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ABSTRACT

We study the approximation of shift-invariant or equivariant functions by deep
fully convolutional networks from the dynamical systems perspective. We prove
that deep residual fully convolutional networks and their continuous-layer coun-
terpart can achieve universal approximation of these symmetric functions at con-
stant channel width. Moreover, we show that the same can be achieved by non-
residual variants with at least 2 channels in each layer and convolutional kernel
size of at least 2. In addition, we show that these requirements are necessary, in
the sense that networks with fewer channels or smaller kernels fail to be universal
approximators.

1 INTRODUCTION

Convolutional Neural Networks (CNN) are widely used as fundamental building blocks in the design
of modern deep learning architectures, for it can extract key data features with much fewer param-
eters, lowering both memory requirement and computational cost. When the input data contains
spatial structure, such as pictures or videos, this parsimony often does not hurt their performance.
This is particularly interesting in the case of fully convolutional neural networks (FCNN) (Long
et al., 2015), built by the composition of convolution, nonlinear activation and summing (averaging)
layers, with the last layer being a permutation invariant pooling operator, see Figure 1. Consequently,
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Figure 1: An illustration of fully convolutional neural network.

a prominent feature of FCNN is that, when shifting the input data indices (e.g. picture, video, or
other higher-dimensional spatial data), the output result should remain the same. This is called shift
invariance. An example application of FCNN is image classification problems where the class label
(or probability, under the softmax activation) of the image remains the same under translating the
image (i.e. shifting the image pixels). A variant of FCNN applies to problems where the output data
has the same size as the input data, e.g. pixel-wise segmentation of images (Badrinarayanan et al.,
2017). In this case, simply stacking the fully convolutional layers is enough. We call this type of
CNN equivariant fully convolutional neural network (eq-FCNN), since when shifting the input data
indices, the output data indices shift by the same amount. This is called shift equivariance. It is
believed that the success of these convolutional architectures hinges on shift invariance or equivari-
ance, which capture intrinsic structure in spatial data. From an approximation theory viewpoint, this
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presents a delicate trade-off between expressiveness and invariance: layers cannot be too complex
to break the invariance property, but should not be too simple that it loses approximation power.
The interaction of invariance and network architectures are subjects of intense study in recent years.
For example, Cohen & Welling (2016c) designed the steerable CNN to handle the motion group
for robotics. Deep sets (Zaheer et al., 2017) are proposed to solve the permutation invariance and
equivariance. Other approaches to build equivariance and shift invariance include parameter sharing
(Ravanbakhsh et al., 2017) and the homogeneous space approach (Cohen & Welling, 2016b; Cohen
et al., 2019). See Bronstein et al. (2017) for a more recently survey. Among these architectures,
the FCNN is perhaps the simplest and most widely used model. Therefore, the study of its theo-
retical properties is naturally a first and fundamental step for investigating other more complicated
architectures.

In this paper, we focus on the expressive power of the FCNN. Mathematically, we consider whether
a function F can be approximated via the FCNN (or eq-FCNN) function family in Lp sense. This
is also known as universal approximation in Lp. In the literature, many results on fully connected
neural networks can be found, e.g. Lu et al. (2017); Yarotsky (2018a); Shen et al. (2019). However,
relatively few results address the approximation of shift invariant functions via fully convolutional
networks. An intuitive reason is that the symmetry constraint (shift invariance) will hinder the un-
conditioned universal approximation. This can be also proved rigorously. In Li et al. (2022b), the
authors showed that if a function can be approximated by an invariant function family to arbitrary
accuracy, then the function itself must be invariant. As a consequence, when we consider the ap-
proximation property of the FCNN, we should only consider shift invariant functions. This brings
new difficulty for obtaining results compared to those for fully connected neural networks. For this
reason, many existing results on convolutional network approximation rely on some ways of break-
ing shift invariance, thus applying to general function classes without symmetry constraints (Oono
& Suzuki, 2019). Moreover, results on convolutional networks usually require (at least one) layers
to have a large number of channels.

In contrast, we establish universal approximation results for fully convolutional networks where
shift invariance is preserved. Moreover, we show that approximation can be achieved by increasing
depth at constant channel numbers, with fixed kernel size in each layer. The main result of this
paper (Theorem 1) shows that if we choose ReLU as the activation function and the terminal layer
is chosen as a general pooling operator satisfying mild technical conditions (e.g. max, summation),
then convolutional layers with at least 2 channels and kernel size at least 2 can achieve universal
approximation of shift invariant functions via repeated stacking (composition). The result is sharp
in the sense that neither the size of convolution kernel nor the channel number can be further reduced
while preserving the universal approximation property.

To prove the result on FCNN, we rely on the dynamical systems approach where residual neural
networks are idealized as continuous-time dynamical systems. This approach was introduced in E
(2017) and first used to develop stable architectures (Haber & Ruthotto, 2017) and control-based
training algorithms (Li et al., 2018). This is also popularized in the machine learning literature
as neural ODEs (Chen et al., 2018). On the approximation theory front, the dynamical systems
approach was used to prove universal approximation of general model architectures through compo-
sition (Li et al., 2022a). The work of Li et al. (2022b), extended the result to functions/networks with
symmetry constraints, and as a corollary obtained a universal approximation result for residual fully
convolutional networks with kernel sizes equal to the image size. The results in this paper restrict
the size of kernel in a more practical way, and can handle common architectures for applications,
which typically use kernel sizes ranging from 3− 7. Moreover, we also establish here the sharpness
of the requirements on channel numbers and kernel sizes.

The restriction on width and kernel size actually can provide more interesting results in the theo-
retical setting. This is because if we establish our approximation results using finite (and minimal)
width and kernel size requirements, they can be used to obtain the universal approximation property
for a variety of larger models by simply showing them to contain our minimal construction.

In summary, the main contributions of this work are as follows:

1. We prove the universal approximation property of both continuous and time-discretized
fully convolutional neural network with residual blocks and kernel size of at least 2. This
result concerns about the deep but narrow neural networks with residual blocks. We provide
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a sufficient condition result about the universal approximation property with respect to the
shift invariance. The result does not rely on the specific choice of nonlinear activation
functions, nor the choice of the last layer.

2. Further, we prove the universal approximation property of fully convolutional neural net-
work with ReLU activations having no less than two channels each layer, and kernel size
of at least 2.

3. Finally, we show that the channel number and kernel size requirements above are sharp,
since further reducing them may lose the universal approximation property.

4. The above three points hold true for the approximation of shift equivariant mappings via
eq-FCNN.

The paper is organized as follows: Section 2 introduces the mathematical formulation and the main
results of this paper. Section 3 introduces the main analytical tool and the bridging result in this
paper for the positive part of the main theorem, while Section 4 and 5 proves the sharpness part of
the main theorem. The discussion and conclusion is shown in Section 6. In Appendix A we provide
the shift equivariant result, and the remaining technical proof are collected in Appendix B.

2 FORMULATION AND MAIN RESULTS

In this section, we introduce the notation and formulation of the approximation problem, and then
present our main results. We first recall the definition of convolution. Consider two rank d tensors
x and y ∈ X, where X := Rn1 × · · · × Rnd . We denote by n = [n1, . . . , nd] the data dimensions,
and we define the convolution of x,y by z = x ∗ y with

[z]i =
∑
j

[x]j [y]i+j−1,

Here, i, j are multi-indices (beginning with 1) and the arithmetic uses the periodic boundary condi-
tion. Taking x ∈ R3×3 as an example, we denote

x =

[x](1,1) [x](1,2) [x](1,3)
[x](2,1) [x](2,2) [x](2,3)
[x](3,1) [x](3,2) [x](3,3)

 , (1)

where [x](1,4) is identified with [x](1,1), and similarly for the other indices.

Let us also define the translation operator Tk with respect to a multi-index k by [Tkx]i = [x]i+k.
The key symmetry condition concerned in this paper - shift equivariance - can now be stated as the
following commuting relationship:

Tk(x ∗ y) = x ∗ (Tky).

We now introduce the definition of the fully convolutional neural network (FCNN) architecture we
subsequently study. Let

Fr :=

{
r∑

i=1

viσ(wi ∗ ·+ bi1),wi ∈ X, vi, bi ∈ R

}
,

be a function family representing possible forms for each convolutional layer with r channels. Here,
σ(x) = max(x, 0) is the ReLU function.

Let the final layer be a pooling operation g : X → R obeying the following condition : g is Lipschitz,
and permutation invariant with respect to all the coordinates of its input data, i.e. the value of g does
not depend on the order of its inputs. Examples of such a pooling operator include summation
g(x) = x 7→

∑
i[x]i and max g(x) = x 7→ maxi[x]i. Note that this is stronger than just requiring

g to be shift invariant.

In practice, the convolutional kernel used will be more restrictive, say a kernel size of 3 or 5. To study
the effect of kernel size, we define the support for an element x ∈ X as supp(x) := (j1, j2, · · · , jd),
where js is the minimal number such that if the multi-index i has is > js for some s, then [x]i = 0.

3



Under review as a conference paper at ICLR 2023

For example, the support of tensor x =

[
0 1 0
1 0 0
1 0 0

]
is (3, 2). Two remarks on this definition of

support are in order. First, the element x ∈ X with supp(x) ≤ j = (j1, j2, · · · , jd) can be identified
with an element x̃ ∈ Rj1×j2×···×jd . 1 Second, a convolution kernel with size of s can be regarded
as a tensorw ∈ X with support ≤ s = (s, s, s, · · · , s). Thus, we may define the convolutional layer
family with support up to ℓ as

Fr,ℓ :=

{
r∑

i=1

viσ(wi ∗ ·+ bi1),wi ∈ X, supp(wi) ≤ ℓ, vi, bi ∈ R

}
With these notations in mind, we now introduce the following hypothesis spaces defining fully
convolutional neural networks and their residual variants

CNNr,ℓ = {g ◦ fm ◦ · · · ◦ f1 : f1, · · · ,fm ∈ Fr,ℓ,m ≥ 1}, (2)
resCNNr,ℓ = {g ◦ (id+fm) ◦ · · · ◦ (id+f1) : f1, · · · ,fm ∈ Fr,ℓ,m ≥ 1} (3)

For any family F of functions X → R, let us define F+R := {φ+ b, φ ∈ F, b ∈ R}. This expands
the hypothesis space by adding a constant bias to the original function family F. Observe that all
functions in the families CNN·,· and resCNN·,· are shift invariant in the following sense.
Definition 1. A function φ : X → R is called shift invariant if φ(x) = φ(Tkx) for all x ∈ X,k ≤
n. A function family X is called shift invariant if for all its member are shift invariant.

A function family X satisfies the shift invariant universal approximation property (shift invariant
UAP for short) if

1. The function family X is shift invariant, and
2. For any shift invariant continuous (or Lp) function ψ, tolerance ε > 0, compact set K ⊂ X

and p ∈ [1,∞), there exists φ ∈ X such that ∥ψ − φ∥Lp(K) ≤ ε.

Correspondingly, we define shift equivariance. A mapping φ : X → X is called shift equivariant if
φ(Tkx) = Tk(φ(x)). We will prove the shift equivariant UAP in Appendix A.

The main result of this paper is as follows. 2

Theorem 1 (Universal Approximation Property of CNN). The following statements hold:

1. The residual FCNN hypothesis space resCNNr,ℓ possesses the shift invariant UAP for
r ≥ 1 and ℓ ≥ 2. The non-residual hypothesis space CNNr,ℓ possesses the shift invariant
UAP for r ≥ 2 and ℓ ≥ 2.

2. The kernel size 2 is optimal in the following sense: for ℓ with min ℓs = 1, then neither
resCNN∞,ℓ + R nor CNN∞,ℓ + R possess the shift invariant UAP.

3. The channel-width requirement for non-residual fully convolutional neural network is opti-
mal, in the sense that the function family CNN1,∞+R does not possess the shift invariant
UAP.

Notice that due the extended hypothesis space from the added bias, the sharpness results are stronger
than just implying that CNN∞,ℓ or resCNN∞,ℓ does not possess the shift invariant UAP. The
reason we establish the sharpness results for ·+R is to ensure that the lack of approximation power
does not arise from the fact that the ReLU activation function σ has non-negative range. Note that
this sign restriction does not affect the positive result, since with at least 2 channels one can produce
output ranges of any sign. Although this theorem only considers the approximation of shift invariant
architectures, similar result can be established for the shift equivariant architectures. We will discuss
it in detail in Appendix A. Furthermore, in this section we restrict the activation function σ to be
the ReLU function, but this restriction is necessary only for the non-residual case. As we will see in
Appendix B.4, for residual FCNNs we can relax our requirement on σ to include a large variety of
common activation functions.

1In what follows, we define for multi-indices i, j the partial order i ≥ j if is ≥ js, s = 1, 2, · · · ..
2In this paper, we always fix a p ∈ [1,∞).
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Theorem 1 indicates the following basic trade-off in the design of deep convolutional neural network
architecture: if we enlarge the depth of the neural network, then even if we choose in each layer a
simple function (in this theorem, 2 channels with each kernel in channel with size of 2), we can still
expect a high expressive power. However, the mapping adopted in each layer cannot be degenerate,
otherwise it will fail to capture information of the input data. The second and third part of this
Theorem tells that this degeneracy may come from either channel number or the kernel size (support
of the convolutional kernel).

2.1 COMPARISON WITH PREVIOUS WORK

We compare this theorem to existing works on the approximation theory of convolutional networks
and related architectures. The existing result around the approximation capabilities of convolutional
neural networks can be categorized into several classes. One either

• takes the kernel as full-size (same size as the input) (e.g. Li et al. (2022b)) which is not
often used in practice,

• assumes a sufficiently large channel number in order to adopt some kernel learning methods
(e.g. Bietti (2021); Favero et al. (2021); Xiao (2022)) or averaging methods (e.g. Yarotsky
(2018b); Bao et al. (2019); Petersen & Voigtlaender (2020); Jiang et al. (2021).)

• removes the nonlinear activation function and reduce to a linear approximation problem
(e.g. Zhou (2020)), then use complex fully connected terminal layer(s) to achieve approx-
imation.

As a consequence, few, if any, results are obtained when the kernel size is small (and the channel
number is fixed). Indeed, none of the results we are aware of have considered situations where both
kernel size and the width are limited. However, this is in fact the case when designing deep (residual)
NNs, as the ResNet family, where the primary change is increasing depth. Our result indicates that
even though each layer is relatively simple, much more complicated functions can be ultimately
approximated via composition. Furthermore, our analytical techniques (especially for the residual
case) does not depend on the explicit form of the activation function and the pooling operator in the
last layer.

Another highlight feature of our result is with respect to the shift invariance, which might be over-
looked in some approximation result for convolutional neural network. We restrict our attention
to the periodic boundary condition case, which leads to architectures that are exactly shift invari-
ant or equivariant. This significantly confines the expression power of the hypothesis spaces. If
such a symmetry is not imposed on each layer, then one can achieve universal approximation of
general functions, but at the cost of breaking shift equivariance. For example, Oono & Suzuki
(2019) and Okumoto & Suzuki (2021) drop the equivariant constraints and builds the deep convo-
lutional neural network with zero boundary condition, achieving universal approximation property
of non-symmetric functions. This is because the boundary condition will deteriorate the interior
equivariance structure when the network is deep enough. Also, the shift invariance considered here
is about the pixel (i.e. the input data), while some other attempts like Yang & Wang (2020) build a
wavelet-like architecture to approximate a function invariant to the spatial translation, i.e., functions
satisfy that f = f(· − k) for k ∈ Z.

2.2 TECHNICAL NOVELTIES IN THE DYNAMICAL SYSTEMS APPROACH

In this paper, we develop the dynamical systems approach to analyze the approximation theory of
compositional architectures first introduced in Li et al. (2022a) without symmetry considerations,
and subsequently extended to handle symmetric functions with respect to transitive subgroups of the
permutation group Li et al. (2022b). While shift symmetry is covered under this setting, the results
in Li et al. (2022b) can only handle the case where the convolution filters have the same size as the
input dimension.

In contrast, the results here are established for small and constant filter (and channel) sizes. This is
an important distinction, as such configurations are precisely those used in most practical applica-
tions. On the technical side, the filter size restriction requires developing new arguments to show
how arbitrary point sets can be transported under a flow - a key ingredient in the proof of universal
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approximation through composition (See Section B.4 for a detailed discussion). Furthermore, the
restriction on filter sizes also enabled us to address new questions, such as a minimal size require-
ments, that cannot be handled by the analysis in Li et al. (2022b). The results and mathematical
techniques for these sharpness results are new. Concretely, to provide a sharp lower bound on the
filter size and channel number requirements, we develop some techniques to extract special features
of functions in CNN1,· + R and CNN·,1 + R that leads to the failure of universal approximation.
Detailed constructions are found in Section 4 and Section 5. The construction and the corresponding
analysis in this part are nontrivial, and we believe that the examples are also useful in analyzing the
approximation property of other architectures.

3 PART 1 OF THEOREM 1: THE DYNAMICAL SYSTEMS APPROACH

The core technique we employ to analyze both CNN and resCNN is the dynamical systems
approach: in which we idealize residual networks into continuous-time dynamical systems. In this
section, we introduce the key elements of this approach.

We first introduce the flow map, also called the Poincaré mapping, for time-homogenous dynamical
systems.
Definition 2 (Flow Map). Suppose f : X → X is Lipschitz, we define the flow map associated with
f at time horizon T as ϕ(f , T )(x) = z(T ), where ż(t) = f(z(t)) with initial data z(0) = x. It
follows from Arnold (1973) that the mapping ϕ(f, T ) is Lipschitz for any real number T , and the
inverse of ϕ(f, T ) is ϕ(−f, T ), hence the flow map is bi-Lipschitz.

Based on the flow map, we define the dynamical hypothesis space for the convolutional neural
network. Define the dynamical hypothesis space with convolutional kernel as

CODEr,ℓ = {g ◦ ϕ(fm, tm) ◦ · · · ◦ ϕ(f1, t1) : f1, · · · ,fm ∈ Fr,ℓ, t1, · · · , tm ∈ R}. (4)

The following proposition shows we can use residual blocks to approximate continuous dynamical
systems.
Proposition 1. Suppose that F is a bi-Lipschitz function family. For given

Φ = ϕ(fm, tm) ◦ · · · ◦ ϕ(f1, t1), fi ∈ F ,
and compact K ⊂ X, ε > 0, there exists

Φ̂ = (id+sm′gm′) ◦ · · · ◦ (id+s1g1), gi ∈ F

for some si > 0, i = 1, . . . ,m′, such that ∥Φ− Φ̂∥Lp(K) ≤ ε.

The following result shows the shift invariant UAP for the continuous hypothesis space, and its proof
can be found in Appendix A.
Theorem 2. The dynamical hypothesis space CODE1,2 satisfies the shift invariant UAP.

The rough proof strategy is as follows. We reduce the problem to finite point transportation, i.e., we
need to show that the hypothesis space can transport arbitrary but finitely many points (in different
orbits under the action of the translation group) to any other set of points. This is done in the
previous work of Li et al. (2022b). A key technical difficulty here is that the kernel size is limited,
thus previous known constructions of point transportation (Li et al. (2022b)) cannot achieve this.
Here, we show that we can employ more composition of layers to construct auxiliary mappings to
achieve this transportation property. The intuition is that finite-size kernels (satisfying some minimal
requirements), when stacked many times, is as good as a full-sized kernel for domain rearrangement
- a key enabler of universal approximation through composition.

With this theorem in hand, we now prove the first part of Theorem 1.

Proof of the first part of Theorem 1. By the straightforward inclusion relationship, it suffices to
show that the function family resCNN1,2 and CNN2,2 have UAP. For the residual version, it
follows from Proposition 1 that if CODE1,2 satisfies UAP, then so does resCNN1,2. In other
words, a convergent time discretization inherits universal approximation properties. Thus, given
Theorem 2 it suffices to prove the remaining CNN case.
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We begin with a weaker result, showing that CNN3,2 satisfies UAP. We prove that resCNN1,2 ⊂
CNN3,2. For given f = vσ(w ∗ ·+ b1) with σ = ReLU, we write

x+ f(x) = σ(x) + (−1)σ(−x) + vσ(w ∗ x+ b1).

This relation indicates that resCNN1,2 ⊂ CNN3,2, which means that CNN3,2 has UAP.

However, this approach cannot handle the case CNN2,2, since the inclusion resCNN1,2 ⊂
CNN2,2 does not hold. This leads to further modification.

In the following, we prove that for a given G ∈ resCNN1,2, compact K ⊂ X, there exists H ∈
CNN2,2 such that H(x) = G(x) for all x ∈ K. Suppose that G = g ◦ fM ◦ · · · ◦ f1, where
fi(x) = x+ v

iσ(wi ∗x+ bi1). Set γi = fi ◦ · · ·f1, γ0 = id and note that each γi is a Lipschitz
mapping. We now consider a sufficiently large real number R > 0 such that |γi(x)| ≤ R holds for
all i = 0, 1, · · · ,M and x ∈ K. This can be done since each γi is Lipschitz, and K is a compact
set. Define

u0(x) = σ(x+R1), (5)
and

ui(x) = σ(x) + viσ(wi ∗ x+ (bi − (Σk[w
i]k)R)1) ∈ F2,2 (6)

for i = 1, 2, · · · ,M . Similarly, define ηs(x) = us ◦ · · · ◦ u1 ◦ u0. Clearly, ηs ∈ CNN2,2 for all
s ≥ 0. We now prove by induction that

ηi(x) = γi(x) +R1 for i = 0, 1, · · · ,M. (7)

The base case (i = 0) is obvious from the definition (5), since x+R1 > 0 for all x ∈ K. Suppose
that (7) holds for i, then

ηi+1(x) =σ(γi(x) +R1) + viσ(wi ∗ (γ1(x) +R1) + (bi − (Σk[w
i]k)R)1)

=γi(x) +R1+ viσ(wi ∗ γi(x) + bi1)

=γi+1(x) +R1.

The first equation uses the definition of (6), and the second equation follows from γi(x) +R1 ≥ 0
and wi ∗ R1 = (Σk[w

i]k)R1. This proves (7) by induction. Finally, we set uM+1(x) = σ(x) −
σ(R1), then H(x) := g(uM+1(ηM (x))) = g(γM (x)) = G(x) for all x ∈ K. By construction,
we have H ∈ CNN2,2, therefore we have proved that the UAP holds for CNN2,2.

We remark that the shift equivariance of the dynamical system (and the resulting flow map) may
prompt one to consider the same equation in the quotient space with respect to shift symmetry, see
Cohen & Welling (2016a). However, in the case of flow approximation, we found no new useful
tools in the quotient space to analyze approximation, thus this abstraction is not adopted here.

We now give a concrete examples to show that we cannot directly deduce UAP from earlier results
by a quotient argument. Observe that for the non-symmetric setting, the result in Li et al. (2022a)
requires that the control family F be (restricted) affine invariant. If we directly require this affine
invariance in the quotient space, then it will be reduced to scaling invariant. However, the scaling
invariant property cannot induce the UAP, and the proof of this is similar to those in Section 4.

4 PART 2 OF THEOREM 1: SHARPNESS OF THE KERNEL SIZE REQUIREMENT

In this section, we prove the second part of Theorem 1. Consider kernels with support ℓ such that
min ℓs = 1. Without loss of generality we can assume that ℓ1 = 1.

We use the following example to illustrate the main intuition behind this sharpness result. More
precisely, we show that the sum of two univariate function cannot approximate a bivariate function
well. As an explicit example, we show that there exists ε0 such that

∥xy − f(x)− g(y)∥Lp([0,1]2) ≥ ε0

for all choice of Lp functions f and g. Suppose that for some f, g ∈ Lp([0, 1]2), ∥xy − f(x) −
g(y)∥Lp([0,1]2) = ε. we define I = [0, 1/2]2 and p1 = [0, 0],p2 = [1/2, 0],p3 = [0, 1/2],p4 =
[1/2, 1/2]. For convenience, denote by h(x, y) = xy. Consider the following value

M = ∥h(x+ p1) + h(x+ p4)− h(x+ p2)− h(x+ p3)∥Lp(I).
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Direct calculation yields that M = 4−
p+1
p > 0. However, for ĥ(x, y) = f(x) + g(y), it holds that

ĥ(x+ p1) + ĥ(x+ p4)− ĥ(x+ p2)− ĥ(x+ p3) = 0.

By triangle inequality, M ≤ 0 +
∑4

i=1 ∥h(x + pi) − ĥ(x + pi)∥Lp(K) ≤ 4ε. Therefore, it holds
that ε ≥ M

4 > 0, concluding the result.

For the general case of establishing the sharpness result, we mimic the example above. We introduce
the following auxiliary space. For x ∈ X and integer I , define xI: as the tensor in X1 = Rn2×···×nd ,
such that [xI:](i2,··· ,id) = [x](I,i2,··· ,id). Define H as the mapping X → R such that

H := {g ◦φ : X → R : ∃ψ : X1 → X1, such that [φ(x)]I: = ψ(xI:)}.
We illustrate the function family H in the following R3×3 example. If F ∈ H, then F should have
the following form:

F = g

ψ(x(1,1),x(1,2),x(1,3))
ψ(x(2,1),x(2,2),x(2,3))
ψ(x(3,1),x(3,2),x(3,3))

 .

By the assumption on ℓ, it is straightforward to deduce that CNNr,ℓ, resCNNr,ℓ,CODEr,ℓ are
all in H. It remains to show that H does not possess the shift invariant UAP. The idea follows
the simple example above, by noting that in this case x is now (x(1,1),x(1,2),x(1,3)), y is now
(x(2,1),x(2,2),x(2,3)), and f(x) + g(y) is now some general permutation invariant function. We
now carry out this proof.

Proof of the second part of Theorem 1. As discussed before, it suffices to show that H + R does
not satisfy UAP. Let us set F (x) =

∏
i1>i2

(ψ([x]i1:) − ψ([x]i2:)), where ψ(y) =
∏

i′ [y]i′ , and
K = [0, 1]n, we show that there exists a constant ε0 > 0, such that for all H ∈ H, it holds

∥F −H∥Lp(K) ≥ ε0. (8)

Choose two subregions of K, K1 = {x ∈ K,x1: ≫ x2,: ≫ · · · ≫ xn1:}, and K2 = {x ∈
K,x2: ≫ x1: ≫ x3: ≫ · · · ≫ xn1:}. Here, we say for z1 and z2 ∈ X1, z1 ≫ z2 means
mini[z1]i ≥ maxi[z2]i. Consider the mapping τ , that flips first and second rows (along first index),
that is,

[τ (x)]2: = [x]1:, [τ (x)]1: = [x]2:, [τ (x)]i: = [x]i:, i ̸= 1, 2. (9)
Then τ (K1) = K2. By the definition of H, we have (H ◦ τ)(x) = H(x) for x ∈ K1, and
H ∈ H+ R. But F ◦ τ = −F , which implies that

2∥F∥Lp(K1) = ∥F − F ◦ τ∥Lp(K1)

≤ ∥H −H ◦ τ∥Lp(K1) + ∥F −H∥Lp(K) + ∥F ◦ τ −H ◦ τ∥Lp(K)

= 2∥F −H∥Lp(K).

(10)

In the last equation, the last two terms are equal since τ is measure preserving.

5 PART 3 OF THEOREM 1: SHARPNESS OF THE CHANNEL NUMBER
REQUIREMENT

In this section, we show that the FCNN with only one channel per layer cannot satisfy the shift
invariant UAP. The key to proving this part is the following observation. Suppose G ∈ CNN1,∞+
R, then G is continuous, piecewise linear. Moreover, by direct calculation, we obtain that there
exists g ∈ X, such that for a.e. x ∈ K, the gradient of G is 0 or g. The last assertion can be proved
from direct calculation on the gradient of G.

Proof of the third part of Theorem 1. Based on the above observation, we now show that F (x) =
|x| cannot be approximated by such G in the unit ball B(0, 1). By a change of variables we rewrite∫

x∈B(0,1)

|F (x)−G(x)|pdx =

∫
ξ∈∂B(0,1)

∫ 1

0

|F (tξ)−G(tξ)|pt|n|−1dtdS, (11)

where |n| = n1n2 · · ·nd. We consider the hemisphere defined by ξ ∈ ∂B(0, 1) such that ξ · g < 0.
On this hemisphere, f(t) = F (tξ) = t is increasing while g(t) = G(tξ) is decreasing in t.

To proceed, we state and prove the following lemma.

8
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Lemma 1. For f : [a, b] → R that is increasing, we have

inf
g decreasing in [a,b]

∫
|f − g|p = inf

g constant in[a,b]

∫
|f − g|p.

Proof. The ≤ part is obvious, so it suffices to prove the ≥ part. Given any decreasing g, set a
constant g̃ such that g̃(t) = g(t0) if f(t0) = g(t0) for some t0, and g = f(1) if there does not exist
such a t0. We can easily verify that |f(t)− g(t)| ≥ |f(t)− g̃(t)| for all t ∈ [0, 1].

Using this lemma, we can show that∫ 1

0

|f(t)− g(t)|pt|n|−1dt ≥
∫ 1

1/2

|f(t)− g(t)|pdt · (1
2
)|n|−1

≥(
1

2
)|n|−1 inf

a∈[1/2,1]

∫ 1

1/2

|f(t)− a|pdt

=(
1

2
)|n|−1 inf

a∈[1/2,1]

(1− a)p+1 + (a− 1/2)p+1

p+ 1

=2−|n|+1 · 2 · (1/4)
p+1

p+ 1
=: Cp.

(12)

The last line follows from the fact that the minimization problem attains its infimum at a = 3
4 .

Therefore,
∫
x∈B(0,1)

|F (x)−G(x)|p > Cp

2 α, where α is the Lebesgue measure of ∂B(0, 1). This
implies the third part of Theorem 1.

6 CONCLUSION

We provided the first approximation result of deep fully convolutional neural networks with the
fixed channel number and limited convolution kernel size, and quantify the minimal requirements
on these to achieve universal approximation of shift invariant (or equivariant) functions. We proved
that the fully convolutional neural network with residual blocks resCNNr,ℓ achieves shift invariant
UAP if and only if r ≥ 1 and ℓ ≥ 2. This result does not require the specific form of the activation
function. For the non-residual version, we proved that CNNr,ℓ has the shift invariant UAP if and
only if r ≥ 2 and ℓ ≥ 2. The if part requires specifying σ to be the ReLU operator. In addition,
the results also hold for their corresponding equivariant versions. The proof is based on developing
tools for dynamical hypothesis spaces, which has the flexibility to handle variable architectures, and
obtain approximation results that highlight the power of function composition.

We conclude with some discussion on future directions. In this paper, the shift invariant UAP for
CNN2,2 was established for ReLU activations. The proof relies on the special structure of ReLU:
ReLU(x) = x for x > 0, hence we can make use of translation to replace the residual part. This
construction was outlined in the proof of the first part of Theorem 1. It will be of interest to study if
the other activations, such as sigmoid or tanh, can also achieve shift-invariant UAP at fixed widths
and limited kernel sizes. Further, one may wish to establish explicit approximation rates in terms
of depth, and identify suitable function classes that can be efficiently approximated by these invari-
ance/equivariance preserving networks. Finally, one may also consider extending the current theory
to handle up-sampling and down-sampling layers that are commonly featured in deep architectures.

In addition to approximation error, it is very natural and useful to consider the generalization error
(statistical error) in the overall analysis of a machine learning model. Compared to shallow and wide
models, few generalization results in the deep-but-narrow setting (for layers greater than 3) have
been established. While the current paper only concerns approximation theory, it is nevertheless an
important future direction to establish generalization estimates.
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In these appendices, we provide the remaining details of the proofs of various results presented in
this paper.

A UNIVERSAL APPROXIMATION PROPERTY FOR EQUIVARIANT NEURAL
NETWORKS

If we remove the final layer in CNN or resCNN, then we obtain a neural network whose output
data is with the same size of the input data. This is the original definition of FCNN introduced
in (Long et al., 2015), primarily used for pixel-wise image tasks. Correspondingly, the symmetry
property is changed to shift equivariance, instead of shift invariance. This leads to the definition of
the following hypothesis spaces that parallels the shift invariant counterparts in the main paper.

eqCNNr,ℓ = {fm ◦ · · · ◦ f1 : f1, · · · ,fm ∈ Fr,ℓ,m ≥ 1.} (13)
eqresCNNr,ℓ = {(id+fm) ◦ · · · ◦ (id+f1) : f1, · · · ,fm ∈ Fr,ℓ,m ≥ 1.}. (14)

eqCODEr,ℓ = {ϕ(fm, tm) ◦ · · · ◦ ϕ(f1, t1) : f1, · · · ,fm ∈ Fr,ℓ, t1, t2, · · · , tm ∈ R,m ≥ 1.}.
(15)

To distinguish from functions φ : X → R, we use the word “mappings” to refer to functions from X
to X.
Definition 3. The mapping φ is called shift equivariant if

Tk(φ(x)) = φ(Tk(x)), x ∈ X,k
The mapping family X is said to have the shift equivariant UAP if

1. Each mapping in X is shift equivariant, and

2. Given any shift equivariant continuous mapping φ, compact set K ⊆ X, and tolerance
ε > 0, there exists a mapping ψ ∈ X such that

∥ψ −φ∥Lp(K) ≤ ε.

Then, the analogous result with respect to equivariant approximation is stated as follows.
Theorem 3. We have the following results.

1. For the fully convolutional neural network with residual blocks, it holds that
eqresCNNr,ℓ possesses the shift equivariant UAP for r ≥ 1, and ℓ ≥ 2. For non-
residual versions, eqCNNr,ℓ possesses the shift equivariant UAP for r ≥ 2 and ℓ ≥ 2.

2. The kernel size 2 is optimal in the following sense: for ℓ with min ℓs = 1, then neither
eqresCNN∞,ℓ + R nor eqCNN∞,ℓ + R possesses eq-UAP.

3. The number of channel for non-residual fully convolutional neural network is optimal, in
the sense that the mapping family eqCNN1,∞ + R does not possess the shift equivariant
UAP.

To prove Theorem 3, we start with the following proposition, which links the universal approxima-
tion property of invariant function family and that of an equivariant mapping family. A version of
this was proved in Li et al. (2022b) in a rather abstract setting for general transitive groups. We
provide a more explicit proof in Appendix B.3 in the specific case where we are only concerned
with shift operator Tk.
Proposition 2 (Equivariant UAP is Sufficient). Suppose g : X → R is Lipschitz, permutation
invariant, and g(X) = R. If a mapping family A possesses the shift equivariant UAP, then B =
{g ◦φ : φ ∈ A} possesses the shift invariant UAP.

The corollary of this proposition is that, using the first part of Theorem 3 we can derive the first part
of Theorem 1, while using the second and third part of Theorem 1 we can prove the second and third
part of Theorem 3.

Finally, it remains to show the following theorem, which is an equivariant version of Theorem 2. As
in the proof procedure described in Appendix B.4, all other results will be reduced to this theorem.
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Theorem 4. The mapping family eqCODE1,2 satisfies the shift equivariant UAP.

Proof of Theorem 2. Using the fact {g ◦ f : f ∈ eqCODEr,ℓ} = CODEr,ℓ, Theorem 4, and
Proposition 2.

Proof of Theorem 3. The first statement follows from Theorem 4 and Proposition 1. Suppose the
second statement is false, that is, eqCNN∞,ℓ possesses eq-UAP. Then, since

{g ◦ f : f ∈ eqCNN∞, ℓ} ⊂ H+ R,

from Proposition 2 we can deduce that CNN∞,ℓ has shift invariant UAP, contradicting to Theo-
rem 1. The remaining sharpness result also can be proved in a similar manner.

Thus, to deduce Theorem 3 it remains to prove Theorem 4 and Proposition 2. These proofs are
presented in Appendices B.4 and B.3 respectively.

B TECHNICAL DETAILS

In this section, we provide detailed proofs of the results that were quoted in the main paper and
the previous section in the appendix. The overall plan of the proof is the shown in the following
diagram, including the dependency of each propositions, theorems, and their proofs.

Theorem 1 (Sec. 3)

First Part

Second Part 

Third Part

Theorem 3 (App. A)

First Part

Second Part 

Third Part

Proof: Section 4 Proof: Section 5

Proposition 2 (App. A)

Theorem 2 (Sec. 3) Proposition 2 Theorem 4 (App. A)

Section 3

+ Proposition 1

Proposition 4 (Appendix B. 4) 

Point Matching Property (Appendix B. 4)Lemma 2 & 3
(Appendix B.1)

Proof : Appendix B. 7

Proof : Appendix B.6

Proof: Section 3

Proposition 1 (Sec. 3)

Proof: Appendix B.2 Proposition 3 (Appendix B. 4)

Proof:  Appendix B.5

Proof. Appendix B.3

Figure 2: The directed acyclic graph represents the dependency of the result and the section layout.
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B.1 CLOSURE OF A MAPPING FAMILY

We begin with some elementary properties of compositional hypothesis spaces. For a given bi-
Lipschitz mapping family G, consider its closure in the following sense

clo(G) := {φ ∈ C(X,X) : for any compact K ⊂ X, ε > 0,

∃ψ ∈ G, such that∥ψ −φ∥Lp(K) ≤ ε}. (16)

Then, we have the following lemma.

Lemma 2. If G is closed under composition, then so is clo(G).

Proof. Takeα,β ∈ clo(G), by definition it suffices to show thatα◦β ∈ clo(G). For given compact
K ⊂ X and ε > 0, there exists β′ ∈ G such that

∥β′ − β∥Lp(K) ≤ ε′ =
ε

2Lip (α)
.

Also, there exists α′ ∈ G such that

∥α′ −α∥Lp(β′(K)) ≤
ε

2
Lip β′−1.

Then

∥α′ ◦ β′ −α ◦ β∥Lp(K) ≤∥α′ ◦ β′ −α ◦ β′∥Lp(K) + ∥α ◦ β′ −α ◦ β∥Lp(K)

≤ε
2
+ Lip (α)ε′

≤ε.

(17)

Since α′ ◦ β′ ∈ G, this shows α ◦ β ∈ clo(G).

Lemma 3. If clo(G) possesses shift equivariant UAP, then so does G.

Proof. By definition, for given shift equivariant function φ, compact set K ⊂ X, tolerance ε > 0,
there exists φ1 ∈ clo(G) such that

∥φ−φ1∥Lp(K) ≤ ε.

From the definition of clo(G), there exists φ2 ∈ G such that

∥φ1 −φ2∥Lp(K) ≤ ε.

Hence,
∥φ−φ2∥Lp(K) ≤ 2ε,

which concludes the result.

B.2 PROOF OF PROPOSITION 1

We first prove that Φ = ϕ(f , T ) can be approximated by such Φ̂ = (id+(T/n)f)n. For given
t > 0, since

|ϕ(f , t)(x)− x− tf(x)| ≤
∫ t

0

|f(ϕ(f , s)(x))− f(x)|ds

≤
∫ t

0

L|ϕ(f , s)(x)− x|ds

≤Lt
2

2
|f(x)|+

∫ t

0

L|ϕ(f , s)(x)− x− sf(x)|ds.

(18)
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Therefore, by Gronwall’s inequality, we obtain,

|ϕ(f , t)(x)− x− tf(x)| ≤C(t) +
∫ t

0

C(s)eL(t−s)ds

≤Lt
2

2
|f(x)|+ Lt3

3
|f(x)|

≤L|f(x)|t2,

(19)

for t ≤ min(ln 2/L, 1), where C(t) = t2L
2 |f(x)|.

This local estimate can be improved to obtain the desired approximation result. For given T , set
t = T/n. Define Φn = (ϕ(f , t))n and Φ̂n = (id+tf(x))n. Then, it holds that

|Φn(x)− Φ̂n(x)| ≤|Φ(Φn−1)(x)− Φ̂(Φn−1(x)) + Φ̂(Φn−1(x))− Φ̂n(x)|

≤L|f(Φn(x))|t2 + Lip Φ̂|Φn−1(x)− Φ̂n−1(x)|.
(20)

Suppose that M = supt∈[0,T ] |f(x)|, since Lip Φ̂ = 1 + tL.

|Φn(x)− Φ̂n(x)| ≤ LMt2 + (1 + tL)|Φn−1(x)− Φ̂n−1(x)|. (21)
By discrete Gronwall’s inequality, it holds that

|Φn(x)− Φ̂n(x)| ≤ (1 + tL)n − 1

(1 + tL)− 1
LMt2 ≤ eTLMt. (22)

The above estimates implies that, define

G = {(id+tmfm) ◦ · · · (id+t1f1) : f1, · · · ,fm ∈ F}
then

ϕ(f , t) ∈ clo(G).
By Lemma 2, we conclude the result.

B.3 PROOF OF PROPOSITION 2

Proof of Proposition 2. Without loss of generality, we assume thatK = [−a, a]n, otherwise we can
enlarge K.

Define
K1 = {x ∈ K : [x]1 > [x]i,∀i ̸= 1.}

Then, it is easy to check that
K =

⋃
i

(TiK1)

up to a measure zero set. Define ε′ := ε
|n|(1+Lip g) , by results in Li et al. (2022a, Theorem 3.8), for

any ε′ > 0 there exists u such that

∥F − g ◦ u∥Lp(K) ≤ ε′. (23)

Note that u here is not necessarily equivariant, otherwise we are done. Now we attempt to find f by
some kind of equivariantization on u as explained below. Since u is in Lp, we consider a compact
set O ⊂ K1 such that ∥u∥Lp(K1\O) ≤ ε′. Take a smooth truncation function χ ∈ C∞(Rd), whose
value is in [0, 1], such that χ|O = 1 and χ|Kc

1
= 0. Then ũ = χu is a smoothed and truncated

version of u.

For x ∈ TkK1 with index k, define

f(x) = Tk(ũ(T−k(x))).

Since different TkK1 are disjoint, the value of f is unique in ∪kTkK1. We set f(x) = 0 in the
complement of ∪kTkK1. The truncation function χ ensures that f vanishes on the boundary ofQA,
therefore f is continuous, and direct verification shows that f is shift equivariant.

15



Under review as a conference paper at ICLR 2023

It then suffices to estimate ∥F − g ◦ f∥Lp , since both F and g ◦ f are equivariant, it is natural and
helpful to restrict our estimation on K1, since

∥F − g ◦ f∥Lp(K) = |n| ∥F − g ◦ f∥Lp(K1). (24)

To estimate the error on K1, we first estimate the error ∥u − f∥Lp(K1). Since u and f |K1
= ũ

coincide on O, we have

∥u− f∥Lp(K1) = ∥u− ũ∥Lp(K1)

≤ ∥u∥Lp(K1\O) = ε′.
(25)

The inequality follows from the fact that χ takes value in [0, 1]. Since g is Lipschitz, we have
∥g ◦u− g ◦f∥Lp(K1) ≤ Lip gε′, yielding that ∥F − g ◦f∥Lp(K1) ≤ (1+Lip g)ε′. We finally have
∥F − g ◦ f∥Lp(K) ≤ (1 + Lip g)|n|ε′ = ε.

B.4 THE PROOF OF THEOREM 4

In this section we prove the UAP of eqCODE1,2. Here, we relax the constraint that σ = ReLU.
We make the following assumption on σ, which is called “well function” in Li et al. (2022a).
Definition 4. We say a Lipschitz function h : R → R is a well function if {x ∈ R : h(x) = 0} is a
bounded (closed) interval.

In this section, we assume that there exists a well function h in the closure of span{vσ(w ·
+b), v, w, b ∈ R}. The commonly used activation functions meet this assumption, including ReLU,
Sigmoid and Tanh, see Li et al. (2022a). For a given continuous function u : R → R, define the
coordinate zooming function u⊗ : X → X by

[u⊗(x)]i = u([x]i).

We say a point x is a stabilizer if and only if there exists a non-trivial k ̸= 0, such that

Tkx = x.

We say a point set X = {x1,x2, . . . ,xn} is shift distinct, if for some i1, i2,k with

Tk(xi1) = xi2

then we must have i1 = i2 and k = 0. Notice that if a point set X is shift distinct, then for any
member x ∈ X , the only k so that Tk(x) = x is k = 0. This is implied by the definition of shift
distinctness. The basic approximation framework is based on the following two properties.
Proposition 3 (Basic Framework). Given a family A of mappings X → X. Suppose A is closed
under composition. If A satisfies the following two conditions:

1.(Coordinate zooming property) For any continuous function u, the mapping u⊗ is in A.

2.(Point matching property) For a given shift distinct point set x1, · · · ,xM , a target point set
y1, · · · ,yM , and a stabilizer point set s1, s2, · · · , sN , a tolerance ε > 0, there exists
a mapping φ ∈ A such that

|φ(xi)− yi| ≤ ε

and
|φ(si)| ≤ 1.

Then, A possesses the shift equivariant UAP.

Note that for the point matching property is to say, we can use mappings in G to move each xi to yi,
while keeping a stabilizer set stay around the original point. We now use this proposition to prove
Theorem 4, consider the closure in the UAP sense, that is,

A :={φ : for all compact K ⊂ X, ε > 0, there exists ψ ∈ eqCODE1,2,

∥φ−ψ∥Lp(K) ≤ ε.}
(26)
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Proposition 4. The following results hold for the mapping family A.

1. A is closed under composition.

2. Given w ∈ X, suppw ≤ 2, and b ∈ R, then the flow map ϕ(h(w ∗ ·+ b1), t) ∈ A.

3. A satisfies the coordinate zooming property.

4. If A possesses shift equivariant UAP, then so does eqCODE1,2.

Suppose now the point matching property holds for A, we then prove the main theorem (Theorem 4).

Proof of Theorem 4. By the last part of Proposition 4, it suffices to show that A possesses shift
equivariant UAP. By the third part (and the first part), we know that if A has the point matching
property, then A has shift equivariant UAP, which concludes the result.

From the proof, we know that: Once the point matching property is proved, Theorem 4 is then
proved. The proof of the point matching property is the most technical part in this paper. We first
give a sketch of the proof.

Sketch of the proof of the point matching property. In this sketch, we only consider the case when
there are no stabilizers, i.e. when N = 0.

Step 1. We first show that if A has the following point reordering property, then A has the point
matching property.

For any shift distinct point set i, we can find a mapping φ ∈ A such that

[φ(xj)]i > [φ(xj′)]i′

if j < j′ or j = j′ but i ≺ j. Here the partial order ≺ is the lexicographic order.
For brevity, we say in this case that φ(xj) is ordered.

Step 2. To begin with, we first prove that there exists a mapping β ∈ A, such that

[α(x1)]i > [α(xj)]i′

for j ̸= 1 and any indices i, i′.

Step 3. Set zj = β(yj). Now we are ready for an induction argument. Suppose for z2, · · · , zM
we have a mapping ψ ∈ A to fulfill the point reordering property. We modify it to the
mapping ψ̃ = ψ ◦ u⊗ ∈ A, such that it satisfies the following conditions

• ψ̃(z2), · · · , ψ̃(zM ) are ordered.

• [ψ̃(z1)]i > [ψ̃(zj)]i′ for j ̸= 1, and indices i, i′.

Step 4. Finally, we modify ψ̃ to get φ such that φ(zj) is ordered. Till now, we prove the point
reordering property for A.

The full proof of Theorem 4 is put in Appendix B.7.

B.5 PROOF OF PROPOSITION 3

Proof of Proposition 3. Without loss of generality, we can suppose that K = [−a, a]n. Otherwise,
we can expand K to a sufficiently large hypercube.
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Step 1. Given a scale δ > 0, consider the grid δZn with size δ. Let q ∈ Zn be a tensor with all
coordinates being integers, and χq be the indicator of the cube

□q,δ :=
{
x : [x]i ∈ [[q]iδ, ([q]i + 1)δ]

}
. (27)

Since φ is in Lp(K), by standard approximation theory φ can be approximated by equivariant
piecewise constant (and shift equivariant) functions

φ0(x) =
∑

q,□q,δ⊂K

yqχq(x), (28)

where
yq = λ(□q,δ)

−1

∫
□q,δ

φ(x)dx (29)

is the local average value of φ in □q,δ . Then, we have

∥φ−φ0∥Lp(K) ≤ ωφ(δ)[λ(K)]1/p → 0 (30)

as δ → 0, where ωφ is the modulus of continuity (restricted to the region K), i.e.,

ωφ(δ) := sup
|x−y|≤δ

|φ(x)−φ(y)| (31)

for x and y in K and λ(K) is the Lebesgue measure of K.

Step 2. Let qδ be a vertex of □q,δ Define I as the maximal subset of I0 = {q : qδ ∈ K} such
that {qδ : q ∈ I} is shift distinct. By the maximal property, and the definition of shift distinctness,
for each q ∈ I0, only two situations can happen.

1. There exists a shift operator Tk and q′ ∈ I, such that Tkq′ = q.

2. q itself is a stabilizer, that is, there exists a shift operator Tk with k ̸= 0 such that Tkq = q.

By the construction of yq , it holds that

Tkyq = yTkq.

Given ε > 0, by the point matching property, we can find f ∈ A such that

• For q ∈ I0 that is not a stabilizer, |f(qδ)− yq| ≤ ε.

• For q ∈ I0 that is a stabilizer, |f(qδ)| ≤ 1.

For α ∈ (0, 1), define the shrunken cube

□α
q,δ := {x ∈ X : [x]i ∈ [[q]iδ, ([q]i + α)δ]}, (32)

and define Kα =
⋃

□q,δ⊂K □α
q,δ , which is a subset of K. Given β > 0, we now use the coordinate

zooming property of A to find u⊗ ∈ A such that

u([ih, (i+ αh)]) ⊂ [ih, (i+
β

n
δ)] for i ∈ {is : s = 1, . . . , n; i ∈ I}. (33)

To do this, we construct a piecewise linear function u such that

u|[iδ,(i+α)δ](x) = i+
β

2n
δ, (34)

by setting

u|[(i+α)δ,(i+1)δ](x) = (x− (i− α)δ)/(1− α) + i+
β

2n
δ (35)

explicitly, and select ε < β
3nδ. By the coordinate zooming property, u⊗ is in A.

Therefore, we have
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|f(u⊗(x))− yq| ≤ 2ε for x ∈ □α
q,δ, (36)

if q is not a stabilizer, and
|f(u⊗(x))| ≤ 1 + ε for x ∈ □α

q,δ, (37)
if q is a stabilizer.

These two estimates (36) and (37) will be useful in the final step.

Step 3. We are ready to estimate the error ∥φ− f ◦ u⊗∥Lp(K).

The estimation is split into three parts,

K \Kα,

Kα
1 =

⋃
q is not a stabilizer

□α
q,δ,

Kα
2 =

⋃
q is a stabilizer

□α
q,δ.

(38)

Notice that Kα =
⋃
□α

q,δ .

For Kα
1 , from (36) in the end of Step 2, we have ∥f ◦ u⊗ −φ0∥L∞(Kα

1 ) ≤ 2ε, and thus

∥f ◦ u⊗ −φ0∥Lp(Kα
1 ) ≤ 2ε[λ(Kα)]1/p ≤ 2ε[λ(K)]1/p. (39)

For Kα
2 , note that if q is a stabilizer, then all points in □q,δ will be close to a hyperplane

Γi,j := {x ∈ X : [x]i = [x]j}

for some distinct i, j, the distance from those points to Γi,j will be smaller than
√

|n|δ. Therefore,
the Lebesgue measure of Kα

2 ⊂ K2 will be smaller than that of all points whose distance to the
union of hyperplanes Γi,j is less than

√
nδ, which is O(δ). Thus, we have

∥f ◦ u⊗ −φ0∥Lp(Kα
2 ) ≤ (1 + ε+ ∥φ0∥C(K))O(δ)

≤ (1 + ε+ ∥φ∥C(K))O(δ).
(40)

The last line holds since ∥φ0∥C(K) ≤ ∥φ∥C(K) by construction.

For K \Kα, we have

∥f ◦ u⊗ −φ0∥Lp(K\Kα) ≤ (∥f∥C(K) + ∥φ∥C(K)) λ(K \Kα)1/p

≤ (∥f∥C(K) + ∥φ∥C(K))(1− αd)1/p[λ(K)]1/p.
(41)

We first choose δ sufficiently small such that the right hand side of (40) is not greater than ε, then
choose α such that 1−α is sufficiently small, and (∥f∥C(K) + ∥φ∥C(K))(1−αd)1/p ≤ ε. The we
conclude the result since f ◦ u⊗ ∈ A.

B.6 PROOF OF PROPOSITION 4

The first part and the last part comes from Lemma 2 and 3 respectively.

Part 2. We show that for f , g ∈ F1,2, then

ϕ(f + g, T ) ∈ A.

From Proposition 1, we know that for compact K ⊂ X and tolerance ε > 0. Then for sufficiently
large n, set t = T/n, we then have

∥(id+tf + tg)n − ϕ(f + g, T )∥Lp(K) ≤ ε.
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We now estimate the error between (id+tf + tg)n and [(id+tf) ◦ (id+ tg)]n.

Since
(id+tf) ◦ (id+tg)(x) = (id+tg)(x) + tf(x+ tg(x)),

we then have

|(id+tf) ◦ (id+tg)(x)− (id+tf + tg)(x)| ≤ t2Lip f |g(x)|.

Similar as (20), a telescoping decomposition yields∣∣[(id+tf) ◦ (id+tg)]n(x)− (id+tf + tg)n(x)
∣∣

≤t2Lip f |g((id+tf + tg)n−1(x))|
+ (1 + 2tL)|[(id+tf) ◦ (id+tg)]n−1(x)− (id+tf + tg)n−1(x)|.

Since from (20),

|(id+tf + tg)n−1(x)− ϕ(f + g, (n− 1)t)(x)| ≤Mte2TL, (42)

then it holds that

|[(id+tf) ◦ (id+tg)]n(x)− (id+tf + tg)n(x)|
≤(M +Mte2TL)

+ (1 + 2tL)|[(id+tf) ◦ (id+tg)]n−1(x)− (id+tf + tg)n−1(x)|.
(43)

Using the discrete Gronwall’s inequality again, we have

|[(id+tf) ◦ (id+tg)]n(x)− (id+tf + tg)n(x)| ≤M ′te2TL. (44)

Hence, for sufficiently large n, we can show that

|[(id+tf) ◦ (id+tg)]n(x)− (id+tf + tg)n(x)| ≤ ε. (45)

Finally, by the same estimates in Proposition 1, we have

∥[(id+tf) ◦ (id+ tg)]n − (ϕ(f , t) ◦ ϕ(g, t))n∥Lp(K) ≤ ε

for sufficiently large n.

Therefore, we prove that ϕ(f + g, T ) ∈ clo(A). Using similar approach, we can show that if f is a
linear combination of mappings in F1,2, then ϕ(f , T ) ∈ clo(A).

Step 3. Now, for a certain well function h, we have proved that

ϕ(h(w ∗ ·+ b1), t) ∈ A. (46)

Choose w such that [w](1,1,··· ,1) = w but = 0 for other multi-indices. Then the dynamical system
is decoupled, in the sense that each coordinate evolves as the one-dimensional dynamical system

ż = vh(wz + b) (47)

for some v, w, b ∈ R.

Set
K = {vh(w ·+b), v, w, b ∈ R}

and define
G = {ϕ(fm, tm) ◦ · · ·ϕ(f1, t1), fm, fm−1, · · · , f1 ∈ H,m ≥ 1.}

For the following proof, we suppose that I = {x ∈ R : h(x) = 0}. Note that both K and G are
function families consisting of function from R to R. The third part of the result comes from the
following lemma.

Lemma 4. For any increasing continuous function u : R → R, we have u ∈ clo(G).
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Proof. Given a interval K ⊂ R, and tolerance ε > 0, we can find a ũ ∈ G such that

∥u− ũ∥Lp(K) ≤ ε.

We choose x1 < x2 < · · · < xn, with x1 and xn being two endpoints of the interval K. Notice that
if we can find ũ ∈ G such that ũ(xi) = u(xi), i = 1, 2, · · · ,M , then by the monotonicity of both u
and ũ, it holds that

∥ũ− u∥C(K) ≤ ω(K,h),

where h = maxi xi+1 − xi, and ω(K, ·) is the oscillation of u in the interval I. Then, we obtain

∥ũ− u∥Lp(K) ≤ ω(K,h)|K|1/p,
which implies the lemma.

We prove by induction that there exists φn ∈ G, such that

φn(xi) = u(xi), i = 1, 2, · · · , n. (48)

Set φ0 = id . Choose suitable v and b ∈ R such that

φn(x1), · · · , φn(xn) ∈ wI+ b

but
φn(xn+1), · · · , φn(xM ) ̸∈ wI+ b.

Then, the dynamics
ż = vσ(w ·+b)

will keep all xi, i = 1, 2, · · · , n fixed, but will move φn(xn+1) to u(xn+1) for certain v = ±1 and
certain t > 0. Therefore, we found φn+1 ∈ G which satisfies (48).

B.7 COMPLETE PROOF OF THEOREM 4

In this section, we complete the proof of Theorem 4. As discussed in the sketch of proof (Sec-
tion B.4), we first consider the case when there are no stabilizers to be dealt with.

Step 1. We first show that if A has the following point reordering property, then A has the point
matching property.

For any shift distinct point set xj , j = 1, 2, · · · ,M , we can find a mappingφ ∈ A
such that

[φ(xj)]i > [φ(xj′)]i′

if j < j′ or j = j′ but i ≺ j. Here the partial order ≺ is the lexicographical order.
For brevity, we say in this case φ(xj) is ordered.

Without loss of generality we can assume that yj is also shift distinct. Suppose there exist φx and
φy ∈ A such that φx(x

j), j = 1, 2, 3, · · · ,M is ordered, and φy(y
j), j = 1, 2, · · · ,M is ordered.

Then we can find a continuous mapping u such that

u([φx(x
j)]i) = u([φy(y

j)]i)

holds for j = 1, 2, · · · ,M and all the indices i. Therefore, the mapping φ−1
y ◦ u⊗ ◦ φx is then

constructed to satisfy the point matching property.

Step 2. To begin with, we first prove that there exists a mapping β ∈ A, such that

[α(x1)]i > [α(xj)]i′

for j ̸= 1 and any indices i, i′. We first show that we can perturb the point set xj , j = 1, 2, · · · ,M
such that all the coordinate [xj ]i, j = 1, 2, · · · ,M, i ≤ n, are different. In what follows, we say
that in this case xj are perturbed.

The perturbation argument is based on the following minimal argument. For α ∈ A, consider the
following quantity:

E(α) = {(i, j, i′, j) : i ̸= i′ or j ̸= j′, [α(xj)]i = [α(xj′)]i.}
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Suppose α minimizes this quantity, it suffices to show that E(α) = 0. Otherwise, we consider a
pair (I, J) and (I ′, J ′) sch that (I, J) ̸= (I ′, J ′) but

[α(xJ)]I = [α(xJ′
)]I′ .

Since α(xJ) and α(xJ′
) must be shift distinct, no matter whether J and J ′ are identical, we can

deduce that there exists a k and e, where e = (0, 0, · · · , 1, · · · , 0, · · · , 0), such that

[α(xJ)]I+k = [α(xJ′
)]I′+k (49)

but
[α(xJ)]I+k+e ̸= [α(xJ′

)]I′+k+e. (50)

So without loss of generality, we may assume that k = 0, and e = (1, 0, 0, · · · , 0).
Consider the following dynamics

d

dt
[z]i = f(z) = σ([z]i+e + b).

Here the constant b is chosen to ensure that the

σ([α(xJ)]I+e + b) = 0 ̸= σ([α(xJ′
)]I′+e + b).

Then for sufficiently small t > 0, the inequality

E(ϕ(f , t) ◦ u⊗ ◦α) < E(α)

leads to a contradiction of minimality. Therefore, there exists α ∈ A such that α(xj), j =
1, 2, · · · ,M is perturbed.

So far, we can assume that xj , j = 1, 2, · · · ,M, itself is perturbed, since we can apply a perturbation
α to achieve it otherwise.

Consider the following quantity:

K(α) = {(i, i′, j) : j ̸= 1, [α(xj)]i ≥ [α(x1)]i′}.

We choose an α ∈ A to minimize this quantity in A subject to α(xj) is perturbed. Now it suffices
to prove that K(α) = 0. Suppose not, then there exists (I, J, I ′) such that

ω = [α(xJ)]I − [α(x1)]I′

is the smallest one among all choice that makes the above value non-negative. Clearly, no other
[α(xj)]i is inside ([α(x1)]I′ , [α(xJ)]I). Since we have assumed α(xj), j = 1, 2, · · · ,M is per-
turbed, then ω ̸= 0.

We define a continuous function v : R → R, such that

• v([α(xJ)]I)− v([α(x1)]I′) ≤ µ.

• For other pairs, (i, j, i′, j′) ̸= (I, J, I ′, J ′), it holds that

|v([α(xj)]i)− v([α(xj′)]i′)| ≥ 3ε.

Here ε and µ are two parameters whose values will be determined later. Set I1 = I + (1, 0, · · · , 0)
and I ′1 = I ′ + (1, 0, · · · , 0). Consider the dynamics (for short, we only write the equations for the
coordinates we are concerned with)

d

dt
[z]I = vσ([z]I1 + b),

d

dt
[z]I′ = vσ([z]I′

1
+ b).

We choose certain b and v ∈ R such that

vσ([α(xJ)]I + b+ ε) = 0
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and
vσ([α(x1)]I′ + b− ε) = 1.

From classical ODE theory, the dynamics will move each [α(xj)]i to [a(t)j ]i such that

|α(xj)i − [a(t)j ]i| ≤ C1(e
tC2 − 1),

for some constants C1, C2 depending only on ε. We choose a sufficiently small t such that the right
hand side is less than ε. Therefore, we always have

vσ([a(t)J ]I + b) = 0

and
vσ([a(t)1]I′ + b) > δ := min

r∈[1+ε,1+3ε]
vσ(r).

Note that this δ only depends on ε. Then we can choose µ = min( 12 tδ, ε
2), and therefore we at least

have
[a(t)J ]I > [a(t)1]I′ ,

while the other order are preserved since ε is now much larger than µ. This contradicts with the
minimal choice of α. Hence, we conclude the result.

Step 3. Set zj = β(yj). Now we are ready to proceed with induction. Suppose for z2, · · · , zM
we have a mapping ψ ∈ A to fulfill the point reordering property. We modify it to the mapping
ψ̃ = ψ ◦ u⊗ ∈ A, such that it satisfies the following conditions

• ψ̃(z2), · · · , ψ̃(zM ) are ordered.

• [ψ̃](z1)]i > [ψ̃(zj)]i′ for j ̸= 1, and indices i, i′.

Since restricting ψ in the line R1, we can obtain a continuous increasing bijection from R1 to R1.
We can find a > 0, such that

a > max
j ̸=1

max
i

[zj ]i + 2

and
γ(a1) > max

i
[ψ(zj)]i + 2Lip ψ.

Define u such that u fixes all [zj ]i for j ̸= 1 and all indices i, but sends [z1]i to the interval
[a− 1, a+ 1]. We consider ψ̃ = ψ ◦ u⊗ ∈ A, which satisfies the following conditions

• ψ̃(z2), · · · , ψ̃(zM ) are ordered.

• [ψ̃(z1)]i > [ψ̃(zj)]i′ for j ̸= 1, and indices i, i′.

Step 4. Set pj = ψ̃(zj). Similarly, we consider the following quantity. For γ ∈ A such that

1. γ(p2), · · · ,γ(pM ) is ordered.
2. [γ(p1)]i > [γ(pj)]i′ for j ̸= 1, and indices i = i′.

We define the following quantity

L(γ) = {(i, i′) : i ≺ i′, [γ(x1)]i < [γ(x1)]i′}.
We claim that this quantity is zero. Suppose not, then we can find a pair (I, I ′) such that

I ≺ I ′

but
[γ(x1)]I′ − [γ(x1)]I

is minimal among all the choices that make this value positive. One can verify the following result,
that there must be no other indices k such that

[γ(x1)]I′ > [γ(x1)]k > [γ(x1)]I ,
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since in this case either I ≺ k or k ≺ I ′ should be satisfied, which contradicts with the choice of I
and I ′. Therefore, there exists a continuous function v such that

v([γ(x1)])I′ − v([γ(x1)]I) ≤ µ,

and
|v([γ(xj)]i)− v([γ(xj′)]i′)| ≥ ε.

From a similar argument as in Step 2, we can construct a new γ̃ satisfying the condition but with
minimal L(γ̃). Therefore, we conclude the result.

Dealing with Stabilizers We conclude the proof with the situation where there are stabilizers. We
prove that there exists a ζ ∈ A such that

[ζ(xj)]i > [ζ(zj
′
)]i′ (51)

for all possible choice of (i, j), (i′, j′). In such a ζ exists, we can proceed, as we did in Step 3, to
find a φ ∈ A, such that

1.
[φ(xj)]i > [φ(xj′)]i′

if j < j′ or j = j′ but i ≺ j.
2.

[φ(xj)]i > [φ(zj
′
)]i′

for all possible choice of (i, j), (i′, j′).

We first show that, with this point reordering property with stabilizers, we can prove the point
matching property. Compared to what we did in Step 1, it suffices to additionally assign the value
o1,o2, . . . ,oN , as the target of sj , where each coordinate of pj is chosen to be ≤ 1.

Suppose for target y1, · · · ,yM and õ = 0, such a φy ∈ A can be found. We choose o1, · · · ,oN
around the value φy(õ), such that

|oi − φy(õ)| ≤ ε,

and moreover we can assign v in these value such that v([sj ]i) = [oj ]i. Hence, the requirement of
point matching property can be fulfilled if we choose ε < 1

2 (Lip φ
−1
y )−1.

Now we prove the existence of ζ. Consider the following quantity,

H(ζ) := {(i, j, i′, j′) : [ζ(xj)]i ≤ [ζ(sj
′
)]i′}

And we choose ζ ∈ A to minimize this quantity. We only need to show that H(ζ) = 0. Otherwise,
we can prove that we can construct a new ζ ∈ A with a lower value of H(ζ).

This construction is similar to what we did in Step 2, in that we only need to find a such a pair
(I, J, I ′, J ′) such that

[ζ(sJ
′
)]I′ ≥ [ζ(xJ)]I (52)

and there are no other coordinates between these two value, but with an e = (0, · · · , 1, · · · , 0) such
that [ζ(xJ)]I+e ̸= [ζ(sJ

′
)]I′+e.

We assert that such pairs can be found. Suppose this assertion does not hold. Since we assume that
H(ζ) ̸= 0, which immediately implies that there exists at least one pair J and J ′, such that for some
multi-indices I and I ′, (52) holds. We choose such (I, J, I ′, J ′) to minimize the quantity

ω = [ζ(sJ
′
)]I′ − [ζ(xJ)]I .

If this quantity ω does not equal to zero, then clearly there is no other coordinates between these two
values. But since the assertion does not hold, we can derive that

[ζ(xJ)]I+e = [ζ(sJ
′
)]I′+e.

Therefore, the quantity ω should be zero. Thus, the problem reduces the case when ω = 0.

In this case, we start from a pair [xJ ]I = [sJ
′
]I′ , we can show that for all e = (0, · · · , 1, · · · , 0),

we have
[xJ ]I+e = [sJ

′
]I′+e.

Repeating this procedure, we can know that the above identity holds for all choice of e. Therefore,
there exists a shift operator Tk such that TkxJ = sJ

′
, which also leads to a contradiction, since it

implies that xJ is a stabilizer.
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