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ABSTRACT

We propose a principled reweighting framework that moves empirical
data toward uniform coverage through implicit differential entropy maxi-
mization. The core idea replaces intractable entropy maximization with a
mutual information proxy and derives variational estimators under change
of measure, yielding a consistent, low-variance weighted InfoNCE-based
objective. Learned weights are immediately usable for data filtration and
imbalance-aware sampling.

(a) Original data (b) Weight function (¢) Pruned data

1 INTRODUCTION

The success of modern deep neural networks is largely attributed to large-scale datasets,
which have driven many recent breakthroughs in Deep Learning (Brown et al., 2020; LeCun
et al., 2015; Radford et al., 2021). Yet, training on such massive collections, from benchmark
image sets to web-scale corpora brings substantial storage and computational costs and
amplifies data redundancy (Kaplan et al., 2020). This has sparked interest in methods that
reduce dataset size through distillation, pruning, and filtration, so that models can be stored
and trained more efficiently without losing essential information.

The initial necessity for these excessively large datasets often comes from biases and
imbalances inherent in data scraping: due to modern datasets being mostly collected from
uncurated and unrefined sources, there is a fundamental misalignment between data gener-
ation and data collection (Brown et al., 2024; Chen et al., 2024; Huang et al., 2024; Roh et
al., 2021; Vargas et al., 2023). Typical datasets cover the same manifolds as corresponding
true data-generating distributions, yet they are often unrepresentative and biased in their
allocation of probability mass. Some regions are heavily oversampled because they are easy
to collect, while other, potentially informative regions are rare or hard to obtain. Ultimately,
this misalignment yields low-diversity and high-redundancy data. This is especially critical
for training Deep Learning models which are already biased toward low-diversity distribu-
tions, e.g., transformers (Ren and Liu, 2025).

Information theory suggests that the ability to compress or prune such datasets while
not degrading downstream performance can be attributed to oversampled data being low-
entropy (Cover and Thomas, 2006; Polyanskiy and Wu, 2024; Shannon, 1948). Conversely,
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entropy maximization is known to balance and diversify datasets (Butakov et al., 2025; Li et
al., 2020). Motivated by this, we aim to produce a principled reweighting of the distribution
so that underrepresented regions receive appropriate emphasis, without requiring explicit
estimation of the manifold or of high-dimensional densities. In particular, we propose a
model-free and computationally efficient method based on information-theoretic principles
to perform a uniformization, i.e., aligning a given data distribution so that its mass is spread
more evenly over the data manifold.

This perspective differs from standard compression-oriented approaches. Distillation and
coreset selection typically define objectives tied to model performance or to preserving
specific statistical properties of the distribution, and they usually return either a synthetic
tiny set or a selected subset of real examples. By contrast, our method operates at the
level of probability measures and provides a weight function (density ratio) defined over the
original data. Those weights can be used directly for imbalance-aware sampling, filtering,
or to build coresets, but obtaining them does not require training task-specific models or
generating synthetic points. Thus our method is more general in scope as it targets distri-
bution alignment first and then supplies a tool that can support downstream compression
or pruning when desired.

In summary, our main contributions are the following:

1. Motivated by information theory, we propose a novel approach to dataset balancing
through distribution uniformization.

2. This task is then reframed as variational mutual information estimation under a
change of measure, which allows one to avoid explicit density or support estimation.

3. We derive a weighted based objective; optimizing this objective produces weights
that can be used for sampling, dataset balancing, and other downstream compres-
sion tasks.

4. We validate through synthetic and real-data diagnostics that our learned impor-
tance weights produce more uniform class distributions and improve instance-level
coverage, as measured by standard deviation-from-uniform and coverage/diversity
metrics.

We discuss the related works in Section 2 and provide the necessary background from
information theory in Section 3. We then derive our method in Section 4 with theoretical
bounds that justify the proxy objective. In Section 5, an experimental evaluation of the
proposed approach is provided. Finally, we discuss our results in Section 6. Complete proofs
are provided in Section A. Implementation details can be found in Section 5.1 and Section B.

2 BACKGROUND

In this section, we briefly review three main lines of related prior work and discuss their
relevance to our approach, highlighting commonalities and differences in focus and method-

ology.

Generative models One natural route to reweighting is to estimate the underlying
data density with a generative model and derive weights from that estimate. For a pair of
probability measures one can employ generalized energy-based models (Arbel et al., 2020).
If one of the measures is the Lebesgue measure, then in principle any density estimation
model can be used, including EBMs and both discrete and continuous normalizing flows
(Rezende and Mohamed, 2015; Tabak and Turner, 2013; Tabak and Vanden-Eijnden, 2010).
In practice, however, accurate density estimation in high dimensions is costly, and more
accurate models typically require greater complexity and heavier computation. Thus, we
aim to avoid relying on generative density estimation, developing a computationally efficient
reweighting.

Dataset compression and distillation Compression methods construct a small subset
or a synthetic set intended to preserve key statistical properties of the original data
(Broadbent et al., 2025; Shetty et al., 2021). Distillation methods, in turn, learn a small
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synthetic set, but one that preserves model performance to the same level as training on the
full dataset (Cazenavette et al., 2023; Yu et al., 2023). In contrast, our method is model-
free and does not aim to retain statistics beyond the support itself. Instead, we focus on
adjusting probability mass so that the support is covered more evenly.

Dataset pruning and filtration Unlike distillation, dataset pruning chooses a subset
of real examples that minimizes some objective, for example the expected validation loss.
Data filtration and cleaning are related tasks that remove low-quality or outlier points from
training data (Tan et al., 2023; 2025). These approaches, like compression methods, are
usually model-dependent, whereas our method is not. In our framework the central object
is a weight function that rebalances the entire distribution. Once this weight function is
learned, it can be applied in different ways. For instance, examples can be sampled with
probabilities proportional to their weights to form a reduced dataset, or examples with very
low weights can be discarded. Thus, pruning arises as one practical downstream use of a more
general reweighting principle Additionally, while pruning methods operate with samples,
we follow the measure-level viewpoint which includes in particular finite sample setup.

To conclude, we are not aware of any prior work that pursues distribution uniformization
through a change of measure while also avoiding explicit density estimation altogether, but
our framework fills this gap. In what follows we show that our method is computationally
simpler than generative approaches, broader in scope than compression, and naturally
compatible with pruning and filtering when applied to empirical datasets.

3 PRELIMINARIES

Let (2,5 ,P) be a probability space with sample space 2, o-algebra F, and probability
measure P defined on F. Consider random vectors X : @ - X and Y : Q — Y with joint
distribution Py y and marginals Py and Py, respectively. We denote product measures
by Py ® Py.. Wherever needed, we assume the relevant Radon-Nikodym derivatives exist.
For two probability measures Q and P with Q <« P, the Kullback-Leibler (KL) divergence
is Dy (Q[P) =Eqg [log i—%], which is non-negative and vanishes if and only if (iff) P = Q.
The mutual information (MI) between X and Y quantifies the divergence between the joint
distribution and the product of marginals:

dP
(X;Y) = Elogﬁ =Dy (Pxy [Px ®Py). (1)

When Py admits a probability density function (PDF) py with respect to (w.r.t.) the
Lebesgue measure, the differential entropy is defined as h(X) = —E[logpx(X)], where
log(-) denotes the natural logarithm. Likewise, the joint entropy h(X,Y’) is defined via
the joint density py y(,y), and conditional entropy is h(X|Y) = —E[logpx v (X Y)] =
—Ey [IEX |y logp(X | Y)] Under the existence of PDFs, MI satisfies the identities

I(X;Y) =h(X) —h(X|Y) =h(Y)—h(Y|X) = h(X) +h(Y) — h(X,Y). (2)

Mutual information can also be expressed through numerous variational bounds (Poole et
al., 2019). In this work, we are particularly interested in the Nguyen-Wainwright-Jordan
representation (Nguyen et al., 2010):

I(X;Y) = . RE[T(X,Y)—eTWvY)—l], (3)
(X xY—

where X’ is defined to be independent of X and identically-distributed, and T is a so-called
critic function.

Finally, we say that X — Y form a Markov kernel w.r.t. measures {}P’("‘)} 4 defined on
(Q,7) iff Va, 8 € A we have IP’g,ai x = ]P’(f)‘ - By default, we omit the measures, implying
that X — Y is a Markov kernel w.r.t. all the probabilities in question.
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4 GENERAL METHOD

This section derives our InfoMax-based method for dataset distillation and balancing. We
begin by discussing the general problem of reweighting a probability measure to achieve
a balanced distribution. We then highlight the limitations of a direct balancing approach
via KL minimization. For our specific case, we demonstrate that this KL minimization is
equivalent to entropy maximization, which we proxy by maximizing the mutual information
between original and corrupted data. This connection yields a practical and effective loss
function for our task.

4.1 CHANGE OF MEASURE AND UNIFORMIZATION

Let Q be a probability measure on X C R? with support S C X of finite Lebesgue measure
1(S) < co. We define another probability measure P by reweighting Q with a non-negative
Radon-Nikodym derivative (density ratio) w:

dP
dQ
This relation between P and Q establishes corresponding equivalences between expectations:

Proposition 4.1. Let (dPy /dQx)(z) = w(x). Let X — Y be a Markov kernel. Then for
any measurable g : X' x ¥ — R the following holds:

EX,YN]P’XX 9(X,Y) = EX,Y~QX,Y[w(X) -9(X,Y)]

(z) = w(z), Eglw(X)] =1 (4)

In this work, we are particularly interested in P that is as uniform as possible, covering
every corner of S with equal probability. One of the natural ways to perform uniformization
is to do an information projection, i.e., to minimize the KL divergence between the proposal
P and a uniform distribution U(S) with support S:

Dy, (P U(S)) & E, 1og<%> = Exqw(X) [log(%(X)) + logw(X)] — min

Note, however, that minimizing this objective is equivalent to estimating d Q / dU(S), which

is extremely difficult, especially for complex @Q and unknown S.

4.2 ENTROPY MAXIMIZATION

To avoid density and support estimation altogether, we reframe KL minimization as entropy
maximization. This is possible due to the following result:

Lemma 4.2. Let P be a continuous distribution supported on S of finite Lebesgue measure
1(S) < oo, U(S) be a uniform probability measure on S. Then

h(P) = h(U(S)) — Dy (P U(S)) < h(U(S)) = log u(S)
Proof of Lemma 4.2. Denoting PDF of P by p, we have

D (B U(S)) = [ 5l log(lj’lﬁfg) dz = [ togu(s)ds+ [ plo)ogp(e) s
S S S

= log () — h(P) = h(U(S)) — h(P)

O

Therefore, Dy, (P | U(S)) — min is equivalent to h(P) — max. While this reformulation is
helpful, directly maximizing the differential entropy h(P) still requires some form of density
estimation (as differential entropy is defined through PDF), even though the explicit
dependence on S has been removed.
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To simplify the task enough for practical applications, we leverage (2) to connect mutual
information and entropy. Consider a Markov kernel X — Y w.r.t. a set of measures {IP’(“)
parametrized by p according to (4). Recall that I(X;Y) = h(Y) — h(Y | X), with the second
term being independent of u by the Markov kernel definition. Generally, h(Y") and h(X) are
not related. However, choosing Y = X + Z for a small independent Z yields distribution of
Y which is close to that of X. Thus, under some mild conditions, maximizing I(X;Y") also
maximizes h(X) up to a certain additive gap.

Lemma 4.3. Let W be a family of log-Lipschitz continuous functions on a compact set
S with u(S) < oo, that is, W= {f:|Vlog f(z)| < L, x € S}. Let g(x) be a probability
density supported on S and define a probability density p(z) = w(z) - ¢(x) with w,q € W.
Consider independent Z ~ N (0,0%I) and X ~ p. Then

o2 L?

h(X+2)— <hX)<h(X+2)

The condition ¢ € W can be dropped if Jw* € W : h(X) = h(U(9)).

Intuitively, the log-Lipschitz requirement enforces that the log-density (ratio) cannot change
too abruptly across the support. It merely excludes pathological, spike-like densities, which
are irrelevant for most practical situations.

Rewriting differential entropy in terms of mutual information allows us to employ variational
lower bounds instead of direct density estimation. By leveraging the Nguyen-Wainwright-
Jordan representation (3) for I(X;Y"), we get

h(Y) = sup ]E[T(X,Y) — eT(X,’Y%l] + const (5)
T:Q—R

Proposition 4.1 allows us to write (5) as a functional of w and T'. Combined with Lemma

4.2 and Lemma 4.3, this yields an upper bound on Dy, (Py | U(S)), which is free of density
and support estimation:

Theorem 4.4. Let Q, P be probability measures, and let w=dPy /dQy. For any
measurable critic T' define the weighted NWJ loss
£

w.

nwalw, T] = —]E[w(X)T(X,Y) — w(X’)w(X)eT(X’,Y)—q’

where the expectation is taken over Qx ® Qx y. Assume the conditions of Lemma Lemma
4.3 hold, and let Y = X + Z with Z ~ N (0,021) independent of X, then

Dy (Px [U(S)) < const + Lnwylw, T,
where the inequality is tight up to a gap 02L?/2.

Minimizing £nw; With respect to weight and critic functions yields w(z) which reweights
Qx to Py that is close to U(S). Thanks to the change of measures, it is possible to
approximate L ywj via samples from Q, which are available in practice.

4.3 VARIANCE REDUCTION AND CHOICE OF CRITIC

Note that Theorem 4.4 provides a general recipe, as w(z) and T(z,y) come from wide
families of functions. However, in (Poole et al., 2019) it is argued that restricting 7' and
replicating X via i.i.d. copies reduces the variance of £ w7 and allows for a stable learning.

To perform replication, we reinterpret X as a tuple of i.i.d. vectors (X, ..., X), where
X, now corresponds to the data we want to reweigh, and X,,..., X) serve as negative
samples which stabilize the learning (note that they can come from arbitrary distribution).
Similarly, we replace X — Y by X, — Y;. This does not affect our previous derivations, as
(X, ... Xk Y) =1(X;;Y;) due to X, ..., Xx being independent.

[ R

Next, we restrict T to a family of softmax-based critics which utilize replicated samples.
This yields the following InfoNCE-like (Oord et al., 2018) loss function:
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Lemma 4.5. Under the assumption of Theorem 4.4 define the weighted InfoNCE loss
eT(XivY;;)

Z;i]_ w(XJ)eT(XWYz) ’

1 X
ﬁwNCE[w»T] =—E i7d ;w(Xz) log

where the expectation is taken w.r.t. Q¥ ® P;e}ll( - Then the following bound holds

Dy (Px [ U(S)) < const + Lyneg[w, T,

where the inequality is tight up to a gap o?L?/2.

5 EXPERIMENTS

We previously derived fully weighted, theoretically sound estimator for the max-information
objective, but in practice its direct optimization can be unstable due to feedback between the
learned weights and the critic and scale drift in the softmax. To ensure stable, comparable
gradients while preserving InfoNCE semantics, we use a practical normalized variant:

T(X0.Y)

6
w X4)6T(Xj7yi) —eT(X' Y;) ’ ( )

1 K
Loncelw, T] = E K Zlog
=1 Z‘]#Z ( J e

w(X;)
ﬁ(Zle w(Xk)*w<Xi)) ’

This choice has three concrete benefits. First, unit positive weight (for j =4, @(X;) := 1)
preserves the standard InfoNCE numerator/denominator semantics and prevents a degen-
erate solution in which the optimizer shrinks the loss by inflating the positive’s weight. It also
leaves the bound interpretation closest to the unweighted case. Next, negative renormal-
ization implements self-normalized importance sampling. It rescales the denominator to the
same order as vanilla InfoNCE, making gradients effectively batch-size invariant and keeping
temperatures/learning rates transferable across settings, while still changing the relative
contribution of negatives according to w. Finally, the loss reduces to standard InfoNCE
when w(-) = 1, ensuring a clean fallback and ruling out exploding/vanishing denominators,
when weights become peaky or flat.

where ﬂ}(Xj) =

5.1 IMPLEMENTATION DETAILS

Model architecture. We learn (i) a critic T'(z,y) for the max-information objective and
(ii) an importance scorer f(z) that outputs logw(z). Both share a small MLP trunk with
LayerNorm and a residual block, then branch into two heads: a cosine critic head (two
linear layers to 64-d, then cosine similarity; any bounded bilinear critic would work) and
a LogRatio head (MLP 64—64—1) producing f(z) with w(z) = exp(f(z)). Please see
Listing 1 and Table 4 for details.

Embedding. For the synthetic data we operate directly in 2D, without a pre-encoder.
For higher-dimensional datasets we use fixed, pretrained self-supervised encoders to obtain
latent embeddings on which we learn importance weights: CIFAR-10 uses a ResNet-18 from
VICReg (Bardes et al., 2021), output dimension 512; ImageNet-100 uses DINOv2 ViT-Small
(Oquab et al., 2023), output dimension 384. Encoders are frozen and labels are never used
to train the weight model.

Objective and stabilizers. We optimize loss given in Equation (6) with negatives-
only normalization (leave-one-out) and no label use. The critic scores T(-,-) appear in
the InfoNCE term with temperature 7; the log-weights f(z) reweight samples inside the
objective. For stability we use: a smooth cap on log weights (e.g. soft clip to [—¢, +¢]), mean-
one normalization of weights per batch.

Training hyperparameters. Unless stated otherwise: batch size € {512, 1024, 2048, 4096},
temperature T depends on the inner dimension of the critic and batch size (generally setting
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7 = 0.1 worked universally well in our setups), view noise on embeddings N (0, 02I) with o €
{0.001, ...,0.2} depending on the embedding norms, optimizer AdamW with base learning
rate 5 x 1074, weight decay (10’5, 10’6), cosine schedule with linear warmup for 10 epochs,
for 100 epochs and 5 seeds; we report mean =+ 95% CI.

Corrected draw. After training, we freeze scorer f and form a corrected dataset by sam-
pling with replacement at a fixed total budget M (=5000 for CIFAR-10 and ImageNet-100)
using probabilities p; x w(z;). Labels are used only to define the target histogram, not for
learning the scorer f.

5.2 BALANCING A YIN-YANG DENSITY

We construct a 2D synthetic dataset supported on the unit disk {z € R?: |z| < 1} with
a yin—yang density skew: one half of the disk (separated by a smooth cosine curve) is
sampled at a higher rate (1/p) than the other. The three-panel visualization (Figure 2)
shows that the learned importance function flattens the skewed density and allows to prune
dense regions. For additional evidence, we also report disk-aware summary metrics: circular
variance (higher is more uniform in angle), equal-area polar-grid coverage (fraction of non-
empty cells; higher is better), and polar-grid KL to uniform (lower is better). See summary
statistics in Table 1.

Table 1: Disk-aware synthetic metrics. Sampling with w(z) moves the empirical distribution
toward uniform over area, as indicated by the metrics. “A” is after — before at fixed sample size.

p setting circular variance 1 polar-grid KL | polar-grid coverage T
default 0.418 + 0.009 0.604 =+ 0.007 0.679 + 0.017

0.025 weighted 0.520 + 0.033 0.592 + 0.100 0.897 +0.028
A +0.103 +0.036 —0.012 = 0.100 +0.218 = 0.028

default 0.447 +0.018 0.541 =+ 0.005 0.770 +0.014

0.05 weighted 0.777 + 0.058 0.242 + 0.038 0.965 + 0.000
A +0.330 + 0.042 —0.299 +0.043 +0.196 + 0.014

default 0.504 + 0.007 0.430 =+ 0.009 0.878 + 0.003

0.1 weighted 0.918 +0.025 0.130 +o0.015 0.997 + 0.003
A +0.414 +o0.031 —0.300 =+ 0.020 +0.118 + 0.005

default 0.639 =+ o0.005 0.260 = 0.007 0.969 =+ 0.003

0.2 weighted 0.966 =+ 0.024 0.111 + 0012 0.999 =+ 0.002
A +0.327 +0.020 —0.149 + 0.017 +0.030 + 0.003

5.3 DISTRIBUTION CORRECTION ON REAL DATASETS.

We evaluate whether the learned, label-free importance function can correct class skew on
CIFAR-10 and ImageNet-100. For each dataset, we construct Moderate and Eztreme regimes
and compare the default imbalanced training set against a corrected draw obtained by
sampling with replacement using probabilities proportional to the learned weights, targeting
a uniform class distribution. We visualize per-class histograms (Figure 4 and Figure 3) for
Extreme and report deviation metrics at fixed sample size (Table 2 and Table 3).

MazxAbs and L1 are simple deviation-from-uniform measures. MaxAbs is the maximum

absolute class deviation max,| p, — &| and L1 is the ¢; distance to uniform >l e — &l

(note total-variation distance is 3 - L1). Both are lower-is-better (}). For a scalar notion

2
of “how many classes are effectively present,” we report two effective class counts: Nelf}{ =
exp(H (p)), the Shannon effective number of classes, and N3 = %ﬁg, the Simpson effective

number of classes. Both are higher-is-better (1) with target value C. Finally, Gini is the
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standard Gini coefficient computed over class proportions (inequality across classes), where
lower is better ({).

Table 2: Class-distribution correction: CIFAR-10. Baseline shows metrics on default random
sample drawn with either Moderate or Extreme imbalance.

Imbalance Sampling  MaxAbs | L1l NH 1 (10) N3 1 (10) Gini |
Random 0.117 0.524 8.348 7.288 0.341
Moderate
Corrected  0.034 +0004 0.133 £0.020 9.857 +0019 9.720 +003  0.100 + 0.007
Random 0.275 0.906 5.620 4.311 0.579
Extreme
Corrected  0.088 +0.03s 0.334 +0001  9.231 + 0308 8.504 +0790 0.213 + 0.050
Table 3: Class-distribution correction: ImageNet-100.
Imbalance Sampling ~ MaxAbs | Ll NI+ NZ 1t Gini |
Random 0.0174 0.5376 81.925 70.838 0.3565
Moderate
Corrected  0.011 +0002 0.254 0012  94.856 + 0499 89.998 +0.923 0.180 + 0.009
Random 0.031 0.864 59.786 46.632 0.553
Extreme

Corrected  0.028 +0.005 0.512 + 0070 80.898 +3514 67.193 + 4980  0.352 +0.039

For each dataset we show per-class bar charts comparing the default (unbalanced) draw
to the corrected (learned-weights) draw. Classes are ordered from most frequent to least
frequent in the default draw so head—tail effects are obvious at a glance. A dashed horizontal
line marks the uniform target 2Lsameles The corrected bars line up closely with this
target across the board: over-represented head classes shrink toward the line, while under-
represented tail classes grow toward it. We keep the same total number of samples before
and after to make heights comparable, and (optionally) add thin confidence bands from a
simple multinomial bootstrap to indicate variability. We show the Extreme regime in the
main text (most instructive) and include the Modest regime in the appendix; the qualitative
pattern is the same but with smaller gaps.

135 N default
120 [ corrected
105
L I‘ | |

ERNA ||I|.||I| | ||||| ll;

3

[

Figure 3: Per-class proportions (Extreme) on ImageNet-100. Default (unbalanced)
vs corrected (learned weights); dashed line marks the uniform target 50 samples per class.

30 40 50 60 70 80 90 100
class index
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Figure 4: Per-class proportions (Extreme) on CIFAR-10. Default (unbalanced) vs
corrected (learned weights); dashed line marks the uniform target of 500 samples per class.

6 DISCUSSION

Results. Information theory often provides universal and rigorous frameworks for various
Deep Learning problems. In this paper, we leveraged the connection between dataset
redundancy and entropy to propose a novel approach to common data-related problems:
balancing, pruning, diversification and redundancy reduction. By pursuing distribution
uniformization through entropy maximization, we ensure that underrepresented regions
receive appropriate emphasis.

We also note that direct entropy maximization involves explicit support and density esti-
mation, which should be avoided at all costs in high-dimensional cases due to their immense
complexity. Therefore, we neatly reframe entropy maximization as mutual information
maximization under Gaussian convolutions, which, in turn, allows us to employ cheap and
easy-to-implement variational bounds. As a result, we derive a simple contrastive objective
and a corresponding reweighting framework. Applying variance-reducing tricks common for
contrastive losses further increases practical applicability of our method.

Finally, we validate the proposed approach on synthetic and real tasks. The results indicate
that our method is able to detect oversampling and imbalances in both setups. Moreover,
we show that it is also possible to use learned weight functions to reduce redundancy via
pruning and balance the data via resampling.

Impact. This work elaborates on the InfoMax approach proposed in (Bell and Sejnowski,
1995; Linsker, 1988) and refined in (Butakov et al., 2025; Hjelm et al., 2019; Oord et al.,
2018) by providing a simple contrastive objective for change of measure tasks while avoiding
heavy duty generative modelling.

Limitations. In this work, a general framework for distribution uniformization is derived.
While it can also be used for dataset balancing and pruning, an additional evaluation is
required to conclude whether the proposed approach competes well in these specific tasks.

Ethics statement. This work is not subject to any ethical concerns.

Reproducibility statement. To ensure reproducibility of our results, we provide
complete proofs in Section A and experimental details in Section 5. We also provide our
PyTorch implementations of loss functions in the supplementary material.
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A COMPLETE PROOFS

Proof of Proposition j.1.
]EX,YNIP’XYY 9(X.Y) = EXNIPX EYNJP’Y‘X 9(X,Y)

(chain rule)
:EXNIPXEY~QY‘X9(X7Y) (QY\X_]PY\X)
(d
(

=Ex.q, w(X) - [IEYNQY‘X 9(X, Y)] ensity def.)

=Exyoqgy, [wX) - 9(X,Y)] chain rule)

O

Proof of Lemma 4.3. We start with the last statement. By Lemma 4.2 we know that h(X) =

h(U(S)) implies w(zx) = 1{1‘;(3) which leads to

[Vlogg(z)| = [Viegw(z)| < L. (7)
By De Bruijn’s identity (Cover and Thomas, 2006, Theorem 17.7.2),
d 1
Eh(X + VW) [w] = 5J(X +VEW), W~ N(0,T), WIX (8)

where J(X,) =E [||V logpy, (x)||%] refers to Fisher information of X, = X + /tW. Integrat-
ing (8) yields

Ogh(X—i—Z)[w]—h(X)[w]:%/U J(X +ViW) dt
0
9)

o2L?

2
1 [oa
<3 / E[|Vlogw(X) + Viogay, [3] dt <
0

Here the inequality follows from log-Lipschitz continuity of w(z) and Eq. (7), since every
convolution satisfies the same bound.

|

Proof of Theorem 4.4. First, consider a general case of a Markov kernel X — Y. We start
with writing down the NWJ lower bound for I(X;Y):

(X;Y sup Eyr vyo T(X,Y)—eT(X'Y)-1
( )= TXx}I/)—uR X' XY ]PX®]PXY[ ) — ]

Using Proposition 4.1, we perform change of measures:

I(X;Y) = sup Ex xyogrea., WX )w(X)[T(X,Y)— X1
T:XxY—R

Since X’ and (X,Y) are independent and Ew(X’) =

I(X;Y) = sup By xy.g.eay, [w(X)T(X,Y) — w(X )w(X)eT X' V)=1] - (10)
T:X'xY—R

By the definition of mutual information (2), we have I(X;Y) = h(Y) — h(Y | X), with the
second term being constant due to X — Y being a Markov kernel.

Next, we recall that Y = X + Z for an independent Z ~ N (0,021), and P, Q and w satisfy
the conditions of Lemma 4.3. Therefore, h(Y | X) =h(X + Z|X) =h(Z|X) = h(Z) and
o%L?

h(X) > 1Y) +h(N(0,0°T)) — —

Finally, we employ Lemma 4.2 to derive an upper bound on KL divergence:
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2712
Dy (Px | U(S)) < T2

+h(U(S)) — h(N(0,0%I)) — I(X;Y) (11)

We finish our proof by substituting (10) into (11):

o2 L?

Dy (P [U(S)) < +h(U(S)) — h(N(0,0°T))

const

—E[w(X)T(X,Y) — w(X")w(X)eT X V)-1],

—Lynwslw, T

|

Proof of Lemma /.5. Let r be a uniformly distributed index over the set {1,..., K}. By
Theorem 4.4, we have an upper bound

Dy (P | U(S)) < const — E[w(X,)T(X,,Y) — w(X))w(X,)el X-¥)=1],

where the expectation now includes averaging w.r.t. random index r.

Now consider each term inside the expectation separately, when setting the critic

~ eT(Xriy)
T=1+1log Ve .
% Zj:l w(Xj)eT(Xj7Y)

By averaging over the random index r and using linearity of expectation,

_ —K eT(XwY)
E X)VT(X..Y)=1+E X.)1
[w(X,)T(X,,Y)] =1+ _;“’( i) log LY w(x,)eT )

=1+ Loneelw, T

Similarly, taking an expectation over the independent draw X, one can simplify the second
term as follows

[ ( ) T(X1,Y) 1]] - ) X Y)
E|lw(X)w(X,)e! ) H] = E|w(X] -
FTE W (X))

[ K eT(Xi7Y>
=E|> w(X]) =1.

=1 % Zszl w(X]/-)eT(XJ"Y)

Substituting the last two equations into the bound on KL divergence above completes the
proof. O

B IMPLEMENTATION DETAILS

Below is the typical model for critic and importance scorer heads sharing a base network.

13



Under review as a conference paper at ICLR 2026

SharedEncoderT (
(marginalizer): OuterProductMarginalizer()
(encoder): Sequential(
(0): Linear(in_features=384, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): GELU(approximate='none')
(3): ResidualBlock(
(block): Sequential(
(0): Linear(in_features=64, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): GELU(approximate='none')
(3): Linear(in_features=64, out_features=64, bias=True)
(4): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
)

(4): Linear(in_features=64, out_features=64, bias=True)
)

(critic): BasicCosineCritic(
(linear_x): Linear(in_features=64, out_features=64, bias=True)
(linear_y): Linear(in_features=64, out_features=64, bias=True)
)
(ratio): LogRatioHead(
(mlp): Sequential(
(0): Linear(in_features=64, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): GELU(approximate='none')
(3): ResidualBlock(
(block): Sequential(
(0): Linear(in_features=64, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(2): GELU(approximate='none')
(3): Linear(in_features=64, out_features=64, bias=True)
(4): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
)
(4): Linear(in_features=64, out_features=1, bias=True)
)
)
)

Listing 1: Example shared critic plus importance scorer model.
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Table 4: Hyperparameters and grids. Defaults used unless otherwise noted. Ablated
on CIFAR-10 Modest imbalance setup, then reused as stable defaults elsewhere.

Component

Encoders

Encoders

Model

Model

Model

Objective

Objective

Training

Training

Training

Sampling

Hyperparameter

CIFAR-10

ImageNet-100

Shared trunk dim

Critic head

Importance head

Temperature t

Normalizer

Batch size B

Epochs

View noise o

Budget M

Default

VICReg
ResNet-18
DINOv2 ViT-S

64

Cosine

MLP 64—64—1
0.10
Negatives-only

(LOO)
2048

2048, 5000

15

Grid / Values

32, 64, 128, 256,
512

0.05, 0.10,

0.40

0.20,

Full SNIS (abl.)

512, 1024, 2048,
4096

0.01, 0.05, 0.10,
0.20

Notes

Frozen; 512-d em-
beddings

Frozen; 384-d em-
beddings

Linear d—64, LN,

GELU, Resid-
ual(64), Linear
64—64

Two linear maps to
64-d; cosine simi-
larity

Outputs log-
weight f(x)

InfoNCE-style

Leave-one-out de-
nominator

Per experiment

3  seeds; report
mean + 95% CI

Gaussian on em-
beddings

2048 sample for
yin yang, 5000
for CIFAR-10/Im-
ageNet-100
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