ← [D,D(K)]
16: end for
17: for j = 1, 2, . . . , NPPO do
18: Optimize ϕ on transitions from D using PPO
19: end for
20: return ϕ

Algorithm 5 train_task_policy()
Input p(M), task distribution; πθ, task policy; πexplore

ϕ , exploration policy; gω, encoder;
ẑc, shared component

Output θ, updated parameters
1: D ← []
2: for Mi ∼ p(M) do
3: Sample exploration meta-episode Bj ∼ P

πexplore
ϕ

Mi

4: c← gω(Bj), using ẑ as the shared component
5: D ← [D, τ ∼ P

πθ(a|s,c)
Mi

]
6: end for
7: for j = 1, 2, . . . , NPPO do
8: for τ ∈ D do
9: for t = 1, 2, . . . , H do

10: Compute V (st, c), V (st), and S[πθ](st, c)
11: w(st, c)← compute using Eq. 3
12: r+

t ← rt + βw(st, c)S[πθ](st, c)
13: Compute and store ÂGAE

t (θ) using r+
t

14: end for
15: end for
16: Optimize θ on transitions from D using PPO
17: end for
18: return θ
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D.1 Encoder

Both fu and fb use the same transformer architecture (Vaswani et al., 2017), except that fu is unidirectional,
while fb is bidirectional. Each transformer has size dmodel = 128, 8 layers, 16 attention heads, and feed-
forward networks of size 512, with GELU activation functions (Hendrycks & Gimpel, 2016). All input timesteps
are linearly mapped to dmodel-dimensional embeddings, with positional encodings added before they are
passed through the transformer. For stable training, we apply the T-Fixup initialization scheme (Huang
et al., 2020), as recommended by Melo (2022).

The output of the transformer in fu is passed through a single-layer feed-forward network that outputs Γ.
Similarly, the transformer output of fb is independently processed by two separate single-layer feed-forward
networks, outputting z and Z. Each of these three networks has size 64 and uses tanh activation functions.
When using data from multiple tasks, Γ and Z are computed separately for each task. In contrast, z
is computed with data from multiple tasks, leading to a general representation of the entire distribution.
Before computing z, we apply average pooling to reduce the dimensionality of the output of fb. We treat Z
as a batch of Q meta-episode representations, such that each slice Zj , for j ∈ [Q], is computed independently
by the feed-forward network. In a similar manner, each of the Q meta-episodes has its own representation
Γ, computed independently by the feed-forward network in fu.

The encoder gω has two final transformer layers, h, similar to those in fb. The first layer combines Z and Γ.
The second computes c by combining the output of the first with z. The reconstruction head hrec performs
a linear transformation from dmodel to d. The task-reconstruction head ht-rec is a (256, 128, 128) feed-forward
network with GELU activations. We use the Adam optimizer (Kingma & Ba, 2015) to train gω, hrec, and
ht-rec.

D.2 Policies

We represent πexplore
ϕ , Vϕ, πθ, and Vθ using feed-forward networks. For task exploration, we use two separate

(128, 128, 128) networks with tanh activations to represent policy πexplore
ϕ and value function Vϕ. These take

64-dimensional embeddings of st and Γ(:k,:t) as input, computed by a single-layer, tanh-activated network.
We use similar architectures for πθ and Vθ. However, c is first mapped to a 128-dimensional representation
by a (128, 128) feed-forward network with tanh activations.

To optimize both policies, each PPO update is run for NPPO = 4 epochs, with minibatches of size 2. We use
the Adam optimizer and set the coefficients in Eq. 12 to c1 = 0.5 and c2 = 0.01. The GAE ÂGAE

t is computed
using discounts γ = 0.99 and λ = 0.9. Finally, as mentioned in Sec. 3.1, we stabilize the optimization of
πθ by adding the PFO term suggested by Moalla et al. (2024) to the PPO objective (Eq. 12). We set the
corresponding coefficient to cPFO = 0.1. The PFO term is omitted when optimizing πexplore

ϕ . We found that
including it made training more difficult, whereas πexplore

ϕ was already sufficiently stable without it.

D.3 Meta-Training

LaSER agents are meta-trained in two phases. In the first phase, we alternate between updating the encoder
gω and the exploration policy πexplore

ϕ for Nexplore iterations. Before each encoder update, we collect a dataset
B by following πexplore

ϕ . Each element B ∈ B is a tensor that contains Q meta-episodes and is collected from
a taskMi ∼ p(M). A dataset B contains data from 5 different tasks. We update gω on the masked dataset
Bmasked for Nencoder epochs, as shown in Alg. 3. To improve meta-training sample efficiency, we use all Q
meta-episodes in each tensor B ∈ B to compute Lrec and R. Additionally, in practice, each B is stored in a
buffer and reused in future updates. This buffer holds data collected from up to 100, 000 tasks. To update
πexplore

ϕ , exploration data is collected from multiple tasks as described in Sec. 3.2. In the second phase, the
task policy πθ is updated for Ntask iterations.

For the loss Lrec used in Eq. 11, we exclude the reconstructed actions from the loss computation. This
ensures that the encoder focuses on learning patterns in states and rewards, rather than the exploration
policy. Additionally, we scale the loss on states by a factor of 0.05.
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Note that the encoder gω is optimized purely through self-supervised methods. This constraint can be lifted.
The RL loss used to update the task policy πθ can also be used to fine-tune gω. This fine-tuning could adapt
the general pretrained encoder to align more closely with the task-solving objective. However, similar to
Zintgraf et al. (2021b), we observe no empirical benefits from fine-tuning, so we omit it in our experiments.

LaSER’s encoder gω and exploration policy πexplore
ϕ are meta-trained using an Nvidia A100 80GB GPU. In

the second phase, we switch to an Nvidia RTX 4070 Ti SUPER 16GB GPU to meta-train the task policy
πθ. All environment data is collected using only CPU computations.

E Meta-Training and Meta-Testing Tasks

We continue the discussion from Sec. 5.1.1 and provide more details on the tasks available in the MEWA
benchmark. In a critical state sx of type x, a risky action arisk can either lead to a state s′ or s′

x. We use
s′ to denote that a mistake has been avoided and the agent progressed in the task. In contrast, s′

x denotes
that a mistake has happened, resulting in a large delay in task completion and thus, lower returns. The
probability of arisk leading to a mistake depends on both the mistake’s type x and the dynamics of task
Mi ∼ p(M). Formally, we define Ti(s′

x | sx, arisk,Mi) = p
(i)
x to be the task-specific transition leading to a

mistake. Here, the vector p(i), with p
(i)
y ≤ p

(i)
x for all y < x, denotes the probabilities of making a mistake

of each type. The probability of avoiding a mistake is then simply Ti(s′ | sx, arisk,Mi) = 1− p
(i)
x .

An agent’s second option is to take a safe action asafe in a critical state sx. This comes at the cost of a
small delay, and leads to a critical state sx−1, with p

(i)
x−1 ≤ p

(i)
x . Formally, the dynamics are given by the

task-agnostic transition Ti(sx−1 | sx, asafe,Mi) = 1.

Table 3 provides the 12 meta-testing tasks used for the results in Sec. 5. We describe each task by their
corresponding vector of mistake probabilities p(i) ∈ [0, 1]4. Additionally, for each task Mi, we provide
the average probability of a mistake of any type happening, computed as 1/4

∑4
x=1 p

(i)
x . As previously

mentioned, we use this as a rough measure of similarity between tasks. Finally, we mark tasks that are
outside of MEWA’s meta-training task distribution (i.e., cannot be sampled during meta-training) as OOD
tasks.

Task Mistake Probability Average Mistake OOD
Index Type I Type II Type III Type IV Probability

0 0 0 0 0 0.000 No
1 0.05 0 0 0 0.013 No
2 0.1 0 0 0 0.025 No
3 0.772 0 0 0 0.193 No
4 0.672 0.618 0 0 0.322 No
5 0.622 0.618 0.577 0.434 0.563 No
6 0.622 0.618 0.577 0.534 0.588 Yes
7 0.872 0.818 0.777 0 0.617 Yes
8 0.672 0.668 0.627 0.584 0.638 Yes
9 0.972 0.968 0.927 0.384 0.813 Yes
10 0.972 0.968 0.927 0.784 0.913 Yes
11 0.972 0.968 0.927 0.884 0.938 Yes

Table 3: The configuration of the 12 MEWA tasks used for meta-testing agents. A task is described by a
4-dimensional vector. Each dimension corresponds to the probability of a mistake of the corresponding type
happening. We additionally compute the average mistake probability across all types. This can be seen as a
way of comparing tasks, i.e., tasks with similar average probabilities have similar optimal policies. Finally,
tasks marked as OOD are outside MEWA’s meta-training task distribution.
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F Baseline Algorithms Details

We provide details for the architectures, hyperparameters, and the meta-training process for the baseline
algorithms used in Sec. 5.2 and 5.3. We tune these algorithms and use the best-performing hyperparameters.
Where possible, and if performance is not negatively affected, the task policy’s architecture and meta-training
are similar to LaSER’s. Otherwise, the task policy is tuned with the rest of the model. All baseline algorithms
are meta-trained using an Nvidia RTX 4070 Ti SUPER 16GB GPU.

F.1 MAML

For MAML (Finn et al., 2017), we use the publicly available code provided for meta-RL by Deleu (2018) at
https://github.com/tristandeleu/pytorch-maml-rl. We train for 12000 meta-iterations, with batches of 16
tasks. For each task, we sample 5 episodes. MAML is meta-trained to maximize returns after one policy
gradient update. However, during meta-testing, it performs K = 4 gradient updates. We use a discount
factor of γ = 0.99. We also use λ = 0.9 to compute the generalized advantage estimator (GAE). To ensure
optimal results, we did not use the first-order approximation proposed by Finn et al. (2017), but instead
computed the second derivatives and backpropagated. The policy is a (64, 64) feed-forward network with
tanh activations. Due to the computational cost of MAML, we had to use a smaller policy network than
in the other algorithms. All other hyperparameters follow the ones used by Finn et al. (2017) in their RL
experiments.

F.2 PEARL

We use the publicly available code at https://github.com/katerakelly/oyster for our implementation of
PEARL (Rakelly et al., 2019). Each agent is meta-trained for 350 iterations on a total of 3000 training
tasks, with 16 tasks per batch. At each iteration, both the encoder and the task policy are optimized for
2000 gradient steps, with batches of 64 transitions for the encoder and 256 for the policy.

PEARL uses a variational approach for computing task contexts c. When computing PEARL’s loss, the
KL divergence of the encoder is weighted by 0.1. Additionally, both the task policy and the encoder have a
learning rate of 3× 10−4 and use the Adam optimizer.

PEARL uses Soft-Actor Critic (SAC) (Haarnoja et al., 2018a;b), an off-policy RL algorithm. Note that,
since SAC is designed for continuous action spaces, we instead use a SAC version for discrete action spaces
(Christodoulou, 2019). We tune SAC’s temperature hyperparameter automatically, using the approach
introduced by Haarnoja et al. (2018b), since manual tuning can be difficult. We use a discount factor of
γ = 0.99 and a target smoothing coefficient for SAC of 0.005. At each iteration, PEARL adds data collected
from 5 randomly selected tasks to a replay buffer of size 1000000 timesteps. For each of these tasks, it
collects 400 timesteps by conditioning its policy on a context c sampled from a prior distribution over tasks.
It additionally collects 600 more timesteps using a c sampled from its meta-trained posterior over tasks.
However, this latter data is only used to update the task policy, not the encoder. Before training starts, the
replay buffer is populated with 2000 timesteps per task, collected by following a uniformly random policy.

PEARL’s encoder is a (200, 200, 200) feed-forward network with ReLU activations that computes 5-
dimensional latent task context vectors c. The task policy is a (128, 128, 128) feed-forward network with
tanh activations.

F.3 VariBAD

We use the code at https://github.com/lmzintgraf/varibad for VariBAD (Zintgraf et al., 2021b). We meta-
train for 8125 iterations on 3000 meta-training tasks. At each iteration, we collect 200 timesteps per task
from 16 different tasks. These timesteps are stored in a buffer of size 10000 episodes. Additionally, before
training, a uniformly random policy adds 5000 timesteps to the buffer. This buffer is later used to update
the encoder.
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VariBAD uses a variational auto-encoder (VAE) (Kingma & Welling, 2014) to encode the data collected
from tasks into latent context c. This encoder is optimized using Adam with a learning rate of 0.001. At
each iteration, the encoder is updated for 3 steps, using batches of 15 episodes, sampled from the buffer. The
encoder is a recurrent neural network of size 128 that computes 5-dimensional task contexts c. The decoder
takes c as input, together with the current transition s, a, s′, and reconstructs the reward r. We use a (64, 32)
feed-forward network to represent the encoder. The state, action, and reward inputs are preprocessed into
representations of size 32, 16, and 16, respectively, by separate single-layer networks with ReLU activations.
Both the encoder and decoder have such pre-processing layers.

Since VariBAD uses PPO to optimize its policy, we use the same network architectures and hyperparameters
as LaSER’s task policy (see Appendix D.2 and Table 7). However, we do not use the additional PFO
objective. Finally, before passing s and c to the policy, we embed them into 64-dimensional representations
using separate single-layer networks with tanh activations.

F.4 Decision Adapters

We implement the hypernetwork-based task policy using the code provided by Beukman et al. (2024) at
https://github.com/Michael-Beukman/DecisionAdapter. The policy is a (128, 128) feed-forward network,
similar to LaSER’s task policy (see Appendix D.2). It is also meta-trained with the same hyperparameters
(see Table 7). However, this policy only takes the state s as input. Moreover, between the policy’s last hidden
layer and output layer, we introduce an additional (32, 32) network with tanh activations. The weights of this
final network are generated by a hypernetwork, which takes the task context c as input. Following Beukman
et al. (2024), we also use a skip connection between the input and output of these hypernetwork-weighted
layers.

The hypernetwork itself is a (64, 64) feed-forward network with tanh activations. The output weights of
the hypernetwork are computed in chunks of size 16. Before passing the input c, we pre-process it into
a 4-dimensional representation using a single tanh-activated layer. Finally, the actor and the critic have
separate hypernetworks.

G Additional Results

We provide results that complement those in Sec. 5.

Figure 9: Encoder loss for LaSER, computed on tasks from MEWA’s meta-training distribution. We show
separate plots for each term in the encoder loss function. For 10 random seeds, we provide the standard error
as the shaded areas, average the second and fourth metrics, and report the median for the other two. We
found the median to be more appropriate, as one of the seeds was unstable towards the end of meta-training,
for approximately 0.2e8 timesteps. For this same reason, we restrict the plot of the contrastive loss to the
range [−2.5e−6, 5e−5]. To aid readability for exponential losses, the reconstruction and regularization losses
use a logarithmic scale. All metrics are smoothed using EMA with αEMA = 0.2.
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Figure 10: Undiscounted returns of task-solving policies on tasks from MEWA’s meta-training task distri-
bution. The shaded areas report the standard error of the average return across 10 seeds. We use EMA
smoothing with αEMA = 0.6.

Figure 11: Encoder loss for PEARL, VariBAD, and DREAM on tasks from MEWA’s meta-training task
distribution. The shaded areas report the standard error of the average loss across 10 seeds. Since PEARL’s
and VairBAD’s losses decay exponentially, we use logarithmic scales.

H Hyperparameters

General Hyperparameters
Hyperparameter Value Notes

Nexplore 10, 000
H 50 Horizon.
K 4 Episodes per meta-episode.

Table 4: LaSER hyperparameters used throughout meta-training and meta-testing.
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Figure 12: Exploration return for DREAM’s exploration policy. Shaded areas are the standard error of the
average over 10 random seeds.

Figure 13: Wall clock time required to meta-train each method. We report standard error of the mean over
10 seeds. (Left) Total meta-training time. (Right) Average meta-training time per timestep.

Encoder gω

Hyperparameter Value Notes
Learning rate 1× 10−4

Nencoder 50
Q 20 Meta-episodes per task.

crec, ct-rec, ccontr, cR 0.5; 1; 1; 0.125 Coefficients for loss LLaSER in Eq. 11.
ξ 0.1 Constant in Eq. 8.
ν 250 Update delay for parameters ω̂.

Table 5: LaSER hyperparameters used for meta-training the encoder.
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Figure 14: Average per-task returns for each of the 12 meta-testing tasks in MEWA. Each agent is meta-tested
with an exploration budget of K = 4. Results are averaged over 10 seeds, with error bars indicating standard
error across seeds. The three baselines are computed on a per-task basis. We normalize returns between the
random and optimal baselines. For better visualization, we also restrict the plot to the [−0.02, 1.0] range.

Figure 15: Wall clock time results for task policy meta-training. We measure the average time per iteration
(in seconds) required to roll out episodes and optimize the policy. The results are averaged over 10 seeds.
The bars represent standard error across all seeds.

Exploration Policy πexplore
ϕ

Hyperparameter Value Notes
Learning rate 1× 10−5

σ 0.0018 Constant in Eq. 5.
ϵ 0.1 PPO clipping during exploration; see Eq. 13.

Table 6: LaSER hyperparameters used for meta-training the exploration policy.
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Task Policy πθ

Hyperparameter Value Notes
Learning rate 1× 10−4

Ntask 20, 000
β 1.5 Coefficient in Eq. 2.
ζ −0.13 Threshold in Eq. 3.
ϵ 0.2 PPO clipping during task solving; see Eq. 13.

Table 7: LaSER hyperparameters used for meta-training the task policy.
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