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Abstract We introduce a new approach to develop stochastic optimization algorithms for
a class of stochastic composite and possibly nonconvex optimization problems. The main
idea is to combine two stochastic estimators to create a new hybrid one. We first introduce
our hybrid estimator and then investigate its fundamental properties to form a foundational
theory for algorithmic development. Next, we apply our theory to develop several variants
of stochastic gradient methods to solve both expectation and finite-sum composite opti-
mization problems. Our first algorithm can be viewed as a variant of proximal stochastic
gradient methods with a single-loop, but can achieve O

(
σ3ε−1 + σε−3

)
-oracle complexity

bound, matching the best-known ones from state-of-the-art double-loop algorithms in the
literature, where σ > 0 is the variance and ε is a desired accuracy. Then, we consider two
different variants of our method: adaptive step-size and restarting schemes that have similar
theoretical guarantees as in our first algorithm. We also study two mini-batch variants of the
proposed methods. In all cases, we achieve the best-known complexity bounds under stan-
dard assumptions. We test our methods on several numerical examples with real datasets
and compare them with state-of-the-arts. Our numerical experiments show that the new
methods are comparable and, in many cases, outperform their competitors.

Keywords Hybrid stochastic estimator · stochastic optimization algorithm · oracle
complexity · variance reduction · composite nonconvex optimization.
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1 Introduction

In this paper, we consider the following composite and possibly nonconvex optimization
problem, which is widely studied in the literature:
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min
x∈Rp

{
F (x) := f(x) + ψ(x) ≡ Eξ∼P [fξ(x)] + ψ(x)

}
, (1)

where fξ(·) : Rp × Ω → R is a stochastic function such that for each x ∈ Rp, fξ(x) is a
random variable in a given probability space (Ω,P), while for each realization ξ ∈ Ω, fξ(·)
is smooth on Rp; f(x) := Eξ∼P [fξ(x)] =

∫
Ω
fξ(x)dP(ξ) is the expected value of the random

function fξ(x) over Ω; and ψ : Rp → R ∪ {+∞} is a proper, closed, and convex function.
In addition to (1), we also consider the following composite finite-sum problem:

min
x∈Rp

{
F (x) := f(x) + ψ(x) ≡ 1

n

n∑
i=1

fi(x) + ψ(x)

}
, (2)

where fi : Rp → R for i = 1, · · · , n are all smooth functions. Problem (2) can be con-
sidered as a special case of (1) when Ω is finite, i.e., Ω := {ξ1, ξ2, · · · , ξn} and fi(x) :=
nP (ξ = ξi) fξi(x). Alternatively, (2) can be viewed as a stochastic average approximation of
(1). If n is extremely large such that evaluating the full gradient ∇f(x) and the function
value f(x) in (2) is expensive, then, as usual, we refer to this setting as an online model.

If the regularizer ψ is absent, then we obtain a smooth problem which has been widely
studied in the literature. As another special case, if ψ is the indicator of a nonempty, closed,
and convex set X , i.e., ψ := δX , then (1) also covers constrained nonconvex optimization
problems. In this paper, we do not make any assumption on ψ except for convexity.

1.1 Our goals, approach, and contribution
Our goals: Our goal is to develop a new approach to approximate a stationary point of
(1) and its finite-sum setting (2) under standard assumptions used in existing methods. In
this paper, we only focus on Stochastic Gradient Descent-type (SGD) algorithms. We are
also interested in both oracle complexity bounds and implementation aspects. The ultimate
goal is to design simple algorithms (e.g., with a single loop) that are easy to implement and
require less parameter tuning effort.
Our approach: Our approach relies on a so-called “hybrid” idea which merges two existing
stochastic estimators through a convex combination to design a “hybrid” offspring that
inherits the advantages of its underlying estimators. We will focus on the hybrid estimators
formed from the SARAH (StochAstic Recursive grAdient algoritHm) estimator introduced
in [53] and any given unbiased estimator such as SGD [64], SVRG (Stochastic Variance
Reduced Gradient) [35], or SAGA (stochastic incremental gradient)[19]. For the sake of
presentation, we only focus on the SGD estimator in this paper, but our idea can be extended
to any unbiased estimator. We emphasize that our method is fundamentally different from
momentum or exponential moving average-type methods such as in [17,37] where we use
two independent estimators instead of a combination of the past and the current estimators.

While our hybrid estimators are biased, fortunately, they possess some useful properties
to develop new stochastic optimization algorithms. One important attribute is the variance
reduced property which often allows us to derive larger or constant step-size in stochastic
methods. Whereas a majority of stochastic algorithms rely on unbiased estimators such as
SGD, SVRG, and SAGA, interestingly, recent evidence has shown that biased estimators
such as SARAH, biased SAGA, or biased SVRG estimators also provide comparable or even
better algorithms in terms of oracle complexity bounds as well as empirical performance,
see, e.g., [21,24,56,59,70].

Our approach, on the one hand, can be extended to study second-order methods such
as cubic regularization and subsampled schemes as in [10,23,65,71,73,77]. The main idea
is to exploit hybrid estimators to approximate both gradient and Hessian of the objective
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function similar to [71,73,77]. On the other hand, it can be applied to approximate a second-
order stationary point of (1) and (2). The idea is to integrate our methods with a negative
curvature search such as Oja’s algorithm [58] or Neon2 [6], or to employ perturbed/noise
gradient techniques such as [25,28,41] to approximate a second-order stationary point.

Our contribution: To this end, our contribution can be summarized as follows:

(a) We first introduce a “hybrid” approach to merge two stochastic estimators in order to
form a new one. Such a new estimator can be viewed as a convex combination of a biased
estimator and an unbiased one to inherit the advantages of its underlying estimators.
Although we only focus on a convex combination between SARAH [53] and SGD [64]
estimator, our approach can be extended to cover other possibilities such as SVRG
[35] or SAGA [19]. Given such a new hybrid estimator, we develop several fundamental
properties that can be useful for developing new stochastic optimization algorithms.

(b) Next, we employ our new hybrid SARAH-SGD estimator to develop a novel stochastic
proximal gradient algorithm, Algorithm 1, to solve (1). This algorithm has a single-
loop, and if the variance σ > 0, then it achieves O

(
σ3ε−1 + σε−3

)
-oracle complexity

bound. When σ = 0 (i.e., no randomness involved in (1)), its complexity bound reduces
to O

(
ε−2
)

as in the deterministic setting. To the best of our knowledge, this is the
first variant of proximal SGD methods that achieves such an oracle complexity bound
without using double loop or check-points as in SVRG or SARAH, or requiring an n×p-
table to store gradient components as in SAGA-type algorithms.

(c) Then, we derive two different variants of Algorithm 1: adaptive step-size and restart-
ing schemes. Both variants have similar complexity bounds as of Algorithm 1. We also
propose a mini-batch variant of Algorithm 1 and provide a trade-off analysis between
mini-batch sizes and the choice of step-sizes to obtain better practical performance.

Let us emphasize the following additional points of our contribution. Firstly, the new
algorithm, Algorithm 1, is rather different from existing SGD methods. It first forms a mini-
batch stochastic gradient estimator at a given initial point to provide a good approximation
to the initial gradient of f . Then, it performs a single loop to update the iterate sequence
which consists of two steps: proximal-gradient step and averaging step, where our hybrid
estimator is used. The algorithm therefore has two step-sizes to be updated.

Secondly, our methods work with both single-sample and mini-batch cases, and achieve
the best-known complexity bounds in both cases. This is different from some existing meth-
ods such as SVRG-type [63], SpiderBoost [70], and SNVRG [78] that only achieve the best
complexity under certain choices of parameters. Our methods are also flexible to choose
different mini-batch sizes for the hybrid components to achieve different complexity bounds
and to adjust the performance. For instance, in Algorithm 1, we can choose single sample
in the SARAH estimator while using a mini-batch in the SGD estimator or vice versa that
leads to different trade-off on the choice of the weight as well as the step-sizes.

Finally, our theoretical results on hybrid estimators are also self-contained and indepen-
dent. As we have mentioned, they can be used to develop other stochastic algorithms such
as second-order methods or perturbed SGD schemes. We believe that they can also be used
in other problems such as compositional and constrained optimization [18,47,69].

1.2 Related work

Both problems (1) and (2) have been widely studied in the literature for both convex and
nonconvex models, see, e.g., [11,12,19,29,35,45,49,53,64,66]. However, due to applications
in deep learning, large-scale nonconvex optimization problems have attracted huge attention
in recent years [32,40,68]. Numerical methods for solving these problems heavily rely on two
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approaches: deterministic and stochastic approaches, ranging from first-order to second-
order methods. Notable first-order methods include stochastic gradient-type, conditional
gradient [62], incremental gradient [9], and primal-dual schemes [15]. In contrast, advanced
second-order methods consist of quasi-Newton, trust-region, sketching Newton, subsampled
Newton, and cubic regularized Newton-based methods, see, e.g., [13,52,60,65].

In terms of stochastic first-order algorithms, there has been a tremendously increasing
trend in stochastic gradient methods and their variants in the last fifteen years. SGD-
based algorithms can be classified into two categories: non-variance reduction and variance
reduction schemes. The classical SGD method was studied in the early work of Robbins and
Monro [64], and then, e.g., in [61] with an accelerated variant via averaging steps, but its
convergence rate was then investigated in [49] under new robust variants. Ghadimi and Lan
extended SGD to nonconvex settings and analyzed its complexity in [29]. Other extensions
of SGD can be found, e.g., in [4,18,22,27,30,34,37,38,48,54,61].

Alternatively, variance reduction-based methods have been intensively studied in re-
cent years for both convex and nonconvex settings. Apart from mini-batch and importance
sampling schemes [31,75], the following methods are the most notable. The first class of
algorithms is based on SAG estimator [66], including SAGA-variants [19]. The second one
is SVRG [35] and its variants such as Katyusha [3], MiG [79], and many others [42,63].
The third class relies on SARAH [53] such as SPIDER [24], SpiderBoost [70], ProxSARAH
[59], and momentum variants [80]. The fourth idea is SNVRG [78], which combines different
techniques such as nested variance reduction and sampling without replacement. Other ap-
proaches such as Catalyst [44], SDCA [67], and SEGA [33] have also been proposed. These
algorithms often require stronger assumptions than SGDs.

In terms of theory, many researchers have focused on theoretical aspects of existing al-
gorithms. For example, [29] appeared as one of the first remarkable works studying conver-
gence rates of stochastic gradient-type methods for nonconvex and non-composite finite-sum
problems. They later extended it to the composite setting in [31]. The authors of [70] also
investigated the gradient dominant case, and [36] considered both finite-sum and compos-
ite finite-sum problems under different assumptions. Whereas many researchers have been
trying to improve complexity upper bounds of stochastic first-order methods using different
techniques [5,6,7,24], other works have attempted to construct examples to establish lower-
bound complexity barriers. The upper oracle complexity bounds have been substantially
improved among these works and some results have matched the lower bound complexity
in both convex and nonconvex settings [4,5,8,24,29,42,43,59,63,70,78]. We refer to Table 1
for some notable examples of stochastic gradient-type methods for solving (1) and (2) and
their non-composite settings. In fact, [43] and [78] only study the finite-sum problem with
an additional bounded variance assumption, but allow the variance to go to infinite.

In the convex case, there exist numerous research papers including [1,2,14,26,50,51,72]
that study the lower bound complexity. In [24,76], the authors constructed a lower-bound
complexity for nonconvex finite-sum problems covered by (2). They showed that the lower-
bound complexity for any stochastic gradient method relied on only smoothness assumption
to achieve an ε-stationary point in expectation is Ω

(
n1/2ε−2

)
. For the expectation problem

(1), the best-known complexity bound to obtain an ε-stationary point in expectation is
O
(
σε−3 + σ2ε−2

)
as shown in [24,70], where σ > 0 is an upper bound of the variance

(see Assumption 3). Very recently, [5] provides a study on lower-bound complexity for the
non-composite and nonconvex setting of (1) under different sets of assumptions.

While stochastic algorithms for solving the non-composite setting, i.e., ψ = 0, are well-
developed and have received considerable attention [5,6,7,24,43,55,56,57,63,78], methods
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Algorithms Expectation Finite-sum Composite Type

GD [51] NA O
(
nε−2

)
�3 Single

SGD [29] O
(
σ2ε−4

)
NA �3 Single

SAGA [63] NA O
(
n+ n2/3ε−2

)
�3 Single∗

SVRG [63] NA O
(
n+ n2/3ε−2

)
�3 Double

SVRG+ [42] O
(
σ2ε−10/3

)
O
(
n+ n2/3ε−2

)
�3 Double

SCSG [43] N/A O
((

σ2

ε2
∧ n
)

+ 1
ε2

(
σ2

ε2
∧ n
)2/3

)
�7 Double

SNVRG [78] N/A O
(

log3
(
σ2

ε2
∧ n
)[(

σ2

ε2
∧ n
)

+ 1
ε2

(
σ2

ε2
∧ n
)1/2

])
�7 Double

SPIDER [24] O
(
σ2ε−2 + σε−3

)
O
(
n+ n1/2ε−2

)
�7 Double

SpiderBoost [70] O
(
σ2ε−2 + σε−3

)
O
(
n+ n1/2ε−2

)
�3 Double

ProxSARAH [59] O
(
σ2ε−2 ∨ σε−3

)
O
(
n+ n1/2ε−2

)
�3 Double

This paper O
(
σ3ε−1 + σε−3

)
O
(
n+ ε−3

)
�3 Single

Table 1 A comparison of stochastic first-order oracle complexity bounds and the type of algorithms for
nonsmooth nonconvex optimization (both non-composite and composite case). Here, n is the number of data
points and σ is the variance in Assumption 3, and “single/double” means that the algorithm uses single-loop
or double-loop, respectively. All the complexity bounds here must depend on the Lipschitz constant L in
Assumption 2 and F (x0)−F ?, the difference between the initial objective value F (x0) and the lower-bound
F ? in Assumption 1. We assume that L = O (1) and ignore these quantities in the complexity bounds. In
addition, we also assume that σ > 0 and dominates L and F (x0) − F ? to simplify the bounds. Note that
SAGA is a single-loop method, but it requires a matrix of size n× p to store stochastic gradients (∗).

for composite setting remain limited [63,70]. In this paper, we will develop a novel approach
to design stochastic optimization algorithms for solving the composite problems (1) and (2).
Our approach is rather different from existing ones and we call it a “hybrid” approach.

1.3 Comparison

Let us compare our algorithms and existing methods in the following aspects:

(a) Single-loop vs. multiple-loop: As mentioned, we aim at developing practical meth-
ods that are easy to implement. One major difference between our methods and existing
state-of-the-arts is the algorithmic style: single-loop vs. multiple-loop. As discussed in sev-
eral works, including [39], single-loop methods have notable advantages over double-loop
methods, including tuning parameters. The single-loop style consists of SGD, SAGA, and
their variants [19,20,29,49,61,64,66], while the double-loop style comprises SVRG, SARAH,
and their variants [35,53]. Other algorithms such as Natasha [4] or Natasha1.5 [5] even have
three loops. Let us compare these methods in detail as follows:
• SGD and SAGA-type methods have single-loop, but SAGA-type algorithms use an n×
p-matrix to maintain n individual gradients which can be very large if n and p are
large. In addition, SAGA has not yet been applied to solve (1). Our first algorithm,
Algorithm 1, has single-loop as SGD and SAGA, and does not require heavy memory
storage. However, to apply to (2), it still requires either an additional bounded variance
condition (see (5)) compared to SAGA. But if it solves (1), then it requires the same
standard assumptions as used in many existing variance reduction methods. In terms
of complexity, Algorithm 1 is much better than SGD. But as a compensation, it uses
a slightly stronger assumption: L-average smoothness in Assumption 2 compared to
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SGD, which only requires the L-smoothness of the expected value function f . To the
best of our knowledge, Algorithm 1 is the first single-loop SGD variant that achieves
the best-known complexity. Another related and concurrent work is [17], which uses
momentum approach, but requires additional bounded gradient assumption to achieve
similar complexity as Algorithm 1.

• Algorithm 2 has double-loop similar to SVRG and SARAH-type methods. While the
double-loop in SVRG, SARAH, and their variants are required to achieve convergence,
it is optional in Algorithm 2 as a restarting variant and no parameter tuning is needed.
Note that double-loop or multiple-loop methods require to tune more parameters such
as epoch lengths and possibly the mini-batch size of the snapshot point. In addition, the
choice of the snapshot point also matters.

(b) Single-sample and mini-batch: Our methods work with both single sample and
mini-batch, and in both cases, they achieve the best-known complexity bounds [8]. This is
different from some existing methods such as SVRG, SNVRG, or SARAH-based methods [63,
70,78] where the best complexity is only obtained under an appropriate parameter selection.

(c) Oracle complexity bounds: Algorithm 1 and its variants all achieve the best-known
complexity bounds as in [59,70] for solving (1). In early works such as Natasha [4] and
Natasha1.5 [5] which are based on the SVRG estimator, the best complexity is often
O
(
σ2ε−2 + σε−10/3

)
for solving (1) and O

(
n+ n2/3ε−2

)
for solving (2). By combining

with additional sophisticated tricks, these complexity bounds are slightly improved. For in-
stance, Natasha [4] or Natasha1.5 [5] can achieve O

(
n+ n2/3ε−2

)
in the finite-sum case

and O
(
ε−3 + σ1/3ε−10/3

)
in the expectation case, but they require three loops with sev-

eral parameter adjustment, which are difficult to tune in practice. SNVRG [78] exploits a
nested variance reduction technique with dynamic epoch lengths as used in [43] to improve
its complexity bounds. However, [78] only focuses on the non-composite finite-sum prob-
lems, and its final complexity bound is O

(
(n+ n1/2ε−2) log3(n)

)
. Again, this method also

requires complicated parameter selection procedure. To achieve better complexity bounds,
SARAH-based methods have been studied in [24,56,59,70]. Their oracle complexity meets
the lower-bound one (up to a constant factor), see [8,24,59].

1.4 Paper organization

The rest of this paper is organized as follows. Section 2 discusses the main assumptions of
our problems (1) and (2), and their optimality conditions. Section 3 develops new hybrid
stochastic estimators and investigates their properties. We consider both single-sample and
mini-batch cases. Section 4 studies a new class of hybrid gradient algorithms to solve both
(1) and (2). We develop three different variants of hybrid algorithms and analyze their
convergence and complexity estimates. Section 5 extends our algorithms to mini-batch cases.
Section 6 gives several numerical examples and compares our methods with existing state-of-
the-arts. For the sake of presentation, many technical proofs are provided in the appendix.

2 Basic Notations, Fundamental Assumptions, and Optimality Condition

In this section, we first recall some basic notation and concepts. Then, we state the funda-
mental assumptions imposed on (1) and (2) and their optimality condition.

2.1 Notations and basic concepts

We work with the Euclidean spaces, Rp and Rn, equipped with standard inner product 〈·, ·〉
and Euclidean norm ‖·‖. For any function f , dom(f) := {x ∈ Rp | f(x) < +∞} denotes the
effective domain of f . If f is continuously differentiable, then ∇f denotes its gradient. If, in
addition, f is twice continuously differentiable, then ∇2f denotes its Hessian.
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For a stochastic function fξ defined on a probability space (Ω,P), we use Eξ [fξ] :=
Eξ∼P [fξ] to denote the expected value or vector of fξ w.r.t. ξ on Ω. We also overload the
notation Eξt [·] to express the expected value w.r.t. a realization ξt in both single-sample
and mini-batch cases. Given a finite set Sm := {s1, · · · , sm}, we denote s ∼ Up (Sm) if
P (s = si) = pi for pi > 0 and

∑m
i=1 pi = 1. If pi = 1

m for i = 1, · · · ,m, then we write
s ∼ U (Sm) by dropping the probability distribution p.

Given a stochastic mapping G : Rp ×Ω → Rq depending on a random vector ξ ∈ Ω, we
say that G is L-average Lipschitz continuous if Eξ

[
‖G(x)−G(y)‖2

]
≤ L2‖x−y‖2 for all x, y,

where L ∈ (0,+∞) is called the Lipschitz constant of G. If G is a deterministic function, then
this condition becomes ‖G(x)−G(y)‖ ≤ L‖x− y‖ stated that G is L-Lipschitz continuous.
In particular, if this condition holds for G = ∇f , then we say that f is L-smooth.

For a proper, closed, and convex function ψ : Rp → R ∪ {+∞}, ∂ψ(x) := {w ∈
Rp | ψ(y) ≥ ψ(x) + 〈w, y − x〉, ∀y ∈ dom(f)} denotes its subdifferential at x, and
proxψ(x) := argmin

u

{
ψ(x) + 1

2‖u− x‖
2
}

denotes its proximal operator. Note that proxηψ

is nonexpansive, i.e., ‖proxηψ(x) − proxηψ(y)‖ ≤ ‖x − y‖ for all x, y ∈ dom(ψ). If ψ is the
indicator δX of a nonempty, closed, and convex set X , then proxδX reduces to the Euclidean
projection projX onto X .

If x is a matrix, then ‖x‖ is the spectral norm of x and the inner product of two matrices
x and y is defined as 〈x, y〉 := trace

(
x>y

)
. Also, N+ stands for the set of positive integer

numbers, and [n] := {1, 2, · · · , n}. Given a ∈ R, bac denotes the maximum integer number
that is less than or equal to a. We also use O (·) to express complexity bounds of algorithms.

2.2 Fundamental assumptions

Our algorithms developed in the sequel rely on the following fundamental assumptions:

Assumption 1 Both problems (1) and (2) satisfy the following conditions:
(a) (Convexity of the regularizer) ψ : Rp → R ∪ {+∞} is a proper, closed, and convex

function. The domain dom(F ) := dom(f) ∩ dom(g) is nonempty.
(b) (Boundedness from below) There exists a finite lower bound

F ? := inf
x∈Rp

{
F (x) := f(x) + ψ(x)

}
> −∞. (3)

Assumption 1(b) is fundamental and required for any algorithm. Here, since ψ is proper,
closed, and convex, its proximal operator proxηψ(·) is well-defined, single-valued, and non-
expansive. We assume that this proximal operator can be computed exactly.

Assumption 2 (L-average smoothness) The expected value function f(·) in (1) is L-
smooth on dom(F ), i.e., there exists L ∈ (0,+∞) such that

Eξ
[
‖∇fξ(x)−∇fξ(y)‖2

]
≤ L2‖x− y‖2, ∀x, y ∈ dom(F ). (4)

In the finite sum setting (2), the L-smoothness condition (4) can be expressed as the L-
average smoothness of all fi with the moduli L as:

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖2 ≤ L2‖x− y‖2, ∀x, y ∈ dom(F ). (5)

Assumption 3 (Bounded variance) There exists σ ∈ [0,∞) such that

Eξ
[
‖∇fξ(x)−∇f(x)‖2

]
≤ σ2, ∀x ∈ dom(F ). (6)
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The bounded variance condition for (2) becomes

Ei
[
‖∇fi(x)−∇f(x)‖2

]
≡ 1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ σ2, ∀x ∈ dom(F ). (7)

Assumptions 2 and 3 are widely used in stochastic optimization methods. They or their
stronger versions are required for all existing variance reduced-based stochastic gradient-
based methods for solving (1). The L-average smoothness in (5) is also called mean-squared
smoothness, see, e.g., [8]. In the finite-sum setting (2), if fi is Li-smooth, then f is also
L-average smooth with L = 1√

n
(
∑n
i=1 L

2
i )

1/2. Conversely, if f is L-average smooth, then fi

is also L-smooth with Li =
√
nL. Therefore, the L-average smoothness constant is generally

smaller than the one derived from the individual smoothness constant of each fi [59].
The L-average smoothness is stronger than the L-smoothness of the expected value

function f used in standard SGD schemes [29]. Indeed, the L-average smoothness of f
implies the L-smoothness of the expected value function f due to Jensen’s inequality

‖Eξ [∇fξ(x)−∇fξ(y)] ‖2 ≤ Eξ
[
‖∇fξ(x)−∇fξ(y)‖2

]
, but not vice versa. Fortunately, As-

sumption 2 holds for many optimization problems in machine learning and statistics such
as binary classification, linear regression, and neural networks. If σ = 0, then (1) reduces to
a deterministic setting, while (7) forces fi = f for all i = 1, · · · , n in (2).

2.3 First-order optimality condition
The optimality condition of (1) (or (2)) can be written as

0 ∈ ∇f(x?) + ∂ψ(x?). (8)

Any point x? satisfying (8) is called a stationary point of (1) (or (2)). Note that (8) can be
written equivalently to

Gη(x?) :=
1

η

(
x? − proxηψ(x? − η∇f(x?))

)
= 0. (9)

Here, Gη is called the gradient mapping of F in (1) for any η > 0. It is obvious that if ψ = 0,
then Gη(x) = ∇f(x), the gradient of f at x. Our goal is to seek an ε-stationary point xT of
(1) or (2) defined as follows:

Definition 1 Given a desired acuracy ε > 0, a point xT ∈ dom(F ) is said to be an
ε-stationary point of (1) or (2) if

E
[
‖Gη(xT )‖2

]
≤ ε2. (10)

Here, the expectation is taken over all the randomness rendered from both ξ in (1) and the
algorithm that is solving the problem.

Let us clarify why xT is an approximate stationary point of (1) (or (2)). Indeed, if
x+T := proxηψ(xT −η∇f(xT )), then E

[
‖Gη(xT )‖2

]
≤ ε2 leads to E

[
‖x+T − xT ‖2

]
≤ η2ε2. On

the other hand, x+T = proxηψ(xT−η∇f(xT )) is equivalent to 1
η (xT−x+T ) ∈ ∇f(xT )+∂ψ(x+T ).

Therefore, ‖∇f(x+T ) +∇ψ(x+T )‖ ≤ ‖∇f(x+T )−∇f(xT )‖+ 1
η‖x

+
T − xT ‖ for some ∇ψ(x+T ) ∈

∂ψ(x+T ). Using the L-average smoothness of f , we have

E
[
‖∇f(x+T ) +∇ψ(x+T )‖2

]
≤ 2

(
L2 + 1

η2

)
E
[
‖x+T − xT ‖

2
]
≤ 2(1 + L2η2)ε2.

This shows that x+T is an approximate stationary point of (1) (or (2)).
In practice, we often replace the condition (10) by min0≤t≤T ‖Gη(xt)‖ ≤ ε, which leads

to the “best” iterate convergence in expectation.
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3 Hybrid Stochastic Estimators: Definition and Fundamental Properties

In this section, we propose new stochastic estimators for a generic function G that can cover
function value, gradient, and Hessian of any expected value function f in (1).

3.1 The construction of hybrid stochastic estimators
Given a function G(x) := Eξ [Gξ(x)], where Gξ is a (vector) stochastic function from Rp ×
Ω → Rq. We define the following stochastic estimator of G. As concrete examples, G can
be the gradient mapping ∇f of f or the Hessian mapping ∇2f of f in problem (1) or (2).

Definition 2 Let ut be an unbiased stochastic estimator of G(xt) formed by a realization
ζt of ξ, i.e., Eζt [ut] = G(xt) at a given xt. The following quantity:

vt := βt−1vt−1 + βt−1 [Gξt(xt)−Gξt(xt−1)] + (1− βt−1)ut, (11)

is called a hybrid stochastic estimator of G at xt, where ξt and ζt are two independent
realizations of ξ on Ω and βt−1 ∈ [0, 1] is a given weight.

We observe from (11) two extreme cases as follows:
• If βt = 0, then we obtain a simple unbiased stochastic estimator, i.e., vt = ut.
• If βt = 1, then we obtain the SARAH-type estimator as studied in [53] but for general

function G instead of just gradient mappings, i.e., vt = vt−1 +Gξt(xt)−Gξt(xt−1).
In this paper, we are interested in the case βt ∈ (0, 1), which can be referred to as a hybrid
recursive stochastic estimator.

Note that we can rewrite vt as

vt := βt−1Gξt(xt) + (1− βt−1)ut + βt−1 [vt−1 −Gξt(xt−1)] .

The first two terms are two stochastic estimators evaluated at xt, while the third term is
the difference δt−1 := vt−1−Gξt(xt−1) of the previous estimator and a stochastic estimator
at the previous iterate. Here, since βt−1 ∈ (0, 1), the estimator vt can be viewed as the way
of emphasizing on the new information at xt than the old one evaluated at xt−1.

In fact, if G = ∇f , then the hybrid estimator vt covers many other estimators, including
SGD, SVRG, and SARAH as follows:
• The classical stochastic estimator: ut := Gζt(xt).
• The SVRG estimator: ut := usvrgt = G(x̃) +Gζt(xt)−Gζt(x̃), where G(x̃) is a given

unbiased snapshot evaluated at a given point x̃.
• The SAGA estimator: ut := usagat = Gjt(y

jt
t+1) − Gjt(y

jt
t ) + 1

n

∑n
i=1Gi(y

i
t), where

yjtt+1 = xt if i = jt and yit+1 = yit if i 6= jt.
While the classical stochastic and SVRG estimators can be used in both expectation and
finite-sum settings, this SAGA estimator is only applicable to the finite-sum setting (2).

3.2 Properties of hybrid stochastic estimators
Let us first define

Ft := σ (x0, ξ0, ζ0, · · · , ξt−1, ζt−1) (12)

the σ-field generated by the history of realizations {x0, ξ0, ζ0, · · · , ξt−1, ζt−1} of ξ up to the
iteration t. We first prove the following property of the hybrid stochastic estimator vt.

Lemma 1 Let vt be defined by (11). Then

E(ξt,ζt) [vt] = G(xt) + βt−1 [vt−1 −G(xt−1)] . (13)

If βt−1 6= 0, then vt is a biased estimator of G(xt). Moreover, we have
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E(ξt,ζt)

[
‖vt −G(xt)‖2

]
= β2

t−1‖vt−1 −G(xt−1)‖2 − β2
t−1‖G(xt)−G(xt−1)‖2

+ β2
t−1Eξt

[
‖Gξt(xt)−Gξt(xt−1)‖2

]
+ (1− βt−1)2Eζt

[
‖ut −G(xt)‖2

]
.

(14)

Proof By taking the expectation of both sides in (11) w.r.t. (ξt, ζt) and using the fact that
ξt and ζt are independent, we can easily obtain (13).

Let us first denote δt := vt − G(xt), δ̂t := ut − G(xt), ∆ξt := Gξt(xt) − Gξt(xt−1), and

∆t := G(xt)−G(xt−1). Clearly, Eξt [∆ξt ] = ∆t and Eζt
[
δ̂t

]
= 0. Next, we write

δt := vt −G(xt) = βt−1(vt−1 −G(xt−1)) + βt−1(∆ξt −∆t) + (1− βt−1)
[
ut −G(xt)

]
= βt−1δt−1 + βt−1(∆ξt −∆t) + (1− βt−1)δ̂t.

In this case, we have

‖δt‖2 = β2
t−1‖δt−1‖2 + β2

t−1‖∆ξt −∆t‖2 + (1− βt−1)2‖δ̂t‖2

+ 2β2
t−1〈δt−1, ∆ξt −∆t〉+ 2βt−1(1− βt−1)〈δt−1, δ̂t〉+ 2βt−1(1− βt−1)〈∆ξt −∆t, δ̂t〉.

Taking expectation w.r.t. ξt conditioned on ζt, and noting that Eξt [∆ξt ] = ∆t, we obtain

Eξt
[
‖δt‖2

]
= β2

t−1‖δt−1‖2 + β2
t−1Eξt

[
‖∆ξt −∆t‖2

]
+ (1− βt−1)2‖δ̂t‖2

+ 2βt−1(1− βt−1)〈δt−1, δ̂t〉.

Taking the expectation w.r.t. ζt, and noting that E(ξt,ζt) [·] = Eζt [Eξt [· | ζt]], Eζt
[
δ̂t

]
= 0,

and Eξt
[
‖∆ξt −∆t‖2

]
= Eξt

[
‖∆ξt‖2

]
− ‖∆t‖2, we obtain

E(ξt,ζt)

[
‖δt‖2

]
= β2

t−1‖δt−1‖2 + β2
t−1Eξt

[
‖∆ξt‖2

]
− ‖∆t‖2 + (1− βt−1)2Eζt

[
‖δ̂t‖2

]
,

which is exactly (14) by substituting back the definitions of δt, ∆t, ∆ξt , and δ̂t into it. �

Remark 1 From (11), we can see that vt remains a biased estimator as long as βt−1 ∈ (0, 1].
Its biased term is

Bias[vt | Ft] = ‖E(ξt,ζt) [vt −G(xt) | Ft] ‖ = βt−1‖vt−1 −G(xt−1)‖ ≤ ‖vt−1 −G(xt−1)‖.

Clearly, the biased term of the estimator vt is smaller than the one in the SARAH estimator
vsaraht := vsaraht−1 +Gξt(xt)−Gξt(xt−1) in [53], which is Bias[vsaraht | Ft] = ‖vsaraht−1 −G(xt−1)‖.

The following lemma bounds the variance ∆t := vt −∇f(xt) of vt defined in (11).

Lemma 2 Assume that Gξ is L-average Lipschitz continuous and ut := Gζt(xt) is an
unbiased stochastic estimator of G. Then, we have the following upper bound:

E
[
‖vt −G(xt)‖2

]
≤ ωtE

[
‖v0 −G(x0)‖2

]
+ L2

t−1∑
i=0

ωi,tE
[
‖xi+1 − xi‖2

]
+ St, (15)

where the expectation is taking over all the randomness Ft+1 := σ(x0, ξ0, ζ0, · · · , ξt, ζt), and
ωt :=

∏t
i=1 β

2
i−1,

ωi,t :=
∏t
j=i+1 β

2
j−1, i = 0, · · · , t,

St :=
∑t−1
i=0

(∏t
j=i+2 β

2
j−1
)
(1− βi)2E

[
‖ui+1 −G(xi+1)‖2

]
.

(16)
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Proof We first upper bound (14) by using σ2
t := Eζt

[
‖ut −G(xt)‖2

]
and then taking the

full expectation over Ft+1 := σ(x0, ξ0, ζ0, · · · , ξt, ζt) as

E
[
‖vt −G(xt)‖2

]
≤ β2

t−1E
[
‖vt−1 −G(xt−1)‖2

]
+ β2

t−1E
[
‖Gξt(xt)−Gξt(xt−1)‖2

]
+ (1− βt−1)2σ2

t

(4)

≤ β2
t−1E

[
‖vt−1 −G(xt−1)‖2

]
+ β2

t−1L
2E
[
‖xt − xt−1‖2

]
+ (1− βt−1)2σ2

t .

If we define A2
t := E

[
‖vt −G(xt)‖2

]
and B2

t−1 := E
[
‖xt − xt−1‖2

]
, then the above inequal-

ity can be rewritten as

A2
t ≤ β2

t−1A
2
t−1 + L2β2

t−1B
2
t−1 + (1− βt−1)2σ2

t .

By induction, the last inequality implies

A2
t ≤ β2

t−1A
2
t−1 + L2β2

t−1B
2
t−1 + (1− βt−1)2σ2

t

≤ β2
t−1β

2
t−2
[
β2
t−3A

2
t−3 + L2β2

t−3B
2
t−3 + (1− βt−3)2σ2

t−2
]

+ L2β2
t−1β

2
t−2B

2
t−2 + L2β2

t−1B
2
t−1 +

[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1
]

= β2
t−1β

2
t−2β

2
t−3A

2
t−3 + L2β2

t−1β
2
t−2β

2
t−3B

2
t−3 + L2β2

t−1β
2
t−2B

2
t−2

+ L2β2
t−1B

2
t−1 +

[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1 + β2
t−1β

2
t−2(1− βt−3)2σ2

t−2
]

· · · · · · · · ·
≤ (β2

t−1 · · ·β2
0)A2

0 + L2(β2
t−1 · · ·β2

0)B2
0 + L2(β2

t−1 · · ·β2
1)B2

1 + · · ·+ L2β2
t−1B

2
t−1

+
[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1 + β2
t−1β

2
t−2(1− βt−3)2σ2

t−2 + · · ·
+ β2

t−1β
2
t−2 · · ·β2

1(1− β0)2σ2
1

]
.

Here, we use a convention that
∏t
i=t+1 β

2
i = 1. As a result, the last expression can be written

in the following compact form:

A2
t ≤

( t∏
i=1

β2
i−1

)
A2

0 + L2
t−1∑
i=0

( t∏
j=i+1

β2
j−1

)
B2
i +

t−1∑
i=0

( t∏
j=i+2

β2
j−1

)
(1− βi)2σ2

i+1. (17)

Define ωt :=
∏t
i=1 β

2
i−1, ωi,t :=

∏t
j=i+1 β

2
j−1, and St :=

∑t−1
i=0 si =

∑t−1
i=0

(∏t
j=i+2 β

2
j−1
)
(1−

βi)
2σ2
i+1 with si := (1− βi)2σ2

i+1

(∏t
j=i+2 β

2
j−1
)
. Then, we can rewrite (17) as

A2
t ≤ ωtA2

0 + L2
t−1∑
i=0

ωi,tB
2
i + St,

which is exactly (15) by using the definition of At and Bt above. �

3.3 Mini-batch hybrid stochastic estimators
We can also consider a mini-batch hybrid stochastic estimator v̂t of G(xt) as:

v̂t := βt−1v̂t−1 +
βt−1
bt

∑
i∈Bt

[Gξi(xt)−Gξi(xt−1)] + (1− βt−1)ut, (18)

where βt−1 ∈ [0, 1] and Bt is a proper mini-batch of size bt (i.e., for any ξt ∈ Bt, P (ξt ∈ Bt) >
0) and independent of ut. Note that ut can also be a mini-batch unbiased estimator of G(xt),

e.g., ut := 1
b̂t

∑
j∈B̂t Gζj (xt), where B̂t is a mini-batch of size b̂t and independent of Bt.

For v̂t defined by (18), we have the following property, whose proof is in Appendix A.1.
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Lemma 3 Let v̂t be the mini-batch stochastic estimator of G(xt) defined by (18), where ut
is also a mini-batch unbiased stochastic estimator of G(xt) with EB̂t [ut] = G(xt) such that

Bt is independent of B̂t. Then, the following estimates hold:

E(Bt,B̂t) [v̂t] = G(xt) + βt−1(v̂t−1 −G(xt−1)),

E(Bt,B̂t)
[
‖v̂t −G(xt)‖2

]
= β2

t−1‖v̂t−1 −G(xt−1)‖2 − ρβ2
t−1‖G(xt)−G(xt−1)‖2

+ ρβ2
t−1Eξ

[
‖Gξ(xt)−Gξ(xt−1)‖2

]
+ (1− βt−1)2EB̂t

[
‖ut −G(xt)‖2

]
,

(19)

where ρ := n−bt
(n−1)bt if G(x) := 1

n

∑n
i=1Gi(x) is a finite-sum, and ρ := 1

bt
, otherwise (i.e.,

G(x) := Eξ [Gξ(x)]).

Similar to Lemma 2, we can bound the variance E
[
‖v̂t −G(xt)‖2

]
of the mini-batch

hybrid stochastic estimator v̂t from (18) in the following lemma, whose proof is in Ap-

pendix A.2. For simplicity of presentation, we choose bt := b ∈ N+ and b̂t := b̂ ∈ N+.

Lemma 4 Assume that G is L-average Lipschitz continuous. Let ut := 1
b̂t

∑
j∈B̂t Gζj (xt)

be a mini-batch unbiased estimator of G(xt) and v̂t be given by (18) such that Bt and B̂t are

independent mini-batches of sizes bt := b ∈ N+ and b̂t := b̂ ∈ N+, respectively for all t ≥ 0.
Then, we have the following upper bound on the variance E

[
‖v̂t −G(xt)‖2

]
:

E
[
‖v̂t −G(xt)‖2

]
≤ ωtE

[
‖v̂0 −G(x0)‖2

]
+ ρL2

t−1∑
i=0

ωi,tE
[
‖xi+1 − xi‖2

]
+ ρ̂St, (20)

where the expectation is taking over all the randomness Ft+1 := σ(x0,B0, B̂0, · · · ,Bt, B̂t),
and ωt, ωi,t, and St are defined in (16). Here, ρ := n−b

(n−1)b if G(x) := 1
n

∑n
i=1Gi(x) is a

finite-sum, and ρ := 1
b , otherwise (i.e., G(x) := Eξ [Gξ(x)]).

The theoretical results developed in Section 3 are self-contained. They can be specified
to develop different stochastic optimization methods, including first-order and second-order
schemes, for solving (1) and (2), and other related problems. In the following sections, we
only exploit these properties for G = ∇f , the first-order derivative of f , to develop stochastic
gradient-type methods for solving both (1) and (2).

4 Proximal Hybrid SARAH-SGD Algorithms

In this section, we utilize our hybrid stochastic estimator above with Gξ(x) := ∇fξ(x) to
develop new stochastic gradient algorithms for solving (1) and its finite-sum setting (2).

4.1 The single-loop stochastic proximal gradient algorithm
Our first algorithm is a single-loop stochastic proximal gradient scheme for solving (1). This
algorithm is described in detail as in Algorithm 1.
Let us discuss the differences between Algorithm 1 and existing SGD methods:
• Firstly, Algorithm 1 starts with a relatively large mini-batch B̃ to compute an initial

estimate for the initial gradient ∇f(x0) at x0. This is quite different from existing meth-
ods where they often use single-sample, mini-batch, or increasing mini-batch sizes for
the whole algorithms (e.g., [31]), and do not separate into two phases as in Algorithm 1:
� Phase 1: Step 3: Find an appropriate initial search direction v0.
� Phase 2: Step 4 to Step 8: Update the iterate sequence {xt}.
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Algorithm 1 (Proximal Hybrid Stochastic Gradient Descent (ProxHSGD) algorithm)

1: Initialization: An arbitrarily initial point x0 ∈ dom(F ).

2: Input the parameters b̃ ∈ N+, βt ∈ (0, 1), γt ∈ (0, 1], and ηt > 0 (will be specified later).

3: Generate an unbiased estimator v0 := 1
b̃

∑
ξ̃i∈B̃∇fξ̃i(x0) at x0 using a mini-batch B̃.

4: Update x̂1 := proxη0ψ (x0 − η0v0) and x1 := (1− γ0)x0 + γ0x̂1.

5: For t := 1, · · · ,m do

6: Generate a proper sample pair (ξt, ζt) independently (single sample or mini-batch).

7: Evaluate vt := βt−1vt−1 + βt−1 [∇fξt(xt)−∇fξt(xt−1)] + (1− βt−1)∇fζt(xt).
8: Update x̂t+1 := proxηtψ (xt − ηtvt) and xt+1 := (1− γt)xt + γtx̂t+1.

9: EndFor

10: Choose xm from {x0, x1, · · · , xm} (at random or deterministic, specified later).

The idea is to find a good stochastic approximation v0 for ∇f(x0) as an initial search
direction to guide the algorithm moving into a good direction.

• Secondly, Algorithm 1 adopts the idea of ProxSARAH in [59] with two steps in x̂t and
xt to handle the composite setting. This is different from existing methods as well as
methods for non-composite problems where we use two step-sizes ηt and γt. While the
first update on x̂t is a standard proximal gradient step, the second one on xt is an
averaging step. If ψ = 0, i.e., in the non-composite problems, then Steps 4 and 8 become

xt+1 := xt − η̂tvt, where η̂t := γtηt.

Therefore, the product γtηt can be viewed as a combined step-size of Algorithm 1. Note
that by using G̃ηt(xt) to approximate the gradient mapping Gη defined by (9), we can
rewrite the main step of Algorithm 1 as

xt+1 := xt − η̂tG̃ηt(xt), where G̃ηt(xt) := 1
ηt

(
xt − proxηtψ (xt − ηtvt)

)
and η̂t := γtηt.

• Thirdly, another main difference between Algorithm 1 and existing methods is at Step 7,
where we use our hybrid stochastic gradient estimator vt. In addition, we will show in
the sequel that by using different step-sizes, Algorithm 1 leads to different variants.

Note that Algorithm 1 has only one loop as standard SGD or SAGA. Hitherto, SAGA has
been developed to solve the finite-sum setting (2), and there has existed no variant for
solving (1) yet. Algorithm 1 can solve both (1) and (2). Moreover, it does not use an n× p-
table to store past gradient components as in SAGA so that it almost has the same memory
requirement as in SGD. However, at each iteration, it requires three stochastic gradient
evaluations instead of one as in SGD for the single-sample case. Therefore, its per-iteration
cost can be viewed as a mini-batch SGD scheme of the batch size 3.

4.2 One-iteration analysis

We first prove the following two lemmas to provide key estimates for convergence analy-
sis of Algorithm 1. For the sake of presentation, the proof of these lemmas is moved to
Appendices B.1 and B.2, respectively.

Lemma 5 Assume that Assumptions 1, 2, and 3 hold. Let {(xt, x̂t)} be the sequence gen-
erated by Algorithm 1 and Gηt be the gradient mapping of (1) defined by (9). Then
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E [F (xt+1)] ≤ E [F (xt)]− qtη
2
t

2 E
[
‖Gηt(xt)‖2

]
+ θt

2 E
[
‖∇f(xt)− vt‖2

]
− κt

2 E
[
‖x̂t+1 − xt‖2

]
− 1

2E
[
σ̃2
t

]
.

(21)

where {ct}, {rt}, and {qt} are any given positive sequences, σ̃2
t := γt

ct
‖∇f(xt)−vt−ct(x̂t+1−

xt)‖2 ≥ 0, St is defined in (16), and θt and κt are given by

θt :=
γt
ct

+ (1 + rt)qtη
2
t and κt :=

2γt
ηt
− Lγ2t − γtct − qt

(
1 +

1

rt

)
. (22)

Lemma 6 Assume that Assumptions 1, 2, and 3 hold. Let {(xt, x̂t)} be the sequence gen-
erated by Algorithm 1 and Gηt be the gradient mapping of (1) defined by (9). Given αt > 0,
let V be a Lyapunov function defined by

V (xt) := E [F (xt)] +
αt
2
E
[
‖vt −∇f(xt)‖2

]
. (23)

Assume that
αt − β2

t αt+1 − θt ≥ 0 and κt − αt+1β
2
t γ

2
tL

2 ≥ 0. (24)

Then, the following estimate holds

V (xt+1) ≤ V (xt)−
qtη

2
t

2
E
[
‖Gηt(xt)‖2

]
+

1

2
αt+1(1− βt)2σ2

t+1, (25)

where σ2
t := Eζt

[
‖∇fζt(xt)−∇f(xt)‖2

]
. As a consequence, for any m ≥ 0, we also have

1

2

m∑
t=0

qtη
2
tE
[
‖Gηt(xt)‖2

]
≤ F (x0)− F ? +

α0

2
E
[
‖v0 −∇f(x0)‖2

]
+

1

2

m∑
t=0

αt+1(1− βt)2σ2
t+1.

(26)

Note that if βt = 1 for all t ≥ 0, then our hybrid stochastic estimator vt reduces to
the SARAH estimator [53]. In this case, the estimate (25) becomes V (xt+1) ≤ V (xt) −
qtη

2
t

2 E
[
‖Gηt(xt)‖2

]
, which shows a monotonic non-increase of {V (xt)}. This estimate can be

used to analyze the convergence of the double-loop SARAH-based algorithms in [56,59].

4.3 Convergence analysis of Algorithm 1

We consider two variants of Algorithm 1: constant step-sizes and adaptive step-sizes.

4.3.1 The constant step-size case
The following theorem shows the convergence of Algorithm 1 with constant step-sizes and
its oracle complexity bounds.

Theorem 1 Assume that Assumptions 1, 2, and 3 hold. Let {xt}mt=0 be generated by Algo-
rithm 1 to solve (1) using the following constant weight βt and step-sizes γt and ηt:

βt = β := 1− 1√
b̃(m+1)

,

γt = γ := 3√
13[b̃(m+1)]1/4

,

ηt = η := 2
(3+γ)L .

(27)

Then the following statements hold:
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(a) The parameters β, γ, and η satisfy β ∈ (0, 1), γ ∈ (0, 1), and 1
2L ≤ η ≤

2
3L .

(b) Let xm ∼ U ({xt}mt=0) be the output of Algorithm 1. Then, we have

E
[
‖Gη(x̄m)‖2

]
≤ 16

√
13Lb̃1/4

3(m+ 1)3/4
[F (x0)− F ?] +

208σ2

9
√
b̃(m+ 1)

. (28)

(c) If we choose b̃ := c21(m+ 1)1/3 for some c1 ≥ 1
(m+1)2/3

, then (28) reduces to

E
[
‖Gη(x̄m)‖2

]
≤ ∆0

(m+ 1)2/3
, (29)

where ∆0 := 16
√
13c1L
3 [F (x0)− F ?] + 208σ2

9c1
. Therefore, for any tolerance ε > 0, the

number of iterations m to obtain xm such that E
[
‖Gη(xm)‖2

]
≤ ε2 is at most

m :=

⌊
∆

3/2
0

ε3

⌋
.

This is also the total number of proximal operations proxηψ. In addition, the total number
Tm of stochastic gradient evaluations ∇fξ(xt) is at most

Tm :=

⌊
c21∆

1/2
0

ε
+

3∆
3/2
0

ε3

⌋
.

Oracle complexity comparison: Before proving Theorem 1, let us discuss the oracle
complexity of Algorithm 1 derived from Theorem 1 and compare it with existing results.
• The bound (29) shows that the convergence rate of Algorithm 1 is O

(
1

m2/3

)
, which is

better than O
(

1
m1/2

)
in standard SGD methods [29], but our L-average smoothness

assumption is stronger than the L-smoothness of the expected value function f in [29].
• In Statement (c), although, we require the constant c1 to satisfy c1 ≥ 1

(m+1)2/3
, but it is

independent of m. Since m ≥ 0, we can have c1 ≥ 1.
• If σ = 0, i.e., no stochasticity in our model (1), then from (28), we have E

[
‖Gη(xm)‖2

]
≤

16
√
13Lb̃1/4

(m+1)3/4
[F (x0)− F ?]. Moreover, (30) still holds for any b̃ ≥ 1

m+1 , which is not neces-

sary integer. In this case, we choose the lower bound b̃ := 1
m+1 to obtain the well-known

bound in the deterministic case (up to a constant factor):

E
[
‖Gη(xm)‖2

]
≤ 16

√
13L

(m+ 1)
[F (x0)− F ?] .

Here, the expectation is taking over the remaining randomness (e.g., the random choice
of x̄m). This bound leads to the oracle complexity of O

(
ε−2
)

as often seen in gradient-
based methods for non-convex optimization.

• If σ > 0, then one can minimize the right-hand side of (28) over b̃ to get

b̃ :=
132/3σ8/3(m+ 1)1/3

34/3L4/3∆
4/3
F

, where ∆F := F (x0)− F ? > 0.

With this choice of b̃, the number of iterations m and the total number Tm of stochastic
gradient evaluations in Theorem 1 become
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m = O
(
σL∆F

ε3

)
and Tm = O

(
σ3

L∆F ε
+
σL∆F

ε3

)
.

This bound shows the linear dependence on σ, L, ∆F of m. If ∆F or L is large compared
to σ or σ is too small, we can rescale b̃ to trade-off ∆F , L, and σ in (28), leading to
different bounds of m and Tm (up to a constant).

• If 0 < σ ≤ O
(
ε−1
)

and σ dominates L and∆F , then the oracle complexity of Algorithm 1

is O
(
σ3ε−1 + σε−3

)
, which is the same as the best-known stochastic oracle complexity

O
(
σ2ε−2 + σε−3

)
of SPIDER [24], SpiderBoost [70], or ProxSARAH [59].

Remark 2 We also make the following remarks:
• The weight β and the step-sizes η and γ in Theorem 1 is not unique. As shown in the

proof of Theorem 1, the configuration (27) is obtained by choosing ct := L, rt := 1,
and qt := Lγt

2 in Lemma 2. Under different choice of these parameters, we can obtain
different configuration than (27).

• Note that if we choose η such that 0 < η < 2
(3+γ)L , then our results in Theorem 1 still

hold, but the right-hand side of (28) will be scaled up by a factor proportional to 1
η2 .

Proof (Proof of Theorem 1) First, let us choose ct := L, rt := 1, and qt := Lγt
2 in

Lemma 2. We also fix βt := β ∈ (0, 1), ηt := η > 0, and γt := γ ∈ (0, 1). From (22), we have

θt = θ =
(

1+L2η2

L

)
γ and κt = κ = γ

(
2
η − Lγ − 2L

)
.

Next, since v0 is computed by Step 3 with a mini-batch size b̃, by [59, Lemma 2], we have

E
[
‖v0 −∇f(x0)‖2

]
≤ 1

b̃
Eξ
[
‖∇fξ(x0)−∇f(x0)‖2

]
≤ σ2

b̃
. (30)

Let us also fix αt := α > 0 for t ≥ 0 in Lemma 6. Then, by utilizing (30) and qt := Lγt
2 , we

can derive from (26) that

1

m+ 1

m∑
t=0

E
[
‖Gη(xt)‖2

]
≤ 4

Lη2γ(m+ 1)
[F (x0)− F ?] +

2ασ2

Lγη2

[
1

b̃(m+ 1)
+ (1− β)2

]
. (31)

By minimizing 1
b̃(m+1)

+ (1 − β)2 over β ∈ [0, 1], we obtain β := 1 − 1
[b̃(m+1)]1/2

as in (27).

Moreover, the two conditions in (24) can be simplified as

(1 + L2η2)γ ≤ (1− β2)αL and
2

η
− Lγ − 2L ≥ αγβ2L2. (32)

(a) Let us update η := 2
L(3+γ) as (27). Since γ ∈ [0, 1], we have 1

2L ≤ η ≤
2
3L . Moreover, by

the update of β := 1− 1
[b̃(m+1)]1/2

, we also have β ∈ (0, 1) since m ≥ 0 and b̃ ≥ 1.

Now, since η ≤ 2
3L , we have 1 + L2η2 ≤ 13

9 . In addition, it is obvious that 1 − β2 ≥
1− β = 1

[b̃(m+1)]1/2
. Therefore, the first condition of (32) holds if we choose

0 < γ ≤ γ̄ :=
9Lα

13[b̃(m+ 1)]1/2
.

Alternatively, since 2
η − Lγ − 2L = L and β ∈ [0, 1], the second condition of (32) holds

if we choose 0 < γ ≤ γ̄ := 1
Lα . Combining both conditions on γ, we obtain γ̄ := 1

Lα =
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9Lα
13[b̃(m+1)]1/2

. Hence, we obtain α :=
√
13[b̃(m+1)]1/4

3L , which implies that γ̄ = 3√
13[b̃(m+1)]1/4

.

Since b̃ ≥ 1 and m ≥ 0, we have 0 < γ̄ < 1. Therefore, we can update

γ :=
3√

13[b̃(m+ 1)]1/4
∈ (0, 1)

as shown in (27).

(b) Next, using the update of γ, the choice of α, and the fact that 1
2L ≤ η ≤ 2

3L , we can
further simplify (31) as

1

m+ 1

m∑
t=0

E
[
‖Gη(xt)‖2

]
≤ 16

√
13Lb̃1/4

3(m+ 1)3/4
[F (x0)− F ?] +

208σ2

9[b̃(m+ 1)]1/2
.

Since xm ∼ U ({xt}mt=0), we have E
[
‖Gη(xm)‖2

]
= 1

m+1

∑m
t=0 E

[
‖Gη(xt)‖2

]
. Combining this

relation and the last inequality, we obtain (28).

(c) If we choose b̃ := c21(m + 1)1/3 for some c1 > 0, then the bound (28) reduces to (29),

where ∆0 := 16
√
13c1L
3 [F (x0)− F ?]+ 208σ2

9c1
. Moreover, since β = 1− 1

[b̃(m+1)]1/2
, to guarantee

β ∈ (0, 1], we need to choose c1 ≥ 1
(m+1)2/3

.

For any tolerance ε > 0, the number of iterations m to achieve E
[
‖Gη(xm)‖2

]
≤ ε2 can

be estimated from (29) by letting:

1

(m+ 1)2/3

[
16
√

13c1L

3
[F (x0)− F ?] +

208σ2

9c1

]
=

∆0

(m+ 1)2/3
≤ ε2.

This implies that m + 1 ≥ ∆
3/2
0

ε3 . Therefore, we can choose m :=

⌊
∆

3/2
0

ε3

⌋
. This is also

the number of proximal operations proxηψ. The total number Tm of stochastic gradient
evaluations ∇fξ(xt) is estimated as

Tm := b̃+ 3(m+ 1) = c21(m+ 1)1/3 +
3∆

3/2
0

ε3
=
c21∆

1/2
0

ε
+

3∆
3/2
0

ε3
.

Hence, we can choose Tm :=

⌊
c21∆

1/2
0

ε +
3∆

3/2
0

ε3

⌋
as its upper bound, which proves (c). �

4.3.2 The adaptive step-size case

Theorem 1 states the convergence and complexity estimate of Algorithm 1 with constant
step-sizes. However, when the number of iterations m is large, this constant step-size γ is
small. We instead develop an adaptive rule to update the step-size γt as follows:
• Let us first fix β := 1− 1

[b̃(m+1)]1/2
∈ (0, 1) as in Theorem 1.

• Next, we also fix ηt := η ∈ (0, 1
L ) and define δ := 2

η − 2L > 0.
• Then, we can update γt adaptively as

γm :=
δ

L
and γt :=

δ

L+ L(1 + L2η2)
[
β2γt+1 + β4γt+2 + · · ·+ β2(m−t)γm

] , (33)

for t = 0, · · · ,m− 1.
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Applying Lemma 7, it is obvious to show that 0 < γ0 < γ1 < · · · < γm. Interestingly, our
step-size is updated in an increasing manner instead of diminishing as in existing SGD-type
methods. Here, γt becomes larger as t increases. Moreover, given m, we can pre-compute the
sequence of these step-sizes {γt}mt=0 in advance within O (m) basic operations. Therefore, it
does not significantly incur the computational cost of our method.

The following theorem states the convergence of Algorithm 1 under the adaptive update
rule (33), whose proof can be found in Appendix B.3.

Theorem 2 Assume that Assumptions 1, 2, and 3 hold. Let {xt}mt=0 be the sequence gener-
ated by Algorithm 1 to solve (1) using the parameters β, η, and step-size γt defined by (33).
Then, the following statements hold:

(a) If Σm :=
∑m
t=0 γt and xm ∼ Up ({xt}mt=0) with pt := P (xm = xt) = γt

Σm
, then we have

E
[
‖Gη(xm)‖2

]
≤

8
√

2
(
L+
√
δL[b̃(m+ 1)]1/4

)
Lη2δ(m+ 1)

[F (x0)− F ?] +
8σ2

L2η2[b̃(m+ 1)]1/2
. (34)

(b) Let us choose the initial mini-batch size b̃ := c21(m+ 1)1/3 for c1 ≥ 1
(m+1)2/3

. Then, for

any ε > 0, the number of iterations m to guarantee E
[
‖Gη(xm)‖2

]
≤ ε2 does not exceed

m :=

⌊
∆

3/2
0

ε3

⌋
, where ∆0 :=

8

L2η2

[√
2L(L+

√
c1Lδ)

δ

[
F (x0)− F ?

]
+
σ2

c1

]
.

This is also the total number of proximal operations proxηψ. Consequently, the number

Tm of stochastic gradient evaluations is at most Tm :=

⌊
c21∆

1/2
0

ε +
3∆

3/2
0

ε3

⌋
.

While the proof of Theorem 1 relies on the Lyapunov function V defined by (23) that
has an asymptotically monotone property, the proof of Theorem 2 is completely different
by adopting the techniques in [59] and does not use any Lyapunov function. The oracle
complexity of Theorem 2 remains the same as in Theorem 1. When σ > 0, we can also
adjust b̃ in (34) to obtain the final bounds for m and Tm that depend on the variance σ.

Remark 3 (Without initial batch) If we choose the initial batch size b̃ := 1 (i.e., single
sample) to compute v0 at Step 3 of Algorithm 1, then (34) becomes

E
[
‖Gη(xm)‖2

]
≤ 8
√

2 [F (x0)− F ?]
η2δ(m+ 1)

+
8
√

2Lδ [F (x0)− F ?]
Lη2δ(m+ 1)3/4

+
8σ2

L2η2(m+ 1)1/2
.

Hence, the oracle complexity of Algorithm 1 reduces to O
(

max
{

(L∆F )4/3

ε8/3
, σ

2

ε4

})
, where

∆F := F (x0) − F ?. This complexity is similar to proximal SGD methods, see, e.g., [29] if

the second term dominates the first one. Therefore, the choice of the initial mini-batch B̃t
for v0 is crucial in Algorithm 1 to achieve better complexity bounds than SGD.

Remark 4 (The effect of m on γt) Due to the update (33), we have γm > γm−1 > · · · >
γ0 > 0. Clearly, if m is large, then {γt} is getting smaller and smaller as t is decreasing, which
leads to a slow convergence. This suggests that we should restart Algorithm 1 after a rela-
tively small number of iterations m to avoid small step-sizes {γt}. This algorithmic variant
becomes more efficient if we combine it with a double-loop as described in Algorithm 2.
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4.4 Restarting proximal hybrid stochastic gradient descent algorithm
Motivation: We observe from Theorems 1 and 2 that:
• If m is large, then from (27), we can see that the step-size γ is small and β is very close

to 1. While a small step-size γ leads to slow progress in Algorithm 1, β ≈ 1 shows that
the unbiased term does not significantly compensate the biaseness of the estimator vt.

• Similarly, as can be seen from Remark 4 that if m is large, then the step-size γt in
Theorem 2 is also small as t decreases, which also makes Algorithm 1 slow.

To circumvent this issue, we can restart Algorithm 1 after running it for a certain number
of iterations m by adding an outer-loop. In this case, we obtain a double-loop variant as in
SVRG or SARAH variants. However, unlike SVRG and SARAH-based methods where their
double-loop is mandatory to guarantee convergence, we use it as a restarting loop. Without
the outer loop, Algorithm 1 still has convergence guarantee as shown in Theorems 1 and 2.
According to a very recent work [14], our algorithm achieves the optimal oracle complexity
(up to a constant) under Assumptions 1, 2, and 3.

The complete restarting variant of Algorithm 1 is described in Algorithm 2.

Algorithm 2 (Restarting Proximal Hybrid SGD algorithm (ProxHSGD-RS))

1: Initialization: An initial point x(0) and parameters b̃, m, βt, and ηt (will be specified).

2: Restarting stage: For s := 1, 2, · · · , S do

3: Run Algorithm 1 with an initial point x
(s)
0 := x(s−1).

4: Set x(s) := x
(s)
m+1 as the last iterate of Algorithm 1.

5: EndFor

To analyze Algorithm 2, we use x
(s)
t to represent the iterate of Algorithm 1 at the t-

th inner iteration within each stage s. As we can see, Algorithm 2 calls Algorithm 1 as a

subroutine for every iteration, called the s-th stage and retrieves the output x(s) := x
(s)
m+1

as the last iterate of Algorithm 1 instead of taking it randomly from {x(s)t }mt=0. Here, we
assume that we fix the step-size ηt = η ∈ (0, 1

L ), fix the mini-batch b̃s = b̃ ∈ N+, and choose
β := 1− 1

[b̃(m+1)]1/2
∈ (0, 1) for simplicity of our analysis.

Now, we can derive the convergence of Algorithm 2 in the following theorem whose proof
is deferred to Appendix B.4.

Theorem 3 Assume that we choose b̃s := b̃ ∈ N+, β := 1 − 1
[b̃(m+1)]1/2

∈ (0, 1), and η ∈

(0, 1
L ), and update the step-size γt for Algorithm 2 as in (33). Let {x(s)t }s=1→S

t=0→m be generated

by Algorithm 2 to solve (1) and xT ∼ Up

(
{x(s)t }s=1→S

t=0→m

)
with P

(
xT = x

(s)
t

)
= γt

SΣm
be the

output of Algorithm 2. Then, the following statement holds:
(a) The following estimate holds:

E
[
‖Gη(xT )‖2

]
≤

8
√

2b̃1/4
(
L+
√
Lδ
)

Lδη2S(m+ 1)3/4
[
F (x(0))− F ?

]
+

8σ2

L2η2[b̃(m+ 1)]1/2
. (35)

(b) For some constant c1 ≥ 1
(m+1) and for any tolerance ε > 0, let us choose

b̃ :=
16c1
L2η2

·
max

{
1, σ2

}
ε2

and m+ 1 :=
16

c1L2η2
·

max
{

1, σ2
}

ε2
.
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Then, to guarantee E
[
‖Gη(xT )‖2

]
≤ ε2, we need at most S outer iterations as

S :=

⌊
4
√

2c1
(
L+
√
Lδ
)

δηε

[
F (x(0))− F ?

]⌋
. (36)

Consequently, the total number T∇f of stochastic gradient evaluations and the total num-
ber Tprox of proximal operations proxηψ, respectively do not exceed

T∇f :=
64
√

2(c21 + 3)(L+
√
Lδ) max {1, σ}

L2η3δε3
[
F (x(0))− F ?

]
= O

(
max {σ, 1}

ε3

)
,

Tprox :=
64
√

2(L+
√
Lδ) max {1, σ}

L2η3δε3
[
F (x(0))− F ?

]
= O

(
max {σ, 1}

ε3

)
.

(37)

If σ = 0, i.e., no stochasticity involved in (1) and b̃ := c21(m + 1), then the bound (35)

reduces to E
[
‖Gη(xT )‖2

]
≤ 8
√
2c1

(
L+
√
Lδ
)

Lδη2S(m+1)1/2

[
F (x(0))−F ?

]
. However, since c1 ≥ 1

m+1 , we can

choose its lower bound as c1 := 1
m+1 . In this case, the last inequality becomes

E
[
‖Gη(xT )‖2

]
≤

8
√

2
(
L+
√
Lδ
)

Lδη2S(m+ 1)

[
F (x(0))− F ?

]
= O

(
L[F (x(0))− F ?]

S(m+ 1)

)
.

This bound is the same as in gradient-based methods. If σ > 0, then the total number of

stochastic gradient evaluations is at most O
(
σ2

ε2 + σ
ε3

)
, which is optimal (up to a constant

factor) according to [14] under Assumptions 1, 2, and 3. Practically, if β is very close to 1,
one can remove the unbiased SGD term to save one stochastic gradient evaluation. In this
case, our estimator reduces to SARAH but using different step-size. Our empirical results
show that when β ≈ 0.999, the performance of our methods is not affected.

Remark 5 We have not tried to optimize all the constant factors in the bounds of The-
orems 1, 2, and 3. Therefore, our bounds can be different from existing results up to a
constant factor as we can see in the case σ = 0 (i.e., no stochasticity in (1)).

4.5 Linear convergence under gradient dominant condition
If the composite function F satisfies the following τ -gradient dominant condition [70]:

F (x)− F ? ≤ τ

2
‖Gη(x)‖2, (38)

for any x ∈ dom(F ) and η > 0, where τ > 0 (see, e.g., [70]), then we can modify Algorithm 2

by setting x(s) := x
(s)
m , where x

(s)
m ∼ Up

(
{x(s)t }mt=0

)
, to obtain an ε-linear convergence rate.

Note that if ψ = 0, then the gradient dominant condition above reduces to the standard
one f(x)− f(x?) ≤ τ

2‖∇f(x)‖2 for any x ∈ dom(f), which is widely used in the literature.

Corollary 1 Suppose that the assumptions of Theorem 3 and the gradient dominant con-

dition (38) holds. Let {x(s)t }mt=0 be generated by Algorithm 2 to solve (1), where x(s) := x
(s)
m

with x
(s)
m ∼ Up

(
{x(s)t }mt=0

)
, and m and b̃ are chosen as

m+ 1 :=
32(L+

√
Lδ)τ3/2σ

L2η3δ
√
ε

and b̃ :=
2δτ1/2σ3

L2(L+
√
Lδ)ηε3/2

,
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for a given tolerance ε > 0. Then, the following inequalities hold:

E
[
F (x(s))− F ?

]
≤ 1

2
E
[
F (x(s−1))− F ?

]
+
ε

2
≤ 1

2S

(
E
[
F (x(0))− F ?

]
− ε
)

+ ε. (39)

Consequently,
{
E
[
F (x(s))− F ?

]}
converges linearly to an ε-ball around zero.

Proof Similar to the proof of (67), using the choice of x(s) we can show that

E
[
‖Gη(x(s))‖2

]
≤ 8
√

2b̃1/4(L+
√
Lδ)

Lη2δ(m+ 1)3/4
E
[
F (x(s−1))− F ?

]
+

8σ2

L2η2b̃1/2(m+ 1)1/2
.

Multiplying this inequality by τ
2 and then using (38), we can show that

E
[
F (x(s))− F ?

]
≤ 4
√

2τ b̃1/4(L+
√
Lδ)

Lη2δ(m+ 1)3/4
E
[
F (x(s−1))− F ?

]
+

4τσ2

L2η2b̃1/2(m+ 1)1/2
.

Assume that 4τσ2

L2η2b̃1/2(m+1)1/2
= ε

2 and 4
√
2τb̃1/4(L+

√
Lδ)

Lη2δ(m+1)3/4
= 1

2 . These relations lead to m+1 :=

32(L+
√
Lδ)τ3/2σ

L2η3δ
√
ε

and b̃ := 2δτ1/2σ3

L2(L+
√
2Lδ)ηε3/2

. Hence, the last inequality can be simplified as

E
[
F (x(s))− F ?

]
≤ 1

2
E
[
F (x(s−1))− F ?

]
+
ε

2
.

Denote ∆s := E
[
F (x(s))− F ?

]
. Then, the last inequality becomes ∆s − ε ≤ 1

2 (∆s−1 − ε).
Whenever ∆s ≥ ε, by induction, we have ∆S−ε ≤ 1

2S
(∆0 − ε). This implies (39). Therefore,{

E
[
F (x(s))− F ?

]}
converges linearly to an ε-ball around zero. �

4.6 Applications to the finite-sum and non-composite settings

We first consider the finite-sum setting (2) and then discuss the non-composite form of (1).

4.6.1 The finite-sum case

We can apply both Algorithm 1 and Algorithm 2 to solve the finite-sum problem (2). We can

use a mini-batch B̃t of the size b̃ ∈ [n] to approximate v0. However, we make the following
changes in Algorithm 1 to solve (2):

� We compute v0 := ∇f(x0) = 1
n

∑n
i=1∇fi(x0), the full gradient of f at x0.

� We evaluate vt := βvt−1 +β
(
∇fit(xt)−∇fit(xt−1)

)
+ (1−β)∇fjt(xt), where it, jt ∈ [n]

are two independent random indices uniformly generated from [n].

Since we set b̃ = n, we need to change the weight β in Theorems 1, 2, and 3 to β :=
1− c1

(m+1)2/3
for some 0 < c1 ≤ (m+ 1)2/3. With this choice of b̃ and β, the conclusions of

Theorems 1, 2, and 3 remain true. But the number of stochastic gradient evaluations is at

most, e.g., Tm := O
(
n+

∆
3/2
0

ε3

)
in Theorem 1. To avoid overloading this paper, we omit

the analysis here.

In terms of assumptions, apart from Assumptions 1 and 2, we still require Assumption 3
(i.e., (7)) to hold for (2). Hence, Algorithm 1 can solve (2), but it requires stronger assump-
tions (Assumptions 1, 2, and 3) than ProxSVRG [63], SpiderBoost [70], and ProxSARAH
[59]. However, as a compensation, Algorithm 1 uses a single-loop.
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4.6.2 The non-composite settings
If ψ = 0, then we obtain a non-composite setting of (1) and (2), respectively. The analysis
in Theorems 1, 2, and 3 can be modified to cover the non-composite setting of (1):
• Step 4 of Algorithm 1 becomes x1 := x0 − η̂0v0, where η̂0 is a new step-size.
• Step 8 of Algorithm 1 reduces to xt+1 := xt − η̂tvt, where η̂t is a new step-size.
• The step-size η̂t := 2

L[1+(1+4α2
m)1/2]

which combines both ηt and γt in Theorem 1, where

β := 1− 1
[b̃(m+1)]1/2

and αm := β2(1−β2m)
1−β2 .

For clarity of exposition, we omit the analysis of this variant here.

5 Extensions to Mini-batch Variants

We consider the mini-batch variants of Algorithm 1 and Algorithm 2 for solving (1). More
precisely, the mini-batch SARAH-SGD estimator v̂t for ∇f(xt) is defined as

v̂t := βv̂t−1 +
β

b

∑
ξt∈Bt

(∇fξt(xt)−∇fξt(xt−1)) +
1− β
b̂

∑
ζt∈B̂t

∇fζt(xt), (40)

where Bt is a mini-batch of size b and B̂t is a mini-batch of size b̂ and independent of Bt.
Here, we fix β ∈ (0, 1) and the mini-batch sizes b ∈ N+ and b̂ ∈ N+ for all t ≥ 0. Note that
the estimator (40) is an instance of (18) when G = ∇f . For the sake of presentation, we
only consider the constant step-size variant as a consequence of Theorem 1. We state our
first result in the following theorem, whose proof can be found in Appendix C.1.

Theorem 4 Assume that Assumptions 1, 2, and 3 hold. Let {xt}mt=0 be the sequence gen-
erated by Algorithm 1 to solve (1) using the mini-batch update for v̂t as in (40) at Step 7
instead of vt, and the following parameter configuration:

βt = β := 1− b̂1/2

[b̃(m+1)]1/2

γt = γ := 3c0b̂
1/4b1/2√

13[b̃(m+1)]1/4

ηt = η := 2
L(3+γ) ,

(41)

where 1 ≤ b̂ ≤ b̃(m+ 1) and 0 < c0 ≤
√
13

3b1/2
is given. Then, the following statements hold:

(a) The parameters β, γ, and η satisfy β ∈ [0, 1), γ ∈ (0, 1], and 1
2L < η ≤ 2

3L .

(b) Let xm ∼ U ({xt}mt=0) be the output of Algorithm 1. Then, we have

E
[
‖Gη(xm)‖2

]
≤ 16

√
13Lb̃1/4 [F (x0)− F ?]

3c0b̂1/4b1/2(m+ 1)3/4
+

208σ2

9
[
b̂b̃(m+ 1)

]1/2 . (42)

(c) Let us choose b̂ = b ∈ N+ and b̃ := c21[b(m + 1)]1/3 for some c1 ≥ b1/3

(m+1)2/3
. Then,

the step-size γ becomes γ := 3c0b
2/3

√
13c1(m+1)1/3

. Moreover, for any ε > 0, the number of

iterations m to obtain E
[
‖Gη(xm)‖2

]
≤ ε2 is at most

m :=

⌊
∆

3/2
0

bε3

⌋
, where ∆0 :=

16

3

[√
13c1L [F (x0)− F ?]

c0
+

13σ2

3c1

]
.

This is also the total number Tprox of proximal operations proxηψ, i.e., Tprox = m. The
total number of stochastic gradient evaluations ∇fξ(xt) is at most
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Tm :=

⌊
c21∆

1/2
0

ε
+

3∆
3/2
0

ε3

⌋
.

Theorem 4 states that using the mini-batch estimator v̂t from (40), the total number
of stochastic gradient evaluations Tm in Algorithm 1 remains the same as in Theorem 1.
However, the total number of proximal operations Tprox reduces from O

(
σ
ε3

)
to O

(
σ
bε3

)
.

We can also modify Algorithm 2 to obtain a mini-batch variant. The following theorem
shows the convergence of this mini-batch variant whose proof can be found in Appendix C.2.

Theorem 5 Let {x(s)t }s=1→S
t=0→m be the sequence generated by Algorithm 2 to solve (1) using

the mini-batch update for v̂t as in (40) at Step 7 instead of vt, η ∈ (0, 1
L ), and

γm :=
δ

L
and γt :=

δb

Lb+ L(1 + L2η2)
[
β2γt+1 + β4γt+2 + · · ·+ β2(m−t)γm

] , (43)

where δ := 2
η − 2L > 0 and β := 1− b̂1/2

[b̃(m+1)]1/2
. Then, the following statements hold:

(a) If we choose the output of Algorithm 2 as xT ∼ Up

(
{x(s)t }s=1→S

t=0→m

)
with the probability

pt := P
(
xT = x

(s)
t

)
= γt

SΣm
, then the following estimate holds

E
[
‖Gη(xT )‖2

]
≤

8
√

2
[
b̂1/4b1/2L + [b̃(m+ 1)]1/4

√
Lδ
]

Lη2δS(m+ 1)b̂1/4b1/2

[
F (x(0))− F ?

]
+

8σ2

L2η2[b̂b̃(m+ 1)]1/2
.

(44)

(b) Given ε > 0 and c1 >
1

m+1 , let us choose b̂ = b ∈ N+ such that 1 ≤ b ≤ 2
√
6δ

L
√
Lηε

, and

b̃ :=
24c1
L2η2ε2

max
{
σ2, 1

}
and m+ 1 :=

24

c1L2η2bε2
max

{
σ2, 1

}
.

Then, the total number of iterations T to achieve E
[
‖Gη(xT )‖2

]
≤ ε2 is at most

T := (m+ 1)S =

⌊
96
√

3 max {1, σ}
η3L
√
Lδbε3

[
F (x(0))− F ?

]⌋
. (45)

This is also the total number of proximal operations proxηψ. The total number of stochas-
tic gradient evaluations ∇fξ(xt) is at most

T∇f :=

⌊
(c21 + 3)

96
√

3 max {1, σ}
η3L
√
Lδε3

[
F (x(0))− F ?

]⌋
.

Remark 6 (Mini-batch and step-size trade-off) From Theorem 4(c), we can see that

γ := 3c0b
2/3

√
13c1(m+1)1/3

. Clearly, if we use a large mini-batch size b for v̂t, then we obtain a

large value of the step-size γ. Assume that γ ≈ 1, which is equivalent to 3c0b
2/3

√
13c1(m+1)1/3

≈ 1.

Moreover, from Theorem 4(c), we also have b(m + 1) =
∆

3/2
0

ε3 . Combining both conditions,

we can roughly set b ≈
√
13c1∆

1/2
0

3c0ε
and m+ 1 ≈ 3c0∆0√

13c1ε2
. Empirical evidence in Section 6 will

show that large step-size γ leads to better performance.
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For the mini-batch double-loop variant stated in Theorem 5, the update (43) of γt hints
that if m is small, then the sequence of step-sizes {γt}mt=0 is large. From Theorem 5(b), we

have m :=
⌊

24
c1L2η2bε2 max

{
σ2, 1

}⌋
. Therefore, to obtain a small m, we need to choose b

large. In this case, the total number of proximal operations proxηψ decreases, but the total
number of stochastic gradient evaluations remains unchanged.

Remark 7 (Practical termination condition) In Algorithm 1, Algorithm 2, and their
variants, we need to choose xm or xT randomly among the iterate sequence generated up
to the iteration m or T := S(m+ 1), respectively. We can choose one of the two options:
• We randomly generate an index T∗ ∈ {0, 1, · · · ,m} (or T∗ ∈ {0, 1, · · · , T}) using the

probability distribution pt = γt
Σt

(or pt = γt
SΣt

). Then, we run Algorithm 1 or Algorithm 2
up to T∗ iterations. The corresponding iterate at the T∗-th is xm (or xT ).

• We can choose the best-so-far iterate xT based on the following guarantee:

min
0≤t≤m

‖Gη(xt)‖ ≤ ε or min
0≤t≤m,1≤s≤S

‖Gη(x
(s)
t )‖ ≤ ε.

However, in practice, we often take the last iterate xm or x(S) as the output of the algorithm
which unfortunately does not have a theoretical guarantee in this paper.

6 Numerical Experiments

In this section, we provide three examples to illustrate the performance of our algorithms
and compare them with several state-of-the-art methods. We use different configurations of
parameters to investigate the practical advantages and disadvantages of our methods.

6.1 Implementation details and configuration
Algorithms and competitors: We implement the following variants of our algorithms:
• Algorithm 1 with constant stepsizes stated in Theorem 1. We denote it by ProxHSGD-SL.

The parameters are set as suggested by Theorem 1. For the mini-batch variant stated in
Theorem 4, we also fix γ := 0.95, and choose mini-batch sizes as suggested in Remark 6.

• Algorithm 2 with constant and adaptive step-sizes as stated in Theorem 3. We call these
two variants by ProxHSGD-RS1 for constant step-size, and ProxHSGD-RS2 for adaptive
step-size. We set η and β as suggested by Theorem 3 for constant step-size or by (33)
for adaptive step-size. For the mini-batch case, we choose γ := 0.95 and compute the
mini-batch accordingly as guided by Remark 6.

We normalize datasets so that the average-Lipschitz constant L in our experiment is L = L`,
the Lipschitz constant of the outer loss function ` specified in the sequel. For comparison,
we also implement the following algorithms from the literature:
• The proximal stochastic gradient methods, e.g., from [31] with constant and scheduled

diminishing step-sizes η := η0 > 0 and ηt := η0
1+η′bt/nc , respectively, where η0 > 0 and

η′ ≥ 0 that will be tuned in each experiment. We denote the SGD variant with constant
step-size by ProxSGD1 using η′ = 0, and the SGD scheme with scheduled diminishing
step-size by ProxSGD2 using η′ > 0. Without further specification, we will set η′ := 1.0
and η0 := 0.01 when the minibatch size b̂ = 1, whereas η0 := 0.05 when b̂ > 1, which
allows us to obtain consistent performance. But in many test cases below, we carefully
tune these parameters to obtain the best results for fair comparison.

• We also implement the proximal SpiderBoost method in [70], which works well in sev-
eral examples, see [59]. Note that this algorithm can be viewed as an instance of Prox-
SARAH in [59], where we skip comparing with other variants here. We denote it by
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ProxSpiderBoost. In this algorithm, we choose the constant step-size η := 1
2L and

choose the optimal mini-batch size b := b
√
nc and epoch length m := b

√
nc as suggested

by the authors. This is a large constant step-size and it works really well in most cases.
• Another algorithm is the proximal SVRG scheme in [42,63] denoted by ProxSVRG. While

the learning rate η suggested in [63] is η := 1
3nL for single sample and η := 1

3L for the

mini-batch of size b := bn2/3c, we find it not perform well in our experiments. Therefore,
we also tune ProxSVRG to find the best learning rate in our experiments.

All the algorithms are implemented in Python running on a single node of a Linux server
(called Longleaf ) with configuration: 3.40GHz Intel processors, 30M cache, and 256GB
RAM. For the last example, we also use TensorFlow (https://www.tensorflow.org) to cre-
ate networks and run simulation on a GPU system. Since each algorithm uses different
values of the step-size η, we pick a fixed value η := 0.5 to compute the norm of gradient

mapping ‖Gη(x
(s)
t )‖ for visualization and report in all methods. We run the first and second

examples up to 40 epochs, whereas we increase up to 60 epochs in the last example.

Datasets: Several datasets used in this paper are from [16], which are available online at
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/. We use the following 6 representative datasets:

• Small and medium datasets: Three different datasets: w8a (n = 49, 749, p = 300),
rcv1.binary (n = 20242, p = 47236), and real-sim (n = 72309, p = 20958) are widely
used in the literature.

• Large datasets: We also test the above algorithms on larger datasets: url combined

(n = 2, 396, 130; p = 3, 231, 961), epsilon (n = 400, 000; p = 2, 000), and news20.binary

(n = 19, 996; p = 1, 355, 191).

Another well-known dataset is mnist available at http://yann.lecun.com/exdb/mnist/.

6.2 Nonnegative principal component analysis

The first example is a non-negative principal component analysis (NN-PCA) model studied
in [63], which can be described as follows:

f? := min
x∈Rp

{
f(x) := − 1

2n

n∑
i=1

x>(ziz
>
i )x s.t. ‖x‖ ≤ 1, x ≥ 0

}
. (46)

Here, {zi}ni=1 in Rp is a given set of samples. By defining fi(x) := − 1
2x
>(ziz

>
i )x for

i = 1, · · · , n, and ψ(x) := δX (x), the indicator of X := {x ∈ Rp | ‖x‖ ≤ 1, x ≥ 0}, we can
formulate (46) into (2). Moreover, since zi is normalized, the Lipschitz constant of ∇fi is
L = 1 for i = 1, · · · , n.

(a) Single-loop methods with single sample: Our first experiment is to compare Algo-
rithm 1 using constant step-sizes with the two different variants of SGD. We use different
values c1 as suggested by Theorem 1 to form an initial mini-batch b̃. More specifically,
after some experiments, we set c1 := 10 for w8a, c1 := 40 for rcv1 train.binary, and
c1 := 50 for real-sim. To have a fair comparison, we also carefully tune the learning rate
for both ProxSGD1 and ProxSGD2 to achieve their best performance. The performance of
these methods is plotted in Figure 1 for three different datasets.

As we can observe from Figure 1 that our ProxHSGD-SL variant works relatively well and
outperforms both ProxSGD1 and ProxSGD2. However, it then slows down or is saturated at
a certain value of the loss function, probably due to the effect of the SGD term ut in our
estimator vt. It is not surprise that ProxSGD2 works better than ProxSGD1 due to the use of
a scheduled diminishing learning rate.

https://www.tensorflow.org
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://yann.lecun.com/exdb/mnist/
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Fig. 1 The relative training loss residuals and the absolute gradient mapping norms of (46) on three small
datasets: Single-loop with single-sample.

(b) Single-loop methods with mini-batch: Next, we test ProxHSGD-SL, ProxSGD1, and

ProxSGD2 with mini-batches on six different datasets. We use the mini-batch size b̂ := 50 for
w8a, rcv1-binary, real-sim, and news20.binary, b̂ := 300 for epsilon, and b̂ := 500 for
url combined. For ProxSpiderBoost and ProxSVRG, we set the mini-batch sizes as stated
in Subsection 6.1.

For three small datasets, as suggested by Theorem 4, after some simple experiments, we
find that c0 := 9 and c1 := 10 for w8a, c0 := 18 and c1 := 9 for rcv1 train.binary, and
c0 := 30 and c1 := 15 for real-sim work well. While we choose the same mini-batch size in
ProxSGD1, and ProxSGD2 as described above, we again tune their learning rates to have the
best performance. The results are shown in Figure 2.

In this case, both ProxSGD1 and ProxSGD2 perform much better than the single sam-
ple case, and are comparable with ProxHSGD-SL. However, ProxHSGD-SL still outperforms
ProxSGD1 and ProxSGD2 in the first and the last datasets, while it is slightly better than
ProxSGD1 and ProxSGD2 in the second one.

Finally, we again evaluate three single-loop algorithms with mini-batches on three larger
datasets: url combined, epsilon, and news20.binary. Here, based on Theorem 4, we find
that c0 := 40×103 and c1 := 20 for url combined, c0 := 15×103 and c1 := 30 for epsilon,
and c0 := 10 × 103 and c1 := 20 for news20.binary work well for our method. Figure 3
shows the convergence behavior of three algorithms.

We obverse that from Figure 3 ProxHSGD-SL performs much better than ProxSGD1 and
ProxSGD2, especially in the first and the third datasets. From the experiments (a) and (b),
we believe that ProxHSGD-SL generally outperforms ProxSGD in these tests.

(c) Double-loop methods with mini-batch: Our next test is on double-loop methods.
We compare two different double-loop methods: ProxSVRG and ProxSpiderBoost with two
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Fig. 2 The relative training loss residuals and the absolute gradient mapping norms of (46) on three small
datasets: Single-loop with mini-batch .
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Fig. 3 The relative training loss residuals and the absolute gradient mapping norms of (46) on three large
datasets: Single-loop with mini-batch .
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restarting variants of Algorithm 2: ProxHSGD-RS1 and ProxHSGD-RS2. We use mini-batch
for this test since ProxSpiderBoost only has guarantee for mini-batch variants.

First, let us test there algorithms using recommended learning rates and mini-batch
sizes that have convergence guarantee. Note that both ProxSpiderBoost and ProxSVRG use
a large learning rate η := 1

2L and η := 1
3L , respectively. As observed in [59], these learning

rates work well. We use our step-sizes and mini-batch sizes as suggested in Remark 6. To
have a fair assessment, we also add a tuning variant (Tuned) of both ProxSpiderBoost and
ProxSVRG, where we heuristically tune their learning rate to get the best performance. The
results of this test are reported in Figure 4.
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Fig. 4 The relative training loss residuals and the absolute gradient mapping norms of (46) on three small
datasets using both recommended (theoretical) and tuned step-sizes: Double-loop with mini-batch .

As we can see from Figure 4 that both ProxHSGD-RS1 and ProxHSGD-RS2 highly out-
perform ProxSVRG and ProxSpiderBoost, especially in the last two datasets. Due to the
use of adaptive step-size, ProxHSGD-RS2 appears to be better than ProxHSGD-RS1. For
the tuned learning rates, both ProxSVRG(Tuned) and ProxSpiderBoost(Tuned) are rel-
atively comparable with ProxHSGD-RS1 and ProxHSGD-RS2 on these datasets. More pre-
cisely, ProxHSGD-RS1 and ProxHSGD-RS2 are slightly better than both ProxSVRG(Tuned) and
ProxSpiderBoost(Tuned), especially in the last dataset. But, ProxSpiderBoost(Tuned) is
still slightly better than ProxSVRG(Tuned) in the second and third datasets.

Now, we test these variants on three larger datasets: url combined, epsilon, and
news20.binary. Their performance is shown in Figure 5.

Without tuning learning rates, we observe similar behavior as in Figure 5, where our
methods, ProxHSGD-RS1 and ProxHSGD-RS2, highly outperform ProxSVRG and are com-
parable with ProxSpiderBoost. Again, with tuned learning rates, ProxSVRG(Tuned) and
ProxSpiderBoost(Tuned) are more comparable with ProxHSGD-RS1 and ProxHSGD-RS2,
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Fig. 5 The relative training loss residuals and the absolute gradient mapping norms of (46) on three large
datasets: Double-loop with mini-batch .

but our methods are still slightly better than their competitors in the second dataset. How-
ever, we do not observe significant difference between the the adaptive step-size variant,
ProxHSGD-RS2 and the constant one, ProxHSGD-RS1, in this test.

6.3 Binary classification with nonconvex models

In this example, we consider the following binary classification model involving a nonconvex
objective function and a convex regularizer broadly studied in the literature:

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

`(a>i x, bi) + ψ(x)

}
, (47)

where {(ai, bi)}ni=1 ⊂ Rp × {−1, 1}n is a given training dataset, ψ is a convex regularizer,
and `(·, ·) is a given smooth and nonconvex loss function. By setting fi(w) := `(a>i w, bi) and
choosing a convex regularizer ψ, we obtain the form (2) that satisfies Assumptions 1 and 2.

We consider the following settings for the choice of ` and ψ, where the first three models
were studied in [74], and the last one has been used in [46]:
� Normalized sigmoid loss: `1(s, τ) := 1−tanh(τs) for a given ω > 0 and ψ(x) := λ‖x‖1.

Here, `1(·, τ) is L-smooth with respect to s, where L :≈ 0.7698.

� Nonconvex loss in 2-layer neural networks: `2(s, τ) :=
(

1− 1
1+exp(−τs)

)2
and

ψ(x) := λ‖x‖1. This function is also L-smooth with L = 0.15405.
� Logistic difference loss: `3(s, τ) := ln(1 + exp(−τs)) − ln(1 + exp(−τs − 1)) and
ψ(x) := λ‖x‖1. This function is L-smooth with L = 0.092372.

� Lorenz loss: `4(s, τ) := ln(1 + (τs − 1)2) if τs ≤ 1, and `4(s, τ) = 0, otherwise, and
ψ(x) = λ‖x‖1. This function is L-smooth with L = 4.
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We set the regularization parameter λ := 1
n in all the tests which gives us relatively sparse

solutions. We test the above algorithms on different scenarios ranging from small to large
datasets using different algorithms.

(a) Single-loop schemes with single-sample: Our first experiment for (47) is on single-
loop variants with single sample. For this test, we only choose the losses `3 and `4 with two
well-known datasets: rcv1-binary and real-sim to avoid overloading the paper. The result
of our test on the `3-loss is shown in Figures 6 for three algorithms using the same setting
as in Subsection 6.2, where we attempt to tune the learning rates for three competitors:
ProxSGD1, ProxSGD2, and ProxSVRG.
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Fig. 6 The relative training loss residuals and the absolute gradient mapping norms of (47) with the
nonconvex training loss `3 on the two datasets: Single-loop with single-sample.

For the loss `3 with 20 epochs, ProxSGD1 and ProxSGD2 show their less competitive
performance than our methods and ProxSVRG. While ProxSGD2 is not better than ProxSGD1

as observed in the previous example, ProxSVRG with tuned learning rate works really well
and beats our ProxHSGD-SL. The restarting variants of our methods highly outperform
ProxSGD1 and ProxSGD2 and is slightly better than ProxSVRG.
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Additionally, the results of these six algorithms on the `4-loss using the same setting are
shown in Figure 7.

0 5 10 15 20

10
-3

10
-2

10
-1

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-3

10
-2

10
-1

Training Loss: real-sim

0 5 10 15 20

10
-2

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-3

10
-2

Norm of Gradient:  real-sim

Fig. 7 The relative training loss residuals and the absolute gradient mapping norms of (47) with the
nonconvex training loss `4 on the two datasets: Single-loop with single-sample.

Figure 7 shows improved performance of both ProxSGD1, and ProxSGD2. In this case,
these methods are comparable with our ProxHSGD-SL and ProxSVRG. However, our restarting
variants, ProxHSGD-RS1 and ProxHSGD-RS2 are still slightly better than their competitors.

(b) Complete test on the mini-batch case: Finally, we carry out a more thorough test
on four different losses using two small datasets and two large datasets. We compare five
different methods as shown in Tables 2 and 3. We report the relative training loss residuals,
the absolute norms of gradient mapping, the training accuracy, and the test accuracy. Since
ProxSVRG with the theoretical learning rate 1/3L performs quite poorly, we carry out a grid
search between [1/(15L), 5/(3L)] to find a good learning rate for this experiment.

Table 2 reports the results on the two small datasets: rcv1 train.binary and real-sim

after 20 and 40 epochs, respectively.
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The loss function `1
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms rcv1 train.binary (n = 20, 242, p = 47, 236)
ProxHSGD-SL 8.964e-02 3.409e-02 9.806e-05 3.043e-05 0.949 0.954 0.938 0.947
ProxHSGD-RS1 3.478e-02 1.888e-04 3.541e-05 1.586e-05 0.955 0.960 0.947 0.956
ProxSpiderBoost 1.649e-01 8.281e-02 2.664e-04 8.734e-05 0.944 0.950 0.934 0.938
ProxSVRG 2.918e-01 1.574e-01 1.578e-02 1.212e-02 0.626 0.825 0.004 0.561
ProxSGD2 1.505e-01 7.110e-02 2.446e-04 8.607e-05 0.945 0.951 0.936 0.941

Algorithms real-sim (n = 72, 309, p = 20, 958)
ProxHSGD-SL 4.554e-02 1.742e-02 1.377e-05 4.317e-06 0.977 0.981 0.659 0.647
ProxHSGD-RS1 1.756e-02 1.006e-04 4.699e-06 1.837e-06 0.981 0.984 0.646 0.634
ProxSpiderBoost 1.459e-01 8.004e-02 1.124e-04 3.537e-05 0.966 0.973 0.695 0.670
ProxSVRG 4.150e-02 2.443e-02 3.377e-03 1.783e-03 0.962 0.964 0.963 0.964
ProxSGD2 7.619e-02 3.613e-02 3.333e-05 1.087e-05 0.974 0.978 0.669 0.653

The loss function `2
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms rcv1 train.binary (n = 20, 242, p = 47, 236)
ProxHSGD-SL 9.319e-03 1.229e-04 1.701e-03 9.506e-04 0.944 0.949 0.937 0.943
ProxHSGD-RS1 1.294e-02 2.546e-03 1.999e-03 1.107e-03 0.944 0.948 0.936 0.941
ProxSpiderBoost 2.593e-02 1.072e-02 3.146e-03 1.793e-03 0.940 0.944 0.931 0.936
ProxSVRG 2.927e-02 1.232e-02 3.445e-03 1.934e-03 0.939 0.944 0.929 0.934
ProxSGD2 4.545e-02 2.508e-02 6.103e-03 4.481e-03 0.935 0.940 0.926 0.930

Algorithms real-sim (n = 72, 309, p = 20, 958)
ProxHSGD-SL 8.850e-03 1.103e-04 1.339e-03 7.503e-04 0.968 0.971 0.665 0.650
ProxHSGD-RS1 1.294e-02 2.787e-03 1.626e-03 9.099e-04 0.966 0.970 0.673 0.655
ProxSpiderBoost 2.003e-02 6.730e-03 2.156e-03 1.179e-03 0.963 0.969 0.686 0.662
ProxSVRG 2.644e-02 1.150e-02 2.654e-03 1.521e-03 0.960 0.967 0.697 0.670
ProxSGD2 4.401e-02 2.249e-02 4.208e-03 2.562e-03 0.949 0.962 0.726 0.690

The loss function `3
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms rcv1 train.binary (n = 20, 242, p = 47, 236)
ProxHSGD-SL 5.112e-02 1.915e-02 4.465e-03 2.663e-03 0.934 0.940 0.924 0.929
ProxHSGD-RS1 2.224e-02 6.492e-06 2.842e-03 1.626e-03 0.939 0.943 0.929 0.936
ProxSpiderBoost 2.850e-02 4.161e-03 3.188e-03 1.842e-03 0.938 0.943 0.928 0.935
ProxSVRG 2.797e-02 2.943e-03 3.157e-03 1.775e-03 0.938 0.943 0.928 0.935
ProxSGD2 1.316e-01 9.255e-02 9.639e-03 7.599e-03 0.924 0.929 0.919 0.922

Algorithms real-sim (n = 72, 309, p = 20, 958)
ProxHSGD-SL 2.873e-02 1.020e-02 1.859e-03 1.040e-03 0.962 0.968 0.687 0.662
ProxHSGD-RS1 1.196e-02 9.608e-07 1.114e-03 6.256e-04 0.968 0.970 0.663 0.647
ProxSpiderBoost 3.606e-02 1.442e-02 2.208e-03 1.218e-03 0.960 0.967 0.692 0.666
ProxSVRG 4.091e-02 1.862e-02 2.438e-03 1.403e-03 0.958 0.966 0.698 0.672
ProxSGD2 1.003e-01 5.911e-02 5.591e-03 3.493e-03 0.930 0.952 0.763 0.719

The loss function `4
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms rcv1 train.binary (n = 20, 242, p = 47, 236)
ProxHSGD-SL 1.401e-02 1.819e-04 4.727e-03 2.674e-03 0.959 0.964 0.954 0.958
ProxHSGD-RS1 2.044e-02 4.125e-03 5.745e-03 3.253e-03 0.956 0.962 0.951 0.957
ProxSpiderBoost 2.422e-01 1.322e-01 4.045e-02 2.489e-02 0.926 0.935 0.920 0.927
ProxSVRG 2.635e-01 1.448e-01 4.304e-02 2.679e-02 0.925 0.933 0.920 0.926
ProxSGD2 3.686e-02 1.163e-02 9.593e-03 6.269e-03 0.952 0.959 0.943 0.953

Algorithms real-sim (n = 72, 309, p = 20, 958)
ProxHSGD-SL 9.009e-03 1.070e-04 2.386e-03 1.279e-03 0.981 0.984 0.683 0.676
ProxHSGD-RS1 1.106e-02 1.936e-03 2.450e-03 1.444e-03 0.981 0.984 0.679 0.674
ProxSpiderBoost 1.526e-01 8.450e-02 2.428e-02 1.168e-02 0.930 0.960 0.767 0.707
ProxSVRG 1.883e-01 1.076e-01 3.079e-02 1.558e-02 0.915 0.950 0.797 0.726
ProxSGD2 1.889e-02 6.334e-03 3.569e-03 2.267e-03 0.979 0.982 0.676 0.678

Table 2 The performance of 5 different algorithms on two small datasets: The mini-batch case.
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As can be seen from Table 2, either ProxHSGD-SL or ProxHSGD-RS1 is the best in these
two datasets since they produce lower objective value and smaller gradient mapping norm.
Three competitors ProxSpiderBoost, ProxSVRG, and ProxSGD2 are comparable with our
methods in many cases, but in some other cases, our methods highly outperform these
schemes. While our methods may produce better objective value and gradient mapping
norm, we can observe that due to some overfitting issues, their test accuracy is slower than
those of ProxSGD2 or ProxSVRG. This can be recognized by comparing the training accuracy
and the corresponding test accuracy.

In addition, we run these five algorithms on the two larger datasets: news20.binary and
url combined. The results are reported in Table 3.

Again, we observe the same performance among these methods. Either ProxHSGD-SL or
ProxHSGD-RS1 works best for every case. Three other competiors: ProxSGD, ProxSVRG, and
ProxSpiderBoost work well and are relatively comparable with our methods in some cases,
but they are still slower than our methods overall.

6.4 Feedforward neural network training problem

In the last example, we consider the following composite nonconvex optimization problem
obtained from a fully connected feedforward neural network training task:

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

`
(
FL(x, ai), bi

)
+ ψ(x)

}
, (48)

where we concatenate all the weight matrices and bias vectors of the neural network in one
vector of variable x, {(ai, bi)}ni=1 is a training dataset, FL(·) is a composition between all lin-
ear transforms and activation functions as FL(x, a) := σL(WLσL−1(WL−1σL−2(· · ·σ0(W0a+
µ0) · · · ) + µL−1) + µL), where Wi is a weight matrix, µi is a bias vector, σi is an activation
function, L is the number of layers, `(·) is a cross-entropy loss, and ψ(x) := λ‖x‖1 is the `1-
norm regularizer for some λ > 0 to obtain sparse weights. By defining fi(x) := `(FL(x, ai), bi)
for i = 1, · · · , n, we can formulate (48) into the composite finite-sum setting (2).

We implement mini-batch variants of Algorithm 1 and Algorithm 2, and compare with
two other methods: ProxSVRG and ProxSpiderBoost in TensorFlow using the well-known
dataset mnist to evaluate their performance.

In the first experiment, we use an one-hidden-layer-fully-connected neural network: 784×
128× 10, while in the second test, we increase the number of neurons in the hidden layer to
obtain another fully-connected neural network: 784× 800× 10. The activation function σi
for the hidden layer is ReLU, and for the output layer is soft-max.

Our experiment configuration is as follows. We choose λ := 1
n to obtain sparse weights.

We set γ = 0.95 for all methods and tune η to obtain the best results. Here, we obtain
η = 0.3 for ProxHSGD-SL and ProxHSGD-RS1. We also tune η in ProxSpiderBoost and
ProxSVRG to obtain the best results. We finally get η = 0.12 for ProxSpiderBoost and
η = 0.2 for ProxSVRG. We set b̂ := 100 for our algorithms, b̂ := b

√
nc for ProxSpiderBoost,

and b̂ := bn2/3c for ProxSVRG and set the epoch length m := bn
b̂
c. The performance of the

four algorithms running on the first network is reported in Figure 8.
From Figure 8, both ProxHSGD-SL and ProxHSGD-RS1 work relatively well in this exam-

ple, and outperform two other methods. On one hand, our methods achieve better training
loss values, norms of gradient mapping, and test accuracy than both ProxSpiderBoost and
ProxSVRG. On the other hand, the restarting variant ProxHSGD-RS1 appears to be slightly
better than ProxHSGD-SL.

https://www.tensorflow.org
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The loss function `1
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms news20.binary (n = 19, 996, p = 1, 355, 191)
ProxHSGD-SL 6.614e-02 1.990e-05 7.203e-03 4.471e-03 0.865 0.892 0.687 0.698
ProxHSGD-RS1 9.289e-02 1.764e-02 8.470e-03 5.173e-03 0.850 0.881 0.659 0.705
ProxSpiderBoost 2.932e-01 1.653e-01 1.558e-02 1.259e-02 0.626 0.822 0.003 0.544
ProxSVRG 3.073e-01 1.816e-01 1.301e-02 1.356e-02 0.625 0.812 0.001 0.500
ProxSGD2 2.733e-01 1.426e-01 2.212e-02 1.847e-02 0.649 0.832 0.015 0.585

Algorithms url combined (n = 2, 396, 130, p = 3, 231, 961)
ProxHSGD-SL 5.934e-03 9.244e-05 6.157e-04 3.985e-04 0.968 0.970 0.969 0.971
ProxHSGD-RS1 7.405e-03 1.279e-03 6.615e-04 4.257e-04 0.968 0.970 0.968 0.970
ProxSpiderBoost 2.467e-02 1.396e-02 1.789e-03 1.015e-03 0.964 0.966 0.964 0.966
ProxSVRG 4.581e-02 2.690e-02 3.824e-03 1.992e-03 0.962 0.964 0.963 0.964
ProxSGD2 2.013e-02 1.101e-02 1.478e-03 8.988e-04 0.965 0.967 0.965 0.967

The loss function `2
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms news20.binary (n = 19, 996, p = 1, 355, 191)
ProxHSGD-SL 3.636e-02 2.190e-02 2.977e-03 2.006e-03 0.791 0.826 0.451 0.604
ProxHSGD-RS1 1.055e-02 1.831e-06 1.367e-03 8.706e-04 0.844 0.864 0.638 0.633
ProxSpiderBoost 3.476e-02 2.042e-02 2.849e-03 1.899e-03 0.797 0.829 0.481 0.615
ProxSVRG 3.726e-02 2.203e-02 3.025e-03 1.997e-03 0.788 0.826 0.445 0.606
ProxSGD2 6.471e-02 5.196e-02 7.270e-03 6.595e-03 0.625 0.691 0.003 0.112

Algorithms url combined (n = 2, 396, 130, p = 3, 231, 961)
ProxHSGD-SL 6.055e-03 3.834e-03 3.613e-04 2.308e-04 0.966 0.969 0.966 0.969
ProxHSGD-RS1 2.241e-03 3.597e-08 1.584e-04 1.220e-04 0.971 0.973 0.971 0.973
ProxSpiderBoost 6.305e-03 3.949e-03 3.643e-04 2.210e-04 0.966 0.969 0.966 0.969
ProxSVRG 1.058e-02 6.839e-03 7.481e-04 4.049e-04 0.964 0.965 0.964 0.966
ProxSGD2 1.449e-02 9.151e-03 1.173e-03 6.126e-04 0.962 0.964 0.963 0.964

The loss function `3
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms news20.binary (n = 19, 996, p = 1, 355, 191)
ProxHSGD-SL 4.182e-02 1.890e-02 3.482e-03 2.518e-03 0.691 0.787 0.115 0.451
ProxHSGD-RS1 2.163e-02 7.406e-06 2.636e-03 1.737e-03 0.782 0.819 0.435 0.586
ProxSpiderBoost 2.663e-02 4.377e-03 2.846e-03 1.902e-03 0.765 0.814 0.365 0.564
ProxSVRG 3.048e-02 6.860e-03 3.012e-03 2.002e-03 0.750 0.810 0.314 0.549
ProxSGD2 7.544e-02 6.249e-02 6.868e-03 6.169e-03 0.623 0.625 0.001 0.003

Algorithms url combined (n = 2, 396, 130, p = 3, 231, 961)
ProxHSGD-SL 1.048e-02 5.507e-03 5.294e-04 2.958e-04 0.964 0.966 0.965 0.966
ProxHSGD-RS1 2.601e-03 3.495e-08 1.926e-04 1.193e-04 0.968 0.970 0.969 0.970
ProxSpiderBoost 7.921e-03 3.722e-03 4.022e-04 2.293e-04 0.965 0.967 0.965 0.968
ProxSVRG 1.615e-02 8.911e-03 8.411e-04 4.496e-04 0.963 0.965 0.964 0.965
ProxSGD2 3.364e-02 1.886e-02 1.945e-03 1.005e-03 0.962 0.963 0.962 0.964

The loss function `4
Training Loss Residual ‖Gη(wT )‖ Training Accuracy Test Accuracy
20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep. 20th ep. 40th ep.

Algorithms news20.binary (n = 19, 996, p = 1, 355, 191)
ProxHSGD-SL 4.252e-02 6.483e-04 7.475e-03 4.661e-03 0.883 0.914 0.694 0.669
ProxHSGD-RS1 6.343e-02 1.603e-02 9.342e-03 5.527e-03 0.865 0.901 0.676 0.675
ProxSpiderBoost 2.381e-01 2.017e-01 1.962e-02 1.812e-02 0.624 0.627 0.001 0.004
ProxSVRG 2.426e-01 2.072e-01 2.005e-02 1.828e-02 0.624 0.626 0.001 0.003
ProxSGD2 1.007e-01 3.930e-02 2.068e-02 1.704e-02 0.843 0.884 0.573 0.688

Algorithms url combined (n = 2, 396, 130, p = 3, 231, 961)
ProxHSGD-SL 4.997e-03 7.821e-05 8.616e-04 4.849e-04 0.953 0.956 0.951 0.955
ProxHSGD-RS1 5.779e-03 1.309e-03 8.034e-04 5.427e-04 0.951 0.954 0.950 0.953
ProxSpiderBoost 2.159e-02 1.574e-02 3.250e-03 1.895e-03 0.949 0.947 0.948 0.946
ProxSVRG 4.104e-02 2.319e-02 9.529e-03 3.680e-03 0.954 0.949 0.953 0.948
ProxSGD2 8.181e-03 3.501e-03 1.555e-03 7.355e-04 0.950 0.952 0.949 0.951

Table 3 The performance of 5 different algorithms on two large datasets: The mini-batch case.
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Fig. 8 The performance (training loss, norm of gradient mapping, and test accuracy) of 4 algorithms on
the mnist dataset for solving (48): A fully-connected 784× 128× 10 neural network.
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Fig. 9 The performance (training loss, norm of gradient mapping, and test accuracy) of 4 algorithms on
the mnist dataset for solving (48): A fully-connected 784× 800× 10 neural network.

Besides, the results when running these algorithms on the second neural network are
given in Figure 9. We can observe the same behavior of these four algorithms as in Figure 8,
but ProxHSGD-RS1 does not exhibit clear advantage over ProxHSGD-SL.

A Appendix: Properties of Hybrid Stochastic Estimators

This appendix provides the full proof of our theoretical results in Section 3. However, we also need the
following lemma in the sequel. Hence, we prove it here.

Lemma 7 Given L > 0, δ > 0, ε > 0, and ω ∈ (0, 1), let {γt}mt=0 be the sequence updated by

γm :=
δ

L
and γt :=

δ

L+ εL2
[
ωγt+1 + ω2γt+2 + · · ·+ ω(m−t)γm

] , (49)

for t = 0, · · · ,m− 1. Then

0 < γ0 < γ1 < · · · < γm =
δ

L
and Σm :=

m∑
t=0

γt ≥
δ(m+ 1)

√
1− ω

L
[√

1− ω +
√

1− ω + 4δωε
] . (50)

Proof First, from (49) it is obvious to show that 0 < γ0 < · · · < γm−1 = δ
L(1+εω)

< γm = δ
L

. At the same

time, since ω ∈ (0, 1), we have 1 ≥ ω ≥ ω2 ≥ · · · ≥ ωm. By Chebyshev’s sum inequality, we have

(m− t)
(
ωγt+1 + ω2γt+2 + · · ·+ ωm−tγm

)
≤
(∑m

j=t+1 γi
) (
ω + ω2 + · · ·+ ωm−t

)
≤ ω

1−ω
(∑m

j=t+1 γi
)
.

(51)

From the update (49), we also have
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

εL2γ0(ωγ1 + ω2γ2 + · · ·+ ωmγm) = δ − Lγ0

εL2γ1(ωγ2 + ω2γ3 + · · ·+ ωm−1γm) = δ − Lγ1

· · · · · ·
εL2γm−1ωγm = δ − Lγm−1

0 = δ − Lγm.

(52)

Substituting (51) into (52), we get

ωεL2

1−ω γ0(γ0 + γ1 + · · ·+ γm) ≥ δm−mLγ0 + ωεL2

1−ω γ
2
0

ωεL2

1−ω γ1(γ0 + γ1 + · · ·+ γm) ≥ δ(m− 1)− (m− 1)Lγ1 + ωεL2

1−ω (γ1γ0 + γ2
1)

· · · · · ·
ωεL2

1−ω γm−1(γ0 + γ1 + · · ·+ γm) ≥ δ − Lγm−1 + ωεL2

1−ω (γm−1γ0 + · · ·+ γ2
m−1)

ωεL2

1−ω γm(γ0 + γ1 + · · ·+ γm) ≥ δ − Lγm + ωεL2

1−ω (γmγ0 + · · ·+ γ2
m).

Let us define Σm :=
∑m
t=0 γt and Sm :=

∑m
t=0 γ

2
t . Summing up both sides of the above inequalities, we get

ωεL2

1− ω
Σ2
m ≥

δ(m2 +m+ 2)

2
− L(mγ0 + (m− 1)γ1 + · · ·+ γm−1 + γm) +

ωεL2

2(1− ω)

(
Sm +Σ2

m

)
.

Using again Chebyshev’s sum inequality, we have

mγ0 + (m− 1)γ1 + · · ·+ γm−1 + γm ≤
m2 +m+ 2

2(m+ 1)

(
m∑
t=0

γt

)
=

(m2 +m+ 2)Σm

2(m+ 1)
.

Note that (m + 1)Sm ≥ Σ2
m by Cauchy-Schwarz’s inequality, which shows that Sm + Σ2

m ≥
(
m+2
m+1

)
Σ2
m.

Combining three last inequalities, we obtain the following quadratic inequation in Σm > 0:

mωεL2

(1− ω)
Σ2
m + L(m2 +m+ 2)Σm − δ(m+ 1)(m2 +m+ 2) ≥ 0.

Solving this inequation with respect to Σm > 0, we obtain

Σm ≥
(1−ω)

[√
(m2+m+2)2+

4m(m+1)(m2+m+2)ωεδ
1−ω −(m2+m+2)

]
2εωmL

=
2δ(m+1)

L

[
1+

√
1+

4m(m+1)ωδε

(1−ω)(m2+m+2)

]
≥ 2δ(m+1)

√
1−ω

L[
√

1−ω+
√

1−ω+4δωε]
since

m(m+1)

m2+m+2
< 1.

This proves (50).

A.1 The proof of Lemma 3: Variance estimate with mini-batch
The proof of the first expression of (19) is the same as in Lemma 1. We only prove the second one. Let

∆Bt := 1
bt

∑
i∈Bt

[
Gξi (xt)−Gξi (xt−1)

]
, ∆t := G(xt)−G(xt−1), δ̂t := v̂t −G(xt), and δut := ut −G(xt).

Clearly, we have
EBt [∆Bt ] = ∆t and EB̂t [δut] = 0.

Moreover, we can rewrite v̂t as

δ̂t = βt−1δ̂t−1 + βt−1∆Bt + (1− βt−1)δut − βt−1∆t.

Therefore, using these two expressions, we can derive

E(Bt,B̂t)

[
‖δ̂t‖2

]
= β2

t−1‖δ̂t−1‖2 + β2
t−1EBt

[
‖∆Bt‖2

]
+ (1− βt−1)2EB̂t

[
‖δut‖2

]
+ β2

t−1‖∆t‖2

+ 2β2
t−1〈δ̂t−1,EBt [∆Bt ]〉+ 2βt−1(1− βt−1)〈δ̂t−1,EB̂t [δut]〉 − 2β2

t−1〈δ̂t−1,∆t〉

+ 2βt−1(1− βt−1)E(Bt,B̂t) [〈∆Bt , δut〉]− 2β2
t−1〈EBt [∆Bt ] ,∆t〉

− 2βt−1(1− βt−1)〈EB̂t [δut] ,∆t〉

= β2
t−1‖δ̂t−1‖2 + β2

t−1EBt
[
‖∆Bt‖2

]
+ (1− βt−1)2EB̂t

[
‖δut‖2

]
− β2

t−1‖∆t‖2.
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Similar to the proof of [59, Lemma 2], for the finite-sum case (i.e., |Ω| = n), we can show that

EBt
[
‖∆Bt‖

2
]

=
n(bt − 1)

(n− 1)bt
‖∆t‖2 +

(n− bt)
(n− 1)bt

Eξ
[
‖Gξ(xt)−Gξ(xt−1)‖2

]
.

For the expectation case, we have

EBt
[
‖∆Bt‖

2
]

=

(
1−

1

bt

)
‖∆t‖2 +

1

bt
Eξ
[
‖Gξ(xt)−Gξ(xt−1)‖2

]
.

Using the definition of ρ in Lemma 4, we can unify these two expressions as

EBt
[
‖∆Bt‖

2
]

= (1− ρ) ‖∆t‖2 + ρEξ
[
‖Gξ(xt)−Gξ(xt−1)‖2

]
.

Substituting the last expression into the previous one, we obtain the second expression of (19). �

A.2 The proof of Lemma 4: Upper bound of mini-batch variance

From Lemma 3, taking the expectation with respect to Ft+1 := σ(x0,B0, B̂0, · · · ,Bt, B̂t), we have

E
[
‖v̂t −G(xt)‖2

]
≤ β2

t−1E
[
‖v̂t−1 −G(xt−1)‖2

]
+ ρL2β2

t−1E
[
‖xt − xt−1‖2

]
+ (1− βt−1)2EB̂t

[
‖ut −G(xt)‖2

]
.

In addition, from [59, Lemma 2], we have EB̂t
[
‖ut −G(xt)‖2

]
≤ ρ̂Eξ

[
‖Gξ(xt)−G(xt)‖2

]
= ρ̂σ2

t , where

σ2
t := Eξ

[
‖Gξ(xt)−G(xt)‖2

]
.

Let A2
t := E

[
‖v̂t −G(xt)‖2

]
and B2

t := E
[
‖xt+1 − xt‖2

]
. Then, the above estimate can be upper

bounded as follows:
A2
t ≤ β2

t−1A
2
t−1 + ρL2β2

t−1B
2
t−1 + ρ̂(1− βt−1)2σ2

t .

By following inductive step as in the proof of Lemma 2, we obtain from the last inequality that

A2
t ≤

(
β2
t−1 · · ·β2

0

)
A2

0 + ρL2
(
β2
t−1 · · ·β2

0

)
B2

0 + · · ·+ ρL2β2
t−1B

2
t−1

+ ρ̂
[(
β2
t−1 · · ·β2

1

)
(1− β0)2σ2

1 + · · ·+ (1− βt−1)2σ2
t

]
.

Using the definition of ωt, ωi,t, and St from (16), the previous inequality becomes

A2
t ≤ ωtA2

0 + ρL2
t−1∑
i=0

ωi,tB
2
i + ρ̂St,

which is the same as (20) by substituting the definition of At and Bt above into it. �

B The Proof of Technical Results in Section 4: The Single Sample Case

We provide the full proof of technical results in Section 4.

B.1 The proof of Lemma 2: Key estimate
From the update xt+1 := (1− γt)xt + γtx̂t+1 at Step 8 of Algorithm 1, we have xt+1 − xt = γt(x̂t+1 − xt).
From the L-average smoothness condition in Assumption 2, one can write

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+ L
2
‖xt+1 − xt‖2

= f(xt) + γt〈∇f(xt), x̂t+1 − xt〉+
Lγ2t

2
‖x̂t+1 − xt‖2.

(53)

Using convexity of ψ, we can show that

ψ(xt+1) ≤ (1− γt)ψ(xt) + γtψ(x̂t+1) ≤ ψ(xt) + γt〈∇ψ(x̂t+1), x̂t+1 − xt〉, (54)

where ∇ψ(x̂t+1) ∈ ∂ψ(x̂t+1) is any subgradient of ψ at x̂t+1.
Utilizing the optimality condition of x̂t+1 = proxηtψ(xt − ηtvt), we can show that ∇ψ(x̂t+1) = −vt −

1
ηt

(x̂t+1 − xt) for some ∇ψ(x̂t+1) ∈ ∂ψ(x̂t+1). Substituting this relation into (54), we get

ψ(xt+1) ≤ ψ(xt)− γt 〈vt, x̂t+1 − xt〉 −
γt

ηt
‖x̂t+1 − xt‖2. (55)
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Combining (53) and (55), and using F (x) := f(x) + ψ(x) from (1), we obtain

F (xt+1) ≤ F (xt) + γt 〈∇f(xt)− vt, x̂t+1 − xt〉 −
(
γt

ηt
−
Lγ2

t

2

)
‖x̂t+1 − xt‖2. (56)

For any ct > 0, we can always write

〈∇f(xt)− vt, x̂t+1 − xt〉 = 1
2ct
‖∇f(xt)− vt‖2 + ct

2
‖x̂t+1 − xt‖2

− 1
2ct
‖∇f(xt)− vt − ct(x̂t+1 − xt)‖2.

Utilizing this expression, we can rewrite as

F (xt+1) ≤ F (xt) +
γt

2ct
‖∇f(xt − vt‖2 −

(
γt

ηt
−
Lγ2

t

2
−
γtct

2

)
‖x̂t+1 − xt‖2 −

σ̃2
t

2
.

where σ̃2
t := γt

ct
‖∇f(xt − vt − ct(x̂t+1 − xt)‖2 ≥ 0.

Taking expectation both sides of this inequality over the entire history Ft+1, we obtain

E [F (xt+1)] ≤ E [F (xt)] + γt
2ct

E
[
‖∇f(xt)− vt‖2

]
−
(
γt
ηt
− Lγ2t

2
− γtct

2

)
E
[
‖x̂t+1 − xt‖2

]
− 1

2
E
[
σ̃2
t

]
.

(57)

Next, from the definition of gradient mapping Gη(x) := 1
η

(
x− proxηψ(x− η∇f(x))

)
in (9), we can see that

ηt‖Gηt (xt)‖ = ‖xt − proxηtψ (xt − ηt∇f(xt)) ‖.

Using this expression, the triangle inequality, and the nonexpansive property ‖proxηψ(z) − proxηψ(w)‖ ≤
‖z − w‖ of proxηψ , we can derive that

ηt‖Gηt (xt)‖ ≤ ‖x̂t+1 − xt‖+ ‖proxηtψ(xt − ηt∇f(xt))− x̂t+1‖
= ‖x̂t+1 − xt‖+ ‖proxηtψ(xt − ηt∇f(xt))− proxηtψ(xt − ηtvt)‖
≤ ‖x̂t+1 − xt‖+ ηt‖∇f(xt)− vt‖.

Now, for any rt > 0, the last estimate leads to

η2
tE
[
‖Gηt (xt)‖2

]
≤
(

1 + 1
rt

)
E
[
‖x̂t+1 − xt‖2

]
+ (1 + rt)η

2
tE
[
‖∇f(xt)− vt‖2

]
.

Multiplying this inequality by qt
2
> 0 and adding the result to (57), we finally get

E [F (xt+1)] ≤ E [F (xt)]−
qtη

2
t

2
E
[
‖Gηt (xt)‖2

]
+ 1

2

[
γt
ct

+ (1 + rt)qtη2
t

]
E
[
‖∇f(xt)− vt‖2

]
− 1

2

[
2γt
ηt
− Lγ2

t − γtct − qt
(

1 + 1
rt

) ]
E
[
‖x̂t+1 − xt‖2

]
− 1

2
E
[
σ̃2
t

]
.

Using the definition of θt and κt from (22), i.e.,:

θt :=
γt

ct
+ (1 + rt)qtη

2
t and κt :=

2γt

ηt
− Lγ2

t − γtct − qt
(

1 +
1

rt

)
,

we can simplify this estimate as follows:

E [F (xt+1)] ≤ E [F (xt)]−
qtη

2
t

2
E
[
‖Gηt (xt)‖2

]
+ θt

2
E
[
‖∇f(xt)− vt‖2

]
− κt

2
E
[
‖x̂t+1 − xt‖2

]
− 1

2
E
[
σ̃2
t

]
.

(58)

This is exactly (21). �
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B.2 The proof of Lemma 6: Key estimate of Lyapunov function

From (14), by taking the full expectation on the history Ft+1 and using the L-average smoothness of f , we
can show that

E
[
‖vt+1 −∇f(xt+1)‖2

]
≤ β2

t E
[
‖vt −∇f(xt)‖2

]
+ β2

tL
2E
[
‖xt+1 − xt‖2

]
+ (1− βt)2σ2

t+1

= β2
t E
[
‖vt −∇f(xt)‖2

]
+ β2

t γ
2
t L

2E
[
‖x̂t+1 − xt‖2

]
+ (1− βt)2σ2

t+1,

where σ2
t := E

[
‖∇fζt (xt)−∇f(xt)‖2

]
.

Let V be the Lyapunov function defined by (23). Then, by multiplying the last inequality by
αt+1

2
> 0,

adding the result to (58), and then using this Lyapunov function we can show that

V (xt+1) ≤ V (xt)−
qtη

2
t

2
E
[
‖Gηt (xt)‖2

]
− 1

2
(αt − β2

t αt+1 − θt)E
[
‖vt −∇f(xt)‖2

]
− 1

2
(κt − αt+1β2

t γ
2
t L

2)E
[
‖x̂t+1 − xt‖2

]
+ 1

2
(1− βt)2αt+1σ2

t+1 −
1
2
E
[
σ̃2
t

]
.

(59)

Let us choose γt, ηt, and other parameters such that the conditions (24) hold, i.e.:

αt − β2
t αt+1 − θt ≥ 0 and κt − αt+1β

2
t γ

2
t L

2 ≥ 0.

In this case, (59) can be simplified as follows:

V (xt+1) ≤ V (xt)−
qtη2

t

2
E
[
‖Gηt (xt)‖2

]
+

1

2
αt+1(1− βt)2σ2

t+1.

This proves (25).
Finally, summing up this inequality from t := 0 to t := m, we obtain

m∑
t=0

qtη2
t

2
E
[
‖Gηt (xt)‖2

]
≤ V (x0)− V (xm+1) +

1

2

m∑
t=0

αt+1(1− βt)2σ2
t+1.

Note that V (xm+1) := E [F (xm+1)] +
αm+1

2
E
[
‖vm+1 −∇f(xm+1)‖2

]
≥ E [F (xm+1)] ≥ F ? by Assump-

tion 1 and V (x0) = F (x0)+ α0
2
E
[
‖v0 −∇f(x0)‖2

]
. Using these estimates into the last inequality, we obtain

the key estimate (26). �

B.3 The proof of Theorem 2: The adaptive step-size case

Let {(xt, x̂t)} be generated by Algorithm 1. Let us again choose ct := L, rt := 1 and qt := Lγt
2

and fix

ηt := η ∈ (0, 1
L

) in Lemma 2 as done in Theorem 1. Then, from (22), we have

θt :=
(1 + L2η2)γt

L
and κt :=

(
2

η
− Lγt − 2L

)
γt.

Using these parameters into (21) and summing up the result from t := 0 to t := m, and then using (15)
from Lemma 2, we obtain

E [F (xm+1)] ≤ E [F (x0)] +
L2

2

m∑
t=0

θt

t−1∑
i=0

γ2
i ωi,tE

[
‖x̂i+1 − xi‖2

]
−

1

2

m∑
t=0

κtE
[
‖x̂t+1 − xt‖2

]
−
η2L

4

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
−

m∑
t=0

E [σ̃t] +
1

2

m∑
t=0

θtωtσ̄
2 +

1

2

m∑
t=0

θtSt,

where σ̄2 := E
[
‖v0 −∇f(x0)‖2

]
≥ 0, σ̃2

t :=
γt

2
‖∇f(xt)− vt −L(x̂t+1 − xt)‖2 ≥ 0, and ωi,t, ωt, and St are

defined in Lemma 2.
By ignoring the nonnegative term E

[
σ̃2
t

]
, and using the expression of θt and κt above, we can further

estimate the last inequality as follows:
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E [F (xm+1)] ≤ E [F (x0)]− η2L
4

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
+

(1+L2η2)σ̄2

2L

m∑
t=0

ωtγt +
(1+L2η2)

2L

m∑
t=0

γtSt + Tm
2
,

(60)

where Tm is defined as follows:

Tm := L(1 + L2η2)

m∑
t=0

γt

t−1∑
i=0

ωi,tγ
2
i E
[
‖x̂i+1 − xi‖2

]
−

m∑
t=0

γt

(
2

η
− 2L− Lγt

)
E
[
‖x̂i+1 − xi‖2

]
. (61)

Now, with the choice of βt = β := 1− 1√
b̃(m+1)

∈ (0, 1), we can easily show that ωt = β2t, ωi,t = β2(t−i),

and st :=
(∏t

j=i+2 β
2
j−1

)
(1− βi)2 = (1− β)2

[
1−β2t

1−β2

]
< 1−β

1+β
due to Lemma 2.

Let w2
i := E

[
‖x̂i+1 − xi‖2

]
. To bound the quantity Tm defined by (61), we note that

m∑
t=1

γt

t−1∑
i=0

β2(t−i)γ2
i w

2
i = β2γ2

0

[
γ1 + β2γ2 + · · ·+ β2(m−1)γm

]
w2

0

+ β2γ2
1

[
γ2 + β2γ3 + · · ·+ β2(m−2)γm

]
w2

1 + · · ·

+ β2γ2
m−2

[
γm−1 + β2γm

]
w2
m−2 + β2γ2

m−1γmw
2
m−1.

Using δ := 2
η
− 2L, we can write Tm from (61) as

Tm = γ0

[
L(1 + L2η2)β2γ0

[
γ1 + β2γ2 + · · ·+ β2(m−1)γm

]
− (δ − Lγ0)

]
w2

0

+ γ1

[
L(1 + L2η2)β2γ1

[
γ2 + β2γ3 + · · ·+ β2(m−2)γm

]
− (δ − Lγ1)

]
w2

1 + · · ·

+ γm−1

[
L(1 + L2η2)β2γm−1γm − (1− Lγm−1)

]
w2
m−1 − γm(δ − Lγm)w2

m.

To guarantee Tm ≤ 0, from the last expression of Tm, we can impose the following condition:

L(1 + L2η2)β2γ0

[
γ1 + β2γ2 + · · ·+ β2(m−1)γm

]
− (δ − Lη0) = 0

L(1 + L2η2)β2γ1

[
γ2 + β2γ3 + · · ·+ β2(m−2)γm

]
− (δ − Lη1) = 0

· · · · · · · · ·
L(1 + L2η2)β2γm−1γm − (δ − Lγm−1) = 0

−(1− Lηm) = 0.

(62)

It is obvious to show that the condition (62) leads to the following update of γt:

γm :=
δ

L
and γt :=

δ

L+ L(1 + L2η2)
[
β2γt+1 + β4γt+2 + · · ·+ β2(m−t)γm

] , t = 0, · · · ,m− 1,

which is exactly (33).

(a) Since β = 1− 1
[b̃(m+1)]1/2

, we have

1

[b̃(m+ 1)]1/2
= 1− β ≤ 1− β2 ≤

2

[b̃(m+ 1)]1/2
.

Moreover, since η ∈ (0, 1
L

), with ε := 1+L2η2

L
, δ := 2

η
− 2L, and ω := β2 ∈ (0, 1), using the last inequalities,

we can easily show that

√
1− ω +

√
1− ω + 4δωε =

√
1− β2 +

√
1− β2 +

4δβ2(1 + L2η2)

L
≤ 2
√

2

(
1

[b̃(m+ 1)]1/4
+

√
δ

L

)
. (63)

Using (63),
√

1− ω =
√

1− β2 ≥ 1
(b̃(m+1))1/4

, and ε = 1+L2η2

L
into (50) of Lemma 7, we can derive
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Σm :=

m∑
t=0

γt ≥
δ(m+ 1)

2
√

2
(
L+
√
Lδ[b̃(m+ 1)]1/4

) . (64)

Next, since ωt = β2t, by Chebyshev’s sum inequality, we have

m∑
t=0

ωtγt =

m∑
t=0

β2tγt ≤
Σm

(m+ 1)
(1 + β2 + · · ·+ β2m) ≤

Σm

(m+ 1)(1− β2)
.

Utilizing this estimate, σ̄2 := E
[
‖v0 −∇f(x0)‖2

]
≤ σ2

b̃
, and St ≤ σ2st ≤ (1−β)σ2

1+β
into (60), and noting

that Tm ≤ 0, we can further upper bound it as

η2L

4

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
≤ F (x0)− E [F (xm+1)] +

(1 + L2η2)σ2Σm

2L(1− β2)(m+ 1)b̃
+

(1 + L2η2)(1− β)σ2Σm

2L(1 + β)
.

By Assumption 1, we have E [F (xm+1)] ≥ F ?. Substituting this bound into the last estimate and then
multiplying the result by 4

Lη2Σm
we obtain

1

Σm

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
≤

4

Lη2Σm
[F (x0)− F ?] +

2σ2(1 + L2η2)

L2η2(1 + β)

[
1

b̃(m+ 1)(1− β)
+ (1− β)

]
.

Since β = 1− 1
b̃1/2(m+1)1/2

, we have 1
b̃(m+1)(1−β)

+ (1− β) = 2
b̃1/2(m+1)1/2

. Utilizing this expression, (64),

1 + η2L2 ≤ 2, and β ∈ [0, 1], we can further upper bound the last estimate as

1

Σm

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
≤

8
√

2
(
L+
√
δL[b̃(m+ 1)]1/4

)
Lη2δ(m+ 1)

[F (x0)− F ?] +
8σ2

L2η2[b̃(m+ 1)]1/2
. (65)

In addition, due to the choice of xm ∼ Up
(
{xt}mt=0

)
, we have E

[
‖Gη(xm)‖2

]
=

1

Σm

m∑
t=0

γtE
[
‖Gη(xt)‖2

]
.

Combining this expression and (65), we obtain (34).

(b) Let us choose b̃ := c21(m + 1)1/3 for some constant c1 > 0. Since β = 1 − 1
[b̃(m+1)]1/2

, to guarantee

β ≥ 0, we need to impose c1 ≥ 1
(m+1)2/3

. With this choice of b̃, (34) reduces to

E
[
‖Gη(xm)‖2

]
≤

8

L2η2(m+ 1)2/3

[√
2L
(
L+
√
c1Lδ

)
δ

[
F (x0)− F ?

]
+
σ2

c1

]
.

Let us denote by ∆0 := 8
L2η2

[√
2L(L+

√
c1Lδ)

δ

[
F (x0)− F ?

]
+ σ2

c1

]
. Then, similar to the proof of Theorem 1,

we can show that the number of iterations m is at most m :=

⌊
∆

3/2
0
ε3

⌋
, and the total number Tm of stochastic

gradient evaluations ∇fξ(xt) is at most Tm :=

⌊
c21∆

1/2
0
ε

+
3∆

3/2
0
ε3

⌋
. �

B.4 The proof of Theorem 3: The restarting variant
(a) Since we use the adaptive variant of Algorithm 1 as stated in Theorem 2 for the inner loop of Algorithm 2,
from (65), we can see that at each stage s, the following estimate holds

1

Σm

m∑
t=0

γtE
[
‖Gη(x

(s)
t )‖2

]
≤

8
√

2b̃1/4
(
L+
√
Lδ
)

Lη2δ(m+ 1)3/4
E
[
F (x

(s)
0 )− F (x

(s)
m+1)

]
+

8σ2

L2η2[b̃(m+ 1)]1/2
. (66)

where we use the superscript “(s)” to indicate the stage s in Algorithm 2. Summing up this inequality

from s := 1 to s := S, and then multiplying the result by 1
S

and using E
[
F (x

(S)
m+1)

]
≥ F ? > −∞, and

E
[
‖Gη(xT )‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

E
[
‖Gη(x

(s)
t )‖2

]
, we get (35), i.e.:
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E
[
‖Gη(xT )‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

E
[
‖Gη(x

(s)
t )‖2

]
≤

8
√

2b̃1/4
(
L+
√
Lδ
)

Lδη2S(m+ 1)3/4

[
F (x(0))− F ?

]
+

8σ2

L2η2[b̃(m+ 1)]1/2
.

(67)

(b) Let ∆F := F (x(0)) − F ? > 0 and choose b̃ := c21(m + 1) for some constant c1 > 0. Since β =

1− 1
[b̃(m+1)]1/2

∈ (0, 1), we need to choose c1 such that c1 ≥ 1
m+1

.

Now, for any tolerance ε > 0, to guarantee E
[
‖Gη(xT )‖2

]
≤ ε2, from (67), we require

8
√

2b̃1/4
(
L+
√
Lδ
)
∆F

Lδη2S(m+ 1)3/4
+

8σ2

L2η2[b̃(m+ 1)]1/2
=

8
√

2c1
(
L+
√
Lδ
)
∆F

Lδη2S(m+ 1)1/2
+

8σ2

L2η2c1(m+ 1)
≤ ε2.

Let us break this inequality into two parts as

8
√

2c1
(
L+
√
Lδ
)
∆F

Lδη2S(m+ 1)1/2
=
ε2

2
and

8σ2

L2η2c1(m+ 1)
≤
ε2

2
.

Then, we have

S =
16
√

2c1
(
L+
√
Lδ
)
∆F

Lδη2(m+ 1)1/2ε2
and m+ 1 ≥

16σ2

L2η2c1ε2
.

Let us choose m+ 1 = 16
L2η2c1

· max{1,σ2}
ε2

. Then, m+ 1 ≥ 16
L2η2c1ε2

, and we can set

S :=
16
√

2c1
(
L+
√
Lδ
)
∆F

Lδη2ε2
·
Lη
√
c1ε

4
=

4
√

2c1
(
L+
√
Lδ
)
∆F

δηε
.

This leads to (36). Moreover, we can also show that

(m+ 1)S =
16
√

2c1(L+
√
Lδ)∆F

Lδη2ε2

√
m+ 1 =

64
√

2(L+
√
Lδ)∆F

L2η3δ
·

max {1, σ}
ε3

.

Consequently, the total number of stochastic gradient evaluations ∇fξ(xt) is at most

T∇f :=
[
b̃+ 3(m+ 1)

]
S = (c21 + 3)(m+ 1)S = 64

√
2(c21 + 3)

(L+
√
Lδ)∆F

L2η3δ
· max{1,σ}

ε3

= O
(

max {σ, 1} · ∆F
ε3

)
.

Since we choose b̃ := 16c1
L2η2

· max{1,σ2}
ε2

, the final complexity is O
(

max{1,σ2}
ε2

+
max{1,σ}

ε3

)
, where other

constants independent of σ and ε are hidden. The total number of proximal operators proxηψ is at most

Tprox := S(m+ 1) =
64
√

2(L+
√
Lδ)∆F

L2η3δ
·

max {1, σ}
ε3

= O
(

max {σ, 1} ·
∆F

ε3

)
.

The estimate (37) follows from the bound of T∇f above and the choice of b̃. �

C The Proof of Technical Results in Section 5: The Mini-batch Case

This appendix presents the full proof of the results in Section 5 for the mini-batch case.

C.1 The proof of Theorem 4: The single-loop variant
Using (19) from Lemma 3 with G := ∇f and taking full expectation and using a constant weight βt := β ∈
(0, 1) and bt := b ∈ N+, we have

E
[
‖v̂t+1 −∇f(xt+1)‖2

]
≤ β2E

[
‖v̂t −∇f(xt)‖2

]
+ ρβ2E

[
‖∇fξ(xt+1)−∇fξ(xt)‖2

]
+ (1− β)2E

[
‖ut+1 −∇f(xt+1)‖2

]
,

where ρ := 1
b

since we solve (1).
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Since E
[
‖∇fξ(xt+1)−∇fξ(xt)‖2

]
≤ L2E

[
‖xt+1 − xt‖2

]
≤ L2γ2

t E
[
‖x̂t+1 − xt‖2

]
by Assumption 2

and E
[
‖ut+1 −∇f(xt+1)‖2

]
≤ σ2

b̂
by Assumption 3 and [59, Lemma 2], the last estimate leads to

E
[
‖v̂t+1 −∇f(xt+1)‖2

]
≤ β2E

[
‖v̂t −∇f(xt)‖2

]
+
β2γ2

t L
2

b
E
[
‖x̂t+1 − xt‖2

]
+

(1− β)2σ2

b̂
. (68)

Next, let us choose ηt := η > 0, γt := γ > 0, ct := L, rt := 1, and qt := Lγ
2
> 0 in Lemma 2. Then, we have

θt = θ =
(1+L2η2)γ

L
> 0 and κt = κ =

(
2
η
− Lγ − 2L

)
γ > 0. Using these values into (21), we obtain

E [F (xt+1)] ≤ E [F (xt)]−
γη2L

4
E
[
‖Gη(xt)‖2

]
+
θ

2
E
[
‖∇f(xt)− v̂t‖2

]
−
κ

2
E
[
‖x̂t+1 − xt‖2

]
.

Multiplying (68) by α
2

for some α > 0, and adding the result to the above estimate, we obtain

E [F (xt+1)] +
α

2
E
[
‖v̂t+1 −∇f(xt+1)‖2

]
≤ E [F (xt)] +

(αβ2 + θ)

2
E
[
‖v̂t −∇f(xt)‖2

]
−
γη2L

4
E
[
‖Gη(xt)‖2

]
+
α(1− β)2σ2

2b̂

−
1

2

(
κ− αβ2γ2L2

b

)
E
[
‖xt − xt−1‖2

]
.

Using the Lyapunov function V defined by (23), the last estimate leads to

V (xt+1) ≤ V (xt)−
γη2L

4
E
[
‖Gη(xt)‖2

]
+
α(1− β)2σ2

2b̂

−
1

2

(
κ−

αβ2γ2L2

b

)
E
[
‖xt − xt−1‖2

]
−

1

2

[
α(1− β2)− θ

]
E
[
‖v̂t −∇f(xt)‖2

]
.

If we impose the following conditions

κ =

(
2

η
− Lγ − 2L

)
γ ≥

αβ2γ2L2

b
and θ =

(1 + L2η2)

L
γ ≤ α(1− β2), (69)

then we get from the last inequality that

V (xt+1) ≤ V (xt)−
γη2L

4
E
[
‖Gη(xt)‖2

]
+
α(1− β)2σ2

2b̂
. (70)

The conditions (69) can be simplified as

2

η
− 2L− Lγ ≥

αγβ2L2

b
and

(1 + L2η2)

L
γ ≤ α(1− β2). (71)

Moreover, by induction, V (xm+1) ≥ F ?, and V (x0) := F (x0) + α
2
E
[
‖v̂0 −∇f(x0)‖2

]
≤ F (x0) + ασ2

2b̃
, we

can further derive from (70) that

1

m+ 1

m∑
t=0

E
[
‖Gη(xt)‖2

]
≤

4

Lη2γ(m+ 1)
[F (x0)− F ?] +

2ασ2

Lη2γ

[
1

b̃(m+ 1)
+

(1− β)2

b̂

]
. (72)

By minimizing the last term on the right-hand side of (72) w.r.t. β ∈ [0, 1], we get β := 1 − b̂1/2

[b̃(m+1)]1/2
.

Clearly, with this choice of β if 1 ≤ b̂ ≤ b̃(m+ 1), then β ∈ [0, 1).

(a) Next, we update η := 2
L(3+γ)

. Then, since γ ∈ [0, 1] we have 1
2L
≤ η ≤ 2

3L
. Moreover, we have

2
η
− 2L − Lγ = L and 1+L2η2

L
≤ 13

9L
. In addition, noting that since β ∈ [0, 1), we have 1 − β2 ≥ 1 − β =

b̂1/2

[b̃(m+1)]1/2
. Consequently, the second condition of (71) holds if we choose γ as

0 < γ ≤ γ̄ :=
9Lαb̂1/2

13b̃1/2(m+ 1)1/2
.
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Since β ∈ [0, 1], the first condition of (71) holds if we choose 0 < γ ≤ γ̄ := b
Lα

. Combining both conditions

on γ, we get b
Lα

= 9Lαb̂1/2

13b̃1/2(m+1)1/2
, leading to α :=

√
13b̃1/4b1/2

3Lb̂1/4(m+1)1/4
. Therefore, we can update γ as

γ :=
3c0b̂1/4b1/2√

13[b̃(m+ 1)]1/4
,

for some c0 > 0. Since 1 ≤ b̂ ≤ b̃(m+ 1), we have γ ≤ 3c0b
1/2

√
13

. If we choose 0 < c0 ≤
√

13
3b1/2

, then γ ∈ (0, 1].

Consequently, we obtain (41).

(b) Now, we note that the choice of α and γ also implies that

α

γ
=

13b̃1/2(m+ 1)1/2

9Lb̂1/2
and

1

γ
=

√
13b̃1/4(m+ 1)1/4

3c0b̂1/4b1/2
.

In addition, since xm ∼ U
(
{xt}mt=0

)
, we have E

[
‖Gη(xm)‖2

]
= 1

m+1

∑m
t=0 E

[
‖Gη(xt)‖2

]
. Using these

expressions and L2η2 ≥ 1
4

into (72), we finally get

E
[
‖Gη(xm)‖2

]
≤

16
√

13Lb̃1/4

3c0b̂1/4b1/2(m+ 1)3/4
[F (x0)− F ?] +

208σ2

9b̂1/2b̃1/2(m+ 1)1/2
,

which proves (42).

Let us choose b = b̂ ∈ N+ and b̃ := c21[b(m+ 1)]1/3 for some c1 > 0. Then (42) reduces to

E
[
‖Gη(xm)‖2

]
≤

16

3[b(m+ 1)]2/3

[√
13c1L

c0
[F (x0)− F ?] +

13σ2

3c1

]
.

Denote ∆0 := 16
3

[√
13c1L
c0

[F (x0)− F ?] + 13σ2

3c1

]
. For any tolerance ε > 0, to guarantee E

[
‖Gη(xm)‖2

]
≤ ε2,

we need to impose ∆0

[b(m+1)]2/3
= ε2. This implies b(m + 1) =

∆
3/2
0
ε3

, which also leads to m + 1 =
∆

3/2
0
bε3

.

Therefore, the maximum number of iterations is at most m :=

⌊
∆

3/2
0
bε3

⌋
. This is also the number of proximal

operations proxηψ .

The number of stochastic gradient evaluations ∇fξ(xt) is at most Tm := b̃+3(m+1)b =
c21∆

1/2
0
ε

+
3∆

3/2
0
ε3

.

Finally, since 1 ≤ b = b̂ ≤ b̃(m + 1) = c21b
1/3(m + 1)4/3, we have b ≤ c31(m + 1)2, which is equivalent

c1 ≥ b1/3

(m+1)2/3
. In addition, since b̃ := c21[b(m+ 1)]1/3 and b = b̂, we have γ := 3c0b

2/3
√

13c1(m+1)1/3
. �

C.2 The proof of Theorem 5: The restarting mini-batch variant
(a) Similar to the proof of Theorem 2, summing up (21) from t := 0 to t := m and using (20) with ρ := 1

b

and ρ̂ := 1

b̂
from Lemma 4, we obtain

E
[
F (x

(s)
m+1)

]
≤ E

[
F (x

(s)
0 )
]

+
L2

2b

m∑
t=0

θt

t−1∑
i=0

γ2
i ωi,tE

[
‖x̂(s)
i+1 − x

(s)
i ‖

2
]

−
1

2

m∑
t=0

κtE
[
‖x̂(s)
t+1 − x

(s)
t ‖

2
]
−

m∑
t=0

γtη2

2
E
[
‖Gη(x

(s)
t )‖2

]
+

1

2

m∑
t=0

θtωtE
[
‖v̂(s)

0 −∇f(x
(s)
0 )‖2

]
+

1

2b̂

m∑
t=0

θtSt,

(73)

where γt, η, κt, θt, ωi,t, ωt, and St are defined in Lemma 2.

Let us fix ct := L, rt := 1, qt := Lγt
2

, and βt := β ∈ [0, 1]. Then θt =
(1+L2η2)

L
γt and κt =

γt
(

2
η
− 2L− Lγt

)
as before. Moreover, ωt = β2t, ωi,t = β2(t−i), and st = (1− β)2

[
1−β2t

1−β2

]
< 1−β

1+β
due to

Lemma 2, and E
[
‖v̂(s)

0 −∇f(x
(s)
0 )‖2

]
≤ σ2

b̃
.

Using this configuration and noting that x(s) = x
(s)
m+1 and x(s−1) = x

(s)
0 , following the same argument

as (65), (73) reduces to
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E
[
F (x(s))

]
≤ E

[
F (x(s−1))

]
− Lη2

4

m∑
t=0

γtE
[
‖Gη(x

(s)
t )‖2

]
+

(1+L2η2)σ2

2L(1+β)

[
1

b̃(m+1)(1−β)
+

(1−β)

b̂

]
Σm + T̂m

2
,

(74)

where T̂m is defined as follows:

T̂m :=
L(1+L2η2)

b

∑m
t=0 γt

∑t−1
i=0 β

2(t−i)γ2
i E
[
‖x̂(s)
i+1 − x

(s)
i ‖

2
]

−
∑m
t=0 γt

(
2
η
− 2L− Lγt

)
E
[
‖x̂(s)
i+1 − x

(s)
i ‖

2
]
.

(75)

Similar to the proof of (33), if we choose η ∈ (0, 1
L

), set δ := 2
η
− 2L > 0, and update γ as in (43):

γm :=
δ

L
and γt :=

δb

Lb+ L(1 + L2η2)
[
β2γt+1 + β4γt+2 + · · ·+ β2(m−t)γm

] ,
then T̂m ≤ 0. Moreover, since β ∈ [0, 1] and 1 + L2η2 ≤ 2, (74) can be simplified as

E
[
F (x(s))

]
≤ E

[
F (x(s−1))

]
−
Lη2

4

m∑
t=0

γtE
[
‖Gη(x

(s)
t )‖2

]
+
σ2

L

[
1

b̃(m+ 1)(1− β)
+

(1− β)

b̂

]
Σm.

Summing up this inequality from s := 1 to s := S and noting that F (x(S)) ≥ F ?, we obtain

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(x

(s)
t )‖2

]
≤

4
[
F (x(0))− F ?

]
Lη2SΣm

+
4σ2

L2η2

[
1

b̃(m+ 1)(1− β)
+

(1− β)

b̂

]
. (76)

Let us first choose β := 1− b̂1/2

b̃1/2(m+1)1/2
. Then, 1− β2 ≤ 2b̂1/2

b̃1/2(m+1)1/2
and

(1+L2η2)β2

L
≤ 2

L
. Using these

inequalities, similar to the proof of (63), we can upper bound

L

√1− β2 +

√
1− β2 +

4(1 + L2η2)β2δ

Lb

 ≤ 2
√

2

[
Lb̂1/4b1/2 + [b̃(m+ 1)]1/4

√
Lδ

b1/2[b̃(m+ 1)]1/4

]
.

Using this bound, the update rule (43) of γt, and
√

1− β2 ≥ b̂1/4

[b̃(m+1)]1/4
, we apply Lemma 7 with ω := β2

and ε :=
(1+L2η2)

Lb
to obtain

Σm :=
m∑
t=0

γt ≥
δ(m+ 1)

√
1− β2

L
[√

1− β2 +

√
1− β2 +

4(1+L2η2)β2δ
Lb

] ≥ δ(m+ 1)b̂1/4b1/2

2
√

2
[
Lb̂1/4b1/2 + [b̃(m+ 1)]1/4

√
Lδ
] .

Utilizing this bound into (76) and noting that xT ∼ Up

(
{x(s)
t }s=1→S

t=0→m

)
, we can upper bound it as

E
[
‖Gη(xT )‖2

]
≤

8
√

2
[
Lb̂1/4b1/2 + [b̃(m+ 1)]1/4

√
Lδ
]

Lη2δS(m+ 1)b̂1/4b1/2

[
F (x(0))− F ?

]
+

8σ2

L2η2[b̂b̃(m+ 1)]1/2
,

which is exactly (44).

(b) Now, let us choose b̂ = b ∈ N+ and assume that b̃ := c21b(m + 1) for some c1 > 0. In this case, the
right-hand side of (44) can be upper bounded as

RT :=
8
√

2
[
Lb3/4 + [b̃(m+1)]1/4

√
Lδ
]

Lη2δS(m+1)b3/4

[
F (x(0))− F ?

]
+ 8σ2

L2η2c1b(m+1)

= 8
√

2∆F
η2δS(m+1)

+ 8
√

2c1∆F√
Lδη2S(m+1)1/2b1/2

+ 8σ2

L2η2c1b(m+1)
,

where ∆F := F (x(0))− F ? > 0.
For any ε > 0, to guarantee E

[
‖Gη(xT )‖2

]
≤ ε2, we impose RT ≤ ε2. From the upper bound of RT ,

we can break its relaxed condition into three parts as
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8
√

2∆F

η2δS(m+ 1)
≤
ε2

3
,

8
√

2c1∆F√
Lδη2S(m+ 1)1/2b1/2

=
ε2

3
, and

8σ2

L2η2c1b(m+ 1)
≤
ε2

3
. (77)

Let us choose m+ 1 := 24
c1L2η2bε2

max
{
σ2, 1

}
. Then, b̃ = 24c1

L2η2ε2
max

{
σ2, 1

}
. Moreover, the last condition

of (77) holds and m+ 1 ≥ 24
c1L2η2bε2

. Hence, the second condition of (77) leads to

S =
24
√

2c1∆F√
Lδη2ε2

1√
b(m+ 1)

≤
4
√

3Lc1∆F√
δηε

.

From the second condition of (77), we also have

(m+ 1)bS =
24
√

2c1∆F

η2
√
Lδε2

(m+ 1)1/2b1/2 =
96
√

3∆F

η3L
√
Lδε3

max {1, σ} .

From this expression, to guarantee the first condition of (77), we need to impose

(m+ 1)S =
96
√

3∆F

η3L
√
Lδbε3

max {1, σ} ≥
24
√

2∆F

η2δε2
,

which leads to 1 ≤ b ≤ 2
√

6δ

L
√
Lηε

.

Finally, the total number of stochastic gradient evaluations ∇fξ(xt) is at most

T∇f :=
[
b̃+ 3b(m+ 1)

]
S =

⌊
(c21 + 3)b(m+ 1)S

⌋
=
⌊
(c21 + 3) 96

√
3∆F

η3L
√
Lδε3

max {1, σ}
⌋
.

The total number of proximal operations proxηψ is at most Tprox = (m+ 1)S =
⌊

96
√

3∆F
η3L
√
Lδbε3

max {1, σ}
⌋
. �
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