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ABSTRACT

Large Language Models (LLMs) are commonly evaluated using human-crafted
benchmarks, under the premise that higher scores implicitly reflect stronger
human-like performance. However, there is growing concern that LLMs may
“game” these benchmarks due to data leakage, achieving high scores while strug-
gling with tasks simple for humans. To substantively address the problem, we
create GAOKAO-Eval, a comprehensive benchmark based on China’s National
College Entrance Examination (Gaokao), and conduct “closed-book” evaluations
for representative models released prior to Gaokao. Contrary to prevailing consen-
sus, even after addressing data leakage and comprehensiveness, GAOKAO-Eval
reveals that high scores still fail to truly reflect human-aligned capabilities. To
better understand this mismatch, We introduce the Rasch model from cognitive
psychology to analyze LLM scoring patterns and identify two key discrepancies:
1) anomalous consistant performance across various question difficultiess, and 2)
high variance in performance on questions of similar difficulty. In addition, we
identified inconsistent grading of LLM-generated answers among teachers and re-
curring mistake patterns. we find that the phenomenon are well-grounded in the
motivations behind OpenAI o1, and o1’s reasoning-as-difficulties can mitigate the
mismatch. These results show that GAOKAO-Eval can reveal limitations in LLM
capabilities not captured by current benchmarks and highlight the need for more
LLM-aligned difficulty analysis.

1 INTRODUCTION
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Figure 1: Comparison of
LLM scores on the first and
last questions of Gaokao Pa-
per. Despite the latter being
more difficult, LLMs achieve
similar scores, revealing po-
tential inconsistencies.

Human-aligned capabilities, typically designed based on difficulty
levels aligned with human performance, have been widely used
to evaluate LLMs and steer further research initiatives (Lu et al.,
2022a; Shi et al., 2024; Hendrycks et al., 2021b; Zhang et al., 2023).
Implicit in this approach is the assumption that high scores on these
benchmarks indicate human-aligned capabilities. However, there is
a growing concern within the community that LLMs may be “gam-
ing” these benchmarks——achieving high scores while demon-
strating instability and unreliability when confronted with tasks that
are simple for humans (Zhou et al., 2024). As shown in Figure 1,
while LLMs may excel at complex questions, they often struggle
with simpler ones. This inconsistency further indicates that an
LLMs’ high score of 90% does not necessarily reflect its ability
to handle tasks that are considerably easier for humans, who typi-
cally score only 60%. Such findings raise a critical question: Do
high scores truly reflect human-aligned capabilities in LLMs?

The community initially attributed the observed mismatch between
benchmark performance and LLM capabilities to data leakage (Ni
et al., 2024; Zhou et al., 2023) or the insufficient coverage of bench-
marks in comprehensively evaluating specific skills. However, they
have not addressed the critical discrepancies that persist in LLM performance. Recent studies,
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particularly in programming (Tambon et al., 2024) and reasoning tasks (Qiao et al., 2024), have
observed intriguing patterns regarding the divergence between benchmark difficulty and Large Lan-
guage Model (LLM) performance (Zhou et al., 2024). Nonetheless, these approaches mainly focus
on specific problem types and cannot guarantee the absence of data leakage.

To substantively address the problem, we introduce GAOKAO-Eval, a comprehensive and annually
updated benchmark based on Gaokao. The comprehensiveness and security of Gaokao is attributed
to the process where Gaokao experts spend two months in a fully sealed environment each year,
crafting 490 new questions that cover 2-3 key concepts from a pool of over 10,000 (Hubert et al.,
2022). These questions are thoroughly tested with recruited students to ensure that the resulting
scores follow a normal distribution. This rigorous process, combined with the exam’s broad cover-
age of subjects and question types, makes Gaokao an ideal foundation for evaluating LLMs (Zong
& Qiu, 2024; Zhang et al., 2023). Our framework evaluates only models released before the exam
date, and employs over 54 high school teachers for grading subjective questions.

Through the rigorous evaluation process outlined above (see Figure 2), we uncovered a crucial
insight: even after mitigating issues such as data leakage and insufficient benchmark coverage, an
inherent conflict between LLM capabilities and benchmark design persists, as LLMs continue to
exhibit inconsistent performance. Specifically, high scores do not necessarily reflect human-aligned
capabilities in these models. Further analysis employs the theoretical human performance curve
from cognitive psychology, modeled by the Rasch model, to rigorously characterize the deviation
of LLM scoring patterns from human performance (Rasch, 1993; Bond & Fox, 2007). This reveals
two statistical phenomena: a semi-difficulty-invariant scoring rate and high variance in performance
on similarly difficult questions. We evaluate abundant representative models on GAOKAO-Eval
in extensive scenarios to further investigate these phenomena, yielding several key takeaways: (1)
grading inconsistencies compared to human examinees; (2) recurring error patterns across various
task types; (3) the mitigation of the mismatch through o1’s reasoning-as-difficulties approach.
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Figure 2: The GAOKAO-Eval pipeline. Built on the Gaokao benchmark, which ensures balanced
difficulty and subject coverage, GAOKAO-Eval evaluates models released before the exam date
under strict closed-book conditions, with human teachers grading subjective responses. Findings
show that, even with high scores, LLMs have inconsistent scoring patterns and greater variation
on tasks of similar difficulty. In contrast, human performance changes more predictably with task
difficulty.

In summary, we make the following three-fold contributions:

• We introduce GAOKAO-Eval, a comprehensive and annually updated benchmark based on
Gaokao. This benchmark provides a non-leaking, comprehensive assessment that closely
mimics human-centric evaluation, encompassing a diverse range of subjects and question
types.
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• We reveal that high scores on benchmarks do not necessarily reflect human-aligned ca-
pabilities in LLMs. Our analysis shows that LLMs’ scoring patterns deviate significantly
from human performance, exhibiting semi difficulty-invariant distributions and high vari-
ance within similar difficulty levels.

• We identify that the mismatch is related to distinct error patterns and grading inconsisten-
cies in LLMs compared to human examinees. Furthermore, we propose using reasoning
tokens as a proxy for aligning LLM difficulties, which mitigates these issues.

2 GAOKAO-EVAL

GAOKAO-Eval leverages China’s National College Entrance Examination as a comprehensive
benchmark for evaluating LLMs. This evaluation framework is designed to provide a thorough as-
sessment of LLM capabilities across various subjects and question types, while ensuring the integrity
and relevance of the evaluation process. The benchmark is characterized by four key features: (1)
full-paper examination covering all question types and subjects, including multimodal questions; (2)
pre-exam open source evaluation, limiting assessment to models released before the current year’s
Gaokao; (3) expert grading by experienced Gaokao examiners for subjective questions; and (4) full
transparency with open-source code, model responses, and scoring results.

Table 1: Comparison between OURS and other benchmarks. AU: Annual Update Size; Avg Q.
Leng.: Avg Question Length; Expl.: Explanation; FB: Fill-in-the-Blank; MC: Multiple-Choice;
BC: Binary-Choice; T. Chi.: Translated Chinese; N. Chi.: Native Chinese; S&A: Strict Security
Measures and Annual Update; I. Type: Image Type.

Benchmark Size AU Avg. Q. Expl. Question I. Type Lang. S&A

IconQA 107K - 8.30 ✗ MC+FB 1 Eng. ✗
OK-VQA 14K - 8.09 ✗ Open 1 Eng. ✗
Ai2D 5K - 9.78 ✗ MC 1 Eng. ✗
FigureQA 1M - 6.07 ✗ BC 5 Eng. ✗
ScienceQA 6K - 12.11 ✓ MC 5 Eng. ✗
MMMU 11.5K - 59.33 ✓ MC+Open 30 Eng. ✗
MMLU 15K - 274.54 ✗ MC 0 Eng. ✗
MMLU Pro 12K - 264.76 ✓ MC 0 Eng. ✗
CMMLU 11K - 36.85 ✗ MC 0 N. Chi. ✗
C-Eval 13K - 53.20 ✓ MC+BC 0 N. Chi. ✗
MM-Bench-CN 3K - 15.48 ✗ MC 20 T. Chi. ✗
GAOKAO-MM 0.65K - 260.19 ✓ MC 32 N. Chi. ✗

OURS 3.95k 0.49k 674.01 ✓
MC+FB

BC+Open 32 N. Chi. + Eng. ✓

GAOKAO-Eval distinguishes itself from existing knowledge-based benchmarks through its compre-
hensive coverage, longer average question length, and employment of native Chinese data. Unlike
previous benchmarks (Lu et al., 2022b; Marino et al., 2019; Kembhavi et al., 2016; Kahou et al.,
2018; Lu et al., 2022a; Yue et al., 2024; Hendrycks et al., 2021b; Wang et al., 2024; Li et al.,
2023; Huang et al., 2023; Liu et al., 2024), GAOKAO-Eval is based on the Gaokao-Bench (Zhang
et al., 2023) and GAOKAO-MM (Zong & Qiu, 2024) benchmarks and features annual updates and
human-scored evaluations, ensuring a secure and transparent framework for assessing LLMs.

2.1 COMPREHENSIVE GAOKAO-EVAL DESIGN

GAOKAO-Eval is meticulously designed to provide a thorough evaluation by encompassing mul-
tiple subjects, diverse question types, and various paper formats. This comprehensive approach
ensures that LLMs are assessed across a wide range of cognitive tasks and knowledge domains.

Subject and Question Type Coverage. Figure 3a presents the distribution of question types
across various subjects in GAOKAO-Eval. It encompasses not only multiple-choice questions but
also more complex types such as short answers, essays, and subject-specific formats, providing
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a thorough assessment of AI models’ capabilities across different cognitive tasks and knowledge
domains.
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(a) Distribution of Question Types Across Subjects in GAOKAO-Eval. (b) Performance Improvement:
InternLM2-20b-base vs WQX.

Figure 3: Comprehensiveness of GAOKAO-Eval.

LLM-Aligned Capabilities Improvement via GAOKAO Question. Training on a specialized
Gaokao dataset contributes to a broader enhancement of its capabilities, specifically reflected in its
performance on other sophisticated knowledge benchmarks. In this motivation, we propose a spe-
cific model named WQX based on InternLM2-20b-base (Cai et al., 2024). The training detail about
WQX is introduced in Appendix Section A. We evaluate the performance of WQX on several latest
sophisticated knowledge benchmarks Math, MMLU, CMMLU, C-Eval, GaokaoBench. With an ex-
ceptional 84.94% accuracy on the GaokaoBench, the model demonstrates its superior capability in
handling complex examination-style questions, a testament to the effectiveness of our targeted train-
ing and data augmentation strategies. The improvements observed in Math, MMLU, CMMLU, and
C-Eval benchmarks further affirm the WQX model’s comprehensive natural language understand-
ing and its adeptness at navigating a wide array of knowledge-intensive tasks (see Figure 3b).The
model’s ability to better navigate these diverse and complex tasks suggests that the Gaokao dataset
covers a broad spectrum of knowledge areas and cognitive skills.

2.2 EVALUATION METHODOLOGY AND SECURITY MEASURES

GAOKAO-Eval employs a rigorous evaluation methodology with strict security measures to ensure
accurate, meaningful results while maintaining the integrity of the assessment process.

Non-leaky Data and Temporal Isolation. To address limitations in previous benchmarks like
GAOKAO-Bench (Zhang et al., 2023) and GAOKAO-MM (Zong & Qiu, 2024), which potentially
allowed data leakage, GAOKAO-Eval uses genuinely unseen data. It evaluates only open-source
models released before June 6, 2024, ensuring temporal isolation and a closed-book environment.
This approach provides a more objective assessment of LLMs’ capabilities, avoiding the “open-book
test” scenario present in earlier evaluations.

Multimodal Evaluation Adaptations. For multimodal questions, evaluation methods were
adapted based on model capabilities. The Mixtral series, being language-only models, used only
text input for multimodal questions. Due to poor performance of QwenVL-7B (Bai et al., 2023)
on certain subjects, Qwen2-72B (Yang et al., 2024) text model was also evaluated on multimodal
questions in Physics, Chemistry, and Geography for both New Curriculum Standard and National A
test papers.

Human Expert Grading. 54 experienced Gaokao examiners graded the responses without prior
knowledge of their AI origin. Clear guidelines were provided for handling misunderstood questions,
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repeated answers, or explanations instead of direct answers. The evaluation considered the potential
1-2 point deviation in Chinese essays due to the lack of handwriting assessment, typically part of
the Gaokao scoring process.

2.3 DATA PROCESSING

At the moment when the Gaokao concluded, we utilized various online channels to collect exami-
nation papers from various subjects. These papers were then standardized into a consistent format
containing both text and images through manual processing. Specific processing techniques were
applied according to the needs of each subject. For subjects such as Chinese, Mathematics, and
English, which are commonly used across multiple provinces and tend to have fewer image-based
questions, we opted to exclude any images. Consequently, we used solely textual questions as the
data for evaluation. For subjects other than the aforementioned three, we treated each major ques-
tion as a separate input. Sub-questions within each major question were formatted using (1), (2),
and so on. Additionally, images within these questions were incorporated by employing the token
to indicate their placement within the text. In scientific subjects, where formulas are prevalent, all
mathematical expressions were converted into LaTeX format and encapsulated using the $ symbol,
which ensured consistent and accurate representation of complex equations. To prevent any external
instructions from influencing the model’s performance, no extra prompts were included beyond the
necessary formatting and data processing steps outlined above.

2.4 MODELS

The models’ detailed information is listed in Appendix B.5. The models include Qwen2-72B
(Yang et al., 2024) and Qwen1-VL (Bai et al., 2023), Yi-34B (AI et al., 2024), GLM-4 (GLM
et al., 2024), WQX, Mixtral (Mistral AI, 2024), and GPT-4o (OpenAI et al., 2024). Given
the prevalence of graphical elements in high school examination questions, LLMs tend to respond
only to text-based questions (with few exceptions), whereas multimodal LLMs address all types of
questions.

3 RESULTS AND KEY FINDINGS

The following sections break down our key findings, focusing on the performance discrepancies
between human-aligned capabilities and LLM-generated results. We systematically explore perfor-
mance, difficulty ratings, unique error patterns exhibited by LLMs, and the comprehensiveness of
our GAOKAO-Eval benchmark.

3.1 DISCREPANCY BETWEEN HIGH SCORES AND HUMAN-ALIGNED CAPABILITIES

We first obtained the score ratings and difficulties, then compared these to the theoretical human
performance curves. The results showed significant inconsistencies, as LLMs’ difficulty alignment
did not match human patterns.

Figure 4: Total performance of LLMs in New Curriculum Standard Paper and National Type A
Paper. +V L: questions involving images will use the corresponding multimodal version of the
model for inference.
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Overall Performance Analysis. The Figure 4 below present the performance scores of various
models on the New Curriculum Standard Paper and the National Type A Paper, ranked by Science
Total Score.

Difficulty of Questions. Human evaluators design tests to follow a normal distribution in difficulty.
To assess LLMs’ alignment with this principle, we designed a hybrid approach combining manual
annotations with an Elo rating system, which incorporates both human expertise and LLM-based
judgments. This system adjusts LLM scores based on pairwise comparisons, allowing us to evaluate
question difficulty and model performance consistency. The refined difficulty ratings closely align
with human expert judgments, with an internal correlation of up to 0.94 (Figure 5).

(a) Human annotations (b) GPT-4o-mini (c) GPT-4o

Figure 5: Consistency distribution of Elo ratings across different models and methods, demonstrat-
ing alignment with human expert difficulty ratings.

Comparison with human performance using Rasch model. This subsection explores the perfor-
mance of LLMs in comparison to human performance using the Rasch model, a common method
in education and psychometrics for evaluating the relationship between test item difficulty and the
probability of a correct response Boone & Noltemeyer (2017); Khine (2020).

The Rasch model (Rasch, 1993), benchmarks its measurements against objective standards to ensure
reliability and objectivity, which is particularly useful in assessing whether LLMs can replicate
the expected human-aligned response patterns across different difficulty levels. According to the
principles of the Rasch model, the probability of a specific individual responding correctly to a
specific item can be represented by a function of the individual’s ability and the item’s difficulty:

Figure 6: The fitted IRT curve for evaluating LLM
performance. The x-axis represents the difficulty
level of questions, while the y-axis represents the
scoring rate S. The red line represents the fitted
curve, indicating how well the Rasch model fits
the observed data.

P (X = 1|θ, b) = eθ−b

1 + eθ−b
(1)

where P (X = 1|θ, b) represents the probabil-
ity that an examinee with ability level θ will
answer an item correctly. θ represents the ex-
aminee’s ability level, and b represents the dif-
ficulty of the item. In this study, we directly use
this equation as the basis for evaluation.

As shown in Figure 6, the relationship between
question difficulty and scoring rate predicted by
the Rasch model demonstrates a poor fit to the
real data, as evidenced by the low R-squared
value of -0.23. This low R-squared value sug-
gests a significant mismatch between the LLMs’
capabilities and the expected human-aligned
ability. LLMs struggles to consistently align its performance with the varying difficulty of the
questions.

3.2 LLMS’ UNIQUE ERROR PATTERNS

This subsection explores the unique scoring patterns exhibited by LLMs when evaluated across var-
ious question difficulties. Understanding these patterns is essential for developing robust evaluation
metrics that align with human judgment and accurately reflect LLM capabilities.

6
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(a) Relationship between question difficulty and ques-
tion types.

(b) Correlation between question difficulty and ques-
tion order.

Figure 7: Analysis of question difficulty in relation to question types and order.

(a) All questions (b) Multiple-choice questions (c) Non-multiple-choice questions

Figure 8: Correlation heatmaps between difficulty and scoring rate for all questions, multiple-choice
questions, and non-multiple-choice questions.

Analysis of Difficulty Ratings. Next, we delve into the characteristics of these difficulty ratings to
understand their implications. Figure 7a illustrates the relationship between difficulty and question
types, showing that certain question types consistently rank as more difficult across models. Fig-
ure 7b explores how difficulty correlates with the order of questions within a test. These analyses
indicate that our difficulty ratings are well-aligned with human perception and accurately reflect the
human-aligned capabilities of LLMs, further validating the reliability of GAOKAO-Eval’s evalua-
tion framework. These findings collectively suggest that our use of the Elo rating system, combined
with human judgment, provides a robust and human-aligned approach to assessing LLM perfor-
mance across varying question difficulties.

Semi Difficulty-Invariant Scoring Distribution. We define the phenomenon of Semi difficulty-
invariant scoring distribution as the lack of significant correlation between question difficulty and
the scoring rate of language models. Mathematically, we compute the Pearson correlation coefficient
between question difficulties bs and the observed scoring rates Pij(s) for subject i and model j:

ρ
(ij)
b,P =

Cov(b, Pij)

σbσPij

(2)

where Cov(b, Pij) is the covariance between question difficulty and scoring rate, and σb and σPij are
the standard deviations of question difficulty and scoring rate, respectively. A small absolute value
of ρ(ij)b,P indicates that the scoring rate is approximately invariant with respect to question difficulty.

Figure 8 presents three correlation heatmaps illustrating the relationship between question difficulty
and scoring rate across different subjects and language models. The correlations are calculated
separately for all questions. The low correlation coefficients observed confirm the semi difficulty-
invariant nature of the scoring distributions for the language models studied.

High Variance in Performance on Similar Difficulty Questions. Our analysis reveals high vari-
ance in LLM scoring rates for questions of similar difficulty, as shown in Figure 6. This phenomenon

7
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deviates from the expected monotonic decrease in performance as difficulty increases predicted by
Item Response Theory (IRT). The fitted IRT curves poorly capture the data distribution, indicated
by low R2 values (-0.22). This misfit suggests that traditional IRT models, effective for human per-
formance, may not adequately characterize LLM behavior. The high variance limits their reliability
in critical applications. To quantify this, we calculate the variance of scoring rates V (ij)

b for subject
i and model j within a small difficulty range centered at b:

V
(ij)
b = V ar{Pij(s) | bs ∈ [b−∆b, b+∆b]} (3)

3.3 LLMS’ UNIQUE SCORING PATTERNS

As illustrated in Figure 10, LLMs frequently produce outputs that deviate from human common
sense, posing challenges for experts tasked with evaluating these responses. Therefore, the high
scores obtained by the model only indicate accuracy according to the specific grading rules used,
but do not necessarily reflect a high level of human-like capability. For instance, in Figure 10 a, the
model infers a vertical relationship through parallel reasoning, which is illogical. In Figure 10 b,
despite errors in the intermediate steps, the model manages to guess the correct answer. In Figure
10 c, the model generates an ancient Chinese poem that never existed in historical records. Lastly,
in Figure 10 d, the task explicitly requires a brief summary, yet the model copies the entire passage
verbatim. These anomalies highlight the inherent difficulties in relying on LLMs for tasks that
require a nuanced understanding of context and common sense. From these examples, it is evident
that even when the LLM captures the “key conceptions”, this does not necessarily signify a genuine
mastery of the question.

3.4 INCONSISTENCIES IN LLM GRADING

We observed that human examiners encountered too high Inconsistent Score Rate (ISR) in over
32% of cases due to the unique scoring patterns of LLMs. A high ISR indicates that human graders
are more likely to disagree when assessing LLM-generated answers compared to typical human re-
sponses, which exacerbates the phenomenon of high variance in performance on similarly difficult
questions. As shown in Figure 9, the ISR varies across subjects. Notably, the humanities subjects,
such as Politics and History, exhibit higher inconsistency rates compared to science subjects like
Physics and Math. This suggests that LLMs may face more challenges in consistently interpreting
and responding to questions in humanities, potentially due to the abstract and context-dependent
nature of these subjects. For instance, the ISR for Politics reaches up to 41.18% in some models,
indicating that nearly half of the responses deviate significantly from the average, highlighting the
difficulties LLMs have with the subjective and often nuanced content typical of humanities. In con-
trast, the ISR for Physics is much lower, often below 20%, reflecting more consistent performance
in subjects that rely on more concrete and structured knowledge.

ISRij =
|s ∈ Sij : |s− µij | > σij |

|Sij |
(4)

where Sij represents the set of all scores for subject i and model j, µij is the mean score, and σij is
the standard deviation of scores for the same subject-model pair.

Just as Gaokao scores for human candidates have inherent variability, LLM evaluation cannot
achieve absolute consistency. Therefore, the scores in GAOKAO-Eval should be interpreted with
caution, especially when comparing across different subjects or models. To address potential bias,
each question was reviewed by at least three experienced teachers, with the average score taken as
the final grade. Significant discrepancies were re-evaluated and adjusted to minimize bias. However,
LLM responses tend to be more misleading for human graders. As with the RM pattern observed
by Qiao et al. (2024), models often produce correct final answers despite flawed intermediate steps,
which makes grading more challenging for evaluators who rely on process-based scoring. This can
result in greater grading discrepancies, as reflected in the ISR data (Figure 9), particularly in subjects
like Politics and Math. These inconsistencies arise from LLMs’ unique characteristics, leading to
greater divergence in human evaluators’ judgments.

4 DISCUSSION

8
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Figure 9: Heatmap of subjects and
model performance showing the In-
consistent Score Rate (ISR) across dif-
ferent subjects.

Q: As shown in the figure, in the

quadrilateral pyramid 𝑃 − 𝐴𝐵𝐶𝐷 ...

(1) If 𝐴𝐷 ⊥ 𝑃𝐵, prove that 𝐴𝐷ԡ
plane 𝑃𝐵𝐶... LLM

(a) Model deduces a vertical relationship using parallel reasoning.

R: ... the base 𝐴𝐵𝐶𝐷 is a right triangle.

Because 𝐴𝐷 ⊥ 𝑃𝐵, therefore 𝐴𝐷 ⊥ the

plane 𝑃𝐵𝐶. Consequently, 𝐴𝐷 ԡ plane

𝑃𝐵𝐶.

Q: Given points 𝐴(0,3) and 𝑃(3,
3

2
) lie on

the ellipse 𝐶:
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 𝑎 > 𝑏 > 0 …

… find the equation of 𝑙. LLM

(b) Model arrives at the correct answer through flawed steps.

R: ... 36 ∙ 5 = 3 + 6𝑘 2 ∙ (𝑘2 + 1)
180 = 9 + 36𝑘3 + 36𝑘2 + 36𝑘 …

By trial and error, we can find 𝑘 =
1

2

Q: 唐代诗人写时事，常常托之于汉代，
如“____，____”，就是借汉喻唐，以古
方今。 LLM

(c) Model cites a non-existent ancient poem.

R: … “想知汉武宫香径，请看长安
市醉人” …

LLM

(d) Model fails to summarize as instructed and instead duplicates content.

Q: Read the materials and complete the

following requirements. Material 1: During 

the "First Five-Year Plan" period ...

Based on the materials, summarize the 

development of the equipment manufacturing 

industry in China …

R: Since the founding of the People's

Republic of China …

During the First Five-Year Plan period,

China established several industrial

manufacturing sectors …

Figure 10: Unique Error Patterns of the Model.
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Figure 11: Transforming O1’s reasoning tokens into human-aligned
difficulties improves the fit (R2) with the Rasch model.

Our findings through
GAOKAO-Eval provide
insights into the capa-
bilities and limitations
of current LLMs. The
observed discrepancy
between high benchmark
scores and human-aligned
cabilities in LLMs aligns
with recent studies ques-
tioning the reliability of
existing evaluation meth-
ods (Zellers et al., 2019;
Sakaguchi et al., 2020; Lin
et al., 2022). Our results
extend these concerns to
a comprehensive, annually
updated benchmark based
on real-world educational assessments.

Score and human-aligned capability mismatch in previous benchmarks. Previous benchmarks
may have missed the issue of mismatched scores and human-like capabilities due to their focus
on multiple-choice questions with non-continuous score distributions. Additionally, many models
likely encountered similar training data (non-leaky), making it difficult to obtain a consistent, con-
tinuous scoring range. As a result, earlier benchmarks struggled to highlight this misalignment.

Towards LLM-Aligned Difficulties. The semi-invariant scoring behavior of LLMs suggests a crit-
ical gap in how these models process information compared to humans. Rather than solving prob-
lems through human-like reasoning, LLMs tend to rely on pattern recognition across vast datasets
(Chen et al., 2024b), leading to inconsistencies in performance on similarly difficult questions. Fig-
ure 11 shows results from external experiment with the latest o1 model. Using o1’s reasoning tokens
as a proxy for LLM-aligned difficulties improved the fit with the Rasch model. The coefficient of
determination (R2) increased from -0.22 to 0.1019. Before we try to improve LLM performance
by adopting human-aligned difficulties in benchmarks, it is promising to explore what LLM-aligned
difficulties are——challenges that are more suitable for LLMs.

The High Variance in LLM Performance on the Same Difficulty raises questions about the
consistency and reliability of these models. This variability could have significant implications for
deploying LLMs in critical domains where consistent performance is crucial (Zhou et al., 2024).
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Figure 11 (b) and (d) suggest that the reduction in variance with more inference tokens indicates a
lack of reasoning-related factors contributing to this inconsistency.

5 RELATED WORK

Benchmark for LLMs and VLMs. Traditional benchmarks have played a pivotal role in assessing
the natural understanding capabilities of models (Kahou et al., 2018; Lu et al., 2022a). However,
as LLMs evolve, models such as Mistral-Large2 (Mistral AI, 2024), Llama3.1-405B (Dubey et al.,
2024), and GPT-4 (OpenAI et al., 2024) begin to outperform human capabilities on these traditional
tasks. So there is a growing recognition of the need for more sophisticated benchmarks that can
evaluate a broader spectrum of abilities, encompassing both natural language processing (NLP) and
multimodal tasks.

MMLU, CMMLU, C-Eval have expanded the evaluation landscape by incorporating a wider range
of subjects and difficulty levels, primarily through multiple-choice questions (MCQs) (Hendrycks
et al., 2021a; Li et al., 2024; Huang et al., 2023). In addition, Math utilizes a fill-in-the-blank
format to measure models’ mathematical problem-solving abilities (Hendrycks et al., 2021c). On
the multimodal front, benchmarks like MMMU and Math Vista have been introduced to assess
models’ abilities to integrate and interpret information across different modalities with reasoning,
such as text and images(Yue et al., 2024; Lu et al., 2024; Chen et al., 2024a).

Despite these advancements, current benchmarks face notable limitations. The reliance on MCQs,
while valuable for scalability and objectivity, often limits the types of questions and scenarios that
can be evaluated, potentially overlooking critical aspects of language comprehension and generation.
Moreover, both NLP and multimodal benchmarks struggle with the issue of question leakage. Our
work introduces a novel benchmark by leveraging the rich and diverse question types and a broad
array of subjects and question formats from the GAOKAO examinations.

Gaokao Evaluation. Gaokao is a comprehensive national academic test that serves as the primary
criterion for university admission in China. Two notable works in this area are Gaokao-bench and
GAOKAO-MM (Zong & Qiu, 2024; Zhang et al., 2023). Gaokao-bench compiled a dataset of
multiple-choice and subjective questions from previous Gaokao examinations, while GAOKAO-
MM expanded this approach to include multimodal elements. Both benchmarks aim to provide a
comprehensive evaluation of LLMs’ language understanding, reasoning abilities, and multimodal
integration capabilities.

The underlying assumption for these two benchmarks is that if LLMs can perform well on tasks
that challenge human intelligence, they may be developing more human-like cognitive capabilities.
However, our research demonstrates that high scores on these benchmarks do not necessarily equate
to human-like abilities in LLMs.

Error Patterns and Human Evaluation of LLMs. Berglund et al. (2024) finds a reversal curse
pattern, while Wu et al. (2023) designs 11 counterfactual evaluation tasks and observes consistent
and substantial degradation of LM performance. Some researchers find that LLMs make a significant
number of basic errors in code writing and are unable to complete code with potential bugs (Zhong &
Wang, 2023; Jesse et al., 2023; Dinh et al., 2023). Chen et al. (2024b) builds an automated evaluation
method and discoverys 8 error patterns. Rather than summarizing error patterns in GAOKAO, our
analysis delves deeper into how these patterns contribute to the phenomenon where high scores
cannot reflect high capabilities. This suggests a potential gap in reasoning abilities.

6 CONCLUSION

GAOKAO-Eval provides a comprehensive and annually updated benchmark for evaluating LLM
capabilities. Our study reveals that high scores on existing benchmarks do not necessarily reflect
human-aligned reasoning abilities in LLMs. We identifies unique scoring patterns in LLMs, includ-
ing semi difficulty-invariant distributions and high performance variance on similar difficulty ques-
tions. These findings challenge the effectiveness of current evaluation methods and highlight the
need for more LLM-aligned difficulties analysis. Future work could focus on developing reasoning-
based metrics to better align difficulty assessments with LLM capabilities, addressing the problem
of high scores failing to capture true capability.
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Hernández-Orallo. Larger and more instructable language models become less reliable. Nature,
September 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07930-y. URL https://doi.
org/10.1038/s41586-024-07930-y.

Yi Zong and Xipeng Qiu. Gaokao-mm: A chinese human-level benchmark for multimodal models
evaluation, 2024.

16

https://api.semanticscholar.org/CorpusID:259341893
https://api.semanticscholar.org/CorpusID:259341893
https://doi.org/10.18653/v1/p19-1472
https://api.semanticscholar.org/CorpusID:258833562
https://api.semanticscholar.org/CorpusID:261048682
https://doi.org/10.1038/s41586-024-07930-y
https://doi.org/10.1038/s41586-024-07930-y


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

APPENDIX

We provide more details of the proposed method and additional experimental results to help better
understand our paper. In summary, this appendix includes the following contents:
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A DETAIL OF WQX TRAINING

In this section, we delve into the details surrounding the WQX model, which was specifically de-
veloped to validate the comprehensiveness of the Gaokao evaluation system. To achieve this, we
embarked on an extensive data preparation process, continuing the pre-training on the foundation
provided by the InternLM2-20b-base model. The subsequent paragraphs will outline the datasets
utilized by the WQX model, our data preparation methodologies, and the intricate details of the
training process.

A.1 GAOKAO TRAINING DATASET

To construct a comprehensive Gaokao dataset, we embarked on an extensive data collection process,
gathering over 25 million examination questions from online resources and educational books. After
a meticulous deduplication process, we narrowed down the dataset to 17.5 million unique questions.
In addition to these questions, we incorporated more than 1GB of textual material from academic
books into our training data to further enrich the dataset’s diversity and depth. To enhance the quality
and relevance of our dataset for training LLMs specifically for Gaokao preparation, we employed
several innovative techniques for data augmentation and retrieval.

Numerical Reasoning Enhancement Given that solution processes for numerical calculation
problems often contain omissions, we employed the InternLM2-20b model to supplement and elab-
orate on these mathematical problem-solving steps. To further bolster the model’s numerical com-
putation capabilities, we developed a custom calculation tool similar to SymPy, which provides
the correct and detailed step-by-step solutions. This tool was used to synthesize a large volume of
computational data, thereby enhancing the model’s arithmetic proficiency.

Chain-of-Thought Augmentation For questions lacking detailed explanations, we implemented
a multi-step approach using the InternLM2-20b model. In the case of multiple-choice questions,
we introduced variations in the model’s response order to ensure robustness. For questions that the
model consistently answered correctly, we prompted it to generate comprehensive explanations, thus
enriching the dataset with detailed problem-solving rationales.

Enhanced Retrieval and Filtering from Common Crawl We employed the Query of CC tech-
nique (Fei et al., 2024) to retrieve Gaokao-relevant data from Common Crawl, using examination
questions as queries. To ensure data quality, we implemented a novel filtering process: retrieved
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data was used as context in a Retrieval-Augmented Generation (RAG) framework. The model reat-
tempted questions using this context, and we retained only the retrieved documents that enabled
correct answers to previously mishandled questions. This filtered dataset served as high-quality
supplementary knowledge for training, effectively enhancing the model’s performance on Gaokao-
style examinations.

A.2 GAOKAO TRAINING PROCESS

WQX model, built upon InternLM2-20b-base, was trained on the curated Gaokao dataset for two
complete epochs. We employed the InternEvo framework (Team, 2023), maintaining a context
length of 4096 tokens. For content exceeding this length, we split and truncated it into multiple data
points. The training configuration utilized mixed-precision computation with bfloat16 and FlashAt-
tention2 for optimal efficiency (Dao, 2024). We used the AdamW optimizer (β1 = 0.9, β2 = 0.95,
weight decay = 0.1) with a cosine decay learning rate schedule, peaking at 3 × 10−5 after 2000
warm-up steps and decreasing to 3 × 10−6. Each training batch consisted of approximately 0.5M
tokens, balancing computational efficiency with effective learning.

B SUPPLEMENTARY EXPLANATION OF GAOKAO-EVAL

B.1 MORE DETAIL ABOUT GAOKAO

Paper Type Diversity The comprehensive nature of GAOKAO-Eval is further enhanced by its
coverage of multiple paper types, reflecting the diverse educational landscape across China. As
detailed in Table 1, the benchmark includes various Gaokao models, such as the ”3+1+2” New
Pattern, the ”3+3” Pattern, and the Traditional Pattern. With the reform of the Gaokao (National
College Entrance Examination) in 2024, there are six types of Gaokao papers nationwide. The
Beijing, Shanghai, and Tianjin papers, along with the National paper A, cover all subjects. Provinces
using the New Curriculum Standard I and II papers use corresponding Chinese, Mathematics, and
English papers, while most provinces independently set their own exams for other subjects. In
GAOKAO-Eval, we tested all publicly available papers from the New Curriculum and National
paper A. Regarding the Gaokao models, the current system is primarily divided into three major
categories:

• The “3+1+2” New Pattern widely adopted by 23 provinces, is structured around the
core subjects of Chinese, Mathematics, and English. Students are required to choose either
Physics or History as their primary subject and select two additional subjects from the
remaining four (Political Science, Geography, Chemistry, Biology).

• The “3+3” Pattern currently used by 6 provinces, allows students, after completing the
core subjects (Chinese, Mathematics, and English), to freely choose three elective subjects
from six options (Political Science, Geography, Chemistry, Biology, and in Zhejiang, an
additional subject of Technology).

• The Traditional Pattern The remaining 5 provinces still adhere to the traditional subject
division system of the National Paper A, maintaining the conventional academic assess-
ment pathway.

Distribution of Questions in GAOKAO As detailed in Table 2, the distribution of question types
across various subjects showcases the comprehensive scope of the GAOKAO-Eval benchmark.

B.2 EXAMPLES OF QUESTIONS AND EXPLANATIONS

In this section, we present some examples of questions along with their answers and explanations.
As shown in Figure 1, there are questions about the spatial distribution characteristics of traditional
dwellings, their designs, and the roles of public spaces in Shuangfeng Village. Additionally, Figure 2
demonstrates the predictions made by GPT-4o on these questions.

2
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Paper Type Provinces/Cities Using It
New Curriculum Standard Paper I Guangdong, Fujian, Hubei, Hunan, Jiangsu, Hebei, Shan-

dong, Zhejiang, Jiangxi, Anhui, Henan

New Curriculum Standard Paper II Liaoning, Chongqing, Hainan, Shanxi, Xinjiang, Guangxi,
Guizhou, Heilongjiang, Gansu, Jilin, Yunnan, Tibet

New Curriculum Shanxi, Henan, Yunnan, Tibet, Xinjiang

National Paper A Sichuan, Inner Mongolia, Ningxia, Shaanxi, Qinghai

Beijing Paper Beijing

Shanghai Paper Shanghai

Tianjin Paper Tianjin

Table 1: Gaokao Paper Types and Their Usage.

Table 2: Distribution of Question Types Across Subjects in GAOKAO-Eval 2024.

Subject Question Type Count Percentage (%)
Chemistry Multiple Choice 14 60.87

Fill in the Blanks 7 30.43
Optional Fill in the Blanks 2 8.70

History Multiple Choice 24 75.00
Short Answer 8 25.00

Geography Multiple Choice 22 53.66
Short Answer 17 41.46
Optional Short Answer 2 4.88

Politics Multiple Choice 12 71.79
Short Answer 5 28.21

Mathematics Multiple Choice 8 42.11
Fill in the Blanks 3 15.79
Multiple Selection 3 15.79
Short Answer 5 26.32

Mathematics (Arts) Multiple Choice 12 52.17
Fill in the Blanks 4 17.39
Short Answer 7 30.43

Mathematics (Science) Multiple Choice 12 52.17
Fill in the Blanks 4 17.39
Short Answer 7 30.43

Physics Multiple Choice 13 44.83
Fill in the Blanks 4 13.79
Multiple Selection 3 10.34
Short Answer 5 17.24
Optional Questions 2 6.90
Optional Multiple Choice 2 6.90

Biology Multiple Choice 12 52.17
Fill in the Blanks 9 39.13
Optional Fill in the Blanks 2 8.70

English 7 out of 5 2 11.11
Writing - Composition 1 5.56
Writing - Error Correction 1 5.56
Long Composition 1 5.56
Cloze Test 2 11.11
Short Composition 1 5.56
Grammar 1 5.56
Grammar Completion 1 5.56
Reading Comprehension 8 44.46

Chinese Composition 2 4.44
Classical Poetry Reading 4 8.89
Famous Passage Recitation 2 4.44
Classical Chinese Reading 9 20.00
Modern Text Reading 18 40.00
Language Usage 10 22.22
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Examples of Questions.

Question: Shuangfeng Village in Yongshun County, Hunan Province, is a typical Tujia vil-
lage located in the hinterland of the Wuling Mountains. A small stream meanders through
the village, accompanied by the sound of flowing water, winding stone paths, and Tujia
corner-stilt houses built along the mountain, creating a beautiful picture of the Tujia moun-
tain village, known as the ”First Tujia Village in China.” The left figure shows the distri-
bution of buildings in Shuangfeng Village, and the right figure shows the corner-stilt house
under construction. Based on this, answer the following questions.

1. The spatial distribution characteristics of traditional dwellings in Shuangfeng Vil-
lage are ( )
A. Along the contour lines
B. Along the stream
C. Around public buildings
D. Along the road

2. The corner design of traditional dwellings in Shuangfeng Village is mainly to ( )
A. Adapt to the humid environment
B. Facilitate local materials
C. Make full use of space
D. Pursue visual aesthetics

3. The Baishoutang (including the Tuwang Temple) and the Wind and Rain Bridge
provide places for public activities and communication for the villagers of
Shuangfeng Village, reflecting the public space of the village
① Balance ② Economy ③ Public welfare ④ Culture
A. ①②
B. ①③
C. ②④
D. ③④

Correct Answer: B C D

Figure 1: Examples of MM Geo Questions and Answers.
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Examples of Model Prediction.

GPT Prediction:
• From the left figure, it can be seen that the traditional dwellings in Shuangfeng

Village are mostly distributed along the stream, B is correct; from the left figure,
it can be seen that the traditional dwellings cross three contour lines and are not
parallel to the contour lines, A is incorrect; public buildings are distributed down-
stream of the river, with only a few scattered households nearby, C is incorrect;
the road was built in the later stage of social and economic development, and the
traditional dwellings were built earlier, so they could not be distributed along the
road, D is incorrect. Hence, B is correct.

• From the figure, it can be seen that Yongshun County in Hunan Province is lo-
cated in a mountainous area with limited flat land and building space. The corner
design of traditional dwellings in Shuangfeng Village is mainly to improve land
use efficiency and make full use of space, C is correct; adopting the stilt design
provides good ventilation and adapts to the humid geographical environment, A
is incorrect; the main structure of the buildings uses bamboo and wood, which are
abundant locally, facilitating local materials, B is incorrect; the initial design of
traditional dwellings was to adapt to the local natural geographical environment,
not to pursue visual aesthetics, D is incorrect. Hence, C is correct.

• The Baishoutang (including the Tuwang Temple) and the Wind and Rain Bridge
provide places for public activities and communication for the villagers of
Shuangfeng Village, reflecting the public welfare and cultural nature of the vil-
lage’s public space, 3⃝ 4⃝ are correct; the Wind and Rain Bridge and Baishoutang
are mainly places for villagers’ activities and are not focused on economic activ-
ities, so they do not reflect the economic nature of the village’s public space, 2⃝
is incorrect; the Baishoutang and Wind and Rain Bridge are concentrated down-
stream of the stream, so they do not reflect balance, 1⃝ is incorrect. Hence, D is
correct, and ABC are incorrect. Therefore, D is correct.

Figure 2: Examples of GPT-4o Predictions.

B.3 OVERALL PERFORMANCE ANALYSIS

The tables below present the performance scores of various models on the New Curriculum Standard
Paper and the National Paper A, ranked by Science Total Score.

Table 3: New Curriculum Standard Paper † Scores (Ranked by Science Total Score)

Model C
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gy
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l

A
rt

sT
ot

al

WQX-20B+VL-20B 112 74 138.5 39 48 57 82 58 67 468.5 531.5
GPT-4o 111.5 73 141.5 36 40 65 88 59 58 467 531
Qwen2-72B Text-only 124 68 139 42 44 48 85 70 60 465 546
Qwen2-72B+VL-7B 124 68 139 19 6 48 85 4 60 404 480
Yi-34B+VL-34B 97 31 134.5 21 37 49 48 41 51 369.5 402.5
Qwen2-57B+VL-7B 99.5 58 126.5 7 6 51 73 4 62 348 423
GLM4-9B+VL-9B 86 48 97 18 27 67 80 62 48 343 421
Mixtral 8x22B 77.5 21 116.5 25 35 46 54 56 38 321 363
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+V L means that questions involving images will use the corresponding multimodal version of the model for
inference; if there is no “+VL”, only pure text inference without images is performed.

Table 4: National Paper A Scores (Ranked by Science Total Score)

Model C
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Qwen2-72B Text-only 128 141 89 32 48 50 95 71 81 488 516
GPT-4o 122 142.5 84 31 34 72 89 82 66 485.5 501.5
WQX-20B+VL-20B 111 141 78 30 52 50 71 76 64 462 463
Qwen2-72B+VL-7B 128 141 89 22 22 50 95 71 34 452 469
Mixtral 8x22B 92 142 58 38 39 54 53 74 74 423 435
GLM4-9B+VL-9B 108 110.5 71 29 44 55 75 54 62 417.5 409.5
Qwen2-57B+VL-7B 108 141 65 6 22 44 75 77 30 386 431
Yi-34B+VL-34B 109 107.5 39 15 40 55.5 65 53 54 366 388.5

+V L means that questions involving images will use the corresponding multimodal version of the model for
inference; if there is no “+VL”, only pure text inference without images is performed.

B.4 DETAIL OF SUBJECT SCORES

This section meticulously details the performance scores of models across a broad spectrum of subjects, show-
casing their capabilities and limitations within an academic context. These assessments span across both the
New Curriculum and the National Paper A, covering a wide range of disciplines including Chinese, Mathemat-
ics (distinguished between Science and Arts tracks), English, Physics, Chemistry, Biology, History, Geography,
and Politics.

B.4.1 NEW CURRICULUM

Chinese

Table 5: Scores for Different Sections in Chinese.

Model Modern Reading (35) Classical Reading (22) Poetry Reading (9) Quote Writing (6) Language Use (18) Essay (60) Total (150)

Qwen2-72B 31 19 9 6 9 50 124
WQX-20B 30 17 6 6 7 46 112
GPT-4o 32 10 8 2 9 50.5 111.5
Qwen2-57B 27 12 7 6 2 45.5 99.5
Yi-1.5-34B 28 8 5 2 4 50 97
GLM4-9B 21 6 8 6 4 41 86
Mixtral 8x22B 18 3 7 2 3 44.5 77.5

Mathematics

Table 6: Score Distribution for Each Question Type in Mathematics

Model Single Choice Questions (40) Multiple Choice Questions (18) Fill-in-the-Blank Questions (15) Short Answer Questions (77) Total Score (150)

WQX-20B 30 8 10 26 74
GPT-4o 35 6 10 22 73
Qwen2-72B 30 10 10 18 68
Qwen2 57B 35 9 5 9 58
GLM4-9B 30 6 0 12 48
Yi-1.5-34B 20 7 0 4 31
Mixtral 8x22B 10 0 0 11 21

English
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Table 7: Score Distribution for Each Question Type in English

Model Listening (30) Reading Comprehension (37.5) Choose 5 out of 7 (12.5) Cloze Test (15) Grammar Completion (15) Writing (40) Total Score (150)

GPT-4o 30 37.5 10 14 15 35 141.5
Qwen2-72B 30 35 12.5 14 13.5 34 139
WQX-20B 30 37.5 10 15 13.5 32.5 138.5
Yi-1.5-34B 30 35 10 11 13.5 35 134.5
Qwen2 57B 30 35 10 9 15 27.5 126.5
Mixtral 8x22B 30 37.5 5 2 9 33 116.5
GLM4-9B 30 35 0 6 6 20 97

Physics

Table 8: Score Distribution for Each Question Type in Physics

Model Single Choice Questions (30) Multiple Choice Questions (18) Fill-in-the-Blank Questions (18) Short Answer Questions (44) Total Score (110)
Qwen2-72B 18 6 6 12 42
WQX-20B+VL-20B 18 12 9 0 39
GPT-4o 18 6 2 10 36
Mixtral 8x22B 12 3 5 5 25
Yi-1.5-34B+VL-34B 12 6 2 1 21
Qwen2-72B+VL-7B 18 0 0 1 19
GLM4-9B+4v-9B 12 3 2 1 18
Qwen2-57B+VL-7B 6 0 0 1 7

Chemistry

Table 9: Score Distribution for Each Question Type in Chemistry

Model Multiple Choice Questions (42) Fill-in-the-Blank Questions (58) Total Score (100)

WQX-20B+VL-20B 18 30 48
Qwen2-72B 18 26 44
GPT-4o 18 22 40
Yi-1.5-34B+VL-34B 24 13 37
Mixtral 8x22B 18 17 35
GLM4-9B+4v-9B 12 15 27
Qwen2-72B+VL-7B 6 0 6
Qwen2-57B+VL-7B 6 0 6

Biology

Table 10: Score Distribution for Each Question Type in Biology

Model Multiple Choice Questions (36) Fill-in-the-Blank Questions (54) Total Score (90)

GLM4-9B+4v-9B 36 31 67
GPT-4o 30 35 65
WQX-20B+VL-20B 24 33 57
Qwen2-57B+VL-7B 30 21 51
Yi-1.5-34B+VL-34B 18 31 49
Qwen2-72B+VL-7B 30 18 48
Mixtral 8x22B 6 40 46

History

Table 11: Score Distribution for Each Question Type in History

Model Multiple Choice Questions (48) Short Answer Questions (52) Total Score (100)

GPT-4o 44 44 88
Qwen2-72B+VL-7B 40 45 85
WQX-20B+VL-20B 44 38 82
GLM4-9B+4v-9B 48 32 80
Qwen2-57B+VL-7B 44 29 73
Mixtral 8x22B 12 42 54
Yi-1.5-34B+VL-34B 48 0 48
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Geography

Table 12: Score Distribution for Each Question Type in Geography.

Model Multiple Choice Questions (44) Short Answer Questions (56) Total Score (100)

Qwen2-72B 32 38 70
GLM4-9B+4v-9B 36 26 62
GPT-4o 32 27 59
WQX-20B+VL-20B 32 26 58
Mixtral 8x22B 24 32 56
Yi-1.5-34B+VL-34B 20 21 41
Qwen2-72B+VL-7B 4 0 4
Qwen2-57B+VL-7B 4 0 4

Politics

Table 13: Score Distribution for Each Question Type in Politics.

Model Multiple Choice Questions (48) Short Answer Questions (52) Total Score (100)

WQX-20B+VL-20B 40 27 67
Qwen2-57B+VL-7B 36 26 62
Qwen2-72B+VL-7B 40 20 60
GPT-4o 44 14 58
Yi-1.5-34B+VL-34B 36 15 51
GLM4-9B+4v-9B 36 12 48
Mixtral 8x22B 28 10 38

B.4.2 NATIONAL PAPER A

Chinese

Table 14: Score Distribution for Each Question Type in Chinese.

Model Modern Text Reading (36) Classical Chinese Reading (19) Ancient Poetry Reading (9) Memorization of Famous Works and Quotations (6) Language and Text Application (20) Essay (60) Total Score (150)

Qwen2-72B 35 19 9 2 15 48 128
GPT-4o 29 19 8 4 14 48 122
WQX-20B 26 14 7 6 15 43 111
Yi-1.5-34B 28 12 7 0 16 46 109
GLM4-9B 24 13 8 2 15 46 108
Qwen2-57B 27 14 7 2 14 44 108
Mixtral 8x22B 24 0 7 0 14 47 92

Mathematics (Science)

Table 15: Score Distribution for Each Question Type in Mathematics (Science).

Model Single Choice Questions (60) Fill-in-the-Blank Questions (20) Short Answer Questions (60) Elective Questions - Short Answer Questions (20) Total Score (150)

Qwen2-72B 50 10 19 15 89
GPT-4o 35 15 27 12 84
WQX-20B 35 5 38 0 78
GLM4-9B 35 5 28 3 71
Qwen2-57B 40 5 13 13 65
Mixtral 8x22B 30 0 21 12 58
Yi-1.5-34B 20 0 17 2 39

Mathematics (Arts)

Table 16: Score Distribution for Each Question Type in Mathematics (Arts)

Model Single Choice Questions (60) Fill-in-the-Blank Questions (20) Short Answer Questions (60) Elective Questions - Short Answer Questions (20) Total Score (150)

Qwen2-72B 50 15 20 14 95
GPT-4o 40 15 24 10 89
GLM4-9B 35 10 27 3 75
Qwen2-57B 40 10 18 9 75
WQX-20B 30 15 26 0 71
Yi-1.5-34B 25 5 31 6 65
Mixtral 8x22B 30 5 15 3 53
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English

Table 17: Score Distribution for Each Question Type in English.

Model Reading Comprehension (30) Choose 5 out of 7 (10) Cloze Test (30) Grammar Completion (15) Writing (35) Listening (30) Total Score (150)

GPT-4o 30 10 28.5 15 29 30 142.5
Mixtral 8x22B 30 10 30 15 27 30 142
Qwen2-72B 30 10 30 15 26 30 141
WQX-20B 30 10 28.5 15 27.5 30 141
Qwen2-57B 28 10 30 15 28 30 141
GLM4-9B 26 0 21 12 21.5 30 110.5
Yi-1.5-34B 24 8 16.5 13.5 15.5 30 107.5

Physics

Table 18: Score Distribution for Each Question Type in Physics.

Model Multiple Choice Questions (48) Fill-in-the-Blank Questions (15) Short Answer Questions (32) Elective Questions - Multiple Choice (10) Elective Questions (20) Total Score (110)

Mixtral 8x22B 27 1 9 1 0 38
Qwen2-72B 18 1 9 0 4 32
GPT-4o 15 5 10 1 0 31
WQX-20B+VL-20B 24 1 4 1 0 30
GLM4-9B+4v-9B 18 2 6 2 1 29
Qwen2-72B+VL-7B 12 2 8 0 0 22
Yi-1.5-34B+VL-34B 9 0 6 0 0 15
Qwen2-57B+VL-7B 0 2 4 0 0 6

Chemistry

Table 19: Score Distribution for Each Question Type in Chemistry.

Model Multiple Choice Questions (42) Fill-in-the-Blank Questions (43) Elective Questions - Fill-in-the-Blank Questions (30) Total Score (100)

WQX-20B+VL-20B 30 15 10 52
Qwen2-72B 24 13 13 48
GLM4-9B+4v-9B 24 15 7 44
Yi-1.5-34B+VL-34B 24 13 4 40
Mixtral 8x22B 24 8 7 39
GPT-4o 12 14 8 34
Qwen2-72B+VL-7B 12 7 5 22
Qwen2-57B+VL-7B 12 7 5 22

Biology

Table 20: Score Distribution for Each Question Type in Biology.

Model Multiple Choice Questions (36) Fill-in-the-Blank Questions (39) Elective Questions - Fill-in-the-Blank Questions (30) Total Score (90)

GPT-4o 30 27 23 72
Yi-1.5-34B+VL-34B 30 10.5 26 55.5
GLM4-9B+4v-9B 24 16 19 55
Mixtral 8x22B 18 21 24 54
Qwen2-72B+VL-7B 18 17 15 50
WQX-20B+VL-20B 18 21 21 50
Qwen2-57B+VL-7B 18 11 15 44

History

Table 21: Score Distribution for Each Question Type in History.

Model Multiple Choice Questions (48) Short Answer Questions (52) Total Score (100)

GPT-4o 36 46 82
Qwen2-57B+VL-7B 40 37 77
WQX-20B+VL-20B 40 36 76
Mixtral 8x22B 36 38 74
Qwen2-72B+VL-7B 32 39 71
GLM4-9B+4v-9B 20 34 54
Yi-1.5-34B+VL-34B 20 33 53

Geography
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Table 22: Score Distribution for Each Question Type in Geography.

Model Multiple Choice Questions (44) Short Answer Questions (46) Elective Questions - Short Answer (10) Total Score (100)

Qwen2-72B 40 31 10 81
Mixtral 8x22B 36 30 8 74
GPT-4o 32 24 10 66
WQX-20B+VL-20B 24 36 4 64
GLM4-9B+4v-9B 24 28 10 62
Yi-1.5-34B+VL-34B 28 16 10 54
Qwen2-72B+VL-7B 24 0 10 34
Qwen2-57B+VL-7B 16 0 14 30

B.5 MODEL DETAIL

We restricted our selection of open-source models to those released before June 6, 2024, and included GPT-4o
as a benchmark, currently the most powerful model available. Here is an overview of the participating models:

Name Developer Type Description Weights Up-
load Date

Qwen2-72B Alibaba Language
Model

The largest dialogue model in Alibaba’s
Qwen2 series.1

2024.05.28

Qwen2-57B Alibaba Language
Model

A MoE dialogue model in Alibaba’s Qwen2
series.2

2024.05.04

QwenVL-7B Alibaba Multimodal
Model

A multimodal dialogue model by Alibaba.3 2023.09.25

Yi-1.5-34B 01.AI Language
Model

The largest model in the Yi 1.5 series by
Wuhan ZeroOne.4

2024.05.12

Yi-VL-34B 01.AI Multimodal
Model

A multimodal large model by Wuhan
01.AI.5

2024.01.19

GLM4-9B ZHIPU AI Language
Model

An open-source version of the latest pre-
trained model in ZHIPU AI’s GLM-4 se-
ries.6

2024.06.04

GLM-4v-9B ZHIPU AI Multimodal
Model

A multimodal model in ZHIPU AI’s GLM-
4 series.7

2024.06.04

Mixtral 8x22B Mistral (France) Language
Model

The most powerful dialogue model cur-
rently open-sourced by the French AI
startup Mistral.8

2024.04.17

GPT-4o OpenAI (USA) Multimodal
Model

The most powerful model released by Ope-
nAI, currently the world’s leading large
model.9

2024.05.13

Table 23: Summary of Models Participating in Evaluation
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