
ELENAS: Elementary Neural Architecture Search

Lukas Aichberger1 Günter Klambauer1

1
ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University

Linz, Austria

Abstract Deep neural networks typically rely on a few key building blocks such as feed-forward,

convolution, recurrent, long short-term memory, or attention blocks. On an elementary

level, these blocks consist of a relatively small number of different mathematical operations.

However, as the number of all combinations of these operations is immense, crafting such

novel building blocks requires profound expert knowledge and is far from being fully

explored. We propose Elementary Neural Architecture Search (ELENAS), a method that

learns to combine elementary mathematical operations to form new building blocks for deep

neural networks. These building blocks are represented as computational graphs, which

are processed by graph neural networks as part of a reinforcement learning system. Our

approach contrasts the current research direction of Neural Architecture Search, which

mainly focuses on designing neural networks by altering and combining a few, already

established, building blocks. In a set of experiments, we demonstrate that our method

leads to efficient building blocks that achieve strong generalization and transfer well to

real-world data. When stacked together, they approach and even outperform state-of-the-art

neural networks at several prediction tasks. Our underlying methodological framework

offers high flexibility and broad applicability across domains while requiring relatively small

computational costs. Consequently, it has the potential to find novel building blocks that

become of general importance for machine learning practitioners beyond specific use cases.

1 Introduction
Over the past years, novel neural architectural building blocks have been developed and used in

artificial neural networks, which vastly accelerated the progress of deep learning (Paszke et al., 2019;

Krizhevsky et al., 2017). Neural Architecture Search (NAS) has successfully combined these building

blocks – e.g. various activation functions, normalization layers, pooling layers, and convolution

layers with different filter sizes – to form complex, deep neural networks that outperform existing

human-designed neural networks on specific datasets, notably ImageNet (Zoph et al., 2018; Liu

et al., 2018; Real et al., 2018; Hu et al., 2020). Recently, the overall research progress in NAS is

growing considerably (Elsken et al., 2019; Ren et al., 2020; White et al., 2023).

The building blocks used in the majority of NAS approaches have mainly been derived by hand

and are generally challenging to design. For instance, experts formulated assumptions about how

cell states are able to incorporate a long short-term memory (LSTM) (Hochreiter and Schmidhuber,

1997) or how attention mechanisms have the ability to narrow down relevant features (Vaswani

et al., 2017). It can be observed that these key building blocks usually combine a relatively small

number of underlying elementary mathematical operations such as basic arithmetic operations for

scalar and matrix inputs, as well as non-linear activation functions (Deisenroth et al., 2020). These

operations are combined in a specific way to form such building blocks (Goodfellow et al., 2016).

This implies that the combinations of these operations form a highly multidimensional space that

is far from being fully explored.

In contrast to well-established search spaces in NAS, the majority of building blocks included

in this search space of elementary operations are not valid and thus cannot be used in neural

AutoML 2023 Workshop Track © 2023 the authors, released under CC BY 4.0

mailto:aichberger@ml.jku.at
mailto:klambauer@ml.jku.at
https://creativecommons.org/licenses/by/4.0/


Figure 1: Overview. ELENAS utilizes the search strategy PPO to design neural architectural build-

ing blocks represented by computation graphs G (state). It is sequentially constructed by

predicting the type of all edges (action), thereby exploring the search space of elementary

mathematical operations. The general performance of the building block (reward) is esti-

mated on synthetic datasets of increasing complexity.

networks. Not only is an exhaustive manual search in this vast combinatorial space infeasible

but it also requires specific search strategies to explore and reason from this very general search

space. However, our hypothesis is that within this underexplored search space, there are several

undiscovered novel building blocks, akin to LSTM or attention blocks, that can be integrated into

deep neural networks to improve their performance in an entire domain.

To address these challenges when searching for novel building blocks by combining elementary

mathematical operations, we propose Elementary Neural Architecture Search (ELENAS). Our

method, illustrated in Figure 1, leverages reinforcement learning (RL) (Sutton and Barto, 2018) and

specifically adopts the firmly established proximal policy optimization (PPO) algorithm (Schulman

et al., 2017) to design unprecedented building blocks represented as computational graphs. Thereby,

the RL agent employs a graph neural network (GNN) (Bronstein et al., 2021) to synergistically incor-

porate expertise in both combining these elementary mathematical operations as well as designing

the topology of computation graphs. Our method proposes an encoding of the computation graph

that addresses the complexity of the search space and improves the search process. The resultant

building blocks are evaluated on synthetic datasets of increasing levels of difficulty that assess their

general capabilities in the respective domain. By circumventing the necessity to apply them on

complex real-world data, this approach requires only nominal computational resources. This leads

to previously unparalleled building blocks that generalize well and – when stacked together to

tailor the neural network for a particular task – approach or even outperform existing modern

neural networks in the specified domain while requiring only a fraction of the learnable parameters.

Our main contributions can be summarized as follows:

(i) We propose a general search space of elementary mathematical operations that allows for

high flexibility in both the combinations of operations and the topology of neural architectural

building blocks. This search space includes a variety of unprecedented building blocks, as it

induces as little as possible domain expertise.

(ii) We introduce ELENAS for designing general-purpose building blocks by utilizing this search

space of elementary mathematical operations and evaluating them on specific synthetic tasks.

Our method trains a reinforcement learning agent consisting of graph neural networks to

search for and learn from computation graphs of the respective building blocks.

(iii) We present the building blocks ELENA1 and ELENA2 for the domain of sequential data.

They have been designed from elementary mathematical operations by our method, are

parameter-efficient, achieve strong generalization, and transfer well to real-world data.

2



2 Related Work

Current research in NAS mainly focuses on the field of computer vision (Elsken et al., 2019; Ren

et al., 2020; White et al., 2023), with successes primarily in finding high-performing convolutional

neural networks (CNNs). Recent work usually combines already established building blocks to form

higher-order topological structures that incrementally increase the performance on a given task

(Baker et al., 2016; Liu et al., 2017; Zoph et al., 2018; Cai et al., 2018; Xu et al., 2019; Ru et al., 2020;

Roberts et al., 2021). These building blocks are commonly defined as triplets of fixed normalization,

fixed activation, and convolution operations of varying filter size (White et al., 2023).

Few of these approaches additionally searched for recurrent neural networks (RNNs) (Klyuch-

nikov et al., 2022). Pham et al. (2018), in particular, computes the first node representation h1 of
the recurrent cell by sampling an activation function f (·) and then combining the input x(𝑡) at the
current time step with the cell output representation h(𝑡−1) from the previous time step, both trans-

formed by learnable parametersW: h1(𝑡) = f (W𝑥 x(𝑡)+Wℎ
1
h(𝑡−1)). Subsequently, for a predefined

number of nodes in the cell, a node representation h𝑖 (𝑡) from the current time step is sampled

together with an activation function f (·) to compute the representation: h𝑗 (𝑡) = f (Wℎ
𝑗 h𝑖 (𝑡)). This

method is similar to the one from Zoph and Le (2016) and Liu et al. (2018), which fix the topology of

the recurrent cell but instead sample an operation together with an activation function to compute

a node. However, these methods usually incorporate severe expert knowledge to construct neural

architectures, thus limiting and biasing the possible outcome. Inspired by the LSTM architecture

(Hochreiter and Schmidhuber, 1997), Zoph and Le (2016) introduce cell variables that already repre-

sent memory states, and Pham et al. (2018) as well as Liu et al. (2018) add fixed highway connections

when computing a node representation: ℎ 𝑗 (𝑡) = c𝑗 (𝑡) ⊙ f (Wℎ
𝑗 h𝑖 (𝑡)) + (1 − c𝑗 (𝑡)) ⊙ h𝑖 (𝑡), with

c𝑗 (𝑡) = sigmoid(W𝑐
𝑗 h𝑖 (𝑡)) and ⊙ denoting the Hadamard product. The best neural architectures

that resulted from these approaches are compared to the ones designed by ELENAS in Section 4.

Nonetheless, there is scarce literature on utilizing elementary mathematical operations to

search for general-purpose neural architectural building blocks. The work most closely to our

method has been proposed by Schrimpf et al. (2017), searching for RNNs by generating a tree

of elementary operations. However, they considerably constrain the set of operations and their

possible combinations. Similarly to the work by Zoph and Le (2016), the nodes that are combined by

these operations incorporate severe domain expertise, as they already include long-term memory

by design (Schrimpf et al., 2017). A few other approaches exist that are closely related from the

perspective of utilizing elementary operations, but that search for different components. For

instance, Liu et al. (2020) search for normalization layers and activation functions by leveraging

element-wise operations such as addition, multiplication, the sigmoid function, and aggregation

operations. Their approach led to normalization layers with unique structures that generalize well

across various tasks (Liu et al., 2020). Similarly, Ramachandran et al. (2017) used primitive operations

to search for activation functions. Their work resulted in the well-known Swish activation function

(Ramachandran et al., 2017). Finally, Real et al. (2020) search for comprehensive machine learning

algorithms, with modern techniques emerging from basic mathematical operations.

Although our approach contrasts the current research direction of NAS, it builds upon some of

the promising concepts of recent advances in the field. For instance, Zoph et al. (2018) propose the

popular cell-based search space to search for cells that are stacked in a predefined manner to form

the overall, chain-structured, neural network, which has been widely adopted (Ying et al., 2019; Liu

et al., 2018). Their work also utilizes PPO (Schulman et al., 2017), which they found to be faster and

more stable than the REINFORCE policy gradient algorithm (Zoph and Le, 2016). Moreover, the

performance of the candidate architectures is evaluated on a smaller proxy dataset, similar to our

performance estimation strategy. In this way, their highest-performing cells outperform the best

human-invented neural networks on unseen datasets (Zoph et al., 2018).

3



3 ELENAS
At the core of our method is the search for general-purpose neural architectural building blocks

using elementary mathematical operations that can be utilized as part of deep neural networks (see

overview in Figure 1). Such a building block can be represented as a computation graph G (see

Section 3.1). In general, the process of designing a building block can be reduced to exploring the

search space of elementary mathematical operations (Section 3.2), namely predicting each of the

edge types in G. We utilize the RL algorithm PPO (Schulman et al., 2017) as the search strategy (see

Section 3.3). G, namely the state 𝑠 (𝑡) in the RL setting, is embedded by a GNN and a graph global

pooling. The type of a given edge in G, namely the action 𝑎(𝑡) in the RL setting, is then predicted

based on this embedding. This results in a new state that is converted to a neural architectural

building block by the neural constructor. The general performance estimation of the building

block (see Section 3.4) is conducted on synthetic datasets of increasing complexity in the respective

domain. The validation accuracies together with the topology of G contribute to the reward 𝑟 (𝑡) in
the RL setting. This process is repeated for every edge in G, composing one episode on which the

PPO agent is trained on to incorporate expertise in designing high-performing building blocks.

3.1 Building Block Representation

Nodes and edges inG. As mentioned above, a building block is represented as a computation graph

G (Hamilton, 2020), in which nodes symbolize learnable parameters or (latent) representations, and

directed edges in G symbolize elementary mathematical operations (Liu et al., 2018). Concretely,

we use four different node types: input, initial, intermediate, and final nodes. Node 𝑛0 is defined
as the input node and node 𝑛𝑖 is defined as initial if 𝑖 is uneven. Input and initial nodes can only

have outgoing but no incoming connections or self-connections, while all other nodes can have

incoming, outgoing, and self-connections. We define ten different edge types as part of the search

space below. Additionally to the four main node types and the then edge types, we define specific

information resulting from the topology of G. Regarding nodes, these are recursion, unused, and
dead. A recursion node stores a (latent) representation of a node from the previous time step. A

unused or dead node is not connected directly or indirectly to 𝑛0 with edges of type other than

none. Regarding edges, these are dead and backwards. The former refers to edges of type other

than none that do not connect 𝑛0. The latter refers to artificially added incoming edges to input
or initial nodes, thus are not to be predicted but only serve to improve the information flow in G
when being processed. Also, we empirically observed that adding the information position of a

node in G – with the use of trigonometric functions – as well as of an edge in G – namely whether

an edge has already been predicted – substantially improves the overall search process.

Size of G. We restrict the number of total nodes𝑚 in G to 32. However, our method also allows

for increasing𝑚 to dynamically adapt to the search progress. For𝑚 nodes, the total number of

edges is equal to
𝑚 (𝑚−1)

2
in case𝑚 is uneven and

𝑚 (𝑚−2)
2

in case𝑚 is even, since each intermediate

node has an incoming connection from all nodes in G, including self-connection. This implies

that the length of an episode of designing a building block is equal to the number of edges in G,

with each edge having the same number of possible actions and the number of edges increasing

quadratically with the number of nodes. Thereby, the order in which edges are predicted can be

chosen arbitrarily. We experimentally determined that predicting edges according to sub-graphs in

G improves the search for building blocks, addressed in more detail in Section F of the appendix.

3.2 Search space

The search space contains elementary mathematical operations assigned to the edge types within

the computation graph G. Our approach reduces the search space by a factor of two without

compromising its generality. Depending on the nodes connected by an edge, we define different

permissible operations, named node combining operations and node transforming operations.

4



Figure 2: Building block search space exploration. ELENAS utilizes a GNN to process the computation

graph G. Thereby, node features encode the predefined node types and edge features encode

the elementary mathematical operation that the edges represent. The actor computes edge

type probabilities based on the concatenated node embeddings of the two nodes that the

respective edge connects. The critic computes the state value based on a single graph

embedding that is computed by globally pooling all node embeddings.

Node combining operations. They refer to a type of edge that connects a node with a different

node. These operations take two or more node representations to compute the representation of

an additional node. We chose the five frequently used operations addition, matrix multiplication,
Hadamard product (also referred to as element-wise multiplication), recursion, and none (implying

that no connection is present between the two respective nodes). In case recursive connections

are present in G, the input is processed sequentially and the recursion operator feeds the (latent)

representation of a node at a time step into a node at the subsequent time step (Goodfellow et al.,

2016; Hamilton, 2020). A recursion operator as such has not yet been present in the current research

of NAS, making it a valuable contribution of our proposed method.

Node transforming operations. They refer to a type of edge that connects a node with itself

(equivalently called self-connection). These operations take a single node representation and apply

an in-place transformation. We again chose the five frequently used operations sigmoid activation

function, tanh activation function, relu activation function, transpose, and identity.

The generality of this approach is preserved as node combining operations are impractical

when applied to a single node representation, and the same is valid for node transforming op-

erations applied on more than one node representation. It has to be noted that the number of

transforming operations must be equal to the number of combining operations. Apart from that,

our methodological framework is not limited to the chosen operations. Since the elementary

mathematical operations serve a general purpose, the expressiveness of this cell-based search space

can be preserved more decisively compared to previous work (Zoph et al., 2018; Ying et al., 2019;

Liu et al., 2018). For instance, both the LSTM block (Hochreiter and Schmidhuber, 1997) and the

attention block (Vaswani et al., 2017) are part of this search space.

3.3 Search strategy

Graph Neural Network (GNN). As part of the RL-based PPO search strategy, the computation

graph G, representing the state, is processed by a GNN. Given node features that encode the node

types and edge features that encode the elementary mathematical operations, the GNN outputs

a node embedding for each node in G, as illustrated in Figure 2. The GNN consists of message-

passing layers proposed by Mo et al. (2021), an extension of the Graph Attention Network (GAT)

by Veličković et al. (2017). These layers achieved the highest performance on an artificially created

self-supervised task among six message-passing layers (Veličković et al., 2017; Shi et al., 2020b;

Brody et al., 2021; Rozemberczki et al., 2020; Li et al., 2020), detailed in Section F of the appendix.

5



Figure 3: Building block performance estimation. ELENAS utilizes the ’neural constructor’ to trans-

form the computation graph G to a neural architectural building block. Therfore, the

dimensions of the (latent) representation of each intermediate node and all nodes used to

compute it, are determined. Also, the actual computation is defined based on the topology

and edges of G. If G is valid and the dimensions fit together, all initial nodes are randomly

initialized and the building block is trained and evaluated on the provided dataset.

Actor-Critic Network. The RL algorithm PPO is based on the actor-critic architecture that builds

upon the output of the GNN. The actor, a feed-forward neural network, predicts the edge-type

probabilities based on the concatenated node embeddings of the two nodes that the respective

edge connects. The edge types represent the possible actions of the RL setting. The critic first

applies a graph global pooling on all node embeddings to receive a single graph embedding. This

graph embedding is to incorporate the relevant information of the graph to sample the state

value 𝑣 (𝑡) from (Baek et al., 2021; Vinyals et al., 2015). Thus, we chose the graph global pooling

method Graph Multiset Transformer by Baek et al. (2021). Compared to other methods, this multi-

head attention-based global pooling satisfies both injectiveness and permutation invariance and,

therefore, theoretically is as powerful as the Weisfeiler-Lehman graph isomorphism test Weisfeiler

and Leman (1968). A feed-forward neural network of the critic then predicts the state value, an

estimate of the goodness of the given state (Sutton and Barto, 2018), based on the graph embedding.

Search process. Starting with the initial state that consists of edges of type none or identity only,

the state value is computed together with an edge type for each edge in G, the state is updated, and

the reward is computed as described below. Old state, new state, state value, edge, action, action

probabilities, and reward are stored in a reply buffer. Once the replay buffer reaches a predefined

size, the RL agent is updated. The loss components are computed according to the PPO algorithm

and the RL agent is optimized using mini-batch stochastic gradient descent (Sutton and Barto,

2018) for a predefined number of epochs. Thereby, it learns to prefer actions that lead to a high

cumulative reward, thus to high-performing building blocks. The reply buffer is then emptied and

the search process is continued.

Alternative search strategies. While ELENAS employs RL for its search strategy, it is not the only

viable option. Other black-box optimization techniques such as Bayesian optimization could also be

applied, potentially using a graph neural network as the surrogate model (Ru et al., 2020; Shi et al.,

2020a). However, it seems unavoidable to comprehend the properties of the elementary mathemati-

cal operations, as the big search space only includes a relatively low fraction of high-performing

building blocks. Hence, employing a RL agent that acquires knowledge from graph structures and

consequently refines the search space, appears to be a natural choice. As a result, search strategies

such as random or local search (Chen et al., 2018; Siems et al., 2020), and evolutionary or genetic

algorithms (Real et al., 2018), have not been the fist choice for addressing the search space at hand.

6



We opted to employ the PPO algorithm for our search strategy due to its robust theoretical

underpinnings, as well as its superior speed and stability compared to other policy gradient

algorithms. (Schulman et al., 2017; Zoph and Le, 2016; Zoph et al., 2018).

3.4 Performance estimation

Neural constructor. After applying an action to the state and thus potentially modifying the

computation graphG, it has to be transformed into a neural architecture to estimate the performance

of the underlying building block, as illustrated in Figure 3 and detailed in Section D of the appendix.

This evaluation is carried out sequentially on pre-defined synthetic datasets 𝑑 ∈ D of increasing

complexity, while training is terminated if the validation accuracy 𝑎𝑣𝑎𝑙
𝑑

fails to meet a dataset-specific

threshold. By this means, only building blocks that demonstrate capability in learning simple tasks

are evaluated in progressively more difficult tasks to conserve computational resources.

Reward function. The total reward 𝑟 (𝑡) is based on 𝑎𝑣𝑎𝑙
𝑑

that the building block achieved on the

specific dataset 𝑑 ∈ D, with 𝑎
𝑎𝑣𝑔

𝑑
indicating the average accuracy by random initialization, 𝑠𝑑

representing the factor by which the reward for this dataset 𝑑 is weighted, and 𝑡 the specific step in

an episode of designing the building block:

𝑟 (𝑡) =
∑︁
𝑑∈D

ReLU

(
exp

(
𝑎𝑣𝑎𝑙
𝑑

(𝑡)
)
− exp

(
𝑎
𝑎𝑣𝑔

𝑑
(𝑡)

) )
∗ 𝑠𝑑 + 𝑟𝑠ℎ𝑎𝑝𝑒 (𝑡) (1)

Additionally, 𝑟 (𝑡) is based on reward shaping 𝑟𝑠ℎ𝑎𝑝𝑒 (𝑡). We empirically observed that this

considerably influences the search process, as the RL agent initially has to learn to avoid predicting

edge types that result in invalid or inefficient G. Therefore, whenever a building block could

successfully be trained on the first task but achieved a validation accuracy below the threshold,

an additional positive reward is assigned. This cumulatively expresses that G is valid (i.e. no

illegitimate recursions in the graph, the input node is used in the computation, and there is a proper

final node) and that the dimensions fit together. Moreover, for more than two incoming edges of

type matmul, hadamard, and add, as well as for more than one incoming edge of type recursion,
an additional negative reward is assigned. This specific reward shaping allows for a more stable

search process and is addressed in more detail in Section E of the appendix.

4 Experiments

We demonstrate that ELENAS is capable of designing novel building blocks explicitly in the domain

of sequential data, with the above-defined search space, search strategy and performance estimation

strategy. Nonetheless, the methodological framework extends beyond this domain and can be

applied to any set of elementary mathematical operations and datasets, making it an adaptable tool

for a wide range of applications.

4.1 Datasets

For the domain of sequential data, three synthetic datasets have been implemented to determine

the performance of a building block at three levels of difficulty. The validation accuracy thresholds

for these datasets are set to 80%, 70%, and 40%, respectively. In the following, building blocks that

surpass all three thresholds are referred to as ELENA, short for elementary neural architecture.

The first and most simple Reber grammar dataset describes a one-class classification task, that

involves learning a generated sequence of symbols that follow the rules of the Reber grammar. It

serves as a time-inexpensive check on whether a building block is capable of learning a relatively

simple structure in the data, namely short-range dependencies. It was chosen as the first task since

it exhibits properties that are difficult for traditional machine learning algorithms but usually rather

simple for recurrent neural networks (RNN). The second embedded Reber grammar dataset is an

7



extension of the Reber grammar dataset and generates string sequences with extended time lags.

This task aims to check the ability of the building block to learn longer-range dependencies. The

third and most complex adding problem dataset describes a regression task where two random

values in a long sequence have to be summed. The sequence is assumed to be processed correctly if

the absolute distance of the prediction to the target is below 0.04. This task determines the ability

of the building block to solve long time-lag problems involving continuous-valued representations.

To test the performance of the best building blocks found during the search procedures, a fourth

memory dataset has been implemented. Unlike the other three datasets, it concerns a multi-class

classification task where the input at the initial time step has to be memorized for a predefined

sequence length. It is not used in the search process, but used to rank the resulting building blocks.

4.2 Building block search

In total, four search processes were conducted for approximately a thousand episodes with the final

hyperparameters illustrated in Section F of the appendix. Each of the search processes resulted

in at least one ELENA, indicating that the success is not contingent on a specific random weight

initialization. Out of the seven ELENAs found during the four search processes, we detail the two

building blocks with the highest performance, named ELENA1 and ELENA2. The performance was

evaluated on the unseen memory task with various sequence lengths as detailed in Section G of

the appendix.

ELENA1. This building block utilizes two weight matrices to transform the input used to compute

the single hidden state as well as the output. The hidden state h1(𝑡) gets activated by the tanh

activation function. The output of the previous time step y(𝑡 − 1) is used to compute the output of

the current time step y(𝑡):

h1(𝑡) = tanh

(
W1x(𝑡) + b1

)
y(𝑡) =

(
W2x(𝑡)

)
⊙ h1(𝑡) + y(𝑡 − 1)

(2)

ELENA2. This building block also utilizes two weight matrices to transform the input. The hidden

state of the previous time step h1(𝑡 − 1) is added to the hidden state of the current time step h1(𝑡)
before it is activated by the tanh activation function, which follows the concept of the cell state of

the LSTM (Hochreiter and Schmidhuber, 1997). Furthermore, h1(𝑡) is then element-wise multiplied

by the transformed input W2x(𝑡) to compute the output y(𝑡), which follows a similar logic as the

output gate, similar to ELENA1. Also, the output of the previous time step y(𝑡 − 1) is added to the

output of the current time step y(𝑡):

h1(𝑡) = tanh

(
W1x(𝑡) + h1(𝑡 − 1) + b1 + b2

)
y(𝑡) =

(
W2x(𝑡)

)
⊙ h1(𝑡) + b2 + y(𝑡 − 1)

(3)

Performance evaluation on real-world datasets. To assess whether the developed architectures

ELENA1 and ELENA2 can be transferred to complex real-world tasks, we first applied them to

the well-established, publicly available Tox21 dataset (Mayr et al., 2016). The dataset comprises 12

different prediction tasks corresponding to distinct toxic effects. The inputs are small molecules

whose chemical structure is represented as a sequence, in the so-called Simplified Molecular Input

Line Entry System (SMILES) notation (Weininger, 1988). It represents a difficult multi-task sequence

classification problem, in which high-level features, such as chemical reactivity, have to be extracted

from a low-level representation of the data. To conduct the experiments, a single recurrent building

block can be stacked to form layers of the overall neural network. For fair comparison, the number of

stacked layers, together with the batch size and the learning rate, were optimized on the validation

set. The average test and validation ROC-AUC together with the corresponding standard deviation

over ten individual runs with the original splits of the Tox21 Data Challenge are reported in Table 1.

8



Table 1: Predictive performance on the Tox21 and PTB datasets. ROC-AUC represents the average area

under receiver operating characteristic curve, with higher values indicating better classifica-

tion performance across 12 tasks. Perplexity measures the average confidence on a word-level,

with lower values indicating better language modeling performance across 10,000 words.

Tox21 dataset PTB dataset

Model Param. Test ROC-AUC Val ROC-AUC Param. Test Perplexity Val Perplexity

GRU 0.68M 78.52 ± 1.06 77.20 ± 0.79 8.28M 195.28 ± 2.36 214.13 ± 2.54

LSTM 0.84M 77.35 ± 1.06 75.27 ± 1.73 7.23M 124.51 ± 1.67 131.04 ± 2.11

ELENA1 (ours) 0.34M 77,33 ± 0.81 76.54 ± 0.82 6.18M 218.53 ± 2.38 228.04 ± 2.68

ELENA2 (ours) 0.17M 76.70 ± 0.58 77.49 ± 0.60 6.18M 185.67 ± 2.00 195.38 ± 2.41

NAS2 0.38M 76.61 ± 0.74 75.32 ± 1.06 9.33M 230.27 ± 2.42 249.13 ± 3.08

ENAS 0.58M 75.83 ± 1.04 73.63 ± 1.35 11.95M 122.40 ± 1.54 130.04 ± 1.61

DARTS 0.46M 74.59 ± 0.60 73.42 ± 0.94 10.37M 142.44 ± 1.60 151.29 ± 1.97

NAS1 0.38M 73.38 ± 1.69 73.98 ± 0.87 9.33M 242.35 ± 2.72 266.39 ± 4.03

RNN 0.51M 73.13 ± 1.01 69.29 ± 1.06 6.19M 449.08 ± 4.76 499.65 ± 6.52

Second, we applied ELENA1 and ELENA2 to the well-established Penn Tree Bank (PTB) dataset

(Marcus et al., 1993), a widely used benchmark for evaluating models on natural language processing

capabilities, assessing the understanding of syntactic and semantic patterns in a large collection of

text. The primary goal of the task is next word prediction, namely predicting the next token in a

sequence of tokens. We estimated the performance using bootstrapping, thus evaluated the mean

and standard deviation of the validation and test perplexity on 100 randomly drawn subsets with

replacement.

Besides comparing our building blocks to the benchmark LSTM (Hochreiter and Schmidhuber,

1997), the Gated recurrent unit (GRU) (Chung et al., 2014), and the Elman network (RNN) (Elman,

1990), we also compare them to the neural architectures that resulted from other NAS approaches,

namely NAS1 and NAS2 (Zoph and Le, 2016), ENAS (Pham et al., 2018) and DARTS (Liu et al.,

2018). It is important to acknowledge that, due to computational limitations, the overall model

sizes and hyperparameter configurations regarding the PTB task were constrained, leading to an

comparatively increased perplexity (Zaremba et al., 2014).

ELENA1 and ELENA2 are on par with or even outperform the other architectures on the Tox21

task, while only being about 40% to 90% (ELENA1) and 20% to 45% (ELENA2) their size. Moreover,

even though the NAS architectures that we compared against were explicitly searched on the

PTB dataset, ELENA1 and ELENA2 demonstrate substantial performance on the PTB task with

only a fraction of their size. This confirms that ELENAs are parameter-efficient and show good

generalization across tasks.

5 Conclusion

We demonstrated that Elementary Neural Architecture Search (ELENAS) is feasible and leads to

high-performing building blocks that transfer well to real-world data. The general search space

of elementary mathematical operations allows for high flexibility and includes unprecedented

building blocks, such as the presented ELENA1 and ELENA2 for the domain of sequential data.

They are to be easily transferred to a wide variety of problems as they generalize well and can be

scaled in terms of computational cost and learnable parameters. We showed that it is worth further

exploring the general search space of elementary mathematical operations to find unprecedented

general-purpose building blocks.

9



Limitations. The conducted experiments of our work were restricted to a relatively narrow cell-

based search space and limited evaluation of the building blocks. Further work could expand this

search space to a wider selection of elementary mathematical operations. The macro connections

among the building blocks may be analyzed in future work as well. Last but not least, our experi-

ments were limited to the domain of sequential data, but since our method is applicable in multiple

domains, a search for novel building blocks in other domains should be exploited.

References

Baek, J., Kang, M., and Hwang, S. J. (2021). Accurate learning of graph representations with graph

multiset pooling. CoRR, abs/2102.11533.

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network architectures using

reinforcement learning. CoRR, abs/1611.02167.

Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention networks? CoRR,
abs/2105.14491.

Bronstein, M. M., Bruna, J., Cohen, T., and Velickovic, P. (2021). Geometric deep learning: Grids,

groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478.

Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: Direct neural architecture search on target task

and hardware. CoRR, abs/1812.00332.

Chen, L., Collins, M. D., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam, H., and Shlens,

J. (2018). Searching for efficient multi-scale architectures for dense image prediction. CoRR,
abs/1809.04184.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. CoRR, abs/1412.3555.

Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge

University Press.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of
Machine Learning Research, 20(55):1–21.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA,

USA. http://www.deeplearningbook.org.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–
1780.

Hu, S., Xie, S., Zheng, H., Liu, C., Shi, J., Liu, X., and Lin, D. (2020). DSNAS: direct neural architecture

search without parameter retraining. CoRR, abs/2002.09128.

Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Filippov, A., and Burnaev, E.

(2022). Nas-bench-nlp: Neural architecture search benchmark for natural language processing.

IEEE Access, 10:45736–45747.

10

http://www.deeplearningbook.org


Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convolu-

tional neural networks. Communications of the ACM, 60(6):84–90.

Li, G., Xiong, C., Thabet, A. K., and Ghanem, B. (2020). Deepergcn: All you need to train deeper

gcns. CoRR, abs/2006.07739.

Liu, H., Brock, A., Simonyan, K., and Le, Q. V. (2020). Evolving normalization-activation layers.

CoRR, abs/2004.02967.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2017). Hierarchical represen-

tations for efficient architecture search. CoRR, abs/1711.00436.

Liu, H., Simonyan, K., and Yang, Y. (2018). DARTS: differentiable architecture search. CoRR,
abs/1806.09055.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of

English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). Deeptox: Toxicity prediction

using deep learning. Frontiers in Environmental Science, 3.

Mo, X., Xing, Y., and Lv, C. (2021). Heterogeneous edge-enhanced graph attention network for

multi-agent trajectory prediction. CoRR, abs/2106.07161.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,

S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,

F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search

via parameter sharing. CoRR, abs/1802.03268.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. CoRR,
abs/1710.05941.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2018). Regularized evolution for image classifier

architecture search. CoRR, abs/1802.01548.

Real, E., Liang, C., So, D. R., and Le, Q. V. (2020). Automl-zero: Evolving machine learning algorithms

from scratch.

Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Chen, X., and Wang, X. (2020). A comprehensive

survey of neural architecture search: Challenges and solutions. CoRR, abs/2006.02903.

Roberts, N., Khodak, M., Dao, T., Li, L., Ré, C., and Talwalkar, A. (2021). Rethinking neural operations

for diverse tasks. CoRR, abs/2103.15798.

Rozemberczki, B., Englert, P., Kapoor, A., Blais, M., and Perozzi, B. (2020). Pathfinder discovery

networks for neural message passing. CoRR, abs/2010.12878.

Ru, B. X., Wan, X., Dong, X., and Osborne, M. A. (2020). Neural architecture search using bayesian

optimisation with weisfeiler-lehman kernel. CoRR, abs/2006.07556.

11



Schrimpf, M., Merity, S., Bradbury, J., and Socher, R. (2017). A flexible approach to automated rnn

architecture generation.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimiza-

tion algorithms. CoRR, abs/1707.06347.

Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J., and Zhang, T. (2020a). Bridging the gap between sample-based

and one-shot neural architecture search with bonas. In Larochelle, H., Ranzato, M., Hadsell, R.,

Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,

pages 1808–1819. Curran Associates, Inc.

Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., and Sun, Y. (2020b). Masked label prediction:

Unified massage passing model for semi-supervised classification. CoRR, abs/2009.03509.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F. (2020). Nas-bench-301 and the

case for surrogate benchmarks for neural architecture search. CoRR, abs/2008.09777.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,

I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2017). Graph attention

networks.

Vinyals, O., Bengio, S., and Kudlur, M. (2015). Order matters: Sequence to sequence for sets.

Weininger, D. (1988). Smiles, a chemical language and information system. 1. introduction to

methodology and encoding rules. Journal of Chemical Information and Computer Sciences,
28(1):31–36.

Weisfeiler, B. and Leman, A. (1968). The reduction of a graph to canonical form and the algebra

which appears therein. NTI, Series, 2(9):12–16.

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023).

Neural architecture search: Insights from 1000 papers.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G., Tian, Q., and Xiong, H. (2019). PC-DARTS: partial channel

connections for memory-efficient differentiable architecture search. CoRR, abs/1907.05737.

Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., and Hutter, F. (2019). Nas-bench-101:

Towards reproducible neural architecture search.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regularization. CoRR,
abs/1409.2329.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. CoRR,
abs/1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for

scalable image recognition. CoRR, abs/1707.07012.

12



A Broader Impact Statement

ELENAS is capable of designing computationally efficient neural architectural building blocks that

require only a fraction of learnable parameters compared to state-of-the-art neural networks while

achieving similar performance. Also, although Neural Architecture Search usually comes with a

significant environmental cost, our method proposes an evaluation procedure that is, compared to

the majority of other NAS approaches, computationally inexpensive. Thus, our method supports

reducing the carbon footprint when searching and subsequently deploying ELENAs. After careful

reflection, we have determined that this work presents no notable negative impacts to society or

the environment.

B Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section A

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material

or as a url)? [Yes] Code is available at https://anon-github.automl.cc/r/ELENAS/

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes]

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes]

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

13

https://automl.cc/ethics-accessibility/
https://anon-github.automl.cc/r/ELENAS/


(i) Did you compare performance over time? [Yes]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] not applicable

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No] Publicly available assets used only

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Tox21 is a free, publicly available dataset without sensitive data

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

C GNN message passing-layers
Acknowledgements. To construct the GNN that processes the state of the RL setting, we chose the

message-passing layers HEATConv, short for heterogeneous edge-featured graph attention network,

proposed by Mo et al. (2021). These layers are an extension of the Graph Attention Network

(GAT) by Veličković et al. (2017), and achieved the highest performance on an artificially created

self-supervised task among six message-passing layers that all incorporate edge features (Mo et al.,

2021; Veličković et al., 2017; Shi et al., 2020b; Brody et al., 2021; Rozemberczki et al., 2020; Li et al.,

2020). The ablation study concerned the prediction of all edge types of various computation graphs,

where the data was collected by simulating episodes that generate state-of-the-art recurrent neural

architectures, such as variants of the LSTM architecture (Hochreiter and Schmidhuber, 1997). One

of the success factors of HEATConv is that – additionally to node and edge features – it supports

node and edge types. In the present work, the first node type is assigned to input and initial nodes,
while the second node type is assigned to all other nodes. The first edge type is assigned to all

edges, while the second edge type is assigned to backwards edges that are not being predicted but

only improve the information flow in the graph.

14



D Neural constructor

The neural constructor converts a neural architectural building block to a neural architecture that

can be trained and evaluated. When constructing the neural architecture, some adjustments are

made to better avoid computation graphs that cannot be evaluated:

(i) Recursions to the input node are not considered, as the input should not be overwritten.

(ii) Intermediate nodes that only have incoming edges of type none are not considered as part of

the computation graph but are considered dead nodes as they cannot be computed.

(iii) Final nodes that have no direct or indirect connection to the input node are considered dead
nodes, since they are not processing the input.

(iv) In the case of multiple final nodes, the node that has the most parents is considered final,
while the others are considered dead, since only one final node can be computed. Thereby,

we assume that the final node that has the highest number of parents commonly represents

the neural architecture with the highest complexity.

(v) Nodes that are used in some computations – meaning nodes that have incoming or outgoing

connections of type other than none – but that are not parents of the selected final node are
considered dead, since they do not contribute to the computation of the final node.

The same neural architecture can be evaluated multiple times on different datasets of varying

difficulty to get an accurate performance estimate that generalizes to the whole domain. Depending

on whether the dataset at hand concerns a classification or a regression task, the loss function

is defined as the cross-entropy loss or mean squared error loss, respectively (Goodfellow et al.,

2016). In case the final node is assigned with a specific activation function, it is removed, since

the implementation of all loss functions – namely, mean squared error loss for regression tasks,

binary cross entropy loss for one-class classification tasks, and categorical cross-entropy loss for

multi-class classification tasks (Goodfellow et al., 2016) – requires raw non-activated predictions

(also called logits) as input, since they already incorporate the applicable activation function, if any

(Paszke et al., 2019).

To initialize all weights and biases represented by initial nodes, their dimensions have to be

evaluated. Therefore, each operation has a dedicated function that attempts to find the correct

dimensions of the tensors used for the respective operation. Once all dimensions are evaluated,

a sanity check is performed to ensure that all dimensions fit together and match the given input

dimension as well as the desired output dimension. In case the dimensions are valid, initial nodes are
randomly initialized as parameters that require the computation of gradients, according to a normal

distribution with a mean of zero and standard deviation of 0.1 (Paszke et al., 2019). Recursion nodes

are initialized as zeros tensors. Also, a training and validation data loader is initialized (Paszke et al.,

2019). Thereafter, for each time step in the sequence, all intermediate nodes are computed according

to a computation order. The actual computation is performed by calling respective functions related

to the operation. The computed final node is then the output of the neural architecture, which

is used to compute the loss and propagate back the errors using gradient descent (Goodfellow

et al., 2016). Once the neural architecture is trained, the validation accuracy is determined on the

validation data.

Once a new operation is to be used in the search space, the only thing that has to be defined is

the respective function that determines the dimensionality of the node used in the operation as

well as a respective function that actually performs the computation. In this way, any arbitrary

operation can be added to the search algorithm, enabling high flexibility for different kinds of

search spaces.

15



Table 2: Reward shaping as part of the overall reward function

Category Description Frequency Δ Reward Impact Value 𝑟

Action input node with outgoing edges of type 𝑛𝑜𝑡_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 only every step 𝑟𝑎1 negative 0

more than 𝑖 incoming edges 𝑒 of type𝑚𝑎𝑡𝑚𝑢𝑙 if 𝑖 increases (𝑒 − 𝑖) ∗ 𝑟𝑎3 negative 0.001

more than 𝑖 incoming edges 𝑒 of type ℎ𝑎𝑑𝑎𝑚𝑎𝑟𝑑 if 𝑖 increases (𝑒 − 𝑖) ∗ 𝑟𝑎4 negative 0.001

more than 𝑖 incoming edges 𝑒 of type 𝑎𝑑𝑑 if 𝑖 increases (𝑒 − 𝑖) ∗ 𝑟𝑎5 negative 0.001

more than 𝑖 incoming edges 𝑒 of type 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 if 𝑖 increases (𝑒 − 𝑖) ∗ 𝑟𝑎6 negative 0.001

Node initial nodes 𝑛 if 𝑛 increases 𝑛 ∗ 𝑟𝑛3
positive 0

intermediate nodes 𝑛 if 𝑛 increases 𝑛 ∗ 𝑟𝑛4
positive 0

dead nodes 𝑛 if 𝑛 increases 𝑛 ∗ 𝑟𝑛5
negative 0

unused nodes 𝑛 if 𝑛 increases 𝑛 ∗ 𝑟𝑛6
negative 0

no initial node every step 𝑟𝑛7
negative 0

no recursion node every step 𝑟𝑛8
negative 0

no final node every step 𝑟𝑛9
negative 0

Graph illegitimate recursion present every step 𝑟𝑔1 negative 0

dimensions do not fit together every step 𝑟𝑔2 negative 0

architecture can successfully be trained, but 𝑎𝑣𝑎𝑙 < 𝑎𝑟𝑒𝑞 every step 𝑟𝑔3 positive 0.01

no proper architecture found end of episode 𝑟𝑔4 negative 0

E Reward shaping

The reward is shaped by inspecting the computation graph to enforce desired behavior. The

additional reward shaping can be adjusted according to table 2, with 𝑟𝑎𝑖 , 𝑟𝑛𝑖 , 𝑟𝑔𝑖 ∈ R, 𝑖 ∈ N. The
category Action concerns the types of all incoming or outgoing edges of each node, the category

Node concerns the types of all nodes within the graph, and the category Graph refers to the overall

structure and properties of the building block.

F Hyperparameter

All hyperparameters that specify the training procedure are categorized into eight different cate-

gories. First, Graph concerns the structure of the computation graph. Second, GNN specifies the

overall neural network structure and usage of the GNN. Third, Actor specifies the GNN-based
neural network structure of the actor. Fourth, Critic specifies the neural network of the critic

including its graph global pooling operator. Fifth, Designer concerns the actual PPO algorithm

Schulman et al. (2017). Sixth, Designee defines the construction and evaluation of the building block.

Seventh, Dataset defines the datasets the building block is evaluated on as well as their relative

importance. Last but not least, Logging deals with the extent of logging the process as well as the

results of ELENAS. The self-supervised task described in Section has been utilized to determine the

best hyperparameters of both the graph representation as well as the PPO algorithm. A complete

list, including a brief description of each hyperparameter can be found in table 4.

Number of total nodes in G. Opting for a total of 32 nodes results in one input, 16 initial and 15

intermediate nodes. This computation graph G comprises 480 edges, with each edge type predicted

once to construct a building block. Such aG can potentially represent most state-of-the-art building

blocks. Moreover, having 15 intermediate nodes proves advantageous for dividing G into three

subgraphs, to deterimne the order in which the edges are predicted, as detailed below. Additionally,

since the number of edges increases quadratically with the number of nodes, choosing a total of 32

nodes provides a suitable balance between the complexity of the graph structure and computational

expenses. However, instead of fixing the number of total nodes in G, initiating the search process

with a relatively small number and incrementally increasing it could potentially lead to enhanced

computational efficiency and search performance, providing an avenue for future research.

16



Positional encoding of node and edge features. To study the impact of the positional encodings

of both the node as well as the edge features, a GNN based on HEATConv (Mo et al., 2021) layers

and a subsequent multilayer perceptron (MLP) (Goodfellow et al., 2016) has been applied on the

self-supervised task described in Section with different edge and node feature combinations. First,

everything else equal, the accuracy of predicting the correct edge types increases when including

the positional encoding as part of the edge features. Second, everything else equal, the accuracy of

predicting the correct edge types was the highest for positional encoding as part of the node features

when constructed using a trigonometric function, namely the sine function, compared to using

equally distributed values between 0 and 1, or not using positional encodings at all. Furthermore, it

could empirically be observed that this additional information improved the overall search process.

Sub-graphs of G to determine edge prediction order. The order in which edge types are predicted

as part of the search process can be chosen arbitrarily. Thus, we studied the impact of different

orderings on the search performance. One straightforward ordering involves predicting all edges

related to a single node before moving on to the next node. However, we empirically concluded

that splittingG into sub-graphs and predicting edges within each sub-graph in a sequential manner,

facilitates the discovery of high-performing building blocks. To be precise, for a total of 32 nodes in

G, we chose five intermediate nodes to form a sub-graph, resulting in three sub-graphs. Since node𝑛𝑖
is defined as intermediate in case 𝑖 is even, intermediate nodes𝑛𝑖 with 𝑖 ∈ {2, 4, 6, 8, 10} constitute the
first sub-graph. All edges that connect the input node 𝑛0 and the initial nodes with the intermediate

nodes of this sub-graph are predicted first (including self-connections of these intermediate nodes).

The second sub-graph includes intermediate nodes 𝑛𝑖 with 𝑖 ∈ {12, 14, 16, 18, 20}. Similarly, all

edges that connect the input node 𝑛0 and the initial nodes with the intermediate nodes of this

sub-graph are subsequently predicted (including self-connections of these intermediate nodes).

This process is repeated for all intermediate nodes in G, determining the order in which edges are

predicted during the search process.

G Performance evaluation on synthetic dataset

Each of the building blocks that achieved a validation accuracy of over 80% on the Reber grammar

dataset, 70% on the embedded Reber grammar dataset, and 40% on the adding problem dataset, has

been further evaluated on the memory task, which has never been used during the search process.

Therefore, we randomly initialized its learnable parameters to train each building block from

scratch. We report the average test accuracy [%] and the standard deviation over the ten individual

runs in table 3. It can be observed that the two highest performing building blocks, ELENA1 and

ELENA2, outperform the benchmark building block, the LSTM (Hochreiter and Schmidhuber, 1997),

in all but one sequence length setting. The numbering of ELENAs has been chosen arbitrarily.

17



Table 3: Predictive performance on the unseen synthetic memory dataset in terms of test accuracy

across various sequence lengths. Higher performance achieved by ELENA1 or ELENA1

compared to LSTM (Hochreiter and Schmidhuber, 1997), is displayed in bold.

Building Sequence Length
Block 20 30 40 50 60 70 80

LSTM 73.08 ± 20.15 49.18 ± 25.42 24.07 ± 11.43 20.13 ± 6.60 26.82 ± 24.01 24.17 ± 26.85 40.63 ± 40.18

ELENA1 57.06 ± 1.01 57.11 ± 0.51 56.88 ± 0.66 57.22 ± 0.87 56.89 ± 0.86 56.97 ± 0.65 56.72 ± 2.20

ELENA2 99.83 ± 0.11 98.80 ± 0.35 96.34 ± 1.04 90.64 ± 3.37 89.41 ± 3.09 83.14 ± 4.20 74.01 ± 7.17

ELENA3 57.26 ± 0.81 57.03 ± 0.75 57.03 ± 1.42 55.93 ± 2.62 47.10 ± 8.88 41.52 ± 14.08 41.30 ± 9.68

ELENA4 55.94 ± 1.52 55.05 ± 2.91 53.13 ± 3.06 50.65 ± 4.60 49.32 ± 4.84 50.03 ± 4.42 50.95 ± 4.08

ELENA5 54.79 ± 2.96 51.45 ± 6.23 49.16 ± 7.54 51.93 ± 3.68 50.22 ± 4.85 49.68 ± 4.90 48.15 ± 7.35

ELENA6 57.14 ± 1.33 54.32 ± 5.31 50.16 ± 7.68 43.86 ± 8.69 29.49 ± 4.80 26.12 ± 8.28 20.98 ± 7.29

ELENA7 42.81 ± 9.49 38.61 ± 8.64 35.56 ± 9.09 32.02 ± 5.78 27.32 ± 9.34 23.46 ± 7.75 19.01 ± 5.74

18



Table 4: Hyperparameters regarding the ELENAS methodological framework

Category Hyperparameter Description Type Default Value

Graph combining_operations potential operations used to compute intermediate/final nodes list of strings [’matmul’, ’had’,

’add’, ’rec’]
transforming_operations potential operations used to transform intermediate/final nodes list of strings [’sigm’, ’tanh’,

’relu’, ’trans’]
allow_recursion whether recursive connections are allowed bool True

number_total_nodes number of nodes in the computation graph N 32

GNN graph_layer_type message passing layer used by the GNN string ’HEATConv’

common_backbone whether to use a common GNN backbone for actor and critic bool True

number_gnn_layers number of message passing layers N 2

number_heads number of heads of each message passing layer N 4

emb_concat whether to concatenate multi-head attentions bool False

node_emb_dimension node embedding dimension after message passing steps N 256

edge_emb_dimension edge embedding dimension during message passing steps N 256

leakyrelu_negative_slope LeakyReLU angle of the negative slope R 0.01

graph_dropout dropout probability during GNN training R ∈ [0, 1] 0

load_pretrained_gnn whether to load a pre-trained GNN bool False

Actor actor_number_linear_layers depth of fully-connected neural network of actor N 3

actor_reduce_last_layer_by factor by which the number of last hidden layer neurons is reduced N 4

Critic pooling_layer_type global pooling layers used to compute graph embedding string ’GMT’

gmt_number_heads number of heads for global pooling layers (GMT layer specific) N 4

gmt_use_self_att whether to use the self-attention layer bool False

critic_number_linear_layers depth of fully-connected neural network of critic N 2

critic_reduce_last_layer_by factor by which the number of last hidden layer neurons is reduced N 1

PPO ppo_epochs number of epochs the RL agent is trained within each update N 4

ppo_batch_size number of samples in a batch used to update the actor-critic network N 32

ppo_buffer_capacity maximum number of samples stored in the replay buffer N 9600

ppo_lr learning rate for updating the RL agent R 0.001

ppo_betas coefficients for computing running averages of gradients tuple (0.9, 0.999)

ppo_weight_decay factor by which weights of Designer are penalized for regularization R 0.0001

ppo_discount factor by which future reward is discounted R 0.99

ppo_episodes number of total episodes sampled during a run N 1000000

ppo_loss_scales weight of value loss, policy loss, and entropy loss to assess total loss 3-tuple (0.5, 1.0, 0.01)

ppo_epsilon_clip value to set the clip interval on the probability ratio term [1 − 𝜖, 1 + 𝜖] R 0.2

load_agent whether to load a trained RL agent bool False

ppo_shuffle_edges whether to have a random edge order during each episode bool False

ppo_subgraph_size number of intermediate nodes in subgraphs to determine edge order N 5

Designee designee_hidden_features number of neurons in the hidden dimension N 64

designee_epochs number of epochs building block is trained before determining the accuracy N 1

designee_batch_size number of samples in a batch used to update building block N 32

designee_optimizer which algorithm to use for updating the weights string ’Adam’

designee_learning_rate learning rate for updating the building block R 0.001

designee_weight_decay factor by which weights are penalized for regularization R 0

Dataset datasets datasets used to evaluate the performance of building block list of strings [’reb’, ’erg’, ’add’]
datasets_thresholds accuracy threshold for declaring a building block as proper tuple (0.8, 0.7, 0.4)

datasets_avg_accuracy average validation accuracy that untrained architectures achieve tuple (0.5, 0.5, 0.15)

datasets_reward_scale factor by which the reward is scaled for each dataset tuple (0.1, 0.1, 1)

datasets_sequence_lengths maximum number of time steps per sample of each dataset tuple (32, 32, 32)

datasets_number_samples number of training samples per dataset (+10% validation data) tuple (20k, 50k, 90k)

Logging log_path path where log files are stored os.path object -

log_architectures whether to log architectures achieving accuracies above the threshold bool True

log_exceptions whether to log exceptions that occur while running the search process bool True

log_graph_visualizations whether to log computation graph visualizations as .html files bool True

19


	Introduction
	Related Work
	ELENAS
	Building Block Representation
	Search space
	Search strategy
	Performance estimation

	Experiments
	Datasets
	Building block search

	Conclusion
	Broader Impact Statement
	Submission Checklist
	GNN message passing-layers
	Neural constructor
	Reward shaping
	Hyperparameter
	Performance evaluation on synthetic dataset

