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ABSTRACT

While deepfake detection methods have seen significant progress, current ap-
proaches focus on detecting fully synthetic or partially manipulated images sep-
arately, and often rely on large amounts of labeled training data. However, in
real world, deepfakes can originate from any paradigm. In this work, we propose
a generalized deepfake detection method, DeFake (Data-Efficient Adaptation for
Generalized Deepfake Detection) which can detect both fully synthetic and par-
tially manipulated images simultaneously. We reframe the generalization problem
as a data-efficient adaptation of a base synthetic image detector to the task of par-
tial manipulation detection using limited training samples, without degrading the
original synthetic image detection task. We introduce three novel modules: (a)
Noise-aware Patch Enhancement (NPE) which captures local manipulation arti-
facts present in partially manipulated images, (b) Adaptive Score Aggregation
(ASA) which modulates the influence of the global image-level semantics and
the local patch-level artifacts, and (c) Multi-scale alignment which enhances dis-
criminative learning at both image and patch-level. The proposed modules are
generalizable and can be integrated into various base models. Extensive experi-
ments on 14 datasets across both paradigms demonstrate the effectiveness of our
proposed DeFake, outperforming state-of-the-art approaches in both settings.

1 INTRODUCTION

Recent advances in deep learning have enabled generative models, such as GANs and diffusion
models, to create photorealistic synthetic images (Masood et al., 2023). While useful for entertain-
ment and digital art, these methods can also be exploited for misinformation and privacy breaches,
posing serious threats to media integrity and public trust.

Existing deepfake detectors typically fall into two distinct categories: (1) fully synthetic image de-
tectors, which identify completely generated images (Ojha et al., 2023; Liu et al., 2024), and (2) par-
tially manipulated image detectors, which can detect forgeries in otherwise pristine images (Guillaro
et al., 2023; Li et al., 2024). These methods are trained on large-scale datasets and aim to improve
generalization to unseen generation models within their respective categories. However, real-world
deepfakes can originate from either paradigm, and current detectors overlook generalization across
both. As such images are often visually indistinguishable from authentic ones, there is a need for
generalized models that can seamlessly detect both fully synthetic and partially manipulated content.

Recently, large-scale pretrained models like CLIP have shown strong potential for fully synthetic
image detection. For example, UniFD (Ojha et al., 2023) leveraged CLIP’s image encoder to dis-
tinguish real from fake images, while later works introduced adapter modules for forgery-specific
features (Liu et al., 2024; Chen et al., 2025). For partially manipulated image detection, methods of-
ten train decoders on aggregated features to produce pixel-wise segmentation maps (Guillaro et al.,
2023; Smeu et al., 2025). These approaches focus on local edge-related artifacts, whereas fully
synthetic detection relies on global representations—limiting cross-task generalization (Fig. 2).

To understand this limitation better, we analyze features from three CLIP-based synthetic detectors
on a dataset mixing real, fully synthetic (ProGAN), and partially manipulated images (Fig. 1). We
observe that synthetic images form a well-separated cluster from real ones, whereas partially ma-
nipulated images heavily overlap with real images. Since the majority of patches in such images
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(a) UniFD
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(b) FatFormer (c) ForgeLens
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Partially manipulated images Real images

Figure 1: t-SNE visualization of CLIP ViT-L/14 based fully synthetic detectors (a) UniFD
(CVPR’23), (b) FatFormer (CVPR’24), (c) ForgeLens (ICCV’25) on a mix of fully synthetic (Pro-
GAN), partially manipulated (CASIA1, DSO-1) and real images. These methods demonstrate good
separability between real and fully synthetic images, but show considerable overlap between par-
tially manipulated and real images, indicating poor generalization in fine-grained forgery detection.

remain unaltered, the aggregated global embedding is dominated by real patches, diluting the con-
tribution of manipulated regions. Consequently, detectors that rely primarily on global-level cues
fail to produce a discriminative separation between partially manipulated and real images. Training
a unified model on both categories could, in principle, capture global and local signals. In practice,
this is limited by (i) the cost of large-scale pixel-level annotations, (ii) redundant training, as fully
synthetic detectors already learn strong holistic forgery cues, partly relevant to manipulated images.
The challenge is not to learn entirely new features, but to calibrate the feature space, amplifying
manipulated-patch signals while retaining global discriminability.
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Figure 2: Scatter plot of average accuracy on fully
synthetic (x-axis) and partially manipulated (y-
axis) datasets. Existing deepfake detectors show
limited cross-task generalization, while our pro-
posed approach generalizes across both tasks si-
multaneously, achieving the highest average accu-
racy and harmonic mean.

To this end, we propose DeFake (Data-Efficient
Adaptation for Generalized Deepfake Detec-
tion), where we reframe the problem as a data-
efficient adaptation task. Instead of retraining
on large combined datasets—which can over-
write the global discriminability acquired from
synthetic images—we adapt the CLIP-based
model—originally trained for fully synthetic
image detection—to the new task of partial ma-
nipulation detection using only a few training
samples. By restricting adaptation to a small
training set, the model is encouraged to pre-
serve its base performance on synthetic detec-
tion, while making minimal but targeted adjust-
ments to partially manipulated images.

The proposed framework comprises three novel
modules: (1) Noise-aware Patch Enhancement
module, which guides the CLIP-based encoder
to capture subtle tampering artifacts by enrich-
ing visual patch representations through cross-attention fusion with learned noise patterns; (2) Adap-
tive Score Aggregation module, which balances global semantic coherence with local patch-level
cues, enabling the model to retain its original capability for synthetic image detection. To achieve
this, we employ a lightweight network that dynamically modulates the contributions of global image-
level and local patch-level similarity scores based on the input image features. This allows the model
to seamlessly handle both fully synthetic images (which require global analysis) and partially ma-
nipulated images (which require attention to local artifacts), without catastrophic forgetting; and
(3) Multi-Scale Alignment module, which uses contrastive learning to enhance discrimination at
both the image and patch levels. Our approach significantly outperforms the state-of-the-art for both
paradigms, while requiring minimal training data, achieving the highest average accuracy of 78.30%
and harmonic mean (HM) of 77.58%. Overall, we make the following contributions:
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• We propose a generalized framework, DeFake, that can simultaneously detect both fully
synthetic and partially manipulated images using minimal training data, by formulating the
problem as a data-efficient adaptation task.

• We introduce three novel modules: (i) Noise-aware Patch Enhancement, (ii) Adaptive Score
Aggregation and (iii) Multi-Scale Alignment for this task.

• Extensive experiments demonstrate that our approach achieves state-of-the-art performance
on both detection tasks, while requiring significantly fewer training examples compared to
existing methods.

2 RELATED WORK

Deepfake detection research has developed along a few axes: (1) fully synthetic image detection, (2)
partial manipulation detection, (3) continual deepfake detection, which we briefly discuss below.
Fully synthetic image detection: Early works (Frank et al., 2020; Marra et al., 2018) explored
learning-based approaches to detect GAN-generated images using high-frequency methods like
DCT. Later works showed that such approaches do not generalize well to other generative models.
Zhang et al. (2019) found that different GAN models share common artifacts due to upsampling lay-
ers, and leveraged spectra-based classifier. Wang et al. (2020) addressed generalization by training
on large-scale data along with augmentations from one GAN model. Tan et al. (2024) introduced
CNN layers on FFT magnitude and phase spectrum to learn source agnostic artifacts. Recent works
use pretrained VLMs like CLIP (Radford et al., 2021) to leverage the strong pretrained features.
UniFD (Ojha et al., 2023) proposed learning a classifier on the frozen CLIP-ViT. FatFormer (Liu
et al., 2024) further learns frequency components inside CLIP-ViT along with text guidance to en-
hance performance. ForgeLens (Chen et al., 2025) extracts forgery features by adding trainable
layers in CLIP-ViT blocks and training a transformer on the aggregated layer-wise CLS tokens.

Partial manipulation detection: Partially manipulated images can be produced manually (e.g.,
cheapfakes) or by generation methods. While initial works (Huh et al., 2018; Wen et al., 2016) de-
tected simple copy-move or splicing, later works aimed to generalize to unseen forgeries. Dong et al.
(2022) used self-supervised training on 385 forgeries with an anomaly detector, Liu et al. (2022)
used progressive multi-scale feature training, while self-attention mechanism is utilized by Hao et al.
(2021) to hierarchically model feature maps at different scales. Recently, AdaIFL (Li et al., 2024)
employs a MoE model to dynamically capture forgery traces, and learns a decoder for segmenting
the tampered region. Cozzolino & Verdoliva (2019) addresses this by training a Noiseprint model on
large-scale camera-image footprints to capture an underlying pattern and any deviation in this pat-
tern signifies a local tampering of the image. Trufor (Guillaro et al., 2023) encodes these Noiseprint
features to train a segmentation block, in addition to a classification branch. More recently, Smeu
et al. (2025) used CLIP features for training a segmentation network for forgery localization.

Continual deepfake detection. With fast-evolving generative models, continual learning meth-
ods (Kim et al., 2021; Tian et al., 2024; Laiti et al., 2024) aim to adapt without forgetting. How-
ever, they mainly focus on incremental tasks with overlapping domains, and overlook generalization
across both synthetic and manipulated images.

In this work, different from others, we aim to achieve generalization across both synthetic and par-
tially manipulated image classification in a data-efficient manner. Our method allows efficient adap-
tation to the partial manipulation task using limited training examples, with minimal forgetting of
the original synthetic image detection task.

3 MOTIVATION

The deepfake detection problem can be formulated as distinguishing natural images from distribu-
tion shifts caused by fully synthetic or partially manipulated content. Fully synthetic and partially
manipulated images differ in the extent of manipulation, but share inconsistencies with real image
statistics. Formally, let Dr,Df ,Dp denote real, fully synthetic and partially manipulated distribu-
tions respectively. A manipulated image X can be modeled as a mixture distribution:

P (X|Dp) = λP (X|Df ) + (1− λ)P (X|Dr) (1)
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Figure 3: Overview of the proposed DeFake framework. Here, we use the base model as FatFormer
which includes the CLIP text and image encoders. Our proposed modules can be integrated to
other CLIP-based base models as well. First, in the Noise-Patch Enhancement (NPE) module, we
extract noise-views of the input image using a noise-extractor model to obtain noise-view patch
features which is used to refine the image patches with nuanced forgery artifacts. The Adaptive
Score Aggregation (ASA) module is then used to adaptively combine the image-level and patch-
level scores. The framework is trained with Multi-Scale Alignment (MSA), which involves binary
cross-entropy loss along with patch-level and image-level contrastive losses.

where, 0 < λ < 1 reflects the proportion of fake patches in the image. The base synthetic detection
model is trained to separate between P (X|Df ) and P (X|Dr), and hence detecting P (X|Dp) can be
framed as adapting the decision boundary to account for localized mixtures of real and fake patches,
rather than training an entirely new classifier.

For partially manipulated images, λ is typically small since most patches remain real, causing
P (X|Dp) to overlap with P (X|Dr). Our idea is to amplify local patch-level inconsistencies with
forgery-specific cues, hence increasing the contribution of manipulated regions, shifting P (X|Dp)
closer to P (X|Df ). However, local cues are sparse or absent in synthetic images, where artifacts are
distributed globally. Over-reliance on patch-level embeddings can dilute global signals, reducing the
discriminability of Df from Dr, leading to degradation of synthetic detection task. To mitigate this,
we adaptively reweight global and local similarity scores, so that local manipulations are highlighted
without degrading global discriminability.

4 PROBLEM FORMULATION

Here, we introduce the problem setup, followed by describing the base framework. Let Θ denote a
pre-trained base framework trained for synthetic image detection. Given a relatively small dataset
of locally manipulated images D = {(Xi, yi,Mi)}Ki=1, our objective is to adapt Θ using D, while
retaining its original performance on fully synthesized images. Here, Xi, yi and Mi denote the
image, label {1 (fake), 0 (real)} and the corresponding binary ground truth mask respectively.

Base framework. Inspired by the success of CLIP-based synthetic image detectors, we adopt the
recently proposed FatFormer architecture (Liu et al., 2024) as our base model. We also show that
our proposed modules generalize to other base models as well. For the task of synthetic image
detection, FatFormer incorporates forgery-aware adapter (FAA) modules into the encoder blocks of
a frozen CLIP ViT. These adapters aggregate frequency-rich signals by learning grouped attention
over the Discrete Wavelet Transforms (DWT) of the internal feature representations. Additionally, it
introduces a language-guided alignment (LGA) module which achieves enhanced prompts p̂ctx by
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conditioning learnable prompt vectors with the N image patch features. These enhanced prompts
are appended to the classnames (here, real and fake) and fed to the text encoder to obtain text
features. Subsequently, it also obtains aligned image patch features f̂

(1:N)
img by learning a cross-

attention module between text features and the image patches. Finally, the classification is performed
using CLIP similarity score S(i) = cos(f

[CLS]
img , f i

text) and the mean of aligned patch similarity
scores S′(i) = 1

N

∑N
j=1 cos(f̂

j
img, f

i
text), where f i

text denotes the ith text feature and i ∈ {0, 1}.

5 THE PROPOSED DEFAKE FRAMEWORK

We introduce the proposed framework, DeFake (Fig. 3), which enables adaptation to the new task of
partial manipulation detection using only limited training samples, while retaining performance on
the base task of fully synthetic image detection. DeFake comprises three key components: 1) Noise-
aware Patch Enhancement (NPE): This module enriches image patches by incorporating learnable
noise-view patches, designed to capture local tampering artifacts crucial for the forgery detection
task, 2) Adaptive Score Aggregation (ASA): A lightweight image-conditioning network modulates
the influence of global image-level semantics and local patch-level signals. This helps preserve per-
formance on the base task by mitigating catastrophic forgetting. 3) Multi-Scale Alignment (MSA):
This component introduces complementary alignment objectives at both the image and patch levels,
enabling consistent learning across global and local representation spaces.

5.1 NOISE-AWARE PATCH ENHANCEMENT MODULE

Partially manipulated images often contain low-level inconsistencies and blending artifacts that do
not significantly affect the global semantics of the image. As a result, recent CLIP-based detec-
tors—designed primarily for fully synthetic image detection and relying on CLIP as a feature extrac-
tor for classification—struggle to identify such localized manipulations, as shown in Fig. 1. Several
works (Cozzolino & Verdoliva, 2019; Guillaro et al., 2023; Zhang et al., 2025) have demonstrated
the effectiveness of using additional noise-based views of the input image, rather than relying solely
on the RGB domain, for detecting local manipulations. These noise views can expose subtle devi-
ations introduced during tampering, which may remain imperceptible in the RGB space. However,
these works typically train dedicated encoder-decoder networks on RGB and noise inputs to predict
pixel-level masks, requiring large-scale annotated datasets. In contrast, our goal is to use noise views
to refine CLIP’s patch representations, avoiding full encoder training while enabling adaptation with
only a few manipulated samples.

Given an input image X ∈ R3×H×W , we extract the noise-view map Xn ∈ RH×W , using the
Noiseprint++ noise-extractor model (Guillaro et al., 2023), where H and W denote the height and
width of the image, respectively. This noise-view map is then partitioned into N = HW/P 2

non-overlapping patches each of size P × P , denoted as X
(1:N)
n . These noise-view patches are

subsequently passed through a learnable block to obtain the corresponding noise-view patch features
as follows:

f (1:N)
n = Conv (X(1:N)

n ) (2)

where, f (1:N)
n ∈ RN×d, Conv denotes a set of convolutional blocks followed by ReLU, and d

denotes the embedding dimension of CLIP. Next, given the output image patch features f̂
(1:N)
img ∈

RN×d from the CLIP encoder, we introduce a cross-attention fusion module that enriches each
image patch by attending to its corresponding noise-view patch features, formulated as:

Q = WQf̂
(1:N)
img , K = WKf (1:N)

n , V = WV f
(1:N)
n

f (1:N)
npe = LN (softmax (QKT /

√
d)V )

(3)

where, WQ,WK ,WV ∈ Rd×d are learnable projections and LN denotes Layer Normalization. The
output f (1:N)

npe ∈ RN×d represents the noise-enhanced patch features.

5.2 ADAPTIVE SCORE AGGREGATION

After enhancing the image patch features to aid the forgery detection task, we now turn our attention
to preserving the base model’s performance on synthetic image classification. The classification
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of fully generated images typically relies on both the global image feature corresponding to the
CLS token and the aggregated patch-level features. Liu et al. (2024) demonstrated improved per-
formance by adding the CLIP similarity score S(i) and the mean patch similarity scores S′(i) as
described earlier. Therefore, it is essential to ensure that the patch-level modifications introduced in
the previous module do not degrade the performance of the base task. Following the refinement of
patch features using the noise-view information, the mean similarity score can now be reformulated
as: S′

N (i) = 1
N

∑N
j=1 cos(f

j
npe, f

i
text), for N patches, where, f i

text denotes the ith text feature,
and fnpe denotes the noise-enhanced patch features from eqn. (3). To better balance the trade-off
between detecting fully synthetic and partially manipulated images, we propose dynamically mod-
ulating the contributions of the global and patch-level similarity scores based on the input image
itself. Specifically, we project the input image feature to obtain a scaling weight as follows:

α(z) = σ (W1 (ReLU (W2 .z))) (4)

where, z = f
[CLS]
img ∈ Rd is the d-dimensional input image feature, W2 ∈ Rd×d′

,W1 ∈ Rd′×1 de-
note projection layers and σ denotes the Sigmoid function. The similarity scores are then adaptively
aggregated as:

Sasa(i) = S(i) + αS′
N (i) (5)

for i ∈ {0, 1}. This enables the model to adapt the decision based on the given input.

5.3 MULTI-SCALE ALIGNMENT

Since training samples are limited, we utilize all the patches from each image during training, allow-
ing the model to benefit from dense localized supervision. This not only enhances learning through
additional patch-level guidance but also encourages the model to rely less on object-specific seman-
tics and more on intrinsic manipulation cues. Specifically, we introduce a patch-wise contrastive loss
that encourages alignment among patches of the same class (pristine or manipulated) while enforc-
ing separation between them. We divide the ground truth binary mask M into N non-overlapping
patches and label them as fake if at least one fake pixel is present in them. Patch-wise loss is com-
puted collectively for all image patches within a batch. Additionally, to prevent bias towards the real
class, we perform a balanced sampling of real and fake patches in each training batch, since the real
patches can often exceed fake patches for localized manipulations. The resulting patch-wise loss for
the ith patch can be formulated as follows:

Lpatch = − log

(
exp(f̂

(i)
img · f̂

(j)
img/τ)

|NB|∑
k=1
k ̸=i

exp(f̂
(i)
img · f̂

(k)
img/τ)

)
(6)

where, f̂ (i)
img and f̂

(j)
img refer to the image patch representations from the same class (real/fake), τ

denotes the temperature constant, and B is the batch size.

Additionally, in order to learn a robust representation space with few training samples, we introduce
an image-wise contrastive loss which aligns embeddings of real images and fake images, while
separating them from each other. The loss for a given training sample is given as:

Limg = − log

(
exp(f

i [CLS]
img · f j [CLS]

img /τ)

|B|∑
k=1
k ̸=i

exp(f
i [CLS]
img · fk [CLS]

img /τ)

)
(7)

where, f i [CLS]
img , f

j [CLS]
img belong to the same class, and B denotes the batch size. The introduction

of both these losses enables a hierarchical alignment framework which jointly structures patch-level
and image-level representation spaces.
Overall Objective: The final objective for training the base parameters and the proposed mod-
ules consists of the binary cross-entropy (BCE) loss applied on the adaptively aggregated score
Sasa along with the image-wise and patch-wise loss functions. Given, prediction p̂(i) =
exp(Sasa(i)/τ)/

∑
k exp(Sasa(k)/τ), the BCE loss is LBCE = −y log p̂(y)−(1−y) log p̂(1−y).

The final objective can be written as:
L = λ1LBCE + λ2Lpatch + λ3Limg (8)

where, λ1, λ2, λ3 weighs the different loss counterparts.
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Fully Synthetic Image Datasets Partially Manipulated Image Datasets
Method ProGAN BigGAN GauGAN StarGAN Deepfake DALLE Guided Avg (F) CASIA1 Columbia Coverage NIST16 DSO-1 CocoGLIDE MagicBrush Avg (P) HM ↑ Avg (T) ↑
Synthetic Det.
UniFD (CVPR’23) 99.75 93.40 99.09 96.77 73.80 80.55 68.80 87.45 55.03 47.14 50.00 20.33 51.00 61.04 37.22 45.97 60.26 66.71
FreqNet (AAAI’24) 99.60 91.20 92.94 84.22 92.12 97.65 71.35 89.87 48.83 48.57 49.50 42.32 51.50 50.00 35.58 46.61 61.39 68.24
ForgeLens (ICCV’25) 99.83 97.60 98.47 91.82 90.93 94.45 70.55 91.95 61.50 73.53 51.56 19.97 57.81 70.12 69.13 57.66 70.88 74.81
FatFormer (CVPR’24) 99.89 98.98 98.61 99.47 92.04 98.45 77.55 95.00 47.55 66.79 50.00 26.51 53.00 70.80 47.86 51.79 67.03 73.39

Partial Det.
Trufor (CVPR’23) 50.88 53.58 50.18 69.26 55.12 47.10 44.90 53.00 81.04 97.50 69.00 25.76 94.50 64.36 78.90 73.01 61.42 63.01
AdaIFL (ECCV’24) 50.54 48.15 49.71 27.89 54.19 53.55 51.25 47.90 88.66 85.71 78.50 61.75 73.13 63.57 51.45 71.82 57.47 59.86

Finetuned / Both
HiFi-Net (CVPR’23) 86.85 89.75 69.00 98.02 58.82 84.05 72.75 79.89 46.40 43.21 59.00 34.04 50.50 59.77 61.02 50.56 61.93 65.23
Trufor-FT 49.70 53.30 50.64 53.75 46.96 48.40 48.30 50.15 51.46 52.14 51.50 37.65 47.00 57.23 39.11 48.01 49.06 49.08
AdaIFL-FT 49.33 49.18 48.96 49.60 50.14 46.80 44.95 48.42 63.08 86.43 59.00 53.46 69.15 58.89 47.23 62.46 54.55 55.44
UniFD-FT 99.18 94.75 98.45 93.20 78.65 85.80 74.20 89.18 60.41 56.76 50.00 24.10 52.00 66.41 40.37 50.01 64.08 69.59
FreqNet-FT 99.60 91.17 92.94 84.27 92.16 97.65 71.35 89.88 50.18 56.79 51.00 42.62 52.00 51.07 42.00 49.38 63.74 69.63
ForgeLens-FT 99.74 88.78 95.99 69.26 72.03 88.70 67.65 83.16 69.30 88.93 53.00 27.86 62.69 71.39 67.32 62.93 71.64 73.05
FatFormer-FT 99.76 94.03 91.55 78.36 56.39 91.90 79.10 84.44 71.16 92.50 53.00 54.52 59.00 77.44 60.96 66.94 74.68 75.69

DeFake (Ours) 98.96 91.72 87.54 81.54 66.05 91.60 83.30 85.82 69.88 93.21 53.00 59.94 73.50 77.34 68.64 70.79 77.58 78.30

Table 1: Performance comparison of DeFake with state-of-the-art methods across both fully-
synthetic and partial manipulation detection datasets. Methods are categorized into Synthetic Det.
(synthetic detectors), Partial Det. (partial manipulation detectors) and Finetuned/Both, which in-
cludes baseline models adapted on the few training samples or models trained specifically for both
tasks (e.g., HiFi-Net). Avg(F) and Avg(P) denote the average accuracy across fully synthetic datasets
and manipulated datasets respectively, while Avg(T) denotes the overall accuracy across both tasks.
DeFake outperforms all methods in terms of harmonic mean (HM) and Avg (T), shown in bold.

6 EVALUATION

6.1 EXPERIMENTAL SETUP

Datasets. To extensively evaluate the proposed DeFake, we use a variety of standard benchmark
datasets as follows.

i) Synthetic image datasets: The base fully synthetic image detectors are already pretrained on
ProGAN (Karras et al., 2017) generated synthetic images. Here, we consider only a small number
of them as replay data during the adaptation. For testing, we evaluate across a diverse set of GAN
and diffusion-generated images, including ProGAN, BigGAN (Brock et al., 2018), GauGAN (Park
et al., 2019), StarGAN (Choi et al., 2018), Deepfake (Rossler et al., 2019), DALLE (Ramesh et al.,
2021), and Guided Diffusion (Dhariwal & Nichol, 2021).

ii) Partially manipulated datasets: For adapting the base model to the partial manipulation detection
task, we use limited samples from the training datasets introduced in Guillaro et al. (2023), contain-
ing both pristine and manipulated images with ground truth masks. For testing, we use pristine im-
ages and their manipulated counterparts generated using both cheapfake methods: CASIA1 (Dong
et al., 2013), Columbia (Hsu & Chang, 2006), Coverage (Hsu & Chang, 2006), NIST16 (Guan et al.,
2019), DSO-1 (De Carvalho et al., 2013) and diffusion models: CocoGLIDE (Guillaro et al., 2023)
and MagicBrush (Zhang et al., 2023).

We use a total of 128 training images, comprising 30 replay samples from ProGAN, and the remain-
ing from the partially manipulated datasets. These images are uniformly sampled to ensure an equal
number of real and fake samples. We observed no notable gains in performance with slight increase
in the training data. Additional dataset details are provided in the appendix.

Implementation Details and Evaluation Metrics. We use CLIP ViT-L/14 as the base model, with
an input resolution of 224 × 224 to remain consistent with CLIP’s design. To extract noise-patch
features, we employ a 2-layer convolutional block with ReLU activations. It is trained for 11 epochs
using AdamW optimizer, with a learning rate of 5 × 10−4 for the base modules (FAA and LGA)
and 2 × 10−5 for the proposed modules. The loss weights are set to λ1 = 1, λ2 = 1, and λ3 = 5,
and the temperature constant τ = 0.07. All experiments are conducted using PyTorch on a single
NVIDIA RTX A6000 GPU.

We report Average Accuracy and Harmonic Mean (HM) as our primary evaluation metrics, captur-
ing performance across both the original (synthetic image detection) and new (partial manipulation
detection) tasks. Detailed results are given in the appendix.
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FatFormer UniFD ForgeLensFatFormer

Zero-shot Model + DeFakeModel Fine-tuned

UniFD ForgeLens

(a) (b)

Figure 4: Our proposed modules can be integrated with other CLIP-based base synthetic detectors.
DeFake integrated with FatFormer, UniFD and ForgeLens shows improvement over zero-shot as
well as standard finetuning performances in terms of (a) avg accuracy, (b) harmonic mean.

6.2 COMPARISON WITH STATE-OF-THE-ART

A comprehensive evaluation of the proposed DeFake, along with comparisons to current state-of-
the-art methods, is presented in Table 1. To the best of our knowledge, HiFi-Net Guo et al. (2023)
is the only prior general-purpose model trained from scratch on large-scale data and evaluated on
both fully synthetic and partially manipulated image detection paradigms. In addition, we construct
strong baselines by selecting state-of-the-art models tailored to each task, all pre-trained on large-
scale datasets.

Table 2: Ablation study of the different components of De-
Fake shows the importance of each module. Here, Avg(F),
Avg(P): average accuracies on fully synthetic and partial
manipulation detection tasks.

NPE ASA MSA Avg (F) Avg (P) HM

− − − (FatFormer-FT) 84.44 66.94 74.68
✓ − − 83.86 67.49 74.79
✓ ✓ − 85.59 68.70 76.22
✓ ✓ ✓ LBCE + Lpatch 85.58 69.70 76.83
✓ ✓ ✓ LBCE + Limg 86.80 69.80 77.38
✓ ✓ ✓ LBCE + Lpatch + Limg (DeFake) 85.82 70.79 77.58

For fully synthetic image detection,
we consider: CNN-based (1) Fre-
qNet (AAAI’24) and CLIP-based
(2) UniFD (CVPR’23), (3) Fat-
Former (CVPR’24), and (4) Forge-
Lens (ICCV’25). For partially ma-
nipulated image detection, we in-
clude two recent methods: (1) Tru-
For (CVPR’23), and (2) AdaIFL
(ECCV’24). To evaluate adaptability
under limited supervision, we fine-
tune these baselines using our small
training set (FT in Table 1). We use the same hyperparameters across all the fine-tuning experiments
for fairness. We make the following observations from Table 1:
(i) As expected, fully synthetic image detectors perform well on their intended task but generalize
poorly to partially manipulated image detection. Conversely, partial manipulation detectors exhibit
the opposite trend, excelling at their own task but struggling with synthetic image detection.
(ii) Fine-tuning (FT) consistently enhances cross-task performance, highlighting the value of adap-
tation even in low-data scenarios. However, this comes at the cost of reduced performance on the
original task. For instance, FatFormer, after being fine-tuned, improves the average zero-shot accu-
racy on the partially manipulated data from 51.79% to 66.94%, while its original performance on
the fully synthetic detection task reduces from 95% to 84.44%.
(iii) Our proposed DeFake significantly outperforms all baselines across both tasks, achieving an
average accuracy of 78.30%, which corresponds to a relative improvement of +2.61% over the best-
performing method. It also attains a harmonic mean (HM) of 77.58%, a relative gain of +2.90%.

6.3 ADDITIONAL ANALYSIS

1) Ablation Study: Table 2 presents the ablation study of DeFake. We add our proposed
modules—Noise-aware Patch Enhancement (NPE), Adaptive Score Aggregation (ASA), and Multi-
Scale Alignment (MSA)—to the base architecture and report harmonic mean (HM), and average
accuracies on fully synthetic (Avg(F)) and partial manipulation (Avg(P)) tasks. NPE and ASA
improve both tasks by enhancing patch-level forgery detection while strengthening base synthetic
performance. Adding the patch-level loss Lpatch further boosts Avg(P), whereas the image-level
loss Limg improves Avg(F). Integrating all modules and losses yields the best overall performance.

8
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(a) (b)

(c) (d)

Real

Fake

Figure 5: Illustration of some partially manipulated images ((a) - (d)) along with their ground truth
masks. Here, we observe the patch-level representation space using t-SNE, corresponding to the fake
and real patches in each image. We observe that the fake patches corresponding to the manipulated
regions (white in mask) get separated from the real patches.

2) Generalization to other base models: While we considered FatFormer as the base model for
all the experiments, our proposed modules are generalizable to other fully synthetic image detec-
tion models as well. We consider two additional state-of-the-art CLIP-based methods: UniFD and
ForgeLens as the base models, and describe the adaptation designs below.
(a) UniFD [CVPR 2023]: The base model trains a linear layer on the CLIP image feature for real
vs fake classification. First, we extract the noise-view of the input image, and obtain noise patches
using the learnable convolutional blocks (eqn.(2)). Next, we incorporate the cross-attention fusion
between these noise patch and image patch features from the CLIP encoder, similar to the pro-
posed NPE module to obtain the noise-enhanced patch features. These features are then fed to a
lightweight network to get a logit corresponding to the patch representations. Finally, the original
logit from the linear layer and the patch-specific logit are adaptively aggregated by conditioning on
the input image feature using the proposed ASA module. The whole framework is trained using the
multi-scale contrastive learning objectives.
(b) ForgeLens [ICCV 2025]: The base framework consists of training bottleneck layers within the
CLIP image encoder, followed by training a transformer on the layer-wise CLS tokens from the
encoder, to capture multi-stage forgery features effectively. A linear classifier is then trained on
the output CLS token from this transformer for the binary classification task. Here also, we obtain
the noise-enhanced patch features using the NPE module to enhance the patch-level representa-
tions with the fine-grained manipulation artifacts. The proposed ASA module is used to adaptively
modulate the original logit (from the base transformer) and the patch-based logit to obtain the final
classification logit. Finally, we use the multi-scale alignment objective for training.

As shown in Fig. 4, our method consistently outperforms all base models—both zero-shot and fine-
tuned settings—in terms of average accuracy across all datasets and harmonic mean. This highlights
the generalizability of our proposed modules in adapting diverse base models for detecting both
synthetic and manipulated images simultaneously.

4) Qualitative Analysis For further validation of our proposed method, we illustrate the patch-
level feature space using t-SNE (Maaten & Hinton, 2008) in Fig. 5. Here, we show some partially
manipulated samples, and apply t-SNE on the noise-enhanced patch features to visualize the effect
on the patch-level representation space. We observe that the fake patches correspond to distinct
clusters compared to real patches, showing the effectiveness of our approach.

5) Limitations and future scope: While DeFake is highly effective in low-data regimes, it may
not match the performance of models trained from scratch on large-scale datasets if available. Our
approach also currently does not perform explicit spatial localization of manipulations. We aim to
address these in future work by exploring hybrid classification-localization strategies.

7 CONCLUSION

We proposed a generalized framework for deepfake detection that outperforms specialized methods
on both synthetic and manipulated images. We reformulated generalization as a data-efficient adap-
tation problem, showing that a base synthetic detector can be adapted to manipulation detection with
minimal data while retaining its original capability. We hope this work inspires future research on
practical, generalized, and data-efficient detection frameworks.
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A APPENDIX

A.1 DATASET DETAILS

Fully synthetic datasets: The CLIP-based fully synthetic detection models typically use ProGAN-
generated synthetic images across 4-classes (car, cat, chair, horse) for training. Here, we take
the base model as a fully synthetic detector, and use only a few images from the ProGAN data
as replay examples as mentioned in the main paper. For evaluation, we consider images from
unseen generation models. From GAN-generated datasets, we take ProGAN, BigGAN (Brock
et al., 2018), GauGAN (Park et al., 2019), StarGAN (Choi et al., 2018), Deepfake (Rossler et al.,
2019), while for diffusion-generated datasets, we take DALLE (Ramesh et al., 2021) and Guided
Diffusion (Dhariwal & Nichol, 2021).

Partially manipulated datasets: We use the standard datasets used by partial manipulation
detectors (Kwon et al., 2021) for training our model. These include: (a) CASIA-v2, a widely used
dataset containing real and forged images with diverse manipulation types; (b) Fantastic Reality,
which consists of spliced versions of real images; (c) IMD2020, which reflects real-world data,
since it is collected from the internet and social media with practical limitations such as compression
artifacts, and (d) Tampered COCO, which is created by copy-move or spicing forgeries on the
authentic COCO image dataset. For evaluation, we use CASIA1 (Dong et al., 2013), Columbia (Hsu
& Chang, 2006), Coverage (Wen et al., 2016), NIST16 (Guan et al., 2019), DSO-1 (De Carvalho
et al., 2013) which are created manually containing copy-move or spicing forgeries. Additionally,
we consider two more challenging diffusion-edited datasets, CocoGLIDE (Guillaro et al., 2023)
and MagicBrush (Zhang et al., 2023), which contain object-level manipulations using text-based
diffusion models. We use the same testing split as followed by Guillaro et al. (2023). For NIST16
we evaluate on the full test set, instead of the smaller subset considered by others. All the datasets
contain the authentic (except TampCOCO) and manipulated image counterparts, along with the
ground truth binary segmentation maps, where the white pixels correspond to manipulated regions
and black denotes the pristine regions.

Contrary to the existing partially manipulated datasets which are trained from scratch on these
datasets, we use only a few samples from these datasets for adapting our base model. Specifically,
we randomly sample 128 training samples, equally distributed into 64 real and 64 fake images. The
complete details of the training data used from each of these datasets are provided in Table 5. We ob-
serve that, while reducing the number of training examples results in a drop in average performance,
a marginal increase in the training data does not necessarily provide any notable improvement in
overall accuracy (Table 4).
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A.2 BASELINES AND FINETUNING DETAILS

In the main paper, we denote methods with suffix “-FT” to indicate that we performed additional
finetuning of these pretrained models on the small training set consisting of both the ProGAN replay
samples as well as the partially manipulated datasets. Here, we elaborate the details of finetuning
protocols for each of these methods.

(i) UniFD-FT: Similar to the original work by Ojha et al. (2023), we finetune the final linear
classification layer on top of the CLIP-ViT using this dataset, keeping the encoder frozen.
(ii) FatFormer-FT: We keep the CLIP image and text encoders frozen, and finetune the forgery-
aware adapter (FAA) and language-guided alignment (LGA) blocks similar to the original
method (Liu et al., 2024).
(iii) ForgeLens-FT: The original model (Chen et al., 2025) consists of a two-stage training process:
first, Weight-Shared Guidance Modules (WGSM) are trained inside the CLIP-ViT encoder to extract
forgery-related artifacts; next, a transformer model is trained on the concatenated layer-wise CLS
tokens from the ViT-blocks, along with a learnable focus-CLS token which captures multi-stage
attention cues. This focus-CLS token is finally used for binary classification by training a linear
classifier on top of it. In our finetuning setup, we update the focus-CLS token, the transformer model
and the final classifier layer, while keeping the base CLIP model frozen, for the final classification
task.
(iv) FreqNet-FT: The original architecture is based on CNNs (Tan et al., 2024), consisting of
frequency convolutional blocks which learns high-frequency contents in the image from both ampli-
tude and phase-spectrum, followed by training a classifier on the features for binary classification.
In our setting, we finetune this classifier for the classification task, to avoid overfitting on the small
training set.
(vi) AdaIFL-FT: The original model employs a mixture-of-experts design to capture diverse manip-
ulation patterns, with importance-aware feature aggregation integrated within the encoder blocks.
A dedicated decoder is trained on the aggregated features to localize manipulated regions (Li et al.,
2024). We fine-tune the entire decoder module for adaptation, which leverages the forgery-relevant
features extracted by the pretrained encoder. To convert the pixel-wise localization output to an
image-level classification label, we compute the overlap between the predicted segmentation mask
and the ground truth binary mask. If at least 15% of the predicted pixels align with the ground truth
manipulated region, we treat it as a correct classification.
(v) TruFor-FT: TruFor (Guillaro et al., 2023) addresses both localization and classification of
partially manipulated images. Its architecture comprises a Segformer encoder, followed by two
decoders: an anomaly decoder that predicts a manipulation segmentation map, and a confidence
map decoder that outputs pixel-wise confidence scores. For the classification part, a forgery-
detector module is trained, which takes in these two outputs, and performs an image-level binary
classification (real or fake). For our finetuning setup, we update the weights of the forgery-detector
module only using the small training set for classification, keeping the segmentation branch frozen.

A.3 DETAILED PERFORMANCE RESULTS

Main results: Here, we provide a more comprehensive comparison with state-of-the-art methods
across both tasks in Table 6. Along with the average accuracies of the base synthetic detection
task Avg(F) and the partial manipulation detection task Avg(P), we also report the real and fake
accuracies in this table. Real accuracy indicates the model’s ability to correctly classify authentic
images as real, while fake accuracy demonstrates the ability to identify partially manipulated or
synthetic images effectively. We observe that in terms of classifying fake images, we outperform
both the base fully synthetic detection methods as well as the partial manipulation detectors, while
using very few training samples for adaptation.

Generalization to other base models: As mentioned, our proposed modules are generaliz-
able to alternate CLIP-based synthetic detection models as well, for example, the recently proposed
UniFD and ForgeLens. The detailed performance evaluation including average fully synthetic
detection accuracy Avg(F), partial manipulation detection accuracy Avg(P), along with the overall
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accuracy Avg(T) and harmonic mean (HM) is given in Table 7. We observe that incorporating our
proposed modules results in improved performance over standard fine-tuning and zero-shot settings.

A.4 HYPERPARAMETER SENSITIVITY

We show the effect of changing the weights for the different loss components in the Multi-scale
Alignment module in Table 3. Here, λ1, λ2 and λ3 corresponds to the binary cross-entropy (BCE)
loss LBCE , the patch-level loss Lpatch, and the global image-level loss Limg respectively. While
we observe no significant deviations in performance (avg acc and HM) by varying these weights,
marginal improvements can be seen when a higher weightage is given to Limg .

Use of Large Language Models (LLMs): Certain parts of the manuscript, including sentence
polishing, paraphrasing, and clarity improvements, were assisted using ChatGPT by OpenAI. All
scientific content, ideas, and results remain the authors’ own.

Table 3: The effect of varying the weights of the different loss counterparts in the Multi-scale Align-
ment module.

λ1 λ2 λ3 Avg (T) (%) HM (%)

1 1 2 78.03 77.17
5 1 5 77.23 76.36
1 5 1 76.33 75.42
1 1 5 78.30 77.58

Table 4: Effect of varying training data.
# Train samples Avg(T) HM

100 74.94 74.20
128 78.30 77.58
156 78.31 77.39

Table 5: Number of training images randomly sampled from each dataset. We use much smaller
training data compared to existing partial manipulation detection methods.

Datasets Ours TruFor, AdaIFL
CASIA2 25/12 7K/5K
Fantastic Reality 14/13 16K/19K
IMD20 9/12 414/2K
TampCOCO 0/13 0/400
TampRAISE - 24K/400K
ProGAN 16/14 -

Real/Fake (Total) 64/64 49K/82K
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Methods Fully Synthetic image datasets Partially Manipulated image datasets
Acc (%) ProGAN BigGAN GauGAN StarGAN Deepfake DALLE Guided Avg (F) CASIA1 Columbia Coverage NIST16 DSO-1 CocoGLIDE MagicBrush Avg (P) HM ↑ Avg (T) ↑

UniFD
real 99.58 98.60 98.88 95.20 97.38 98.50 98.50 98.09 96.58 100.00 100.00 100.00 99.00 98.83 98.69 99.01
fake 99.92 88.20 99.30 98.35 50.15 62.60 39.10 76.80 19.35 17.80 0.00 6.21 3.00 23.24 5.98 10.80
total 99.75 93.40 99.09 96.77 73.80 80.55 68.80 87.45 55.03 47.14 50.00 20.33 51.00 61.04 37.22 45.97 60.26 66.71

FreqNet
real 100.00 91.00 86.18 99.80 90.14 99.50 99.50 95.16 100.00 97.00 97.00 97.00 93.00 98.05 96.26 96.90
fake 99.20 91.40 99.70 68.63 94.11 95.80 43.20 84.58 4.89 21.67 2.00 32.62 10.00 1.95 4.75 11.13
total 99.60 91.20 92.94 84.22 92.12 97.65 71.35 89.87 48.83 48.57 49.50 42.32 51.50 50.00 35.58 46.61 61.39 68.24

ForgeLens
real 99.65 95.40 96.96 83.63 94.41 90.30 90.30 92.95 81.53 84.54 84.04 84.69 100.00 98.05 96.07 89.85
fake 100.00 99.80 99.98 100.00 87.45 98.60 50.80 90.95 44.24 67.43 20.41 8.60 14.74 42.19 55.39 36.14
total 99.83 97.60 98.47 91.82 90.93 94.45 70.55 91.95 61.50 73.53 51.56 19.97 57.81 70.12 69.13 57.66 70.88 74.81

FatFormer
real 100.00 98.10 97.22 98.95 99.19 98.80 98.80 98.72 98.74 100.00 100.00 100.00 94.00 98.44 99.25 98.63
fake 99.78 99.85 100.00 100.00 84.88 98.10 56.30 91.27 3.59 48.33 0.00 13.48 12.00 43.16 21.75 20.33
total 99.89 98.98 98.61 99.47 92.04 98.45 77.55 95.00 47.55 66.79 50.00 26.51 53.00 70.80 47.86 51.79 67.03 73.39

Trufor
real 93.98 91.85 93.02 83.79 80.94 81.00 81.00 86.51 96.12 95.00 95.00 95.00 94.00 93.36 90.84 94.19
fake 7.78 15.30 7.34 54.72 29.20 13.20 8.80 19.48 67.93 98.88 43.00 13.48 95.00 35.36 72.84 60.93
total 50.88 53.58 50.18 69.26 55.12 47.10 44.90 53.00 81.04 97.50 69.00 25.76 94.50 64.36 78.90 73.01 61.42 63.01

AdaIFL
real 85.78 81.00 89.12 29.36 95.46 84.70 84.70 78.59 96.62 85.00 85.00 85.00 99.01 83.79 92.52 89.56
fake 15.30 15.30 10.30 26.46 12.79 22.40 17.80 17.19 81.74 86.11 72.00 57.62 47.00 43.36 30.58 59.77
total 50.54 48.15 49.71 27.89 54.19 53.55 51.25 47.90 88.66 85.71 78.50 61.75 73.13 63.57 51.45 71.82 57.47 59.86

HiFi-Net
real 74.75 97.00 97.52 97.70 77.80 92.20 92.20 89.88 97.25 96.00 96.00 96.00 100.00 98.83 98.88 97.57
fake 98.95 82.50 40.48 98.35 39.77 75.90 53.30 69.89 2.17 13.89 22.00 23.05 1.00 20.70 41.79 17.80
total 86.85 89.75 69.00 98.02 58.82 84.05 72.75 79.89 46.40 43.21 59.00 34.04 50.50 59.77 61.02 50.56 61.93 65.23

Trufor-FT
real 86.98 84.10 85.68 48.17 78.06 79.10 79.10 77.31 77.35 92.00 92.00 92.00 74.00 86.52 85.23 85.59
fake 12.42 22.50 15.60 59.33 15.75 17.70 17.50 22.97 19.78 30.00 11.00 28.01 20.00 27.93 15.67 21.77
total 49.70 53.30 50.64 53.75 46.96 48.40 48.30 50.15 51.46 52.14 51.50 37.65 47.00 57.23 39.11 48.01 49.06 49.08

AdaIFL-FT
real 95.60 93.50 94.40 97.55 94.50 87.00 87.00 92.79 97.25 90.00 90.00 90.00 86.14 91.02 93.64 91.15
fake 3.05 4.85 3.52 1.65 5.63 6.60 2.90 4.03 33.37 84.44 28.00 46.99 52.00 26.76 23.65 42.17
total 49.33 49.18 48.96 49.60 50.14 46.80 44.95 48.42 63.08 86.43 59.00 53.46 69.15 58.89 47.23 62.46 54.55 55.44

UniFD-FT
real 98.40 95.80 97.02 87.09 91.98 96.40 96.40 94.73 93.67 100.00 100.00 100.00 99.00 97.46 97.38 98.22
fake 99.95 93.70 99.88 99.30 65.27 75.20 52.00 83.61 31.85 32.78 0.00 10.64 5.00 35.35 11.40 18.15
total 99.18 94.75 98.45 93.20 78.65 85.80 74.20 89.18 60.41 56.76 50.00 24.10 52.00 66.41 40.37 50.01 64.08 69.59

FreqNet-FT
real 100.00 90.95 86.18 99.80 90.14 99.50 99.50 95.15 96.84 94.00 94.00 94.00 93.00 94.53 99.25 95.09
fake 99.20 91.40 99.70 68.73 94.18 95.80 43.20 84.60 10.11 36.11 8.00 33.51 12.00 7.62 12.92 17.18
total 99.60 91.17 92.94 84.27 92.16 97.65 71.35 89.88 50.18 56.79 51.00 42.62 52.00 51.07 42.00 49.38 63.74 69.63

ForgeLens-FT
real 99.50 77.55 92.00 38.52 48.32 77.50 77.50 72.98 93.16 93.00 93.00 93.00 42.57 93.95 87.85 85.22
fake 99.98 100.00 99.98 100.00 95.81 99.90 57.80 93.35 48.80 86.67 13.00 16.31 83.00 48.83 56.89 50.50
total 99.74 88.78 95.99 69.26 72.03 88.70 67.65 83.16 69.30 88.93 53.00 27.86 62.69 71.39 67.32 62.93 71.64 73.05

FatFormer-FT
real 99.58 88.10 83.10 56.73 13.48 84.50 84.50 72.86 94.88 94.00 94.00 94.00 34.00 91.21 92.34 84.92
fake 99.95 99.95 100.00 100.00 99.44 99.30 73.70 96.05 50.54 91.67 12.00 47.52 84.00 63.67 45.01 56.34
total 99.76 94.03 91.55 78.36 56.39 91.90 79.10 84.44 71.16 92.50 53.00 54.52 59.00 77.44 60.96 66.94 74.68 75.69

real 97.92 83.55 75.08 63.08 34.06 83.80 83.80 74.47 86.62 92.00 92.00 92.00 60.00 87.50 85.61 85.10
DeFake (Ours) fake 99.80 99.90 100.00 100.00 98.15 99.40 82.80 97.15 55.33 93.89 14.00 54.26 87.00 67.19 60.02 61.67

total 98.96 91.72 87.54 81.54 66.05 91.60 83.30 85.82 69.88 93.21 53.00 59.94 73.50 77.34 68.64 70.79 77.58 78.30

Table 6: Detailed comparison results with state-of-the-art methods across both the tasks. Here, real,
fake and total denotes the real, fake and overall accuracies for all the datasets.

Methods Fully Synthetic image datasets Partially Manipulated image datasets
Acc (%) ProGAN BigGAN GauGAN StarGAN Deepfake DALLE Guided Avg (F) CASIA1 Columbia Coverage NIST16 DSO-1 CocoGLIDE MagicBrush Avg (P) HM ↑ Avg (T) ↑

UniFD
real 99.58 98.60 98.88 95.20 97.38 98.50 98.50 98.09 96.58 100.00 100.00 100.00 99.00 98.83 98.69 99.01
fake 99.92 88.20 99.30 98.35 50.15 62.60 39.10 76.80 19.35 17.80 0.00 6.21 3.00 23.24 5.98 10.80
total 99.75 93.40 99.09 96.77 73.80 80.55 68.80 87.45 55.03 47.14 50.00 20.33 51.00 61.04 37.22 45.97 60.26 66.71

UniFD-FT
real 98.40 95.80 97.02 87.09 91.98 96.40 96.40 94.73 93.67 100.00 99.00 100.00 100.00 97.46 97.38 98.22
fake 99.95 93.70 99.88 99.30 65.27 75.20 52.00 83.61 31.85 32.78 0.00 10.64 5.00 35.35 11.40 18.15
total 99.18 94.75 98.45 93.20 78.65 85.80 74.20 89.18 60.41 56.76 50.00 24.10 52.00 66.41 40.37 50.01 64.08 69.59

real 96.02 90.95 93.28 75.09 78.28 89.50 89.50 87.52 90.76 98.00 98.00 98.00 97.03 91.80 94.77 95.48
UniFD fake 100.00 96.10 99.94 99.65 80.54 83.60 63.10 88.99 44.78 45.00 4.00 12.41 18.00 42.97 18.42 26.51
+ DeFake total 98.01 93.52 96.61 87.37 79.41 87.53 80.70 89.02 66.02 63.93 51.00 25.30 57.71 67.38 44.14 53.64 66.94 71.33

ForgeLens
real 99.65 95.40 96.96 83.63 94.41 90.30 90.30 92.95 81.53 84.54 84.04 84.69 100.00 98.05 96.07 89.85
fake 100.00 99.80 99.98 100.00 87.45 98.60 50.80 90.95 44.24 67.43 20.41 8.60 14.74 42.19 55.39 36.14
total 99.83 97.60 98.47 91.82 90.93 94.45 70.55 91.95 61.50 73.53 51.56 19.97 57.81 70.12 69.13 57.66 70.88 74.81

ForgeLens-FT
real 99.50 77.55 92.00 38.52 48.32 77.50 77.50 72.98 93.16 93.00 93.00 93.00 42.57 93.95 87.85 85.22
fake 99.98 100.00 99.98 100.00 95.81 99.90 57.80 93.35 48.80 86.67 13.00 16.31 83.00 48.83 56.89 50.50
total 99.74 88.78 95.99 69.26 72.03 88.70 67.65 83.16 69.30 88.93 53.00 27.86 62.69 71.39 67.32 62.93 71.64 73.05

real 99.35 93.20 94.06 72.14 83.56 83.50 83.70 87.07 84.56 80.00 81.00 80.00 82.18 97.66 94.77 85.94
ForgeLens fake 100.00 99.90 99.98 100.00 91.40 99.00 56.50 92.40 52.39 88.89 30.00 15.43 69.00 50.00 65.62 53.16
+ DeFake total 99.67 96.55 97.02 86.07 87.47 91.25 70.10 89.73 67.25 85.71 55.50 25.15 75.62 73.83 75.44 65.21 75.53 77.47

Table 7: Generalization to other CLIP-based base models. The detailed comparison results with real,
fake and total accuracies are reported. FT denotes standard fine-tuning, while +DeFake denotes
adaptation using our proposed modules. Addition of the proposed modules outperforms both the
zero-shot and FT performances as shown in bold.
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