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ABSTRACT

Reinforcement learning (RL) has emerged as a powerful paradigm for enhanc-
ing the reasoning capabilities of large language models (LLMs). While RL has
demonstrated substantial performance gains, it still faces key challenges, includ-
ing low sampling efficiency and a strong dependence on model initialization:
some models achieve rapid improvements with minimal RL steps, while others
require significant training data to make progress. In this work, we investigate
these challenges through the lens of reasoning token coverage and argue that
initializing LLMs with diverse, high-quality reasoning primitives is essential for
achieving stable and sample-efficient RL training. We propose Tailor, a finetun-
ing pipeline that automatically discovers and curates novel reasoning primitives,
thereby expanding the coverage of reasoning-state distributions before RL. Exten-
sive experiments on mathematical and logical reasoning benchmarks demonstrate
that Tailor generates more diverse and higher-quality warm-start data, resulting in
higher downstream RL performance.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities across a
broad range of application domains, including mathematical problem solving (Yu et al., 2023a;
Yue et al., 2025b; Zeng et al., 2025b; Shen et al., 2025b), code generation (Xia et al., 2024; Yang
et al., 2024b), and complex decision-making in agentic tasks such as API calling (Liu et al., 2024b;
Prabhakar et al., 2025), autonomous driving (Li et al., 2024; Wei et al., 2024), and robotics (Yu et al.,
2023b; Team et al., 2025a). Reinforcement learning (RL) has emerged as a promising paradigm for
enhancing reasoning abilities by exploiting feedback from environments and leveraging verifiable
reward signals (Ouyang et al., 2022; Wen et al., 2025). Such training approaches have been shown
to improve model performance through the generation of long chains of thought (CoTs) (Wei et al.,
2022) and test-time scaling (Yu et al., 2025c), thereby producing outputs of higher quality.
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Figure 1: Coverage comparison. The goal in
the maze refers to the correct answer, and the
trajectories refer to the thinking tokens.

Although RL has demonstrated strong capabilities,
it still faces significant challenges. First, RL suffers
from low sampling efficiency (Haarnoja et al., 2018;
Du et al., 2019; Shi & Chi, 2024), a limitation that
is further exacerbated in the context of LLMs due
to their large parameter space and the high compu-
tational cost associated with policy rollouts and up-
dates (Sun et al., 2025; Zheng et al., 2025). Second,
empirical studies (Gandhi et al., 2025) show that dif-
ferent LLMs respond inconsistently to RL: While
some exhibit substantial performance gains, others
show minimal or no improvement. This suggests
that successful RL training on LLMs is highly sensi-
tive to model initialization (Gandhi et al., 2025; Yue
et al., 2025a; Cen et al., 2025; Chen et al., 2025c).
To address these challenges, one line of research fo-
cuses on improving RL algorithms through dynamic
sampling (Yu et al., 2025c) and data selection techniques (Zheng et al., 2025; Sun et al., 2025).
Another direction adopts a data-centric perspective, emphasizing enhancements to data quality (Yu
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et al., 2025a). Prior data-centric efforts have identified emergent behavioral motifs, such as self-
verification and reflection, that correlate with successful RL training (Gandhi et al., 2025). However,
these patterns have typically been identified within narrowly scoped domains or tasks.

Our key insight is that successful RL training in LLMs requires initializing models with reasoning
primitives that offer high thinking trajectory coverage. Specifically, reasoning primitive refers to rea-
soning patterns (e.g., bottom-up reasoning, top-down reasoning, etc.), which fundamentally govern
the reasoning token distribution. Most existing warm-start pipelines, where supervised fine-tuning
(SFT) precedes the RL stage, include only a limited set of primitive patterns, such as rule-based
traces or distilled target behaviors from the SFT dataset. However, these often exhibit low cover-
age of the reasoning token distribution, as illustrated in Figure 1, leading to inefficient exploration
and slower RL improvement. To overcome this limitation, we propose the Tailor (Task-AdaptIve,
Learning-Primitive-Oriented Reinforcement) finetuning pipeline, which automatically discovers di-
verse reasoning primitives. Our contributions are summarized as follows:

1. Analysis of reasoning primitive coverage. We investigate the role of reasoning primitive diver-
sity in warm-start RL for LLMs, shifting the focus from hand-crafting demonstrations with specific
reasoning styles.

2. The Tailor finetuning pipeline. We introduce the Tailor pipeline, which automatically curates a
reasoning-diverse SFT dataset to better initialize models for subsequent RL training.

3. Comprehensive experimental evaluation. We evaluate Tailor on math and logical reasoning
tasks across multiple LLM models. Our experiments and ablation studies show that Tailor improves
the quality and diversity of reasoning demonstrations, leading to a stronger downstream RL.

2 RELATED WORK

LLM Reasoning. Reasoning models were first conceptualized in the OpenAI series models (Jaech
et al., 2024), referring to LLMs that leverage test-time scaling by generating long chains of thought
(CoTs) before final answers to improve output quality (Guo et al., 2025; Team et al., 2025b). The
success of OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025) demonstrated that
large-scale RL can incentivize reasoning capabilities in LLM training. Considerable efforts have
been devoted to developing RL algorithms, such as VinePPO (Feng et al., 2023), Reinforce++ (Hu,
2025), and DAPO (Yu et al., 2025c), to advance the frontier of reasoning models. RL-based training
has also been adopted in a variety of domain-specific LLMs in addition to general-purpose mod-
els (Liu et al., 2025; Shen et al., 2025a; Chu et al., 2025; Nguyen et al., 2025). Furthermore, LLM
agents apply RL to enhance reasoning in textual tool use and multi-step planning (Song et al., 2025;
Chen et al., 2025b; Jin et al., 2025; Qian et al., 2025), mobile and web environments (Chen et al.,
2025a; Qi et al., 2024), and code generation (Wei et al., 2025; Zeng et al., 2025a; Pan et al., 2024).

Data-Centric Methods for RL Training. Data-centric approaches focus on improving the quality
of training data rather than modifying the training algorithms (Zhou et al., 2023; Li et al., 2025;
Guha et al., 2025; Yu et al., 2025b; Liang et al., 2025). Several works (Hong et al., 2023; Yao et al.,
2024; Lee et al., 2024b) aim to shift the behavior policy distribution to facilitate more effective RL
training (Yu et al., 2025a). Within the warm-start RL pipeline, where SFT precedes RL tuning,
recent studies have shown that SFT induces coarse-grained changes in the LLM’s thinking pattern
distribution (Fu et al., 2025), and that RL post-training tends to amplify patterns learned during
SFT (Zhao et al., 2025). These findings highlight the critical role of SFT demonstrations (Yan et al.,
2025; Ma et al., 2025), which serve as a “format teacher” (He et al., 2025) to guide policy rollouts
and exploration during RL. Our method falls within the data-centric category, focusing specifically
on curating the SFT dataset to better prepare LLMs for downstream RL training.

Reasoning Primitives. Primitives are often used to represent to capture trajectory features (Goyal
et al., 2020; Peng et al., 2019). In the context of LLM reasoning, the internal thinking patterns
manifested in model completions have been referred to as reasoning primitives (Li et al., 2025),
behaviors (Zhao et al., 2025; Cen et al., 2025), or reasoning strategies (Qu et al., 2025). Prior works
have identified specific primitives, such as reflection and backtracking, as correlates of effective
test-time scaling and RL performance improvements (Yeo et al., 2025; Shen et al., 2025b; Kim
et al., 2025). Additionally, by comparing models that show large versus marginal gains during RL,
Gandhi et al. (2025) identified four key primitives: verification, backtracking, backward chaining,
and subgoaling, which are critical to RL success. In contrast to these studies, which focus on an-
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alyzing specific reasoning patterns, we explore how to automatically discover novel primitives and
investigate how the diversity and quality of reasoning primitives affect the effectiveness of RL.

3 PRELIMINARY

Markov Decision Process (MDP). We model the reasoning and action process of a large language
model (LLM) under reinforcement learning as a Markov Decision Process (MDP) (Puterman, 2014),
defined by the tuple M = (S,A, P, r, s0). Here, S denotes the state space, where each state s ∈ S
encodes the current reasoning context of the LLM, including the history of reasoning tokens. The
initial state s0 ∈ S0 corresponds to a query from the query set S0. The action space A consists
of all possible reasoning steps, where an action a ∈ A represents either an intermediate reasoning
token or the final answer. The transition function is deterministic and defined as: P (st+1 | st, at) =
I [st+1 = [st, at]], where each new state is formed by appending the chosen action to the current
state. The reward function r : S × A → R specifies the immediate reward received upon taking
action a in state s. A policy πθ : S → A maps each state to a probability distribution over actions.
A trajectory τ is defined as a sequence of states τ = (s1, . . . , st, ..., sT−1,o), where s1 through
sT−1 represent intermediate reasoning steps (thinking tokens) and o is the final answer. T denotes
the number of steps.

Reinforcement Learning Fine-Tuning. The goal of Reinforcement Learning Fine-Tuning in LLMs
is to optimize the expected reward over a set of queries S0:

max
θ
J = Es0∼S0, s∼πθ

[
T∑

t=1

r(s0, τ
(≤t))

]
, where r(s0, τ) = 1(o = ogold), (1)

where ogold is the ground-truth answer to the query. In this work, we primarily adopt a rule-based
outcome reward that assigns a binary signal to the final answer tokens in the generated output. We
study the objective function of KL-regularized clipped policy optimization, which incorporates regu-
larization toward a reference policy, applies clipping to the policy ratio, and optimizes the following
surrogate objective:

JRL(S0; θ) = Es0∼S0,τ∼πθ(·|s0)

1

N

N∑
i=1

[
min

{
πθ(·|τ (<t))

πold(·|τ (<t))
Ai, clip

(
πθ(·|τ (<t))

πold(·|τ (<t))
, 1− ϵ1, 1 + ϵ2

)
Ai

}
− βDKL(πθ∥πref)

]
,

(2)
where ϵ1, ϵ2 are the clipping ratios, β is the KL regularization coefficient, and Ai is the advantage
term determined by the specific RL algorithm. This objective is used in many RL frameworks such
as GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025c).

Warm-Start RL. This work focuses on the warm-start RL pipeline, which first applies Supervised
Fine-Tuning (SFT) followed by RL training (Shao et al., 2024). The SFT stage enables LLMs
to follow formatting instructions, become familiar with the dataset, and acquire initial reasoning
capabilities within the target domain using a demonstration datasetDSFT. During SFT, the policy πθ

is trained by minimizing the negative log-likelihood loss:

min
θ
LSFT(D; θ) = −E(s0,τ,a)∼DSFT

[
T∑

t=1

log πθ(at | s0, τ (<t))

]
(3)

For simplicity, we use the term SFT model to refer to the model after SFT.

4 METHOD

4.1 REASONING PRIMITIVE

In warm-start RL, LLMs initially adopt the thinking token distribution from the SFT dataset and
progressively refine their reasoning patterns in RL through interaction with verifiers. Empirical
studies (Gandhi et al., 2025; Cen et al., 2025) show that the distribution of thinking tokens in the
SFT dataset strongly influences downstream reasoning performance: when warm-starting from two
SFT datasets with different reasoning chain patterns, the resulting RL performance can diverge
dramatically, even though both patterns are valid and interpretable to humans. To investigate this
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Student
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Training
Dataset

… …

Primitive
Generator…

… … …

SFT

… RL

Seed query Primitives

…

…
① Generation

② Trace Analysis

③ Generate primitives

⑤ training

…

④ Curate SFT dataset

Figure 2: Overview of the Tailor finetuning pipeline.

phenomenon and identify better CoT patterns, we introduce the notion of primitives, which control
the trajectory-wise distribution ρ of thinking tokens to model textual reasoning patterns. Formally,
we augment the MDP tuple M ′ = (S,A, P, r, s0, z) with a reasoning primitive z (Qu et al., 2025):

ρ(πθ | z) = Es0∼S0

∏
t

πθ(at | st, z) I[st+1 = [st, at]] , (4)

The distribution of thinking tokens ρ is influenced by the primitives z. In the context of LLMs,
primitives z can correspond to prompt instructions that are combined with the query s0 to guide
subsequent reasoning. We provide several textual examples of reasoning primitives in Figure 3.
For instance, when constructing reasoning chains for a math problem, different primitives such as
Top-Down and Bottom-Up reasoning, or strategies for self-verification and error recovery, can be
applied. Primitives also encompass broader behaviors such as reflection and backtracking, which
enable the model to detect and recover from failures during the reasoning process. This concept
naturally extends beyond mathematics to other reasoning domains, such as software engineering
tasks (Zhang et al., 2025), where primitives emerge from variations in agentic and prompt designs.

Primitive initialization plays a key role in warm-start RL: due to the regularization term and policy
clip mechanism in the RL objective (2), LLMs are hard to automatically discover novel primitives
themselves during the RL process (Zhao et al., 2025), especially when we are training specialized
LLMs with limited capability and pre-training data distribution. Prior works have identified spe-
cific patterns, including backtracking, and reflection (Gandhi et al., 2025), that have a correlation
with performance improvement in the subsequent RL stage. We interpret the success of specific
primitives as the increase in the thinking token distribution coverage, as reflection and backtrack-
ing, which means revisit of previous context, implicitly increasing the probability to explore other
thinking states.

4.2 TAILOR PIPELINE

Math question: The number of each Manager’s Backpack
equals the difference between … How many Manager
Backpack does each Graphic Design Studio have?

Primitive 1: Top-Down Primitive 2: Bottom-Up
1) Dependency chain discover
2) Problem breakdown

7) Information gathering
8) Final answer derivation

1) Variable Definition
2) Build Equations

3) Solve intermediate results

7) Final answer derivation

…

…

Figure 3: Examples of reasoning primitives.

Building on the above analysis, we argue that ini-
tializing LLMs with broad thinking token coverage
leads to stronger exploration capabilities and higher
RL performance. Our objective is therefore to dis-
cover a more diverse set of reasoning primitives,
thereby expanding the coverage of thinking tokens
and improving both the potential and sampling effi-
ciency of the subsequent RL process. Beyond diver-
sity, the quality of primitives is equally critical to the
efficiency of RL. As noted by (Qu et al., 2025), high-
quality primitives enable LLMs to achieve superior
performance on specific problem sets. We assess the
quality of primitives from two perspectives: (1) they should be consistent with and aligned to the
target domain tasks, and (2) they should be easy for LLMs to learn, meaning that the SFT dataset
distribution remains close to the pre-training distribution.

Having established the importance of diverse and high-quality reasoning primitives, we now intro-
duce our method for initializing LLMs prior to RL. To meet the objectives of diversity and quality,
we propose the Task-AdaptIve, Learning-Primitive-Oriented Reinforcement (Tailor) fine-tuning
pipeline, illustrated in Figure 2. The key components of our approach are described as follows:
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Demonstration Trace Analysis. The first step is to prompt the instructed student LLMs to generate
completions on a small training data subset and label the answers using verifiers. These demonstra-
tions reflect thinking tokens close to the student models’ pre-training distribution and exhibit a wide
range of failures and errors. We then employ an LLM-based teacher model1 to analyze these traces
and propose corrections and alternative reasoning paths toward the correct answers when failures
are detected. This step is designed to uncover diverse repair-oriented reasoning patterns that remain
close to the student models’ pre-training distributions, making them easier to adopt and follow.

Algorithm 1 Tailor Finetuning Pipeline
Input: SFT seed dataset Ds, subsets of RL dataset
DRL, student model πθ, teacher model πt.
Output: Tailor RL model πθ′ .

1: # Demonstration trace analysis.
2: Generate completions: τ ∼ πθ(· | s0), s0 ∼ DRL
3: Summarize Failures F = {fk}, fk ← πt(τk).
4: # Reasoning primitive synthesis.
5: Generate primitives Z = {zm}: zm ← πt(fm)
6: # Tailor SFT dataset curation.
7: Initialize SFT DSFT ← ∅
8: for (s0, a) ∈ Ds do
9: Sample a primitive z ∼ Z;

10: Curate trace: τ ← πt(· | s0, z);
11: Update DSFT ← DSFT ∪ (s0, τ)
12: end for
13: # SFT & RL.
14: Perform SFT (3) on DSFT and RL (2) on DRL.
15: Return: RL policy πθ′

Reasoning Primitive Synthesis. Build-
ing on the summarized traces from the
previous step, we synthesize reasoning
primitives by prompting the teacher model
to generate corresponding primitives z
that guide LLMs to produce failure-
recovery reasoning patterns during gener-
ation. Given that the observed failures
span a wide range of types, we are able to
curate a broad collection of reasoning in-
structions to support the subsequent SFT
dataset curation.

Tailor SFT Dataset Curation. After ob-
taining the set of reasoning primitives Z,
we prompt the LLM teacher model to gen-
erate reasoning traces that explicitly fol-
low each primitive.

After curating the Tailor SFT dataset,
we fine-tune the student models on it
and subsequently apply RL. A simplified
overview of the Tailor process is provided in Algorithm 1, and additional details are included in the
Appendix A.

Intuition. In the Tailor pipeline, student models often exhibit a variety of reasoning failures in their
demonstration traces. These failures include skipping intermediate steps, making unsupported as-
sumptions, or mishandling mathematical relationships. By analyzing these traces, the teacher model
constructs a targeted set of repair primitives Z that directly address the observed error patterns. This
set is not only tailored to the student model’s generation behaviors and the target domain but is also
enriched with diverse instructions that correspond to distinct types of reasoning errors. As a result,
the dataset generated using Z includes a broader range of reasoning primitives with greater cov-
erage. This increased coverage improves alignment with the task distribution and provides a more
effective foundation for subsequent reinforcement learning, leading to higher sampling efficiency
and performance gains in warm-start RL.

5 EXPERIMENTS

We now evaluate the effectiveness of Tailor in improving RL performance. We begin by presenting
the main results, followed by a comparison of primitive diversity, and conclude with ablation studies.

5.1 EXPERIMENT SETUP

Dataset and Benchmarks. We conduct experiments on two reasoning benchmarks: (1) iGSM (Ye
et al., 2024), a grade-school math benchmark that tests mathematical and commonsense reasoning
skills, containing difficulty of medium and hard tasks; and (2) KK (Knights & Knaves) (Xie et al.,
2024), a logical reasoning benchmark based on dynamically generated knights and knaves puzzles.
We choose these two benchmarks to assess problem-solving and reasoning capabilities in LLMs
while minimizing the influence of factual knowledge retrieval and reducing the risk of data contam-
ination from the pre-training stage (Wu et al., 2025), as the synthetic nature of iGSM and KK helps

1We deploy DeepSeek-V3-0324 as the teacher model in our experiments.
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(b) Qwen2.5-0.5B as base models(a) LLama3.2-1B as base models

Figure 4: Training Curves of the KK tasks. We average curves with 3 random seeds.

Llama-1B as base models Qwen-0.5B as base models 

Figure 5: The evaluation results (%) on the KK reasoning tasks. We train SFT models for 4 epochs
and finetune them with RL for 5 epochs. The mean value and standard deviation are calculated over
3 random seeds.

mitigate such issues (Ye et al., 2024; 2025). For both datasets, we evaluate methods in in-distribution
(In-Dist) data and out-of-distribution (OOD) data. See Appendix A for more details.

Baselines. We compare Tailor with three types of baselines: (1) Rule-based Demonstration. Both
the iGSM and KK benchmarks provide ground-truth functions to generate rule-based reasoning
traces. We construct CoTs using these rule-based traces, perform SFT on the data, and then apply
RL. We refer to this baseline as Rule-based. (2) Human-Crafted Primitives. Gandhi et al. (2025)
identifies four critical STaR behaviors for RL and injects these reasoning patterns by prompting a
teacher model with specialized instructions. We use their prompts to collect demonstrations and
perform distillation, referring to this baseline as 4-STaR. Additionally, we include a Standard-CoT
baseline in this category, where teacher demonstrations are generated using CoT prompting (Wei
et al., 2022). (3) Re-distillation. Chen et al. (2025c) propose a re-distillation strategy in which
a trained model is used to regenerate the SFT dataset, producing data that better aligns with the
model’s pre-training distribution. This idea is consistent with Generalized Knowledge Distillation
(GKD) (Agarwal et al., 2024), which aims to reduce the distributional gap between the finetuning
dataset and the student model’s pre-training distribution. We apply re-distillation to the 4-STaR
SFT model to curate a new dataset, which we then combine with the original 4-STaR dataset. After
SFT on this mixed data, we apply RL. We refer to this baseline as Batch-GKD (BGKD-λ), where
λ ∈ [0, 1] denotes the proportion of re-distilled data in the SFT dataset.

Other Experiment Settings. We evaluate our method using the Llama (Grattafiori et al., 2024) and
Qwen (Yang et al., 2024a) model families. For Llama, we use Llama3.2-1B and Llama3.2-3B as
base models; for Qwen, we use Qwen2.5-0.5B and Qwen2.5-3B. The demonstration dataset size
for the SFT stage is set to 8,000, and the RL dataset contains 10,000 examples. Unless otherwise
specified, we use DeepSeek-V3 (Liu et al., 2024a) as the teacher model with a decoding temperature
of 0.5. The evaluation temperature for both SFT and RL models is set to 1.0. For RL, we adopt
the DAPO algorithm (Yu et al., 2025c) with a rule-based outcome reward based on final answer
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Llama-1B as base models Qwen-0.5B as base models 

Llama-3B as base models Qwen-3B as base models 

(a) Evaluation on the iGSM-medium task

(b) Evaluation on the iGSM-hard task

Figure 6: The evaluation results (%) on the iGSM reasoning tasks. We train SFT models for 4
epochs and finetune them with RL for 5 epochs for the iGSM-medium tasks, and finetune with RL
for 100 steps for the iGSM-hard tasks. The mean value and standard deviation are calculated over 3
random seeds.

accuracy. All experiments are conducted using the Verl framework (Sheng et al., 2025). Additional
details are provided in Appendix A.

5.2 MAIN RESULTS

We present the RL performance on the KK and iGSM tasks in Figure 5 and Figure 6, respectively.
For the KK task, we simulate a practical setting in which the teacher model performs well, while the
student model fails to achieve satisfactory performance. The teacher model achieves approximately
95% accuracy on the SFT dataset. We do not perform rejection sampling in this setting, as incorrect
answers are rare and still provide useful learning signals (Xie et al., 2024). In contrast, for the iGSM
tasks, we simulate a scenario where the teacher model performs poorly, achieving only around 25%
accuracy on the SFT dataset. In this case, we apply rejection sampling during SFT data collection to
filter out incorrect answers, while keeping the overall dataset size unchanged. The SFT dataset size
is fixed at 8,000 for both KK and iGSM tasks.

KK Experiments. From Figure 5, we observe that both Llama and Qwen models struggle to achieve
competitive performance after RL with rule-based CoTs. This suggests that accuracy and reasoning
consistency alone are insufficient indicators of whether an SFT dataset provides good demonstra-
tions for efficient RL. For example, rule-based annotations yield perfectly accurate and coherent
reasoning traces, yet still fail to support effective RL training. These findings highlight the impor-
tance of curating SFT datasets that better prepare LLMs for RL.

Re-distillation methods (BGKD-λ) show modest performance improvements during the SFT stage.
By using self-generated data, these methods reduce the distributional gap between post-training
and pre-training data, resulting in more learnable patterns and improved SFT efficiency. However,
BGKD still underperforms after the RL stage, as relying solely on re-distilled data diminishes the
exploration benefits provided by the teacher model. In contrast, baselines such as Standard-CoT and

7
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4-STaR achieve substantial RL performance gains by incorporating specific reasoning behaviors
from teacher demonstrations. Finally, our method Tailor achieves the best overall RL performance
and the largest improvements on both in-distribution and OOD evaluation sets, benefiting from the
more diverse reasoning primitives it provides. As shown in Figure 4, Tailor also exhibits faster
learning and higher sampling efficiency, attributed to its higher initial thinking token coverage. The
entropy of the baseline methods, Standard-CoT and 4-STaRs, also remains high, but their training
rewards are lower. This suggests that they may be exploring only superficial variations, such as
changing individual words, rather than engaging in meaningful strategy-level exploration. As a
result, the benefit for RL is limited.

Standard-CoT 4-STaR Tailor
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Figure 7: Primitive similarity: lower
score means higher diversity.

iGSM Experiments. In the iGSM experiments, we ob-
serve that although rule-based methods enable good SFT
performance, achieving top accuracy among some meth-
ods, they fail to provide a suitable starting point for ef-
ficient RL. This observation is consistent with the find-
ings in the KK experiments and further reinforces that
initial SFT model accuracy is not the sole factor influ-
encing RL effectiveness; the underlying thinking token
distribution also plays a crucial role. BGKD-λ yields
only modest improvements in RL performance. In con-
trast, the 4-STaR baseline enhances RL outcomes by in-
corporating behaviors such as subgoaling and reflection,
which have been shown to correlate with successful RL.
Our method, Tailor, achieves top post-RL performance
by leveraging the diverse reasoning primitives introduced
during the SFT stage. In experiments using Qwen-0.5B
as the base model, 4-STaR performs slightly better, likely
due to the limited capacity of smaller models to learn and
generalize from the diverse reasoning primitives introduced by Tailor during SFT. Nevertheless, Tai-
lor consistently demonstrates substantial RL performance gains over all other baselines across other
iGSM testing datasets.

Diversity Analysis. To evaluate the diversity of reasoning primitives in the curated SFT datasets,
we use NV-Embed-v2 (Lee et al., 2024a) to compute embeddings of the thinking tokens and cal-
culate the average pairwise cosine similarity for responses to the same seed query. Results on the
KK dataset are shown in Figure 7. We observe that 4-STaR improves diversity over Standard-CoT,
as reflected by a lower median similarity and a longer tail extending toward lower values. This
improvement can be attributed to the inclusion of exploration behaviors such as reflection and back-
tracking, which increase variation in the generated reasoning traces. Moreover, our proposed method
Tailor further reduces the similarity scores compared to 4-STaR, with an even lower median and a
heavier tail in the low-similarity region. This indicates that Tailor significantly enhances high-level
reasoning diversity in the SFT dataset, better preparing LLMs for effective exploration during RL.

Takeaways

(1) Reasoning correctness inDSFT alone does not guarantee RL success: although rule-based
CoT achieves the highest accuracy in DSFT, it does not result in an efficient RL process.
(2) Thinking-token coverage is crucial for RL initialization: Tailor increases reasoning-
trajectory diversity in DSFT, enhancing exploration and improving RL efficiency.

5.3 ABLATION STUDY

Ablation on Reasoning Primitives. In our main experiments, we use 25 reasoning primitives for
SFT data collection. To investigate the effect of diversity and coverage in reasoning primitives, we
vary the size of the primitive set from 4 to 25 while keeping the overall SFT dataset size fixed. We
perform ablations on the iGSM-medium task using Llama-1B as the base model. The results are
shown in Figure 8 (a). We observe that when the primitive set is small and less diverse, the resulting
RL performance is lower. This is likely because the limited primitive set covers only a small subset
of effective strategies, making it difficult to generalize across a wide range of questions and hard for
exploration. As the number of reasoning primitives increases to 25, post-RL performance improves,
highlighting the importance of primitive coverage when preparing LLMs for RL.
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(a) Ablation on Reasoning Primitive (b) Ablation on Teacher Model Decoding Temperature

Figure 8: Ablation Study. (a) Effect of the number of reasoning primitives in the SFT dataset.
Experiments are conducted on the iGSM-medium dataset using Llama3.2-1B as the base model. (b)
Effect of the teacher model’s decoding temperature. Experiments are conducted on the KK dataset
using Qwen2.5-0.5B as the base model.
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Figure 9: GRPO experiments on the iGSM-
medium task with LLama-1B as base models.

Ablation on Teacher Model Temperature.
Adjusting the teacher model’s sampling tem-
perature tTeacher is a common technique for con-
trolling the diversity and coverage of demon-
stration datasets (Mukherjee et al., 2023; Hong
et al., 2024). We vary the decoding temper-
ature of the teacher model and conduct abla-
tions on the KK task using Llama-1B as the
base model. The results are shown in Fig-
ure 8 (b). We observe that as the decoding
temperature increases, RL performance gener-
ally improves, suggesting that higher diversity
in teacher outputs benefits downstream train-
ing. However, our method Tailor consistently
outperforms the baselines across all tempera-
ture settings, demonstrating a better balance between quality and diversity. Notably, when the tem-
perature is set too high (e.g., t = 1.6), the quality of demonstrations deteriorates significantly, and
the student model fails to learn reasonable traces in SFT, resulting in near-zero accuracy after RL.

Ablation on Alternative RL Algorithms. In addition to DAPO, we also combine our Tailor
pipeline with GRPO (Shao et al., 2024) on the iGSM-medium task using Llama-1B as the base
model. The results are shown in Figure 9, where we observe that the conclusions remain consis-
tent with those from the DAPO: Tailor achieves the highest RL improvement and final performance.
These results demonstrate the compatibility of our approach with a broader range of RL algorithms.

6 CONCLUSION

In this paper, we interpret the variation in RL performance across different initial models and the
issue of low sampling efficiency through the lens of reasoning primitive quality and coverage. To
address these challenges, we propose Tailor, a pipeline that discovers diverse and high-quality rea-
soning primitives to construct demonstration data for warming up LLMs in RL. By increasing the
coverage of the thinking token distribution, Tailor facilitates faster exploration and unlocks greater
performance potential during RL tuning. Extensive experiments across multiple benchmarks demon-
strate that our method effectively curates a more diverse training corpus and significantly improves
downstream RL performance. One limitation of Tailor is current evaluation focuses on logical and
mathematical reasoning tasks. As future work, we plan to extend the pipeline to other domains such
as code generation and agent-based decision-making. A potential negative impact is that misuse
of our method could lead to the generation of unsafe or toxic primitives. Nevertheless, we believe
Tailor sheds light on data-centric RL, emphasizing that a successful RL process depends on well-
initialized models with diverse and high-quality thinking trajectory distribution.
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REPRODUCIBILITY STATEMENT

Descriptions of our method are provided in Section 4, with implementation details and prompts
included in Appendices A and B. Experiments shown in Section 5 were run with multiple random
seeds, and we report mean values and standard deviations across runs. We use publicly available
datasets and benchmarks, with descriptions also provided in the appendix.
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A MORE DETAILS OF EXPERIMENTS

A.1 EVALUATION BENCHMARK

In this section, we introduce the KK and iGSM benchmarks used for evaluation.

KK (Xie et al., 2024) is a logical reasoning benchmark composed of dynamically generated Knights
and Knaves (KK) puzzles. In each puzzle, every character is either a Knight (who always tells the
truth) or a Knave (who always lies). The puzzle presents a set of natural language statements made
by the characters, referring to themselves or others. The task is to infer the identity (Knight or
Knave) of each character based on these statements. Solving the puzzle requires ensuring global
logical consistency: the assigned identities must be compatible with the logical implications of all
statements. The input is the full puzzle text (i.e., all character statements), and the expected output
is a complete assignment of identities for all characters. A prediction is considered correct only if
the identities of all characters are correctly labeled. We provide an example of a query below.

Query:
A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 7 inhabitants: Abigail, Aria, Jacob, Liam, James, Amelia, and David.
In Abigail’s words: ”David is a knight if and only if Liam is a knight”. Aria noted, ”If Abigail
is a knight then Liam is a knight”. ”Abigail is a knave” - Jacob. As Liam put it, ”If Amelia is a
knight then Abigail is a knight”. ”Jacob is a knight or Amelia is a knave,” James claimed. ”David
is not a knight” - Amelia. David said that Jacob is a knave and David is a knight. So who is a
knight and who is a knave?

Rule-based CoT:
<think>
Assume Abigail is a knight. No contradiction is found in their claim that David is a knight if and
only if Liam is a knight. Assume David is a knight. No contradiction is found in their claim that
Jacob is a knave and David is a knight. Jacob cannot be a knight, because this would contradict
the claim of their own that Abigail is a knave. Assume Jacob is a knave. No contradiction is
found in their false claim that Abigail is a knave. Assume Liam is a knight. No contradiction is
found in their claim that If Amelia is a knight then Abigail is a knight. Amelia cannot be a knight,
because this would contradict the claim of their own that David is not a knight. Assume Amelia is
a knave. No contradiction is found in their false claim that David is not a knight. Assume Aria
is a knight. No contradiction is found in their claim that If Abigail is a knight then Liam is a
knight. Assume James is a knight. No contradiction is found in their claim that Jacob is a knight
or Amelia is a knave. < /think>
<answer>
Thus, the final answer is boxed{Abigail is a knight. David is a knight. Jacob is a knave. Liam is
a knight. Amelia is a knave. Aria is a knight. James is a knight.}
< /answer>

iGSM (Ye et al., 2024) is an infinite grade-school math problem benchmark designed to evaluate
LLMs’ mathematical and commonsense reasoning abilities. We apply slight modifications to iGSM
to improve fine-tuning stability, including the removal of modulo operations (Cen et al., 2025). This
is motivated by prior findings that base models struggle to compute modulo with high accuracy,
and such capability cannot be substantially improved through training on a small SFT dataset (Ye
et al., 2024). The iGSM benchmark is constructed under the assumption that ground-truth reasoning
chains follow a Directed Acyclic Graph (DAG) structure. It is important to note that our proposed
Tailor does not leverage any prior knowledge of this DAG representation. Implementation details,
including definitions of nodes and edges, their generation process, and the natural language trans-
lation procedure, are thoroughly introduced in the original paper (Ye et al., 2024). We provide a
sample query and rule-based CoT reasoning as an example below.

Query:
The number of each Grab & Go Store’s Canned Peaches equals the sum of each QuickMart’s
Corned Beef, each Colonial Quarter’s Product and each Colonial Quarter’s QuickMart.
The number of each QuickMart’s Canned Peaches equals 0.
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The number of each QuickMart’s Corned Beef equals 4 more than each QuickMart’s Canned
Peaches.
The number of each Colonial Quarter’s QuickMart equals 6 more than the difference of each
QuickMart’s Corned Beef and each QuickMart’s Product.
The number of each Vintage Architecture District’s Grab & Go Store equals the sum of each
QuickMart’s Canned Peaches and each Colonial Quarter’s Product.
The number of each Grab & Go Store’s Corned Beef equals 0 times each QuickMart’s Corned
Beef.
The number of each Vintage Architecture District’s QuickMart equals the sum of each Colonial
Quarter’s QuickMart and each Colonial Quarter’s Product.
How many Product does each Vintage Architecture District have?

Rule-based CoT:
<think>
Let’s compute the answer step by step. - According to the information given, the number of each
QuickMart’s Canned Peaches is 0. Let’s call it D. So D = 0.
- Now, we can find the number of each QuickMart’s Corned Beef. Let’s call it b. Then b = 4 + D
= 4 + 0 = 4.
- We can then calculate the number of each QuickMart’s Product. Let’s call it Y. Then Y = b + D
= 4 + 0 = 4.
- We can then calculate the number of each Colonial Quarter’s QuickMart. Let’s call it d. Then d
= 6 + (b - Y) = 6 + (4 - 4) = 6.
- Then, let’s denote the number of each Colonial Quarter’s Product as V. Then V = d * Y = 6 * 4
= 24.
- Then, let’s denote the number of each Vintage Architecture District’s Grab & Go Store as v.
Then v = D + V = 0 + 24 = 24.
- Now, we can find the number of each Grab & Go Store’s Canned Peaches. Let it be c. Then c =
b + V + d = 4 + 24 + 6 = 34.
- We can then calculate the number of each Grab & Go Store’s Corned Beef. Let it be l. Then l =
0 * b = 0 * 4 = 0.
- Now, we can find the number of each Grab & Go Store’s Product. Let’s denote it as r. Then r =
c + l = 34 + 0 = 34.
- We can then calculate the number of each Vintage Architecture District’s QuickMart. Let’s call it
i. Then i = d + V = 6 + 24 = 30.
- We can then calculate the number of each Vintage Architecture District’s Product. Let’s call it x.
Then x = v * r + i * Y = 24 * 34 + 30 * 4 = 936.
Thus, the answer is 936.
< /think>
<answer>
The final answer is 936 .
< /answer>

Difficulty Control. Both KK and iGSM offer controllable difficulty. In iGSM, difficulty is deter-
mined by the number of operations required to reach the correct answer in the ground-truth rule-
based reasoning trace. In KK, difficulty is controlled by the total number of characters (knights
and knaves) involved in the puzzle. For KK, the SFT dataset includes puzzles with 4–8 characters,
and the RL dataset spans 7–11. The in-distribution and out-of-distribution (OOD) evaluations use
puzzles with 7–11 and 12–13 characters, respectively. For the iGSM-medium task, the SFT dataset
contains problems with 15–20 operations, and the RL dataset contains 15–20. The in-distribution
and OOD evaluation sets use 15–20 and 21–25 operations, respectively. For the iGSM-hard task,
the SFT dataset again includes 15–20 operations, while the RL dataset contains 25–30. The in-
distribution and OOD evaluation sets use 25–30 and 31–35 operations, respectively.
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A.2 TRAINING DETAILS

SFT Training. We perform supervised fine-tuning (SFT) on datasets curated using both Tailor and
baseline methods. The key hyperparameters for SFT in the iGSM and KK tasks are summarized in
Table 1. For dataset construction, we use 1,000 seed queries from the iGSM benchmark and 500
from the KK dataset.

Table 1: Configurations of SFT training
Configurations Value

training epochs 4
global batch size 32
learning rate 5× 10−6

learning rate scheduler constant
padding not removed

RL training. We adopt DAPO (Yu et al., 2025c) for the main experiments using the Verl training
framework (Sheng et al., 2025). The key hyperparameters for DAPO are listed in Table 2. For the
GRPO experiments shown in Figure 9, we also set the overlong buffer length to 3,072 tokens and
the overlong penalty factor to 1.0 to mitigate CUDA out-of-memory issues during RL training.

Table 2: Key hyperparameters for RL (DAPO) training
Configurations Value

training epochs 5
batch size 128× 16 = 2048
sequence parallel size 2 (actor), 1 (ref)
gradient clipping 1.0
entropy coefficient 0.0
learning rate 1× 10−6

weight decay 0.1
warmup steps 10
optimizer Adam
responses per prompt 16
max response length 4000 tokens
temperature 1.0
top-p 1.0
top-k −1
KL loss coefficient 0.0
clip ratio (low) 0.2
clip ratio (high) 0.28
remove padding True
overlong penalty factor 1.0
overlong buffer length 3072 tokens
rollout backend vllm (Kwon et al., 2023)

RL reward verifiers. As described in Section 3, we use an outcome-based reward in the RL process.
In both the KK and iGSM tasks, the final answer is extracted via string matching. For the KK
experiments, the SFT demonstration template is as follows:

<think>
... Thinking process ...
< /think>
<answer>
Thus, the final answer is boxed{ {name} is a {role}, ...}.
< /answer>
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Here, name refers to the character’s full name, and role refers to either Knave or Knight. To verify
the correctness of the final answer, we examine each name–role pair using string matching. A
completion is rewarded with r = 1 only if all roles are correctly assigned. Otherwise, the trace is
labeled with r = 0.

For the iGSM task, we also use string matching in the reward function. The SFT demonstration
template is as follows:

<think>
... Thinking process ...
< /think>
<answer>
The final answer is {answer} .
< /answer>

where the answer is always an integer. We assign r = 1 if the answer matches the ground-truth
value, and 0 otherwise.

SFT curation pipeline details. In the first step of our Tailor pipeline, where student models gener-
ate demonstrations and the teacher model analyzes the traces, we provide the teacher with three ran-
domly selected incorrect traces and one randomly selected correct trace. The teacher is instructed to
analyze the failure cases and identify the reasoning behind the correct trace. We prompt the teacher
model to generate Chain-of-Thought (CoT) reasoning enclosed between special tokens, followed by
the generation of reasoning primitives (i.e., prompts used to curate the SFT dataset in the next step).
The prompt used in this process is provided in Appendix B.1. Additionally, we include examples of
primitives in Appendix B.2.
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B PROMPTS

B.1 PROMPTS FOR TRACE ANALYSIS AND PRIMITIVE SYNTHESIS.

You are a large language model. Follow the instructions below carefully. Your goal is to
generate instruction prompts that guide student models to produce high-quality reasoning.
(1) Below is a correct demonstration generated by a student model for the given query.
Analyze the reasoning process and identify which behaviors or strategies are particularly
effective and beneficial for the model’s reasoning.
Query (Correct Case): {correct query}
Correct CoT: {correct response}
(2) Below are three failure cases, each consisting of the original query, the incorrect re-
sponse from the student model, and the expected ground-truth answer. Analyze why each
response is incorrect by referencing specific steps or reasoning patterns that led to the
failure. Based on this analysis, provide instructions on how to identify and revise the
failed demonstration to arrive at the correct answer.
Failure Case 1:
Query: {fail1 query}
Response: {fail1 response}
Ground Truth: {fail1 gt}
Failure Case 2:
Query: {fail2 query}
Response: {fail2 response}
Ground Truth: {fail2 gt}
Failure Case 3:
Query: {fail3 query}
Response: {fail3 response}
Ground Truth: {fail3 gt}
(3) Based on the comparison between the correct and failed demonstrations, explain what
kind of reasoning behavior is essential for robust and correct student model performance.
You should explicitly go through each failure case one by one using the ground-truth
answer, identify the correct reasoning pattern, uncover any implicit assumptions present
in the correct reasoning path that lead to the correct final answers, and analyze how to
correct the incorrect reasoning chains.
Then, new instruction prompts are designed to: (a) preserve the reasoning pattern ex-
hibited in the correct demonstration; (b) incorporate the reasoning strategies and implicit
assumptions necessary to reach the correct answers in the failure cases; and (c) guide the
language model to self-identify and self-correct when similar failure patterns arise, steer-
ing it toward the correct reasoning path.
Please perform the entire thinking process described above within the
<prompt think>...< /prompt think> tag.
Please output the modified instruction prompt clearly inside <generated prompt>...<
/generated prompt> tags.
Please do not include any demonstration example inside <generated prompt>...<
/generated prompt>.
You should be aware that every query has a valid answer. So the generated prompt must
encourage the language model to conclude a valid answer.
Do not include unrelated words such as < |im start| > inside <generated prompt>...<
/generated prompt>, just instructions for solving the problem.

B.2 EXAMPLES OF SYNTHETIC REASONING PRIMITIVE

Example primitives for the iGSM Dataset. The generated primitive examples for solving this math
dataset are shown in the following boxes with simplification for display. Example 1 aims to prevent
errors where the model jumps to answers without properly resolving dependencies or dropping in-
termediate relationships. It addresses these issues by requiring the model to explicitly construct the
dependency graph, clearly identify the target value to solve, and conduct a more detailed exami-
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nation, including recomputing key steps even when no errors are detected. Example 2 focuses on
preventing misinterpretation of the given conditions or overlooking parts of the problem description.
For instance, it helps the model avoid skipping constraints or variables that may appear redundant.
The most distinctive parts in Examples 1 and 2 are highlighted in red and blue, respectively. All
generated primitives are combined with format instructions to ensure the teacher model generations
comply with the required output format.

iGSM Example prompt 1:
Problem-Solving Instructions for Robust Reasoning
1. Define Variables and Equations:
- List every entity and attribute mentioned in the query.
- Assign a unique variable to each quantity.
- Translate all given statements into equations using these variables.
2. Prioritize Independent Variables:
- Solve variables with direct numerical assignments first (e.g., constants like ‘X = 5‘).
- Substitute these values into the dependent equations immediately.
3. Build Dependency Graphs:
- For each unsolved variable, list all equations where it appears.
- Identify the simplest equation to resolve next (e.g., least dependencies).
4. Solve Step-by-Step:
- Proceed incrementally, substituting known values into dependent equations.
5. Validate Intermediate Results:
- Recompute critical steps to verify consistency.
- Flag contradictions for re-evaluation.
6. Target-Focused Resolution:
- Clearly state the goal variable.
- Back-substitute from the goal to ensure all required variables are resolved.
7. Final Answer:
- Conclude with a boxed numerical answer (‘boxed{N}‘) supported by the validated rea-
soning chain.
Note: All variables are solvable.

iGSM Example prompt 2:
Instructions for Solving the Problem:
1. Define All Variables Explicitly:
- Assign variables to each entity and relationship mentioned, including composite terms
(e.g., ”Enclosure” = sum of sub-components).
- Label all variables clearly (e.g., ( X Store ) for ”X at Store”).
2. Translate Statements into Equations:
- Convert every given statement into a mathematical equation, even if it seems redundant.
- Preserve all operations (sums, differences, multipliers) exactly as stated.
3. Substitute Known Values Early:
- Substitute fixed values (e.g., ”equals 9”) immediately to simplify equations.
- Do not assume unconstrained variables are zero unless explicitly stated.
4. Explore Indirect Relationships:
- Track how variables influence others indirectly (e.g., if ( A = B + C ) and ( B ) de-
pends on ( D ), express ( A ) in terms of ( D )).
- If a variable’s value is unresolved, check if it can be expressed in terms of other known
variables.
5. Self-Correct for Consistency:
- If equations lead to contradictions (e.g., ( 0 = 1 )), revisit earlier steps to identify
missed relationships or incorrect assumptions.
- Verify that all given statements are fully utilized in the solution.
6. Conclude Rigorously:
- Ensure every step logically follows from the previous ones.
- If ambiguity remains, exhaustively test plausible interpretations to understand the prob-
lem and conditions (e.g., ”Enclosure” as a sum) to arrive at a valid answer.
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C USAGE OF LLMS

We primarily used publicly available LLMs to assist with proofreading and grammar refinement of
the paper draft. All technical content was verified by the authors. Our research also involves LLMs
as a core component: we distill LLMs to curate datasets and also fine-tune LLMs. The authors take
full responsibility for all research ideas, technical contributions, and conclusions.
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