
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING DECISION TREES AS AMORTIZED
STRUCTURE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Building predictive models for tabular data presents fundamental challenges, no-
tably in scaling consistently, i.e., more resources translating to better performance,
and generalizing systematically beyond the training data distribution. Designing
decision tree models remains especially challenging given the intractably large
search space, and most existing methods rely on greedy heuristics, while deep
learning inductive biases expect a temporal or spatial structure not naturally present
in tabular data. We propose a hybrid amortized structure inference approach to
learn predictive decision tree ensembles given data, formulating decision tree con-
struction as a sequential planning problem. We train a deep reinforcement learning
(GFlowNet) policy to solve this problem, yielding a generative model that samples
decision trees from the Bayesian posterior. We show that our approach, DT-GFN,
outperforms state-of-the-art decision tree and deep learning methods on standard
classification benchmarks derived from real-world data, robustness to distribution
shifts, and anomaly detection, all while yielding interpretable models with shorter
description lengths. Samples from the trained DT-GFN model can be ensembled
to construct a random forest, and we further show that the performance of scales
consistently in ensemble size, yielding ensembles of predictors that continue to
generalize systematically. Code available at: anonymous.4open.science.

1 INTRODUCTION

Tabular data is a common modality across a variety of fields where machine learning is employed,
e.g., healthcare (Przystalski & Thanki, 2024) and finance (Dixon et al., 2020). Unlike data with
temporal, spatial or graph structure—such as text, images and molecules, where deep learning
methods have seen their most visible successes (OpenAI, 2024; Anthropic, 2024; Gupta et al.,
2024)—tabular data simply has the form of samples (rows) with a shared set of features (columns).
Two widely adopted sets of machine learning methods that model the dependence of a target
variable on the features are (i) methods based on rule learning, in particular, decision trees and
their extensions; (ii) deep learning methods. Because deep learning has been less successful as
general-purpose learner for tabular data than for domains where natural inductive biases for modeling
exist, debate persists about the best way to build predictive models for this modality, whether it
is deep neural networks (McElfresh et al., 2023; Holzmüller et al., 2024), gradient-boosted trees
(Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022), or others.

The key desideratum in designing consistently better models for tabular data is the ability to
generalize systematically beyond the training distribution, a critical problem in machine learning
(Hand, 2006; Quiñonero-Candela et al., 2022). Benchmarks like TABLESHIFT (Gardner et al., 2023)
and WILDS (Koh et al., 2021) evaluate models’ sensitivity to distribution shifts in tabular data, while
ODDS (Rayana, 2016) and TABMEDOOD (Azizmalayeri et al., 2023) are used to study the related
problem of out-of-distribution detection. Additional desiderata are consistent scalability—more
resources in training or inference should lead to better model performance—and the ability to learn
reusable knowledge and efficiently adapt to streaming data in online learning.

In this work, we treat the problem of learning decision trees from tabular data as a structure inference
problem and propose to tackle it with deep reinforcement learning (RL) methods. Namely, we model
the construction of a decision tree as a sequential decision-making process and learn a policy that
constructs trees so as to sample from the Bayesian posterior distribution over decision tree models
given data (Fig. 1). The policy is a deep neural network with inductive biases that take advantage of
compositional structure in the target distribution over decision trees. Samples from the learned policy—

1

https://anonymous.4open.science/r/DT-GFN-1FBA/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

𝑇0

⊗

⊥

⊥

⊥

⊥

⊥

⊥

⊥ ⊥

⊥ ⊥ ⊥

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∅∅∅

𝑞1
F T

𝑞2
F T

𝑞2

𝑞1
F T

F T

𝑞2

𝑞1 𝑞1
F T F T

F T

𝑞2

𝑞1 𝑞1

𝑞3
F T F T

F T

F T

𝑞2

𝑞1
F T

F T

𝑞2

𝑞1 𝑞1

𝑞2

∅

F T F T

F T

F T

𝑞2

𝑞1

𝑞3
F T

TF

TF

Figure 1: Learning a decision tree as decision-making in a Markov decision process (MDP)M. At each
step of construction, the data is split by a decision threshold on one of the features (right for True [T] or left for
False [F]). We start from an empty source state 𝑇0 with no decision rules and move throughM by taking some
action 𝑎 corresponding to finding a decision rule (ℓ, 𝑓 , 𝑡), i.e., split data at leaf ℓ on feature 𝑓 with threshold 𝑡.
At each state ofM, 𝑎 can either be a valid action, i.e., resulting in a valid split, or invalid one, resulting in an
invalid/redundant split. At each state ofM, we have the choice to stop sampling, in which case the resulting tree
is a terminating state ⊥. The reward function R can be computed at any valid state.

a generative model over decision trees—can be used to construct ensembles of decision trees that
are more expressive than individual trees while being probabilistically principled as Bayesian model
averages. In our approach, which we call DT-GFN, deep neural networks are not used as predictors of
target variables given features. Rather, they are used as amortized inference models in the construction
of a rule-based model that acts as the predictor. Among other advantages, this enables the performance
of the predictor to scale consistently in the number of tree models in the ensemble, while the individual
trees remain short in data description length and interpretable. In summary, our main contributions are:

• We propose a sequential decision-making formulation for learning decision trees, leveraging deep
RL methods (GFlowNets) to amortize the intractable sampling from the Bayesian posterior over
decision trees.

• We evaluate trees, and Bayesian ensembles of trees, sampled from the learned generative models
on standard tabular data benchmarks.

• Our approach compares favorably to state-of-the-art in standard classification tasks. We show
improved generalization abilities in robustness to distribution shift and out-of-distribution tasks,
while our tree samples remain comparatively shorter and more interpretable.

• We show evidence of consistent scaling ability in the ensemble size, i.e., sampling more tree models
yields better ensemble prediction; and in compute budget, allowing to adjust the performance-cost
tradeoff as needed.

2 RELATED WORK

Our work closely relates to various approaches to learning decision trees- with explicit splitting
criteria, as Bayesian inference, and as dynamic programming and/or explicit optimization- along
with tabular deep learning and aspects of amortized inference and GFlowNets. We provide a more
detailed account of that in Appendix B.

3 SETTING AND PRELIMINARIES

Notation. We denote the set containing the first 𝑛 positive integers {1, 2, ..𝑛} as [𝑛], where 𝑛 ∈ N.
R+ is the set of non-negative real numbers. We denote scalars in regular font, 𝑥, and vectors in bold,
x. For any set S, |S| denotes the cardinality of S. I denotes the indicator function, i.e., IX (𝑥) = 1 if
𝑥 ∈ X for some set X and 0 otherwise.

Setting. We consider a supervised learning setting where we have access to a labeled tabular dataset
D = (X,Y). X = {x𝑖}𝑛𝑖=1 is a set of features, where x𝑖 ∈ R𝑑 and Y = {𝑦𝑖}𝑛𝑖=1 is a set of labels,
where 𝑦𝑖 ∈ [𝐶] with 𝐶 denoting the number of distinct classes and C = [𝐶]. We further assume that
all data points (x𝑖 , 𝑦𝑖) are i.i.d.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3.1 BAYESIAN POSTERIOR OVER DECISION TREES

An instance of a Bayesian decision tree (BDT) (𝑇,Θ) partitions the feature space into a set
of leaves L = {ℓ1, . . . , ℓ| L | }. Each leaf ℓ is associated with a probability vector θℓ =(
𝜃ℓ,1, 𝜃ℓ,2, . . . , 𝜃ℓ,𝐶

)
, yielding Θ = {θℓ1 , . . . , θℓ|L| }. For each leaf ℓ, we define the partitioning

function Δ(ℓ) which partitions the sample subsets of points Δ(ℓ1), . . . ,Δ(ℓ| L |) falling under ℓ.

Proposition 3.1 (Likelihood of a Bayesian DT). The likelihood under a Bayesian decision tree
(𝑇,Θ) given features X and labels Y is written as follows

P [Y|X, 𝑇,Θ] =
∏
ℓ∈L

∏
𝑖∈Δ(ℓ)

∏
𝑐∈C

𝜃
I(𝑐) (𝑦𝑖)
ℓ, (𝑐) =

∏
ℓ∈L

∏
𝑐∈C

𝜃

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

,

where L is the set of leaves in the tree 𝑇 , C is the set of classes, 𝜃ℓ, (𝑐) is the probability of sampling
class 𝑐 under leaf ℓ, and I(𝑐) (𝑦𝑖) is the indicator function of whether 𝑦𝑖 belongs to class 𝑐.

The Bayesian Classification and Regression Trees (BCART) construction (Chipman et al.,
1998) assumes a Dirichlet prior distribution over Θ, i.e., θ ∼ Dirichlet(α) for all
θ ∈ Θ. Under this prior, we express the marginal likelihood P [Y|X, 𝑇] as follows.

Proposition 3.2 (Marginal Likelihood of a Bayesian DT). Assuming θ ∼ Dirichlet(α), the marginal
likelihood of a Bayesian decision tree 𝑇 given features X and labels Y

P [Y|X, 𝑇] =
(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∏
ℓ∈L

∏
𝑐∈C Γ(𝑛ℓ,𝑐 + 𝛼𝑐)

Γ(𝑛ℓ +
∑

𝑐∈C 𝛼𝑐)
,

where 𝑛ℓ,𝑐 =
∑

𝑖∈Δ(ℓ) I
(𝑐) (𝑦𝑖) is the empirical count of data points with label 𝑐 at leaf ℓ and

𝑛ℓ =
∑

𝑐∈C 𝑛ℓ,𝑐 is the total empirical count of data points (of all classes) at leaf ℓ.

We defer the proofs of the aforementioned results along with a more in-depth disussion of the role or
priors to Appendix D.1. As the prior over tree structures P [𝑇 |X] remains a design choice, we defer
discussing that to §4.2.

Decision tree search space size. The space of decision trees is enormous even for small depths and
numbers of features. According to Hu et al. (2019), assuming a (full) binary tree of depth 𝑑𝑡 and
given a dataset with 𝑝 binary features, the number of distinct trees is

𝑁𝑑𝑡 =

1∑︁
𝑛0=1

2𝑛0∑︁
𝑛1=1
· · ·

2𝑛𝑑𝑡 −2∑︁
𝑛𝑑𝑡 −1=1

𝑝 ×
(
2𝑛0
𝑛1

)
(𝑝 − 1)𝑛1 × · · · ×

(
2𝑛𝑑𝑡−2
𝑛𝑑𝑡−1

)
(𝑝 − (𝑑𝑡 − 1))𝑛𝑑𝑡 −1 . (1)

Hence, the size of the search space over decision trees up to
some depth 𝑑 is simply

∑𝑑
𝑑𝑡=1 𝑁𝑑𝑡 . §3.1 computes the latter

for 𝑑 ∈ {1, 2, 3, 4, 5} given a dataset with 𝑝 ∈ {10, 20}
binary features; exact computation for 𝑑 = 5 is already
prohibitive, at least by elementary means.

𝑑 𝑝 = 10 𝑝 = 20

1 1.000 × 101 2.000 × 101

2 1.000 × 103 8.000 × 103

3 5.329 × 106 9.411 × 108

4 5.609 × 1013 8.358 × 1018

Given this challenge, we propose to use reinforcement learning methods to amortize search over this
very large space, and the benefits of GFlowNets as amortized, diversity-seeking samplers.

3.2 AMORTIZED INFERENCE WITH GFLOWNETS

We briefly recall some of the main ideas behind GFlowNets relevant to our context, along with key
ingredients to train them. A GFlowNet assumes access to a fully observable deterministic MDP
with a set of states S and set of actions A ⊆ S × S. From the states in S, we note in particular
that the MDPM has a unique source state s0 with no parents (represented as 𝑇0 in Fig. 1), and a
subset of states X ⊂ S which we refer to as terminal states (represented as ⊥ in Fig. 1); terminal
states have no outgoing actions and subsequently no children states. We assume that any state in S is
reachable from s0 through some sequence of actions as illustrated in Fig. 1. We refer to a sequence
of states (s𝑖 → · · · → s 𝑗) as a trajectory, such that a transition between each pair of consecutive
states (s𝑡 → s𝑡+1) is induced by an action 𝑎 ∈ A. In particular, we define a complete trajectory as a
trajectory that starts from s0 and ends at some s𝑛 ∈ X, i.e., 𝜏 = (s0 → s1 → · · · → s𝑛 = x).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Policy. A (forward) policy operating on the aforementioned MDP outputs a distribution P𝐹 [s′ |s]
for each state s ∈ S \ X over the states s′ that are reachable from s within a single action1. Given a
complete trajectory 𝜏, a policy induces a distribution over 𝜏 written as

P𝐹 [𝜏 = (s0 → s1 → · · · → s𝑛 = x)] =
𝑛−1∏
𝑡=0

P𝐹 [s𝑡+1 |s𝑡] . (2)

We denote the marginal distribution over terminal states by P⊤
𝐹

. In general, estimating P⊤
𝐹

exactly
or computing it in closed-form is intractable

P⊤
𝐹
[x] = ∑

𝜏⇝x P
⊤
𝐹
[𝜏], (3)

where the sum is taken over all complete trajectories leading to x.

Inheriting terminology from the RL literature, a reward function R(x) for a GFlowNet represents the
target—possibly and typically unnormalized—distribution over the set of terminal states X. Formally,
R is a mapping from the set of terminal states X to R+, i.e., R : X → R+. A typical form the reward
function takes in our construction is R(x) = 𝑒−E(x)/𝑇 where E : X → R is an energy function and
𝑇 ∈ R+ is a temperature control parameter. Given the latter, the learning problem a GFlowNet aims to
approximate is sequentially choosing a policy P𝐹 [s𝑡+1 |s𝑡] such that the induced marginal distribution
P⊤
𝐹
[s𝑛 = x] is proportional to the reward function evaluated at x up to a normalizing constant, that is

P⊤𝐹 [x] ∝ R(x) = 𝑒−E(x)/𝑇 . (4)
P𝐹 is typically parametrized by a neural network with parameters θ, denoted P𝐹 [• ; θ], that outputs
the distribution over states s′ reachable from any state s ∈ S when taking argument s′ |s.

A key challenge within this line of framing is the potential intractability of the number of trajectories
leading to some object x, especially when the search space becomes combinatorially large and
trajectories become longer. This makes P⊤

𝐹
and the normalizing constant in (4), 𝑍 =

∑
𝜏⇝x R(x),

hard to estimate. Various objectives have been proposed for circumventing this, usually via injecting
additional learnable objects or parameters into the optimization problem. In particular, we use
trajectory balance (Malkin et al., 2022), and introduce it in the following.

Trajectory balance (TB). The TB objective is constructed by introducing an additional backward
policy P𝐵, which can be learned or fixed, and a single scalar 𝑍θ that estimates the partition function on
the reward right hand side of (4), i.e., 𝑍 =

∑
𝜏⇝x R(x). More precisely, P𝐵 is defined as a collection

of distributions P𝐵 [•|s] over the parent states of any non-source state s and induces a distribution
over complete trajectories 𝜏 leading to x, i.e.,

P𝐵

[
𝜏 = (s0 ← s1 ← · · · ← s𝑛 = x) |x

]
=

𝑛−1∏
𝑡=0

P𝐵

[
s𝑡 |s𝑡+1

]
. (5)

Via this parametrization, the TB objective reduces enforcing (4) to (more simply) enforcing P𝐹 [𝜏] ∝
P𝐵 [𝜏 |x] · R(x) for every complete trajectory 𝜏 ending in x (note that the latter implies the former).
Such proportionality is directly enforced by the training loss:

ℓTB (𝜏;θ) =
(
log

[
𝑍θ · P𝐹 [𝜏;θ]

]
− log

[
P𝐵 [𝜏 |x;θ] · R(x)

])2
. (6)

If ℓTB (𝜏;θ) = 0 for all complete trajectories 𝜏, then the output policy P̂𝐹 provably samples propor-
tionally to the reward function, i.e., (4), and the output normalization constant 𝑍𝜃 equals the partition
function of the reward, i.e., 𝑍𝜃 =

∑
𝜏⇝x R(x) (Malkin et al., 2022). Another important resulting

observation is that given some fixed P𝐵, there exists a unique P̂𝐹 that satisfies (4), which allows to set
P𝐵 to some fixed distribution at initialization.

Exploration in training. The TB objective operates on trajectories in training, yet the process
of choosing the trajectories to optimize (6) remains an algorithmic choice. A default choice is to
train on-policy by sampling 𝜏 ∼ P𝐹 [𝜏;θ] and minimizing ℓTB (𝜏;θ) with gradient descent. Given
GFlowNets’ aim to sample diversely from the reward function by design, favoring exploration in
training has also proven to yield a variety of benefits. This could be done by sampling 𝜏 from a
tempered P𝐹 or through sampling individual actions from a uniform distribution 𝜖 of the time on
average, akin to 𝜖-greedy exploration in RL.

1Note here that we can write the policy as a distribution over “next” states (from current state) or actions
interchangeably as the MDP is deterministic.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 LEARNING DECISION TREES AS AMORTIZED STRUCTURE INFERENCE

4.1 CONSTRUCTING THE GFLOWNET’S UNDERLYING MDPM
State. Given a choice of a maximum tree depth 𝑑max a tree is allowed to expand to, there are a
maximum of 2𝑑max+1 − 1 nodes in 𝑇 . We represent each node as a vector, which we order following a
breadth-first traversal. Each node is either a decision node, in which case its corresponding vector is
a decision rule, or a leaf node in which case it is labeled as an end-of-sentence (<EOS>). A decision
rule is defined as a tuple (𝑓𝑖 , 𝑡𝑖), where 𝑓𝑖 ∈ [𝑑] is some given feature and 𝑡𝑖 ∈ R is some real number
corresponding to the splitting threshold for 𝑓𝑖 . By notation, data-points satisfying 𝑓𝑖 ≤ 𝑡𝑖 flow to the
left child node, and the rest flow to the right one. A choice at a child node is only allowed if a choice
of a decision rule was made for all parent nodes. At initialization, each entry is assigned a “not yet
specified” value of ∅. At the root node, either a decision rule or termination are chosen; if a decision
rule is picked, 𝑇 is then recursively augmented in a similar way.

Action. We opt to keep the action space discrete for simplicity. For that, we scale features back to
[0, 1] and pick 𝑡 thresholds uniformly spaced in this range; 𝑡 remains a hyperparameter of choice. An
alternative paradigm could be using quantiles of training data, which we have found to often overfit
the train set. As both the number of possible thresholds 𝑓𝑖 and 𝑡𝑖 can be large, we define the action
space hierarchically. At each leaf node of each non-terminal tree state 𝑇 , we can either pick a decision
rule or terminate. Picking a decision rule consists in hierarchically choosing a feature 𝑓𝑖 , then a
threshold 𝑡𝑖 . To account for decisions resulting in invalid states (see Fig. 1), we mask thresholds
that do not result in a valid split, i.e., one where at least one data-point flows to each child node. A
terminal state is reached either when an action to terminate is picked, or when all actions are masked.

4.2 REWARD FUNCTION AND PARAMETER SAMPLING

Reward. As outlined in §3, we choose our reward function to be the joint conditional probability
distribution R(𝑇 |X) = P [Y|X, 𝑇] · P[𝑇 |X] ∝ P[𝑇 |Y,X]. Unlike a variety of settings where
GFLOWNETS have been applied, the reward function can be written in closed form without any
further parametrizations. The remaining ingredient is to choose a prior on the structure of𝑇 . Anchored
in Occam’s razor (Rissanen (1978); Chapter 28, MacKay (2003)) and akin to previous work on
(provably) optimal decision trees (Hu et al., 2019; Lin et al., 2020; Balcan & Sharma, 2024), we
choose a prior of minimal (data) description length of 𝑇 , as measured by its number of decision nodes.
To properly normalize the likelihood term, we further inject a parameter 𝛽, and provide guidelines on
tuning it appropriately. We formulate the posterior distribution over Bayesian DTs given our chosen
prior P[𝑇 |X] = 𝑒−𝛽 ·𝑛(𝑇) as follows

P[𝑇 |Y,X] ∝ P [Y|X, 𝑇] · P[𝑇 |X] ∝ 𝑒−𝛽 ·𝑛(𝑇) ·
(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∏
ℓ∈L

∏
𝑐∈C Γ(𝑛ℓ,𝑐 + 𝛼𝑐)

Γ(𝑛ℓ +
∑

𝑐∈C 𝛼𝑐)
, (7)

where 𝛽 ≥ 0 and 𝑛(𝑇) is the number of decision (non-leaf) nodes in a tree 𝑇 .

Choice of 𝛽. An important consideration when computing the prior over trees is the choice of the
parameter 𝛽, which controls how much we penalize overly complex trees. For a choice of a large
𝛽, our model might not be expressive enough. For a choice of a small 𝛽, our model might become
overly complex, potentially undermining its interpretability. We would like to pick some 𝛽 such that
the resulting model would be expressive enough, have a short description length and be interpretable.
Relying on information theoretical arguments, as outlined in Appendix D.2, we propose that a suitable
choice of 𝛽 is 𝛽 ∼ log(4) + log(𝑑) + log(𝑡), where 𝑑 is the number of splitting features, and 𝑡 is the
number of splitting thresholds corresponding to the chosen discretization of the feature support.

Sampling classification parameters at inference. Given a trained tree structure, classification
parameters θℓ at each leaf are sampled from the posterior θℓ ∼ Dirichlet(nℓ +α), where nℓ are the
empirical counts of samples belonging to each class at leaf ℓ and α is a prior on overall class counts.

4.3 PARAMETRIZATION OF THE FORWARD POLICY

A key property of our formulation is that it allows to frame decision tree learning as reasoning over
root-to-leaf paths by picking a sequence of decision rules given a context of previous decisions. Given
that both the prior and the predictions over different root-to-leaf paths are independent, a learned tree

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

representation is invariant to their order.2 A representation given as input to our policy model is a
set of (padded) vectors, each representing the root-to-leaf path to a leaf. The termination probability
P𝐹

[
<EOS>

��s𝑡] is parametrized as a simple multi-layer perceptron (MLP). The likelihoods of other
actions P𝐹

[
s𝑡+1

��s𝑡 ;¬<EOS>
]

are parametrized by a second MLP, evaluated independently on the
representation of each leaf. The backward policy P𝐵 is simply set to be uniform over parent states.
To encourage exploration and diversely sample from the posterior, trajectories need not always be
sampled from P𝐹 (on-policy). Instead, we use two widely adopted techniques from the RL literature,
which have also been used for off-policy exploration in GFlowNets: a replay buffer and 𝜖-random
exploration with annealed 𝜖 . See Appendix F for all hyperparameters and training details.

5 EMPIRICAL EVALUATION

In §5.1, we first evaluate our approach on two desirable properties when designing models for tabular
data: 1) in-distribution generalization, as measured by held-out set accuracy, and 2) complexity (often
also used as a proxy for interpretability), as measured by model size for DT-based methods, where
model size directly correlates with model complexity. Next, in §5.2, we would like to evaluate the
potential of constructing ensembles of predictors sampled from DT-GFN, and how these can be
competitive with gradient-boosted trees and deep learning methods. In §5.3, we consider experiments
in systematic generalization, where we would like to see how models learned via structure inference
with our method compare to a variety of other baselines. Finally, we conduct consistent scaling
experiments in §5.4. We further show in Appendix G.1 that DT-GFN compares favorably to state-of-
the-art at minimum cost (see Fig. 4). For all experiments, we highlight the best result in bold and
blue and most competitive (second best) result(s) in blue cell shades. For experiments in which we
report model sizes, we omit mentioning the “best” result as it is hard to determine the optimal one.
We further point to Appendix J for details on baseline implementations where needed.

5.1 BENCHMARKING WITH SINGLE DECISION TREE ALGORITHMS

Table 1: Test accuracy and model size (total number of tree nodes) for single decision tree baselines,
averaged over five random seeds. For each algorithm, to account for model variance, we construct 1000 trees
and pick the best tree in training. For Bayesian algorithms (including our DT-GFN), we choose the tree with the
highest log-posterior. For all of the others, we choose the tree with the highest accuracy in training.
Dataset→ Iris Wine Breast Cancer(D) Raisin
Algorithm ↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓
SMC 0.9518 ±0.02 16.18 ±1.72 0.9311 ±0.04 16.25 ±2.66 0.931 ±0.01 32.32 ±2.68 0.866 ±0.01 46.58 ±2.12

MCMC 0.923 ±0.04 13.4 ±1.5 0.955 ±0.02 13.82 ±1.21 0.92 ±0.02 25.62 ±2.67 0.864 ±0.02 35.29 ±1.93

MAPTREE 0.8733 ±0.04 3.80 ±0.45 0.9139 ±0.02 4.8±0.45 0.9281 ±0.02 5 ±0 0.8344 ±0.03 7.80 ±1.10

BCART 0.9267 ±0.03 56.2 ±31.8 0.9389 ±0.02 49.8 ±34.26 0.9018 ±0.03 20.6 ±12.09 0.8678 ±0.01 23.80 ±8.26

(𝛼∗, 𝛽∗)-TSALLIS 0.9267 ±0.04 16.6 ±1.5 0.944 ±0.315 19 ±1.26 0.937 ±0.017 22.2 ±0.98 0.864 ±0.01 28.2 ±1.6

CART-GINI 0.9494 ±0.02 14.6 ±1.5 0.876 ±0.05 17.8 ±4.12 0.923 ±0.02 34.6 ±6.25 0.852 ±0.023 29.8 ±0.98

CART-ENTROPY 0.9468 ±0.02 14.6 ±1.5 0.9357 ±0.04 16.6 ±3.2 0.9168±0.022 29.4 ±1.96 0.868 ±0.016 27.4 ±0.08

DPDT-4 0.947 ±0.027 14.8 ±0.98 0.889 ±0.068 20.6 ±2.94 0.919 ±0.024 24.6 ±2.33 0.853 ±0.016 27.2 ±2.03

QUANT-BNB 0.953 ±0.029 15 ±0 0.817 ±0.023 12.2 ±6.26 0.933 ±0.023 15 ±0 0.859 ±0.011 15 ±0

DT-GFN (ours) 0.98±0.04 8.6±3.44 0.97±0.03 8.6±1.5 0.95±0.02 6.2±0.98 0.9±0.002 27±2.83

Baselines and evaluation. We compare our approach against 9 methods belonging to four different
families: 1) Bayesian DT sampling algorithms: SMC (Lakshminarayanan et al., 2013), MCMC
(Lakshminarayanan et al., 2013), MAPTREE (Sullivan et al., 2024) and BCART (Chipman et al.,
1998); 2) methods with explicitly specified splitting criteria: (𝛼∗, 𝛽∗)-TSALLIS ENTROPY (Balcan
& Sharma, 2024), CART-GINI, CART-ENTROPY; 3) dynamic programming or RL-based methods:
DPDT-4 (Kohler et al., 2024); 4) methods formulating decision tree learning as explicit optimization:
QUANT-BNB (Mazumder et al., 2022). We conduct our series of experiments on a variety of
widely used tabular datasets from the UCI repository (Dua & Graff, 2019): Iris (Fisher, 1936), Wine
(Aeberhard et al., 1992), Breast Cancer Diagnostic (Dua & Graff, 2019) and Raisin (Güvenir & Erel,
2017). For each algorithm, we restrict the chosen maximum tree depth to 5 and we report the average
held-out set accuracy and model size over five different train-test splits. Model size is measured
by the total number of nodes in a tree. Results are presented in Table 1.

2This would make a sequence model, such as a (decoder-only) transformer (Vaswani et al., 2017; Radford
et al., 2018) or a order-invariant version (Lee et al., 2019) a natural choice, but this choice turns out not to be
computationally effective, especially at small-to-medium scales.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Results. In Table 1, we observe that a decision tree sampled from a trained DT-GFN policy
consistently—and often significantly—outperforms state-of-the-art single decision tree construction
algorithms from all families. We also show that we obtain trees with the shortest data description
length, measured by the average total number of nodes across seeds. Furthermore, when the maximum
tree depth is sufficiently large, the minimal complexity comes from the ability of the model to abide
by the prior rather than by explicit termination when reaching some small maximum depth.

5.2 BENCHMARKING WITH GREEDY ENSEMBLE METHODS AND DEEP LEARNING METHODS

Table 2: Test accuracy and model size (total number of tree nodes; where applicable) for ensemble methods,
averaged over five random seeds. For tree methods, including ours, each ensemble contains 1000 trees.
Dataset→ Iris Wine Breast Cancer(D) Raisin
Algorithm ↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓ TEST ACC↑ SIZE↓
GREEDY RF 0.96±0.01 14.73±0.9 0.9833±0.01 18.89±0.78 0.9474±0.02 33.71±0.93 0.8689±0.01 151.12±2.53

XGBOOST 0.9533±0.03 4.56±0.34 0.9556±0.03 3.51±0.08 0.9579±0.02 6.86±0.16 0.8611±0.02 28.33±0.24

CATBOOST 0.96±0.03 379.771±1.90 0.978±0.01 380.52±0.85 0.9544±0.01 126.72±0.4 0.88±0.02 126.73±0.10

LIGHTGBM 0.9533±0.03 9.39±0.58 0.9889±0.01 12.34±0.34 0.9579±0.01 47.04±0.64 0.8622±0.02 59.63±0.17

MLP 0.9667±0.03 N/A 0.8500±0.15 N/A 0.9140±0.01 N/A 0.5167±0.03 N/A
TABTRANSFORMER 0.7933±0.049 N/A 0.978 ±0.021 N/A 0.9316±.0211 N/A 0.8544 ±0.03 N/A
FTTRANSFORMER 0.953±0.016 N/A 0.967±0.02 N/A 0.961±0.013 N/A 0.847±0.028 N/A

DT-GFN (ours) 0.973±0.04 11.11±2.94 0.983±0.01 8±1.29 0.954±0.02 5.67±0.19 0.883±0.03 26.31±1.25

Baselines. We compare our approach to seven methods from two categories: (1) bootstrapped or
gradient-boosted trees—GREEDY RF (Breiman, 2001), XGBOOST (Chen & Guestrin, 2016), CAT-
BOOST (Dorogush et al., 2018), and LIGHTGBM (Ke et al., 2017); (2) deep learning models—MLP,
TABTRANSFORMER (Huang et al., 2020), and FTTRANSFORMER (Gorishniy et al., 2021). The
experimental setup and evaluation criteria follow §5.1.

Results. In Table 2, we observe that an ensemble constructed from DT-GFN samples with Bayesian
model averaging (as per Algorithm 1) is consistently among the most competitive methods while
keeping low model complexity.

5.3 EXPERIMENTS IN SYSTEMATIC GENERALIZATION

5.3.1 ROBUSTNESS TO DISTRIBUTION SHIFTS

We consider distribution shifts along two features of
the Pima Indians Diabetes dataset (Smith et al., 1988):
BMI and Age. The experimental setup is detailed in
Appendix H.2. Baselines follow §5.2. For tree-based
models, results for largest ensembles are reported. All
ensembles contain 1000 trees. Ensembles of trees gen-
erated by DT-GFN compare favorably to baselines both
in-distribution and out-of-distribution under both shifts
(Table 3).

Table 3: In-distribution and out-of-
distribution test accuracies across two
domain shifts.
Domain shift feature→ BMI Age
Algorithm ↓ IN-DIST. OOD IN-DIST. OOD

RF 0.803 0.637 0.8625 0.66
XGBOOST 0.77 0.598 0.788 0.61
CATBOOST 0.803 0.606 0.838 0.645
LIGHTGBM 0.803 0.59 0.825 0.624

MLP 0.7541 0.57 0.825 0.513
TABTRANSFORMER 0.771 0.62 0.825 0.559
FTTRANSFORMER 0.836 0.585 0.775 0.535

DT-GFN (ours) 0.94 0.755 0.925 0.7

5.3.2 OUT-OF-DISTRIBUTION DETECTION

Baselines. We compare our approach against seven methods encompassing both recent deep learning
algorithms and traditional approaches. Specifically, we include three deep learning methods: (Shenkar
& Wolf, 2022), DROCC (Goyal et al., 2020) and GOAD (Bergman & Hoshen, 2020), as well as five
classical ML methods: COPOD (Li et al., 2020), IFOREST (Liu et al., 2008), KNN (Cover & Hart,
1967), PIDFOREST (Gopalan et al., 2019), and RRCF (Guha et al., 2016). The experimental setup
and all baseline results are drawn directly from Shenkar & Wolf (2022), as we are able to reproduce
their exact results using the provided code.

Evaluation. Shenkar & Wolf (2022) assume a priori knowledge of the number of anomalous
samples in the test set, say 𝑛𝑎, following a common protocol in anomaly detection (Zong et al., 2018).
Then, they adjust the threshold on the prediction metric accordingly so as to select 𝑛𝑎 anomalous
samples exactly. We outline the details of this procedure in Appendix I. For evaluating our method,
we alleviate the need for knowing 𝑛𝑎. For our experiments, as we have access to a trained DT-GFN
policy that acts as a as probabilistic model, we can compute the probability of a sample to be
normal/anomalous directly. This allows for setting-specific flexibility in designing a classifier, for
instance whether we care more about overall accuracy or about being risk-averse, i.e., minimizing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

In-Distribution Test Accuracy

0.55

0.60

0.65

0.70

0.75

0.80

O
u

t-
o

f-
D

is
tr

ib
u

ti
o

n
T

es
t

A
cc

u
ra

cy

BMI Domain Shift (a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

In-Distribution Test Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Age Domain Shift (b)

DT− GFN (Ours)

Random Forest

XGBoost

CatBoost

LightGBM

MLP

TabTransformer

FTTransformer

y = x

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

In-Distribution Test Accuracy

0.55

0.60

0.65

0.70

0.75

0.80

O
u

t-
o

f-
D

is
tr

ib
u

ti
o

n
T

es
t

A
cc

u
ra

cy

BMI Domain Shift (a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

In-Distribution Test Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Age Domain Shift (b)

DT− GFN (Ours)

Random Forest

XGBoost

CatBoost

LightGBM

MLP

TabTransformer

FTTransformer

y = x

Figure 2: Distribution shift in-
distribution/out-of-distribution plots
with ablations on ensemble sizes
[100, 500, 1000] for tree-based methods.
Visualization of distribution shifts caused
by interventions on (a) BMI features and
(b) Age features, with the symbol sizes
indicating the ensemble sizes.

misdetections. In our case, we follow a simple procedure where we classify a sample as anomalous if
its probability of being normal is at least two standard deviations lower than the average normal class
classification probability across samples
at test time. DT-GFN results use a single
tree. Following Shenkar & Wolf (2022),
we use the F1 score as a metric.
Results. In Table 4, we observe that
samples of single trees generated by DT-
GFN perform (often significantly) bet-
ter than the state-of-the-art in general-
ization to detect out-of-distribution sam-
ples, while still offering the benefits of a
generative probabilistic model and with-
out a priori knowledge of the number of
anomalous samples in the test set.

Table 4: F1 scores on common OOD detection benchmark
datasets, setting is reproduced as per the guidelines in Shenkar
& Wolf (2022).
Algorithm ↓ Dataset→ Thyroid Ecoli Vertebral Glass
DROCC 0.727 N/A 0.27 0.222
GOAD 0.725 0.693 0.269 0.257
(Shenkar & Wolf, 2022) 0.768 0.7 0.26 0.272

COPOD 0.308 0.256 0.017 0.11
IFOREST 0.789 0.589 0.13 0.11
KNN 0.573 0.778 0.1 0.11
PIDFOREST 0.72 0.256 0.12 0.089
RRCF 0.319 0.289 0.08 0.156

DT-GFN (ours) 0.794 0.812 0.404 0.315

5.4 EXPERIMENTS IN CONSISTENT SCALING

We vary ensemble sizes in {100, 500, 1000} for tree-based models in experiments in §5.3.1. For each
ensemble size, scaling is not only in the samples collected from DT-GFN at inference, instead we train
a separate model for each ensemble size configuration. By ensemble size, we do not only mean the
samples generated from the DT-GFN policy at inference to construct a predictive ensemble, instead
we also describe by that the number of trees DT-GFN generates to compute the TB loss (6). As TB is
computed at the level of trajectories, computing it on more trees for the same number of training steps
allows it to see more trajectories on average. During inference, we sample the same number of trees
used in training. We observe in Fig. 2 that ensembles constructed from trees generated by DT-GFN
exhibit properties of systematic and consistent scaling in the ensemble size, i.e., more trees in an
ensemble in training results in a increase in generalization both in-distribution and out-of-distribution
across two distribution shift instances. On the other hand, gradient-boosted tree algorithms do not
scale well with increasing the ensemble size, yielding unstable scaling behavior.

6 DISCUSSION AND FUTURE WORK

DT-GFN is an amortized inference method that generates decision tree models from the Bayesian
posterior by sequential construction of decision rules. We have shown that DT-GFN is particularly
strong in settings with few data points, scales well with problem and model size, and is effective in
handling distribution shifts. Notable opportunities for future work include extending DT-GFN to
online and streaming data scenarios (Chaouki et al., 2024), where GFlowNets have been proposed as
a solution (da Silva et al., 2024), and exploring its potential for knowledge-driven Bayesian model
selection (Lotfi et al., 2022).

The effectiveness of ensembles of decision trees in systematic generalization, as demonstrated by DT-
GFN, makes a case for the use of amortized inference (e.g., using GFlowNets or other deep RL meth-
ods) to sample rule-based models: while a neural model is used for parameter inference and Bayesian
model averaging, the generated classification models themselves remain lightweight and interpretable.
In this sense, DT-GFN is a proof of concept for amortized inference of model structure in more general
model classes. It should be built upon in future work on structure inference for probabilistic circuits
(of which decision trees are a special case), probabilistic programs, and other structured models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

REFERENCES

Stefan Aeberhard, Dionisis Coomans, and Otto de Vel. Wine recognition data. Technical report, UCI
Machine Learning Repository, 1992.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sercan O Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. Association for
the Advancement of Artificial Intelligence (AAAI), 2021.

Mohammad Azizmalayeri, Ameen Abu-Hanna, and Giovanni Ciná. Unmasking the chameleons:
A benchmark for out-of-distribution detection in medical tabular data. International Journal of
Medical Informatics, 195:105762, 2023.

Maria-Florina Balcan and Dravyansh Sharma. Learning accurate and interpretable decision trees.
Uncertainty in Artificial Intelligence (UAI), 2024.

Guilherme Barreto and Ajalmar Neto. Vertebral column database. UCI Machine Learning Repository,
2005.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. Interna-
tional Conference on Learning Representations (ICLR), 2020.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and Regres-
sion Trees. Wadsworth International Group, 1984.

Ayman Chaouki, Jesse Read, and Albert Bifet. Online learning of decision trees with Thompson
sampling. Artificial Intelligence and Statistics (AISTATS), 2024.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. Knowledge Discovery
and Data Mining (KDD), 2016.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian CART model search.
Journal of the American Statistical Association, 93(443):935–948, 1998.

Hugh A Chipman, Edward I George, and Robert E McCulloch. BART: Bayesian additive regression
trees. Annals of Applied Statistics, 4(1):266–298, 2010.

Jodie A. Cochrane, Adrian G. Wills, and Sarah J. Johnson. RJHMC-Tree for exploration of the
Bayesian decision tree posterior. arXiv preprint arXiv:2312.01577, 2023.

Jodie A. Cochrane, Adrian Wills, and Sarah J. Johnson. Divide, conquer, combine Bayesian decision
tree sampling. arXiv preprint arXiv:2403.18147, 2024.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967.

Tiago da Silva, Daniel Augusto de Souza, and Diego Mesquita. Streaming bayes GFlowNets, 2024.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin,
and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a single
generative flow network. Neural Information Processing Systems (NeurIPS), 2023.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments. Uncertainty in Artificial Intelligence
(UAI), 2024.

Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher Leckie,
Kotagiri Ramamohanarao, and Peter J Stuckey. Murtree: Optimal decision trees via dynamic
programming and search. Journal of Machine Learning Research, 23(26):1–47, 2022.

Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in Finance. Springer, 2020.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: Gradient boosting with
categorical features support. Neural Information Processing Systems (NIPS), 2018.

Dheeru Dua and Casey Graff. Uci machine learning repository, 2019.

Ian W Evett and Ernest J Spiehler. Glass identification database. UCI Machine Learning Repository,
1987.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179–188, 1936.

Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data
with TableShift. Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks
Track, 2023.

Abhinav Garlapati, Aditi Raghunathan, Vaishnavh Nagarajan, and Balaraman Ravindran. A rein-
forcement learning approach to online learning of decision trees. arXiv preprint arXiv:1507.06923,
2015.

Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. PIDForest: Anomaly detection via partial
identification. Neural Information Processing Systems (NeurIPS), 2019.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Neural Information Processing Systems (NeurIPS), 2021.

Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. DROCC:
Deep robust one-class classification. International Conference on Machine Learning (ICML),
2020.

Sarah Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data? Neural Information Processing Systems (NeurIPS), 2022.

Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random cut forest based
anomaly detection on streams. International Conference on Machine Learning (ICML), 2016.

Agrim Gupta, Ali Razavi, Andeep Toor, Ankush Gupta, Dumitru Erhan, Eleni Shaw, Eric Lau, Frank
Belletti, Gabe Barth-Maron, Gregory Shaw, Hakan Erdogan, Hakim Sidahmed, Henna Nandwani,
Hernan Moraldo, Hyunjik Kim, Irina Blok, Jeff Donahue, José Lezama, Kory Mathewson, Kurtis
David, Matthieu Kim Lorrain, Marc van Zee, Medhini Narasimhan, Miaosen Wang, Mohammad
Babaeizadeh, Nelly Papalampidi, Nick Pezzotti, Nilpa Jha, Parker Barnes, Pieter-Jan Kindermans,
Rachel Hornung, Ruben Villegas, Ryan Poplin, Salah Zaiem, Sander Dieleman, Sayna Ebrahimi,
Scott Wisdom, Serena Zhang, Shlomi Fruchter, Signe Nørly, Weizhe Hua, Xinchen Yan, Yuqing
Du, and Yutian Chen. Veo 2. 2024. URL https://deepmind.google/technologies/
veo/veo-2/.

H.A. Güvenir and E. Erel. Raisin dataset. UCI Machine Learning Repository, 2017.

David J. Hand. Classifier Technology and the Illusion of Progress. Statistical Science, 21(1):1–14,
2006.

10

https://deepmind.google/technologies/veo/veo-2/
https://deepmind.google/technologies/veo/veo-2/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned MLPs
and boosted trees on tabular data. Neural Information Processing Systems (NeurIPS), 2024.

Paul Horton and Kenta Nakai. A probabilistic classification system for predicting the cellular
localization sites of proteins. Intelligent Systems in Molecular Biology, pp. 109–115, 1996.

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, and Yoshua Bengio.
GFlowNet-EM for learning compositional latent variable models. International Conference on
Machine Learning (ICML), 2023.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Neural Information
Processing Systems (NeurIPS), 2019.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. TabTransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. LightGBM: A highly efficient gradient boosting decision tree. Neural Information Processing
Systems (NIPS), 2017.

Guolin Ke, Di Wang, and Haifeng Zheng. DeepGBM: A deep learning framework distilled by GBDT
for online prediction tasks. Knowledge Discovery and Data Mining (KDD), 2019.

Güünter Klambauer, Thomas Unterthiner, Andreas Mayr Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Neural Information Processing Systems (NIPS), 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. International Conference on Machine Learning
(ICML), 2021.

Hector Kohler, Riad Akrour, and Philippe Preux. Interpretable decision tree search as a Markov
decision process. arXiv preprint arXiv:2409.12701, 2024.

Balaji Lakshminarayanan, Daniel M. Roy, and Yee Whye Teh. Top-down particle filtering for
bayesian decision trees. International Conference on Machine Learning (ICML), 2013.

Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests: Efficient online
random forests. Neural Information Processing Systems (NIPS), 2016.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. International
Conference on Machine Learning (ICML), 2019.

Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. DAG Matters! GFlowNets enhanced
explainer for graph neural networks. International Conference on Learning Representations (ICLR),
2023.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. COPOD: copula-based outlier
detection. International Conference on Data Mining, 2020.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable
optimal sparse decision trees. International Conference on Machine Learning (ICML), 2020.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. International Conference on Data
Mining, 2008.

Sanae Lotfi, Pavel Izmailov, Gregory Benton, Micah Goldblum, and Andrew Gordon Wilson.
Bayesian model selection, the marginal likelihood, and generalization. International Confer-
ence on Machine Learning (ICML), 2022.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS),
2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. GFlowNets and variational inference. International Conference on Learning
Representations (ICLR), 2023.

Rahul Mazumder, Xiang Meng, and Haoyue Wang. Quant-BnB: A scalable branch-and-bound
method for optimal decision trees with continuous features. International Conference on Machine
Learning (ICML), 2022.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chin-
may Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When do neural nets
outperform boosted trees on tabular data? Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track, 2023.

John Mingers. Expert systems—rule induction with statistical data. Journal of the operational
research society, 38(1):39–47, 1987.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2024.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. International Conference on Learning Representations (ICLR), 2020.

Karol Przystalski and Rohit M. Thanki. Medical Tabular Data. Springer International Publishing,
2024.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

J. Ross Quinlan. Simplifying decision trees. International journal of man-machine studies, 27(3):
221–234, 1987.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

J Ross Quinlan et al. Thyroid disease database. UCI Machine Learning Repository, 1987.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
shift in machine learning. Mit Press, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI Blog, 1(8), 2018.

Shebuti Rayana. Odds library, 2016. URL https://odds.cs.stonybrook.edu.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Tom Shenkar and Lior Wolf. Anomaly detection for tabular data with internal contrastive learning.
International Conference on Learning Representations (ICLR), 2022.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and R.S. Johannes. Pima indians diabetes
database. Technical report, National Institute of Diabetes and Digestive and Kidney Diseases,
1988.

Colin Sullivan, Mo Tiwari, and Sebastian Thrun. MAPTree: Beating “Optimal” decision trees with
Bayesian decision trees. Association for the Advancement of Artificial Intelligence (AAAI), 2024.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks as
entropy-regularized RL. Artificial Intelligence and Statistics (AISTATS), 2024.

Nicholay Topin, Stephanie Milani, Fei Fang, and M. Veloso. Iterative bounding MDPs: Learning
interpretable policies via non-interpretable methods. Association for the Advancement of Artificial
Intelligence (AAAI), 2021.

12

https://odds.cs.stonybrook.edu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing Systems
(NIPS), 2017.

W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Breast cancer cytology dataset. UCI Machine
Learning Repository, 1995.

Yuhong Wu, Håkon Tjelmeland, and Mike West. Bayesian CART: Prior specification and posterior
simulation. Journal of Computational and Graphical Statistics, 16(1):44–66, 2007.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. VIME: Extending the success of self- and
semi-supervised learning to tabular domain. Neural Information Processing Systems (NeurIPS),
2020.

Taraneh Younesian, Daniel Daza, Emile van Krieken, Thiviyan Thanapalasingam, and Peter Bloem.
GRAPES: Learning to sample graphs for scalable graph neural networks. arXiv preprint
arXiv:2310.03399, 2024.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlowNets. Neural Infromation
Processing Systems (NeurIPS), 2023.

Mingyang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu
Blanchette, and Yoshua Bengio. PhyloGFN: Phylogenetic inference with generative flow networks.
International Conference on Learning Representations (ICLR), 2024.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A. Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research
(TMLR), 2023.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. Interna-
tional Conference on Learning Representations (ICLR), 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A ILLUSTRATING EXAMPLE- PITFALLS OF GREEDY DECISION TREES AND
ENSEMBLE METHODS

To motivate part of our work, we devise a simple setting that showcases some of the pitfalls of greedy
tabular methods, such as greedily constructed decision trees, and subsequent ensemble methods. We
start by creating a variant of what is typically referred to as the hidden XOR problem, where we
construct a synthetic dataset which has 20 features, 2 of which are binary and the rest are randomly
generated real features. The label for each data point is simply an XOR operation between the two
binary features, while the rest of the features are completely irrelevant for the classification task.
Typically, a sufficiently expressive training dataset in this setting would have a minimum of 4 data
points, enumerating all possible relevant input-output pairs, assuming we are not trying to test if a
given model can generalize beyond the seen training distribution modes. In essence, we would like to
examine a behavior trends that allow us to control the task difficulty, while observing how methods
scale in that. In particular, we show how simply scaling the number of irrelevant features affects
performance, with a dataset size of |D| = 1000.

Scaling the number of noise features. Varying the number of irrelevant or noise features allows to
progressively control the task difficulty, and examine how different methods behave under varying
amounts of noise, i.e., a larger model search space, but no underlying structure being added to the
data generating process. On the left of Fig. 3, the chosen noise features are binary, which significantly
restricts the search space over decision trees. For instance, even when consider a total of 20 binary
features, there are only 8,000 possible distinct decision trees of depth 2 that can be constructed given
the data (a decision tree of depth 2 is enough to reconstruct the label generating process). We observe
perfect test accuracy on all models for a small number of noise features. While a GFlowNets maintain
perfect test accuracy as the number of noise features gets larger, we see a slight drop in test accuracy
for greedy RFs for 20 features and even more significant drop for SMC as the number of features
increases. Note that for 10 features, the number of possible distinct decision trees of depth 2 is only
1000 (as shown in §3.1). On the right of Fig. 3, the noise features are now randomly generated
real numbers, which significantly enlarges the search space over decision tree models. We observe
that test accuracy drops significantly for both greedy RFs and SMC when increasing the number of
noise features, while GFlowNets maintain perfect test accuracy. We argue here, through presenting
a simple task where the label generating process does not change but only the number of noise
features increases, that structure inference is crucial to learning and mitigating many undesirable
characteristics of greedy methods.

4 6 8 10 12 14 16 18 20

Number of Features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
A

cc
u

ra
cy

Hidden XOR with binary noise (a)

4 6 8 10 12 14 16 18 20

Number of Features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hidden XOR with real noise (b)

DT-GFN (Ours) SMC Greedy RF

Figure 3: Varying the number of features in a hidden XOR task where the label is an XOR operation
between two features. Noise features are chosen to be either binary (left) or real (right). All datasets contain
1000 samples.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B RELATED WORK

Learning decision trees with explicit splitting criteria. Decision trees have historically been
constructed top-down via splitting the feature space sequentially according to some heuristic criterion
(Breiman et al., 1984; Quinlan, 1986; 2014), usually based on some form of entropy reduction
coupled with principled pruning (Quinlan, 1987; Mingers, 1987). Recent work (Balcan & Sharma,
2024) splits based on a generalization to Tsallis entopy with a regularizer term on the number of tree
leaves, arguing that less complex models tend to be more interpretable and generalize better. Our
work learns a trained policy that makes splitting decisions entirely informed by data, up to priors.

Tabular deep learning. Diverse architectures and learning representations have been proposed to
model tabular data (e.g., Klambauer et al. (2017); Popov et al. (2020); Ke et al. (2019); Yoon et al.
(2020); Gorishniy et al. (2021); Arik & Pfister (2021); Shwartz-Ziv & Armon (2022)). Our work
uses deep learning to parametrize a decision-making policy over decision rules, yielding a generative
model over decision trees, instead of modeling data directly.

Learning decision trees as Bayesian inference. Fundamental approaches formulate decision tree
learning as posterior inference (Chipman et al., 1998; 2010; Lakshminarayanan et al., 2013; 2016),
where the latter is determined by the likelihood of data under the tree (given some tree structure)
with some prior on possible tree structures. The main challenge in such task is the intractability
of the search space over decision trees, even in relatively toy settings as shown in §3.1. Our work
amortizes this search and leverages exploration strategies from off-policy deep RL, more specifically
GFlowNets, to efficiently sample from different modes of the posterior, yielding a diverse set of
high-quality tree structures that capture distinct decision-making patterns in data.

Learning decision trees as dynamic programming and/or explicit optimization. Recent work
framed decision tree learning as a structured optimization problem, with Hu et al. (2019) formulating
it as a Markov decision process (MDP) via mixed-integer programming. Lin et al. (2020) extended
this to both classification and regression with optimality guarantees, and Demirović et al. (2022)
introduced efficient dynamic programming decompositions for multi-task objectives. Garlapati et al.
(2015) formulated the learning of decision trees with ordinal attributes as an MDP, and Topin et al.
(2021) introduced an iterative bounding MDP to enable deep reinforcement learning algorithms to
learn decision-tree policies. Mazumder et al. (2022) further leveraged branch-and-bound to handle
continuous attributes more effectively. Our work considers a different optimization problem, which is
fitting the Bayesian posterior over decision trees.

Amortized inference and GFlowNets. Generative Flow Networks (GFlowNets; Bengio et al. (2021;
2023)) are a family of amortized variational inference algorithms (Malkin et al., 2023; Zimmermann
et al., 2023) that formulate the problem of sampling from a target unnormalized density as a sequential
decision-making process and solve it by methods related to entropy-regularized reinforcement learning
(Tiapkin et al., 2024; Deleu et al., 2024). GFlowNets have been used as amortized posterior samplers
in numerous applications, including those over graphs and similar structures, e.g., causal models
(Deleu et al., 2022; 2023), parse trees (Hu et al., 2023), phylogenetic trees (Zhou et al., 2024), and
subgraph structures (Li et al., 2023; Zhang et al., 2023; Younesian et al., 2024). Our work uses
GFlowNets as the main (deep RL) training algorithm to construct our decision-making policy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

C MATHEMATICAL GLOSSARY

We aim to make the manuscript rather self-contained, hence we introduce a few mathematical
concepts that would provide a clear insight into some of the methods we consider throughout the
paper, either as our own or ones that we benchmark with.

Γ-function. For a real number 𝑧 > 0, the Γ function is defined as an improper integral as follows

Γ(𝑧) =
∫ ∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡

Tsallis Entropy. Let 𝑃 = {𝑝𝑖} be a discrete probability distribution, where 𝑝𝑖 ≥ 0 and
∑

𝑖 𝑝𝑖 = 1.
The Tsallis entropy of 𝑃 with entropic index 𝑞 ∈ R is defined as

𝑆𝑞 (𝑃) =
1

𝑞 − 1

(
1 −

∑︁
𝑖

𝑝
𝑞

𝑖

)
, 𝑞 ≠ 1.

In the limit as 𝑞 → 1, Tsallis entropy reduces to the classical Shannon entropy

𝑆1 (𝑃) = −
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖 .

D PROOFS AND AUXILIARY RESULTS

We outline proofs of our theoretical claims, along with reasoning for some of the design choices that
we use for our construction.

D.1 PROOFS

We reiterate that the results in this section were already proved in (Chipman et al., 1998) in some
form, we reproduce them given our setting and notation for the convenience of the reader.
Proposition D.1 (Likelihood of a Bayesian DT). The likelihood under a Bayesian decision tree
(𝑇,Θ) given features X and labels Y is written as follows

P [Y|X, 𝑇,Θ] =
∏
ℓ∈L

∏
𝑖∈Δ(ℓ)

∏
𝑐∈C

𝜃
I(𝑐) (𝑦𝑖)
ℓ, (𝑐) =

∏
ℓ∈L

∏
𝑐∈C

𝜃

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

,

where L is the set of leaves in the tree 𝑇 , C is the set of classes, 𝜃ℓ, (𝑐) is the probability of sampling
class 𝑐 under leaf ℓ, and I(𝑐) (𝑦𝑖) is the indicator function of whether 𝑦𝑖 belongs to class 𝑐.

Proof of Prop. 3.1. By construction, a decision tree 𝑇 partitions data into |L| splits, i.e., Δ(ℓ) for
ℓ ∈ L where L is the set of leaves under the decision tree. Each leaf ℓ under the tree induces an
independent probability distribution Dirichlet(θℓ) over the probability of a given label 𝑦𝑖 occurring
under leaf ℓ. Along this line of reasoning, the probability of picking a given label 𝑦𝑖 is conditionally
independent both of X and of the other classes in Y given the leaf ℓ it lands on (which is only
determined from 𝑇 and x𝑖) and the corresponding classification parameter θℓ (which, again, is
determined from Θ and ℓ only). The latter observation justifies all the steps in our proof, which we
formulate in the following

P[Y|X, 𝑇,Θ] =
∏
𝑖∈ |Y |

P[𝑦𝑖 |x𝑖 , 𝑇,Θ]

=
∏
ℓ∈L

∏
𝑖∈Δ(ℓ)

P[𝑦𝑖 |θℓ]

=
∏
ℓ∈L

∏
𝑐∈C

𝜃

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

,

which concludes the proof. □

Proposition D.2 (Marginal Likelihood of a Bayesian DT). Assuming θ ∼ Dirichlet(α), the marginal
likelihood of a Bayesian decision tree 𝑇 given features X and labels Y

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

P [Y|X, 𝑇] =
(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∏
ℓ∈L

∏
𝑐∈C Γ(𝑛ℓ,𝑐 + 𝛼𝑐)

Γ(𝑛ℓ +
∑

𝑐∈C 𝛼𝑐)
,

where 𝑛ℓ,𝑐 =
∑

𝑖∈Δ(ℓ) I
(𝑐) (𝑦𝑖) is the empirical count of data points with label 𝑐 at leaf ℓ and

𝑛ℓ =
∑

𝑐∈C 𝑛ℓ,𝑐 is the total empirical count of data points (of all classes) at leaf ℓ.

Proof of Prop. 3.2. We would like to derive P[Y|X, 𝑇] by marginalizing over Θ. Assuming θ ∼
Dirichlet(α), we prove the result of that, which we present in Prop. 3.2, in the following

P[Y|X, 𝑇] =
∫
Θ

P[Y|X, 𝑇,Θ] · 𝑝 [Θ] 𝑑Θ

=

∫
Θ

∏
ℓ∈L

∏
𝑐∈C

𝜃

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

· ©«
𝜃
𝛼𝑐

ℓ,𝑐∏
𝑐∈C Γ (𝛼𝑐)

Γ (∑𝑐∈C 𝛼𝑐)

ª®¬ 𝑑Θ

=

(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∫
Θ

∏
ℓ∈L

∏
𝑐∈C

𝜃
𝛼𝑐+

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

𝑑Θ

=

(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∏
ℓ∈L

∫
θℓ

∏
𝑐∈C

𝜃
𝛼𝑐+

∑
𝑖∈Δ(ℓ) I

(𝑐) (𝑦𝑖)
ℓ,𝑐

𝑑θℓ

=

(
Γ(∑𝑐∈C 𝛼𝑐)∏

𝑐∈C Γ(𝛼𝑐)

) | L | ∏
ℓ∈L

∏
𝑐∈C Γ(𝑛ℓ,𝑐 + 𝛼𝑐)

Γ(𝑛ℓ +
∑

𝑐∈C 𝛼𝑐)

where 𝑛ℓ,𝑐 =
∑

𝑖∈Δ(ℓ) I
(𝑐) (𝑦𝑖) is the empirical count of data points with label 𝑐 at leaf ℓ and 𝑛ℓ =∑

𝑐∈C 𝑛ℓ,𝑐 is the total empirical count of data points (of all classes) at leaf ℓ, which concludes our
proof. □

D.2 PRIOR OVER DECISION TREE STRUCTURE AND CHOICE OF 𝛽

To choose an appropriate prior 𝛽, we need to ensure that 𝛽 properly normalizes the likelihood
P[Y|X, 𝑇], i.e., accurately approximates the number of tree structures 𝑇 that would model X.
Alternatively, from a coding theory perspective, 𝛽 could also be interpreted as the average code length
of a tree structure modeling X. The number of possible binary tree structures with 𝑛 internal nodes is
given by the 𝑛-th Catalan number, 𝐶𝑛, which asymptotically behaves as

𝐶𝑛 ∼
4𝑛

𝑛3/2 .

The corresponding coding length for that is

log(𝐶𝑛) ≈ 𝑛 log(4) − 3
2

log(𝑛).

Now, for each of the 𝑛 nodes, we have to pick a splitting feature out of 𝑑 variables and one of 𝑡
possible thresholds, the complexity of such a choice on average is

𝑛(log(𝑝) + log(𝑡)).

Overall, the total coding length ℓ(𝑛) for a tree with 𝑛 decision nodes is

ℓ(𝑛) ≈ 𝑛

(
log(4) + log(𝑝) + log(𝑡)

)
− 3

2
log(𝑛).

Hence a prior favoring trees with shorter description lengths can be expressed as

P[𝑇 |X] ∝ exp
(
− ℓ(𝑛)

)
∝ exp

(
− 𝑛

[
log(4) + log(𝑝) + log(𝑡)

]
+ 3

2
log(𝑛)

)
Considering the asymptotically dominant term, we should choose 𝛽 such that

𝛽 ∼ log(4) + log(𝑝) + log(𝑡)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D.3 REWARD COMPUTATION IN MINI-BATCHES

Computing the reward for a given tree, as per §4.2, requires recursing over the tree |X| times in the
worst case. Given how large |X| in our considered setting can get, an important result to scaling
our approach is the ability to compute rewards in mini-batches. As shown already in (Bengio et al.,
2023), computing the rewards in mini-batches ensures that the optimal policy P̂𝐹 minimizing the TB
square-loss for all complete trajectories converges to the true reward/posterior in expectation.

E CONSTRUCTION OF ENSEMBLES OF PREDICTORS

Given access to a trained DT-GFN policy, we perform a prediction using samples from that as follows.

Algorithm 1 Bayesian Ensemble Prediction with DT-GFN Samples

Input. Data point x 𝑗 , set of decision tree samples {𝑇𝑖}, dataset D
Output. Predicted class �̂� 𝑗

for each tree 𝑇𝑖 do
Compute P(𝑦 𝑗 = 𝑐 | x 𝑗 , 𝑇𝑖) for all classes 𝑐 using the GFlowNet policy.

end for
Compute log [P(𝑇𝑖 |D)] for all trees 𝑇𝑖
𝑚 ← max

𝑖
log [P(𝑇𝑖 |D)]

log [P(D)] ← log
(∑
𝑘

exp(log [P(𝑇𝑘 |D)] − 𝑚)
)
+ 𝑚

for each tree 𝑇𝑖 do
P(𝑇𝑖 |D) ← exp(log[P(𝑇𝑖 |D)])∑

𝑘

exp(log[P(𝑇𝑘 |D)])

end for
for each class 𝑐 do

P(𝑦 𝑗 = 𝑐 |x 𝑗 ,D) ←
∑
𝑖

P(𝑇𝑖 |D) · P(𝑦 𝑗 = 𝑐 |x 𝑗 , 𝑇𝑖)
end for
�̂� 𝑗 ← arg max

𝑐
P(𝑦 𝑗 = 𝑐 |x 𝑗 ,D)

return �̂� 𝑗

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

F TRAINING DETAILS

We list a variety of strategies for GFlowNet training we use throughout the paper along with setup-
specific hyperparameters allowing to reproduce our results.

F.1 EXPLORATION STRATEGY

To allow for exploration throughout training, we employ the following strategies, which we find to
consistently perform well across our considered datasets and tasks.

𝜖-greedy annealing. We generate a set of trajectories from the DT-GFN policy throughout training,
such that actions are sampled with probability 1 − 𝜖 according to the policy and with probability
𝜖 uniformly at random. 𝜖 is varied throughout training from some 𝜖0 predefined at initialization to
some small positive constant, i.e., 𝜖 ∈ (0, 𝜖0]. 𝜖0 is set to 0.1 in our experiments.

Replay buffer. We use a replay buffer to store the Top-K “best" trees (with highest rewards) we have
seen so far in training. Then, we sample trajectories from the latter using the backward policy 𝑃𝐵,
simply set to a uniform distribution over parent states at each step starting from a given terminal state.

F.2 HYPERPARAMETERS

We list hyperparameters we consistently use throughout our experiments in Table 5. We highlight
that it is also possible to use smaller stopping depths for faster training, or a smaller discretization
threshold constant for datasets lower precisions, for instance only 1 for binary hidden XOR or 9 for
Iris.

Table 5: Training hyperparameters for reproducing our experiments.
Hyperparameter Value
Tree Construction
Max Tree Depth 5
Thresholds Discretization 99
Number of Samples 1000

Policy
Policy Model MLP
Hidden Layers 3
Hidden Units per Layer 256

Optimization
Learning Rate 0.01
Training Steps 100
Batch Size (Forward) 90
Batch Size (Backward Replay) 10

Exploration
Replay Buffer Capacity 100
Random Action Probability 0.1

Proxy
Parameter Prior (α) α = [0.1]× (number of classes)
Structure Prior (𝛽) log(4) + log(𝑑)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

G EMPIRICAL COST ANALYSIS

G.1 BUDGET-CONSTRAINED TRAINING

We would like to test how DT-GFN would perform under a tight time/compute budget. As inference
costs are negligible compared to training costs (see Table 7), it would be interesting to observe:
(i) how the accuracy of our predictions vary with training time budgets of [0, 10, 20] (seconds) (ii)
how ensemble predictions with Algorithm 1 vary in ensemble size given varying levels of structure
inference training, from no time (random structure from a base DT-GFN policy) to a DT-GFN policy
trained for 20 seconds. Experiment are carried on the Iris dataset, in the same setup as §5.2; results
are averaged over data split seeds [1, 2, 3, 4, 5].
We observe that DT-GFN manages to get high test accuracies, with consistent scaling across both
training time and ensemble size. Notably, even with random structure, ensembles constructed
according to Algorithm 1 still manage to scale consistently. For the maximum training budget of 20
seconds, all DT-GFN ensembles outperform the best gradient-boosted tree baseline (GBT) and match
the best baseline in §5.2. We further highlight that at a budget of 50 seconds, test accuracy plateaus at
the current maximum for all ensemble sizes. Yet, these results are still lower than DT-GFN’s results in
§5.2 with more resources (see Table 5), further hinting at scaling capacity with increase in resources.

10 100 200 500 1000

Ensemble Size

0.69

0.75

0.80

0.86

0.92

0.98

T
e
st

A
cc

u
ra

cy

0 seconds

10 seconds

20 seconds

Best GBT baseline

Figure 4: DT-GFN scaling with ensemble size in [10, 100, 200, 500, 1000] and allocated time/compute
budget in [0 seconds, 10 seconds, 20 seconds]. Experiment performed on the Iris dataset and results are
averaged over data split seeds [1, 2, 3, 4, 5]. We show consistent scaling across both ensemble sizes and training
time/compute resources. Inference costs are negligible as shown in Table 7.

Reproducibility. Hyperparameters to reproduce our results are similar to Table 5, with exceptions
highlighted in Table 6.

Table 6: Training hyperparameters for reproducing our experiments. ${variable} denotes the varying
scaling axes of Fig. 4

Hyperparameter Value
Tree Construction
Max Tree Depth 3
Thresholds Discretization 9
Number of Samples ${variable}

Optimization
Training Steps ${variable}

Exploration
Replay Buffer Capacity 10
Random Action Probability 0.05

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G.2 FINITE-TIME AMORTIZATION COST MEASUREMENTS

We highlight how training and inference costs scale in the most “costly” training parameters we
observe, which are tree max. depths and the number of trees (proportionally trajectories) the DT-GFN
policy is trained on.

Table 7: Training cost per epoch and inference cost (in seconds) for sampling an ensemble of DTs of
varying size at different maximum depths.

Ensemble Size
1 100

Dataset Max. Depth Train Infer. Train Infer.

Iris 2 1.09 0.0074 1.09 0.4239
4 4.21 0.0169 4.29 0.4468

Wine 2 1.36 0.0032 1.85 0.283
4 3.95 0.0047 4.50 0.4953

Breast Cancer(D)
2 1.57 0.0073 2.26 0.195
4 3.31 0.0145 3.73 0.5303

Raisin 2 1.79 0.015 2.47 0.23
4 5.05 0.0037 6.23 0.4804

G.3 HARDWARE

Our training is conducted on an RTX 8000 GPU with 16GB of allocated memory. The training cost
is measured on this hardware setup. Notably, the training process is lightweight and can be easily
fitted on a local machine with minimal computational resources.

H FURTHER DETAILS ON EXPERIMENTAL SETUP

H.1 DATASETS

Each dataset contains both numerical and categorical features, and the task in all datasets is classifi-
cation. For the feature support to be tractable for discretization, we scale all features to [0, 1] with
Min-Max scaling and discretization is performed uniformly. We list the datasets and splits we use in
Table 9.

Table 8: Dataset characteristics and reproducibility. For systematic generalization experiments, test columns
in the form 𝑎/𝑏 denote number of (𝑎) in-distribution and (𝑏) out-of-distribution samples respectively.

Dataset n d Train Test Split Seeds Experiment
Iris (Fisher, 1936) 150 4 120 30 [1, 2, 3, 4, 5] DT & Ensemble
Wine (Aeberhard et al., 1992) 178 13 142 36 [1, 2, 3, 4, 5] DT & Ensemble
Breast Cancer(D) (Wolberg et al., 1995) 569 30 455 114 [1, 2, 3, 4, 5] DT & Ensemble
Raisin (Güvenir & Erel, 2017) 900 7 720 180 [1, 2, 3, 4, 5] DT & Ensemble

Pima (Smith et al., 1988) (BMI) 768 8 243 60/465 [42] Domain shift
Pima (Smith et al., 1988) (Age) 768 8 316 80/372 [42] Domain shift

Thyroid (Quinlan et al., 1987) 3772 6 1840 1839/93 Shenkar & Wolf (2022) OOD detection
Ecoli (Horton & Nakai, 1996) 336 7 164 163/9 Shenkar & Wolf (2022) OOD detection
Vertebral (Barreto & Neto, 2005) 240 6 106 104/30 Shenkar & Wolf (2022) OOD detection
Glass (Evett & Spiehler, 1987) 214 9 103 102/9 Shenkar & Wolf (2022) OOD detection

H.2 PREPROCESSING

For the first two sets of datasets, we use MINMAX scaling for scaling features back to [0, 1]. All
categorical features are encoded using ONEHOTENCODING. For the third set of datasets, which
we use for OOD detection, we rely on the preprocessing protocol of (Shenkar & Wolf, 2022). All
datasets are obtained from the UCI repository (Dua & Graff, 2019) except the data for ODD detection
we take it directly from (Shenkar & Wolf, 2022)

Distribution shift procedure : We consider two distribution shifts in the Pima Indians Diabetes
dataset (Smith et al., 1988): (1) BMI Shift, where the training set includes patients with BMI < 30,
and evaluation is performed on held-out sets with BMI < 30 and BMI > 30; and (2) Age Shift, where

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

the training set consists of patients younger than 29 (median), with evaluation on held-out sets of age
≤ 29 and age > 29.

Out-of-distribution Detection Procedure : Datasets are partitioned into training and test sets, where
the training set consists exclusively of normal samples, while the test set includes both normal and
anomalous samples. To account for variance and improve generalization, we leverage the bagging
effect by averaging scores obtained from multiple feature permutations. While this approach proves
particularly beneficial for small 𝑑 and very small 𝑛, it comes at the cost of increased computational
overhead. (Shenkar & Wolf, 2022) generate multiple feature permutations, with the number of
permutations, denoted 𝑃, given by:

𝑃 = min
(⌊

100
log(𝑛) + 𝑑

⌋
+ 1, 2

)
where 𝑛 represents the number of training samples and 𝑑 denotes the number of features.

I AUXILIARY EXPERIMENTS

I.1 ADDITIONAL BAYESIAN DECISION TREE BASELINES

As it was hard to reproduce some of the algorithms below, namely ones in Cochrane et al. (2024),
we test ours against them in the setting of Cochrane et al. (2024). We elaborate on that below. The
experimental setup and DT-GFN details are identical to those in §5.1, unless otherwise stated in
Table 9

Table 9: Dataset characteristics.
Dataset n d Train Test Split Seeds Experiment
Iris (Fisher, 1936) 150 4 105 45 [123456789] DT
Wine (Aeberhard et al., 1992) 178 13 124 54 [123456789] DT
Breast Cancer(O) (Wolberg et al., 1995) 699 9 489 210 [123456789] DT
Raisin (Güvenir & Erel, 2017) 900 7 630 270 [123456789] DT

In Table 10, using the same experimental setup as Cochrane et al. (2024), we observe that samples
from a single tree generated by DT-GFN perform comparably—or often significantly better—than
state-of-the-art generalization baselines.

Table 10: Benchmarking DT-GFN with Bayesian decision tree baselines in Cochrane et al. (2024), in the
same setting as the latter.

Algorithm ↓ Dataset→ Iris Wine Breast Cancer(O) Raisin

BCART (Chipman et al., 1998) 0.908±0.022 0.916±0.046 0.939±0.014 0.843±0.010

SMC (Lakshminarayanan et al., 2013) 0.909±0.022 0.978±0.022 0.924±0.010 0.842±0.010

WU (Wu et al., 2007) N/A N/A 0.922±0.017 0.843±0.012

HMC-DF (Cochrane et al., 2023) 0.906±0.026 0.950±0.039 0.940±0.010 0.847±0.004

HMC-DFI (Cochrane et al., 2023) 0.917±0.023 0.948±0.022 0.952±0.007 0.838±0.007

DCC-TREE (Cochrane et al., 2024) 0.911±1.2e-16 0.958±0.02 0.952±0.004 0.844±0.002

DT-GFN (ours) 0.977 0.981 0.98 0.856

I.2 IN-DISTRIBUTION/OUT-OF-DISTRIBUTION PLOTS WITH ENSEMBLE SIZE ABLATIONS

We more clearly visualize ablations in ensemble size for tree-based methods from Fig. 2 in Fig. 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

100 500 1000

0.74

0.78

0.82

0.87

0.91

0.96

In
D

is
tr

ib
u

ti
o
n

T
e
st

A
cc

u
ra

cy

Domain Shift on BMI

100 500 1000

0.77

0.81

0.84

0.87

0.91

0.94

Domain Shift on Age

100 500 1000

Ensemble Size

0.57

0.61

0.65

0.69

0.73

0.77

O
u

t
o
f

D
is

tr
ib

u
ti

o
n

T
e
st

A
cc

u
ra

cy

100 500 1000

Ensemble Size

0.59

0.62

0.64

0.66

0.69

0.71

DT− GFN (Ours) Random Forest XGBoost CatBoost LightGBM

Figure 5: Systematic increase in generalization accuracy both in-distribution and out-of-distribution in the
ensemble size for tree-based methods.

J BASELINE DETAILS

We list important intuitions and/or reproducibility guidelines for some of the baselines we compare
with, and further provide code for baselines in our code base at anonymous.4open.science.

Sequential Monte Carlo (SMC) Trees (Lakshminarayanan et al., 2013). SMC Trees is a Bayesian
decision tree method that employs a Sequential Monte Carlo (SMC) approach to optimize tree
construction. The method maintains a population of particles, each representing a candidate split
defined by a feature and threshold, and iteratively updates them based on a Dirichlet likelihood and
a prior on tree complexity. The model’s hyperparameters—𝛼, which controls the Dirichlet prior,
and 𝑛particles, which regulates exploration—determine the trade-off between search diversity and
convergence speed. The maximum depth is set to 5.

MAPTree (Sullivan et al., 2024). MAPTree is a Bayesian decision tree method that constructs
decision trees by performing maximum a posteriori (MAP) inference over a posterior distribution of
tree structures and parameters. This approach balances model complexity and predictive performance
by optimizing the posterior distribution of both tree structures and parameters. As mentioned in
the original paper, we impose a 300-second time limit and systematically vary the number of tree
expansions (e.g., 10, 100, 1000, 10000) to explore the trade-off between search depth and runtime.
Additionally, we select (𝛼, 𝛽, 𝜌) values to influence the prior distribution and regularization strength
in the Bayesian framework.

(𝛼∗, 𝛽∗)-Tsallis Entropy (Balcan & Sharma, 2024). Tsallis entropy, as introduced in Appendix C,
is a generalization of Shannon entropy used in information theory, parametrized by 𝛼∗ and 𝛽∗, which
control the degree of non-extensivity. In this context, the Tsallis entropy-based decision tree method
introduces these entropy measures into the tree construction process, influencing the selection of splits.
The method optimizes for both diversity and accuracy in the node partitions, making it particularly
suited for data with complex or hierarchical structures. The model’s hyperparameters (𝛼∗, 𝛽∗) are
selected to balance between exploration of the feature space and exploitation of high-accuracy splits.

23

https://anonymous.4open.science/r/DT-GFN-1FBA/README.md

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Best (𝛼∗, 𝛽∗) Search (Balcan & Sharma, 2024). We follow the grid search guidelines in Balcan &
Sharma (2024) to find the best (𝛼∗, 𝛽∗) combination given training data. In particular, we use the
following (𝛼∗, 𝛽∗) tuples for each of our datasets.

Dataset ↓ Seed→ 1 2 3 4 5
Iris (0.5, 1) (0.5, 1) (0.5, 2) (0.5, 4) (2, 1)
Wine (1.1, 7) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1)
Breast Cancer Diagnostic (2, 1) (2, 2) (7, 1) (2, 2) (6, 1)
Raisin (2, 2) (2, 1) (2, 1) (2, 1) (4, 1)

Table 11: Best (𝛼∗, 𝛽∗) (Balcan & Sharma, 2024) for each considered dataset and split seed in §5.1.

DPDT-4 (Kohler et al., 2024). DPDT-4 is a parameterized decision tree algorithm that introduces a
flexible partitioning strategy to create deeper and more expressive trees. The "4" in DPDT-4 refers
to the maximum depth of the trees, which is designed to balance between model complexity and
interpretability. This method focuses on minimizing the depth of the tree while maintaining high
predictive accuracy, making it computationally efficient for large datasets.

24

	Introduction
	Related Work
	Setting and Preliminaries
	Bayesian Posterior over Decision Trees
	Amortized Inference with GFlowNets

	Learning Decision Trees as Amortized Structure Inference
	Constructing the GFlowNet's underlying MDP M
	Reward Function and Parameter Sampling
	Parametrization of the Forward Policy

	Empirical Evaluation
	Benchmarking with Single Decision Tree Algorithms
	Benchmarking with Greedy Ensemble Methods and Deep Learning Methods
	Experiments in Systematic Generalization
	Robustness to Distribution Shifts
	Out-of-distribution Detection

	Experiments in Consistent Scaling

	Discussion and Future Work
	Illustrating Example- Pitfalls of Greedy Decision Trees and Ensemble Methods
	Related Work
	Mathematical Glossary
	Proofs and Auxiliary Results
	Proofs
	Prior over Decision Tree Structure and Choice of
	Reward Computation in Mini-Batches

	Construction of Ensembles of Predictors
	Training Details
	Exploration Strategy
	Hyperparameters

	Empirical Cost Analysis
	Budget-constrained Training
	Finite-time Amortization Cost Measurements
	Hardware

	Further Details on Experimental Setup
	Datasets
	Preprocessing

	Auxiliary Experiments
	Additional Bayesian Decision Tree Baselines
	In-distribution/Out-of-distribution Plots with Ensemble Size Ablations

	Baseline Details

