

000 001 002 003 004 005 006 007 008 009 A UNIFICATION OF DISCRETE, GAUSSIAN, AND SIM- PLICIAL DIFFUSION

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT

010 To model discrete sequences such as DNA, proteins, and language using diffusion,
011 practitioners must choose between three major methods: diffusion in discrete
012 space, Gaussian diffusion in Euclidean space, or diffusion on the simplex. Despite
013 their shared goal, these models have disparate algorithms, theoretical structures,
014 and tradeoffs: discrete diffusion has the most natural domain, Gaussian diffusion
015 has more mature algorithms, and diffusion on the simplex in principle combines
016 the strengths of the other two but in practice suffers from a numerically unstable
017 stochastic processes. Ideally we could see each of these models as instances of the
018 same underlying framework, and enable practitioners to switch between models
019 for downstream applications. However previous theories have only considered
020 connections in special cases. Here we build a theory unifying all three methods of
021 discrete diffusion as different parameterizations of the same underlying process:
022 the Wright-Fisher population genetics model. In particular, we find simplicial and
023 Gaussian diffusion as two large-population limits. Our theory formally connects
024 the likelihoods and hyperparameters of these models and leverages decades of
025 mathematical genetics literature to unlock stable simplicial diffusion. Finally, we
026 relieve the practitioner of balancing model trade-offs by demonstrating it is possible
027 to train a single model that can perform diffusion in any of these three domains at
028 test time. Our experiments show that Wright-Fisher simplicial diffusion is more
029 stable and outperforms previous simplicial diffusion models on conditional DNA
030 generation. We also show that we can train models on multiple domains at once
031 that are competitive with models trained on any individual domain.

031 1 INTRODUCTION

033 To generate high quality sequences conditioned on desired properties, practitioners build diffusion
034 models of language, DNA, and proteins (Sahoo et al., 2024; Sarkar et al., 2024; Alamdari et al.,
035 2023; Li et al., 2024). These models corrupt each letter in a sequence – the “forward” process –
036 and train a model to reverse that corruption – the “backward” process. A model which has been
037 trained to de-noise can be used for high-quality conditional generation (Wang et al., 2024b), for
038 optimization (Gruver et al., 2023), and myriad other downstream tasks (Luo et al., 2022; Baron et al.,
039 2025).

040 A practitioner has three main choices of forward process (Fig. 1b), each with their own strengths:

- 041 1. **Discrete:** occurs in the most natural domain (Campbell et al., 2022).
- 042 2. **Gaussian:** has more mature sampling and training procedures (Dieleman et al., 2022).
- 043 3. **Simplicial:** in theory inherits the continuous algorithms of Gaussian diffusion while in a
044 natural space, but in practice suffers from numerical instability (Avdeyev et al., 2023).

047 Unfortunately, there is little theoretical infrastructure to compare these models, and thus practitioners
048 have little tacit knowledge to rely on when selecting or designing a model. This gap in understanding
049 is particularly evident in two basic comparison problems which have yet to be solved. First, despite
050 models from the three frameworks achieving similar likelihood values, there is a belief that the
051 “continuous-space likelihood is not directly comparable with discrete-space likelihood” (Avdeyev
052 et al., 2023). Second, forward processes in each of these models are specified by hyperparameters
053 with vastly different interpretations. It is unclear how to qualitatively compare the assumptions
054 embedded into each set of hyperparameters across models.

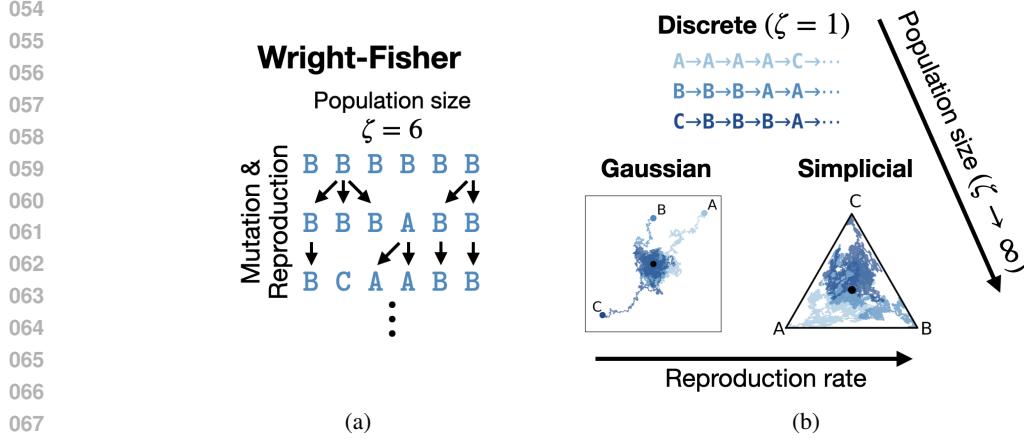


Figure 1: **Discrete, Gaussian, and Simplicial diffusion for discrete data are unified by Wright-Fisher diffusion.** (a) Wright-Fisher diffusion with population size $\zeta = 6$, showing mutation and reproduction processes across generations. (b) The three diffusion methods emerge as different limits of Wright-Fisher: discrete diffusion corresponds to $\zeta = 1$, while Gaussian and simplicial diffusion arise as $\zeta \rightarrow \infty$ with zero and non-zero reproduction rates.

Here we address these theoretical and practical challenges by unifying these streams with a process from human population genetics – the Wright-Fisher (WF) model. Our contributions are as follows.

- We formally prove all three methods are instances of WF (Fig. 1). In particular discrete diffusion corresponds to the WF model with a population size of 1, and simplicial and Gaussian diffusion correspond to large population limits with and without reproduction.
- We use this connection to answer the two comparison questions above. Surprisingly, we show that likelihoods can only be compared in some cases, depending on a seemingly inconsequential parameterization choice introduced for only discrete diffusion models in Austin et al. (2021) which we call the **hollow parameterization**.
- We apply our theory to explain and solve the instability of simplicial diffusion by leveraging decades of mathematical genetics literature. We show that this stable simplicial diffusion is superior in conditional generation of DNA.
- We leverage our theory to show that a particular parameterization choice – the **sufficient statistic parameterization** – allows one to train a single model that can perform diffusion on all three domains at test time¹. We show in experiment that models trained this way are competitive with models trained on single domains. This removes the necessity for the practitioner to choose a particular model before training.

2 RELATED WORK

We discuss past unification theories and attempts at stable simplicial diffusion. In App. A we discuss related works in classical diffusion theory, and parameterizations of diffusion models.

Theories unifying discrete and continuous diffusion Winkler et al. (2024) indirectly used a result from (Stone, 1963) to connect the special case of one-dimensional, unbiased discrete diffusion to one-dimensional Gaussian diffusion. They use this observation to heuristically argue, or conjecture, the convergence of the backwards processes as well. Sahoo et al. (2025) suggested that by taking Gaussian diffusion and applying argmax, one recovers discrete diffusion.² They used this insight to answer the loss comparison problem by proving that the ELBO of discrete diffusion is always

¹Of independent interest, it also explains the root of the noted “time-invariance” of masking diffusion and extends this property to every diffusion model. We discuss this in App. D.

²Interestingly, Stone (1963) also wrote discrete diffusion as the function of an underlying Gaussian diffusion. However the function from Stone (1963) was a path-dependent time-dilation rather than argmax.

108 superior to that of continuous diffusion. Unfortunately, this is based on a mathematical error (details
 109 in App. B): by applying argmax to Gaussian diffusion one does not get a Markov process, a property
 110 which was crucial to their proof of the loss comparison question. In our approach, we build a
 111 mathematically rigorous foundation to compare these models.

112 **Stable simplicial diffusion models** Richemond et al. (2022) and Avdeyev et al. (2023) suggest
 113 diffusion on a simplex using two processes used in finance: the “Cox-Ingersoll-Ross process”, and its
 114 normalization onto the simplex, the “Jacobi process”. However these models struggle from numerical
 115 instability. One solution to this instability is to essentially perform Gaussian diffusion (see App. A).
 116 Another is to build flow-matching models on the simplex (Stark et al., 2024; Tang et al., 2025; Davis
 117 et al., 2024). However these sacrifice the ability to **straightforwardly** calculate a likelihood and access
 118 to many diffusion algorithms, such as classifier guidance.

120 3 BACKGROUND AND MOTIVATION

121 First we describe diffusion models for discrete data and the challenges unifying the frameworks.

123 3.1 DIFFUSION MODELS FOR DISCRETE DATA

125 We consider modelling a distribution $p(x_0)$ over a discrete space of size B , and will extend to
 126 sequences of discrete objects below. Our model will begin with a distribution that is easy to sample
 127 from, $q(x_1)$, and then applies a stochastic process parametrized by θ from time 1 to 0. This produces
 128 a trajectory $q_\theta((x_t)_{t=0}^1)$ and we hope to pick θ so that $q_\theta(x_0) \sim p(x_0)$.

129 **Markov processes** To generate training data to fit $q_\theta((x_t)_{t=0}^1)$, we take samples $x_0 \sim p(x_0)$ and
 130 evolve it according to a Markov process to get a trajectory $p((x_t)_{t=0}^1)$. We can train q_θ on these
 131 trajectories by optimizing a negative ELBO

$$\begin{aligned} 133 -\log q_\theta(x_0) &\leq -\mathbb{E}_{p((x_t)_{t=0}^1|x_0)} \log \frac{q_\theta((x_t)_{t=0}^1)}{p((x_t)_{t=0}^1|x_0)} \\ 134 &= -\mathbb{E}_{p((x_t)_{t=0}^1|x_0)} \log \frac{q_\theta((x_t)_{t=0}^1|x_1)}{p((x_t)_{t=0}^1|x_0, x_1)} + \text{KL}(p(x_1|x_0) \| q(x_1)). \end{aligned} \quad (1)$$

138 **The time dilation function** To make the second term of Eqn. 1 small we need $p(x_1|x_0) \approx q(x_1)$.
 139 Conveniently, applying a Markov process to x_0 usually leads to $p(x_t|x_0)$ converging to a stationary
 140 distribution $p(x_\infty)$ as $t \rightarrow \infty$, a good choice for $q(x_1)$. However our t is on the interval $[0, 1]$, so
 141 we compress $[0, \infty)$ into $[0, 1]$: we pick an increasing “time dialation” function $\tau : [0, 1] \rightarrow [0, \infty)$
 142 and simulate x_t so that it has had the Markov process applied to it for time τ_t . In particular,
 143 if τ_1 is very large, $p(x_1|x_0) \approx p(x_\infty) = q(x_1)$. τ_t is a more convenient parametrization for our
 144 presentation than equivalent functions $\beta_t = \dot{\tau}_t, \alpha_t = \exp(-\tau_t)$ in other works (Shi et al., 2024).
 145 Picking τ_1 very large, the second term of the ELBO can be made arbitrarily small, so we leave it out
 146 of the presentation below.

147 **Matching forward and backward flow** q_θ is usually parameterized to take x_t, t and predict the x_0
 148 that generated x_t , that is, approximate $p(x_0 | x_t, t)$; we represent this prediction $\tilde{x}_0 = q_\theta(x_0 | x_t, t)$
 149 as a vector of probabilities over the B tokens $\sum_b \tilde{x}_{0,b} = 1$. Some rearrangement then allows one to
 150 rewrite the first term of Eqn. 1 as an expectation of a term L that can be interpreted as the divergence
 151 between the “infinitesimal flow” forward p and backward q_θ at x_t :

$$153 E_{t \sim \text{Unif}(0,1)} E_{p(x_t|x_0)} L(x_t, t, x_0, \tilde{x}_0).$$

154 Thus getting a stochastic estimate of the ELBO has 3 steps: (1) Sample noisy x_t by simulating the
 155 Markov process for time τ_t , (2) Predict de-noised x_0 with $q_\theta(x_0 | x_t, t)$, and (3) Estimate the ELBO
 156 by computing the particular form of L .

158 **Moving to multiple dimensions** To model sequences of discrete objects $x_0 = x_0^1 \cdots x_0^D$, we
 159 simply apply the forward process to each position x_0^d independently. “Sample noisy x_t ” remains
 160 the same, repeated for every d . The “infinitesimal flow” for each position is also independent: the
 161 “Estimate ELBO” step also remains the same, repeated for every d and then summed across all d .
 Therefore, in the “Predict de-noised x_0 ” step we will predict $\tilde{x}_0^d = q_\theta(x_0^d | x_t, t)$ for each d .

162 3.2 CHALLENGES COMPARING DOMAINS FOR DISCRETE DIFFUSION
163

164 **Comparing diffusion models** A practitioner must choose a forward process which will determine
165 how they train their diffusion model. For discrete diffusion, the forward process is mutation defined
166 with a rate matrix \mathcal{L} ; the form for L was derived in Campbell et al. (2022). This gives Alg. 1, where
167 \tilde{x}_0 is the indicator vector for the token x_0 , $\mathbb{D}(\lambda_1 \parallel \lambda_2) = \lambda_1 \log \frac{\lambda_1}{\lambda_2} - \lambda_1 + \lambda_2$ is the KL divergence
168 between two Poisson distributions, $\hat{w}(\tilde{x}_0) := \sum_b \tilde{x}_{0b} \hat{w}(b)$, and $\dot{\tau}_t$ is the derivative of τ_t . For Gaussian
169 diffusion, the forward process is Brownian motion on embeddings $\text{emb}(x_0) \in \mathbb{R}^r$; the form for L
170 was derived in Ho et al. (2020). This gives Alg. 2. Now, how can a practitioner compare how well
171 each model fits its data, and how can they leverage their expert knowledge when designing their
172 forward process? Unfortunately there is little infrastructure for answering these questions.
173

174 **Algorithm 1** ELBO for discrete diffusion
175

```

1: Sample  $t \sim \text{Unif}(0, 1)$ 
2: Sample noisy  $x_t$ :
3: Sample  $x_t \sim \text{Categorical}(\tilde{x}_0^T e^{\tau_t \mathcal{L}})$ 
4: Predict de-noised  $x_0$ :
5: Predict  $\tilde{x}_0 = q_\theta(x_0 | x_t, t)$ 
6: Estimate ELBO:
7:  $\hat{w}(b) = (b^T e^{\tau_t \mathcal{L}}) (1/b^T e^{\tau_t \mathcal{L}})^T$ 
8:  $L = \sum_{b \neq x_t} \mathcal{L}_{b \rightarrow x_t} \dot{\tau}_t \mathbb{D}(\hat{w}(x_0)_{bx_t} \parallel \hat{w}(\tilde{x}_0)_{bx_t})$ 

```

174 **Algorithm 2** ELBO for Gaussian diffusion
175

```

1: Sample  $t \sim \text{Unif}(0, 1)$ 
2: Sample noisy  $x_t$ :
3: Set  $x_t = e^{-\tau_t} \text{emb}(x_0) + \sqrt{1 - e^{-2\tau_t}} N(0, I)$ 
4: Predict de-noised  $x_0$ :
5: Predict  $\tilde{x}_0 = q_\theta(x_0 | x_t, t)$ 
6: Estimate ELBO:
7:  $L = \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} \|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2$ 
8:

```

185 *Likelihood comparison* We would like to compare the ELBOs $\mathbb{E}[L]$ of discrete and Gaussian diffusion,
186 but the latter are infinity due to a singularity as t becomes small³. Practitioners must therefore choose
187 a minimum t_{\min} ⁴. Formally this is equivalent to estimating an ELBO for $\log p(x_{t_{\min}})$ instead of
188 $\log p(x_0)$. However, $p(x_{t_{\min}})$ is a continuous density, fundamentally a different object than the
189 probability of a discrete object $p(x_0)$. Paradoxically, the values of the ELBOs of the two models are
190 often close suggesting they may nevertheless be formally comparable.

191 *Hyperparameter comparison* Discrete and Gaussian diffusion models are specified by hyperparameters
192 \mathcal{L} and emb with vastly different interpretations: a matrix whose entry $\mathcal{L}_{b_1 \rightarrow b_2}$ describes the rate
193 at which b_1 mutates to b_2 , versus an embedding function emb that takes the alphabet into Euclidean
194 space \mathbb{R}^r for some r (we write $\text{emb}(\tilde{x}_0)$ as shorthand for $\sum_b \tilde{x}_{0b} \text{emb}(b)$).

195 **Stability of simplex diffusion** Below we'll also discuss simplicial diffusion which in principle
196 combines the strengths of discrete and Gaussian diffusion. In practice, it is numerically
197 unstable and slow as **Sample noisy** x_t involves “sampling from Jacobi diffusion processes [which] is
198 more expensive than commonly used SDEs”, and **Estimate ELBO** involves a calculation which “at
199 very small t tends to become very large and cause numerical issues” (Avdeyev et al., 2023).

200 **Practical unification** Currently, practitioners must commit to a $q_\theta(x_0 | x_t, t)$ trained on one of these
201 three modalities before training, restricting their access to downstream algorithms. Ideally they could
202 avoid making this choice.

203 4 UNIFYING DISCRETE AND GAUSSIAN DIFFUSION
204

205 To build the infrastructure for comparing domains for discrete diffusion, we unify discrete and
206 Gaussian diffusion in a broader framework. Our results lead to better understanding of loss and
207 hyperparameter comparisons. In the following section we extend our framework to simplicial
208 diffusion.

209 ³To see this, note at initialization $\|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2$ is roughly a constant, and for the classical choice
210 $\tau_t = -\frac{1}{2} \log(1 - t)$, the square error in Alg. 2 is weighted by $\frac{1}{2t^2}$, so the loss is $\gtrsim \int_0^1 t^{-2} dt = \infty$; a different
211 choice of τ_t only acts as a change-of-variables, and therefore cannot make the loss finite.

212 ⁴Some discrete diffusion models also have a singularity at $t \rightarrow 0^+$, requiring one to specify a t_{\min} (Campbell
213 et al., 2022; Lou et al., 2023). This is not the case for “schedule-conditioned” models, including masking,
214 partially explaining its popularity (Amin et al., 2025; Shi et al., 2024).

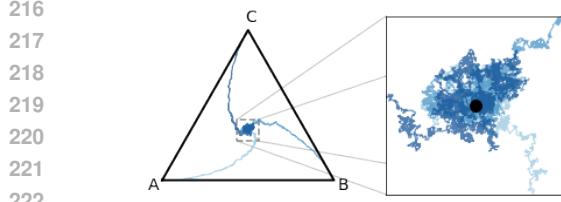


Figure 2: **Discrete diffusion with a large population converges to Gaussian diffusion.** With $\zeta = 1000$, we show example trajectories (\vec{x}_t) that converge to approximate Gaussians near $\vec{\pi}$.

4.1 UNIFICATION RESULT

Our idea is to represent each dimension of a sequence with ζ copies to get a *sequence of sequences*.

ex. for $\zeta = 4$, $x_0 = A | C | C | T$ is represented as AAAA | CCCC | CCCC | TTTT.

Then each letter in each sequence is evolved by the mutation matrix \mathcal{L} . When $\zeta = 1$ we get discrete diffusion and we show that as $\zeta \rightarrow \infty$ we get Gaussian diffusion. Below we discuss the case where x_0 is a single letter / token, which can naturally be extended to a multi-dimensional diffusion model.

\vec{x}_t on the simplex We will ultimately arrive at a Gaussian limit in Euclidean space, but we first represent x_t on the simplex. Above, x_t was one of B tokens; now it's one of B^ζ sequences of B tokens $x_t = x_t^{(1)} \dots x_t^{(\zeta)}$. It can be generated by sampling each $x_t^{(z)} \sim \text{Categorical}(\vec{x}_0^T e^{\tau_t \mathcal{L}})$. In App. E.1 we note that the loss and target $p(x_0 | x_t, t)$ do not depend on the order of x_t . Therefore we can represent x_t as a normalized vector of counts $\vec{x}_{t,b} = \#\{b \in x_t\}/\zeta$. In App. E.1 we derive the ELBO, giving Alg. 3 – differences to discrete diffusion in Alg. 1 are in blue.

Gaussian limit as $\zeta \rightarrow \infty$ The main idea of our proof below is that as $\zeta \rightarrow \infty$, trajectories converge quickly to $\vec{\pi}$, the stationary distribution of \mathcal{L} , and behave like Gaussians near $\vec{\pi}$ because of the central limit theorem (Fig. 2). As $\zeta \rightarrow \infty$ we will zoom further and further into the neighbourhood of π where the diffusion occurs – we move from *diffusion on the simplex* to *diffusion in Euclidean space*. Our proof extends previous results in one-dimension (Stone, 1963), but uses more modern machinery; interestingly, we see that in the multi-dimensional case, the relevant Gaussian diffusion occurs in a subspace determined by the first eigenspace of \mathcal{L} .⁵

Theorem 4.1. (Formal statement and proof in App. E.2) Call $0 > -\lambda_1 > -\lambda_2 > \dots$ the eigenvalues of \mathcal{L} and P_1 the projection onto the left eigenspace corresponding to λ_1 . Without loss of generality, assume $\lambda_1 = 1$ ⁶. For each ζ pick time dilation $\tau_t^\zeta = \frac{1}{2} \log(\zeta e^{-2\tau_t} - \zeta + 1)$ and rescale $\vec{x}_t^\zeta = \sqrt{\zeta - (\zeta - 1)e^{2\tau_t}}(\vec{x}_t - \vec{\pi})/\sqrt{\vec{\pi}}$. Define the embedding into $\mathbb{R}^{\text{rank}(P_1)}$, $Q_1 = j_1(\tilde{Q}_1 \tilde{Q}_1^T)^{-1/2} \tilde{Q}_1$ where $\tilde{Q}_1 = \text{diag}(\vec{\pi})^{-1/2} P_1 \text{diag}(\vec{\pi})^{1/2}$ and j_1 is any isometry from $\text{Im}(\tilde{Q}_1) \rightarrow \mathbb{R}^{\text{rank}(P_1)}$.

When $\zeta = 1$ we get discrete diffusion: $\tau_t^\zeta = \tau_t$ and \vec{x}_t^ζ is only linearly transformed $(\vec{x}_t - \vec{\pi})/\sqrt{\vec{\pi}}$.

When $\zeta \rightarrow \infty$, we get Gaussian diffusion in the first eigenspace:

- Only the first eigenspace has signal: the component of x_t^ζ in $\text{Ker}Q_1$ becomes independent of x_0 .
- The paths $(Q_1 \vec{x}_t^\zeta)_{t \in (0,1)}$ converge in distribution to paths from Gaussian diffusion with time dilation τ_t and embedding $\text{emb}(x_0) = Q_1(\vec{x}_0/\sqrt{\vec{\pi}})$.
- The ELBO in Alg. 3 converges to the ELBO in Alg. 2.

⁵This is analogous to asymptotic methods that zoom into a point in a bounded space to get a limit in its unbounded tangent plane (ex. chapter 20 of van der Vaart (1998))

⁶This assumption is for convenience. Rescale $\mathcal{L}^{\text{new}} = \frac{1}{\lambda_1} \mathcal{L}$ and $\tau_t^{\text{new}} = \lambda_1 \tau_t$ to get the same diffusion.

270 *Proof idea:* As $\zeta \rightarrow \infty$, by the law of large numbers, \vec{x}_t approaches $\vec{x}_0^T e^{\tau_t \mathcal{L}}$ which itself goes to the
 271 stationary distribution of \mathcal{L} . We can therefore decompose
 272

$$273 \vec{x}_t - \vec{\pi} = \underbrace{\vec{x}_0^T e^{\tau_t \mathcal{L}} - \vec{\pi}}_{\text{signal}} + \underbrace{\vec{x}_t - \vec{x}_0^T e^{\tau_t \mathcal{L}}}_{\text{noise}}. \\ 274 \\ 275$$

276 The “noise” term is $\vec{x}_t - \mathbb{E}\vec{x}_t$. Since x_t is an average of ζ samples, by the central limit theorem, it is
 277 approximately Gaussian with scale $\zeta^{-1/2}$ and independent of x_0 . The “signal” term therefore is what
 278 allows us to predict x_0 .
 279

280 The only relevant behaviour is that of the slowest-decaying eigenspaces of \mathcal{L} : the top eigen-space
 281 represents the convergence to $\vec{\pi}$ and cancels with $-\vec{\pi}$, the next one is P_1 with eigenvalue -1 , and all
 282 others vanish quickly. Therefore the signal is approximately $e^{-\tau_t^\zeta} P_1 \vec{x}_0$. This means
 283

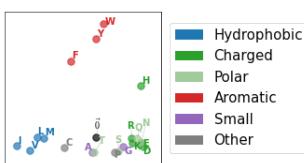
$$284 \vec{x}_t - \vec{\pi} \approx e^{-\tau_t^\zeta} P_1 \vec{x}_0 + \frac{1}{\sqrt{\zeta}} \mathcal{N}(0, \Sigma) \text{ for some } \Sigma. \\ 285$$

286 Finally, choosing the right scaling and τ_t^ζ gives us Gaussian diffusion. Most of the formal proof
 287 involves checking regularity conditions. \square
 288

289 4.2 APPLICATION: UNDERSTANDING COMPARISONS OF LOSSES AND HYPERPARAMETERS

290 **Loss comparison** Thm. 4.1 suggests that there is virtually no difference to training a discrete diffusion model with $\zeta = 10^{100}$ and
 291 training Gaussian diffusion with Alg. 2 on a computer, suggesting their ELBOs are comparable. Yet the limiting Gaussian ELBO is
 292 infinite! Fig. 2 suggests why: paths from \vec{x}_t have two phases, a nearly deterministic phase at low t (Fig 2 left), and then a random
 293 phase (Fig 2 right). Diffusion models reversing these paths should
 294 therefore go through a random phase, until $p(x_0 | \vec{x}_t, t)$ becomes
 295 obvious, and then trace a deterministic path back to x_0 . However,
 296 at initialization, x_0 is “never obvious” to the neural network
 297 $q_\theta(x_0 | \vec{x}_t, t)$, leading to mismatches to the deterministic paths in
 298 samples (Fig. 3 “Random”). As ζ gets larger, the paths get more
 299 deterministic, **causing the singularity in the limit**.
 300

301 The practical solution is simple – weight the output of the neural network by the evidence for
 302 each x_0 , $q_\theta(x_0 | x_t, t) \propto p(x_t | x_0, t) q_\theta(x_0)$ where $p(x_t | x_0, t)$ “automatically handles” deciding
 303 when x_0 is obvious (Fig. 3 “Hollow”). This was suggested in the appendix of Austin et al. (2021)
 304 as way to improve discrete diffusion models, but becomes important here as a way to build new
 305 Gaussian diffusion models with formally comparable likelihoods⁷. Amin et al. (2025) showed that in
 306 higher dimensions this becomes equivalent to using the **“hollow” predictor**⁸ $q_\theta(x_0^d | x_t, t) \propto p(x_t^d |$
 307 $x_0^d, t) q_\theta(x_0^d | x_t^{-d}, t)$ where x_t^{-d} is all positions except d . In App. E.3 we formally prove that the
 308 hollow parametrization removes the singularity of the ELBO.
 309



310 Figure 4: emb of amino
 311 acids from BLOSUM \mathcal{L} .
 312 emb(x_0) from Thm. 4.1 for \mathcal{L}
 313 from Amin et al. (2025).
 314

315 **Hyperparameter comparison** Thm. 4.1 gives us a formula for
 316 emb determined by the slowest-decaying directions in \mathcal{L} . App. E.4
 317 also shows that every emb can be induced from some \mathcal{L} . Remarkably,
 318 this connection accommodates embeddings in different dimensions
 319 \mathbb{R}^r : r is determined by the dimension of the dominant eigenspace
 320 of \mathcal{L} . In Fig. 4 we show emb for the BLOSUM stochastic processes
 321 for amino acids, and see it clusters similar amino acids together. The
 322 practical implications are (1) one can sanity-check their designed
 323 \mathcal{L} by plotting its induced embeddings, and (2) discrete diffusion
 324 offers a richer design space, as one can specify all the interacting
 325 eigenspaces of \mathcal{L} rather than just the dominant one, emb.
 326

⁷Note the hollow parametrization is specific to *discrete data* where there are only finitely many possible x_0 .

⁸This does not require a change of architecture: the network can take in x_t but must learn to disregard x_t^d .

324

5 UNIFYING SIMPLICIAL DIFFUSION

325

326 Now we add simplicial diffusion to our unification of discrete and Gaussian diffusion. Proving the
327 equivalence of the forward process: we add reproduction to our population of ζ letters and simply
328 refer to the well known result of Kimura (1955) from mathematical genetics. We also derive new
329 results on the limit of the ELBO and explore our connection with theory of mathematical genetics;
330 this will allow us to address the instabilities that plague simplicial diffusion models.

331

5.1 UNIFICATION RESULTS

332

333 **The Wright-Fisher model** We now allow our population of ζ to reproduce. The population is
334 swapped with a new generation at rate ζ (that is, a new generation occurs at $\Delta\tau \sim \text{Exp}(1)/\zeta$)
335 and at each generation we create ζ “children” which pick a parent uniformly at random. Between
336 generations, individuals also mutate according \mathcal{L} (Fig. 1a). We now ask what happens when $\zeta \rightarrow \infty$.

337 **The limit of $p((x_t)_t)$** Kimura (1955) was the first to derive the $\zeta \rightarrow \infty$ limit of the stochastic
338 process. Unlike the mutation-only case which zooms in to $\vec{\pi}$, this limiting distribution has paths that
339 travel throughout the simplex (Fig. 1b). This limit, often itself called “Wright-Fisher diffusion” is
340 exactly the forward process in simplicial diffusion (Avdeyev et al., 2023). Details are in App. E.5.1.
341 One biologically reasonable assumption past works make is a parent-independent mutation rate
342 matrix, that is, $\mathcal{L} = \psi \times (\mathbb{1}\vec{\pi}^T - I)$ for stationary distribution $\vec{\pi}$ and mutation rate $\psi > 0$. This does
343 not restrict the design space of simplicial diffusion, which is specified by an intensity parameter ψ
344 and stationary distribution $\vec{\pi}$, so we make the same assumption.

345 **The limit of the ELBO** We derive the limit of the discrete diffusion ELBO. Remarkably, we get an
346 objective that matches “score functions” \vec{s} like that heuristically derived in Avdeyev et al. (2023).

347 **Theorem 5.1.** *(Proof in App. E.5.2) As $\zeta \rightarrow \infty$, the discrete diffusion objective in Alg. 1 converges to
348 the quantity in line 9 of Alg. 4.*

350 The main idea of the proof is an application of a Taylor expansion and Stirling’s approximation; the
351 main challenge is handling of behaviour at the boundaries of the simplex and regularity conditions.

352

5.2 APPLICATION: FAST AND STABLE SIMPLICIAL DIFFUSION

353

354 We have unified simplicial diffusion with discrete and Gaussian diffusion, in particular allowing like-
355 lihood comparison, which will be crucial in the following section. Our unification also immediately
356 suggests a connection to the mathematical genetics literature. We now apply the solutions from that
357 literature to improve simplicial diffusion models. Many of the formulas are standard but long – we
358 save their statement and experimental validation to App. C.

360 **Algorithm 4** ELBO for simplicial diffusion. Our changes to Avdeyev et al. (2023) are coloured.

361

362 1: Sample $t \sim \text{Unif}(0, 1)$
363 2: **Sample noisy x_t :**
364 3: **Sample $m \sim A(\psi, \tau_t)$ with Alg. 5; if $\tau_t < 0.05$, use Alg. 6**
365 4: **Sample $\vec{x}_t \sim \text{Dirichlet}(\psi\vec{\pi} + m\vec{x}_0)$.**
366 5: **Predict de-noised x_0 :**
367 6: Predict $\tilde{x}_0 = q_\theta(x_0 \mid x_t, t)$
368 7: **Estimate ELBO:**
369 8: Compute $\vec{s}(\vec{x}_t \mid x_0, t) = \nabla_{x_t} \log p(x_t \mid x_0, t)$ with Eqn. 2
370 9: $L = \frac{\tau_t}{2} \|\vec{s}(\vec{x}_t \mid x_0, t) - \vec{s}(\tilde{x}_t \mid x_0, t)\|_{\text{diag}(\vec{x}_t) - \vec{x}_t\vec{x}_t^T}^2$ (this is an ELBO); if $\tau_t < 0.05$, use Eqn. 3

371 **Sampling noisy x_t** Avdeyev et al. (2023) and Richemond et al. (2022) sample x_t by costly and
372 approximate simulation from a stochastic differential equation (SDE). Instead, the suggestively titled
373 paper “Exact simulation of the Wright-Fisher diffusion” (Jenkins and Spanò, 2017) gives a fast
374 exact formula for the marginals x_t . The algorithm samples \vec{x}_t from a Dirichlet that is centred at the
375 stationary mutation distribution $\vec{\pi}$ when $m = 0$ and becomes more concentrated around the signal x_0
376 when m is larger. m itself is an integer sampled from a distribution $A(\psi, \tau_t)$ that represents, going
377 back in time τ_t , how many ancestors the population descend from – it is small when τ_t is large, when
378 everyone descended from a handful of individuals from far back in time.

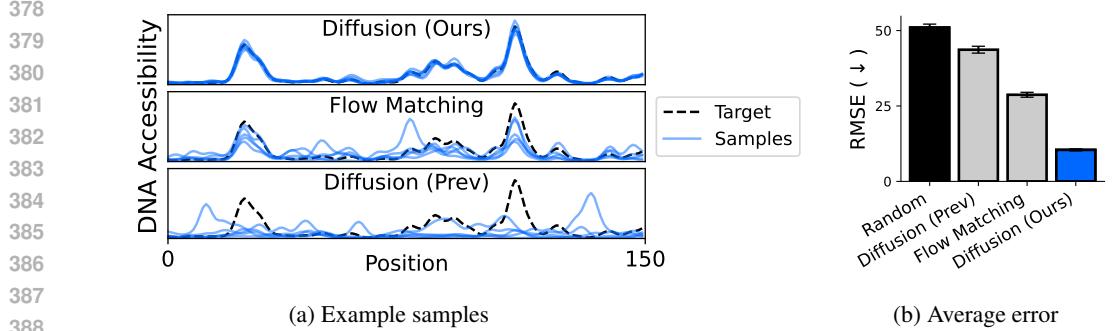


Figure 5: **Improved simplicial diffusion performs accurate conditional DNA generation.** We generate DNA samples of length 500 conditioned on accessibility with a classifier. (a) For an example target, we plot predicted accessibility profiles at the centre 150 positions of 5 example samples from each model. We smooth profiles with a bandwidth of 2. (b) For 1000 targets and 10 samples from each model, we plot the error between the predicted and target profiles and its standard error.

Computing the loss For the loss, Avdeyev et al. (2023) derived a likelihood that involved calculating the derivative of the predictor $q_\theta(x_0 | x_t, t)$ making it too expensive to train on. They instead suggest training a heuristically motivated loss matching the vector \vec{s} to a ground truth. In Thm. 5.1 we recognize this loss as an ELBO and derive the appropriate scaling $\frac{\dot{t}_t}{2}$ and metric $\text{diag}(\vec{x}_t) - \vec{x}_t \vec{x}_t^T$.

Low t behaviour Both the simulation of $A(\psi, \tau_t)$ and the calculation of the gradients $\nabla_{x_t} \log p(x_t | x_0)$ involves an infinite series (Tavaré, 1984). Luckily the terms converge extremely fast. This is not true however at low t , which is the primary cause of the instability of simplicial diffusion. This instability is also well known in the genetics literature, with Griffiths (1984) emphatically stating that using the infinite series at low t “produces nonsense from a computer.”

The solution at low t is to replace the series approximation, which gets worse with lower t , with a central limit approximation for $A(\psi, \tau_t)$ (Griffiths, 1984; Jenkins and Spanò, 2017) that improves with lower t ; this is analogous to how reflected diffusion models were made stable despite their own infinite series expansion with the same problem Luo et al. (2022). We picked the $\tau_t < 0.05$ threshold as recommended by Jenkins and Spanò (2017). In App. C.3 we describe how to use this approximation to also stabilize the loss computation.

State of the art DNA generation conditioned on a classifier Simplicial diffusion models are state of the art tools for generating DNA conditioned on high-dimensional epigenetic properties (Avdeyev et al., 2023); however they have recently been surpassed by flow-matching models (Stark et al., 2024), which are more stable but sacrifice a closed-form ELBO and access to diffusion sampling algorithms. Given our stability improvements above, we expect to be able to generate higher quality sequences than previous methods. We fit the state of the art diffusion model (Avdeyev et al., 2023) and flow-matching model (Stark et al., 2024) to DNA data ($B = 4$) of length $D = 500$; then we generate samples from these models conditioned on achieving target “DNA accessibility profiles”.

First we see our model leads to a much better fit of the data. The diffusion model from Avdeyev et al. (2023), was only able to achieve an average ELBO of 8 nats / position (12.7 before training), while a trivial model which predict uniform letters in each position achieves 1.39. In contrast, our model achieves an ELBO of 1.30. In Fig. 5 we also see our new model generates conditional samples with profiles that much better match the target. Experimental details are in App. F.

6 PRACTICAL UNIFIED DIFFUSION MODELS

Our results show that diffusion, Gaussian and simplicial diffusion are three views of the same process. But which view should a practitioner choose for their particular downstream task? Unfortunately, there is limited theoretical infrastructure we can use to answer such a question.

Instead our theory provides a practical solution: leveraging our finding that these methods have comparable likelihoods, we show through a particular parameter choice (Fig. 6), one can train a single neural network that can perform diffusion on any domain at test time. In App. D we also show

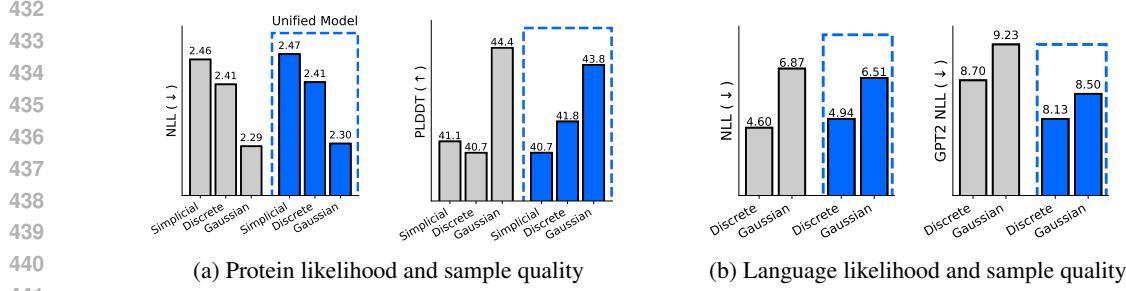


Figure 7: **The sufficient statistic parametrization enables a single model to perform competitive discrete, Gaussian, and simplicial diffusion.** We compare individual models for each modality with a single unified model using the SSP. (a) We train on proteins and measure sample quality by predicted protein fold-ability (pLDDT). Each model was trained for the same amount of time. (b) We train on language and measure sample quality using the perplexity of a much larger language model. Each model was trained for 33 epochs.

this parameterization will also allow us to make any diffusion model time-invariant, explaining and generalizing a celebrated property of masking diffusion.

6.1 THE SUFFICIENT STATISTIC PARAMETERIZATION (SSP)

The goal of a diffusion model is to predict x_0^d . To do so, one must integrate over the unseen x_0^{-d} weighted by their likelihood of producing the data x_t^{-d} :

$$p(x_0^d | x_t^{-d}) = \int p(x_0^d | x_0^{-d}) p(x_0^{-d} | x_t^{-d}) dx_0^{-d}.$$

We can summarize this “evidence” in the normalized vector $\vec{\phi}(x_t^d, t) \propto p(x_t^d | t, x_0^d = b)$ (Fig. 6).

Some algebra shows that $\vec{\phi}$ ’s are sufficient statistics, that is, they contain all relevant information about the diffusion process and t , leaving a regression task that invariant to both.

Proposition 6.1. *(Proof in App. E.7) There is a function F^d , depending on $p(x_0)$ and not on the diffusion process or t , such that*

$$p(x_0^d | x_t^{-d}, t) = F^d(\vec{\phi}(x_t^1, t), \dots, \vec{\phi}(x_t^D, t)).$$

Therefore we can parametrize our neural network $q_\theta(x_0^d | x_t^{-d}, t) = F_\theta^d(\vec{\phi}(x_t^1, t), \dots, \vec{\phi}(x_t^D, t))$ for a neural network F_θ^d that tries to learn the “universal” F^d .

6.2 APPLICATION: UNIFIED DIFFUSION MODELS

Practitioners must commit upfront to the domain their diffusion occurs. The SSP instead enables training a single neural network that can perform diffusion on any domain at test time: as long the target distribution $p(x_0)$ remains constant the optimum F^d remains the same. Furthermore, we’ve shown above that the ELBOs of each modality are comparable, so we can train F_θ by alternating minimizing the ELBO of a different modality in each batch.

We train discrete, Gaussian, and simplicial diffusion models on proteins and compare to a single model trained using the SSP which alternates between discrete, Gaussian, and simplicial training steps. We trained our models to approach the performance of state-of-the-art protein diffusion model DPLM (Wang et al., 2024a) in likelihoods (2.36) and a “foldability” metric for samples (45.2) (Amin et al., 2025). In Fig. 7 we see that a single SSP model trained on proteins for 48 hours is competitive in perplexity and sample quality with three single-domain models each trained for the same amount of time. We perform a similar experiment for discrete and Gaussian language models (simplicial diffusion models are challenging to scale to a large vocabulary size of $B \approx 3 \times 10^4$) and see similar

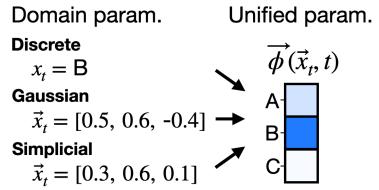


Figure 6: **The sufficient statistic parameterization represents \vec{x}_t from all diffusion models in the same space.**

486 results; we also see the unified model training can even slightly improve sample quality. We trained
 487 our language models for the same amount of time as a state-of-the-art diffusion language model (Lou
 488 et al., 2023) matching its likelihood (SEDD uniform has an NLL of 3.70). Experimental details are in
 489 App. F, another downstream task is tested in App. G.1, and we also repeat these results on MNIST
 490 images in App. G.2.

491 7 CONCLUSION

493 Our theoretical and practical unification developed foundations that we used to improve simplicial
 494 diffusion and avoid the need to choose a specific model at train time. However, the theory suggests a
 495 number of other directions we have not yet explored.

497 Notable omissions from our presentation are reflected diffusion, flow matching, masking diffusion,
 498 and diffusion with insertions and deletions. The later two can likely be easily accommodated with
 499 previous theories unifying masking and uniform diffusion on one hand (Amin et al., 2025), and
 500 substitution and insertion - deletion diffusion on the other (Johnson et al., 2021).

501 As well, our framework suggests new types of diffusion models “between” the three existing streams
 502 of diffusion which we only use as a lens for understanding existing models. Implementing these
 503 intermediate models may be of independent practical interest.

504 Finally, the SSP can be used to unify models beyond the three modalities. For instance it can be used
 505 to train models across hyperparameter settings, or optimize hyperparameters without retraining. In
 506 principle, the SSP can even be used to transfer a model to a modality it was not trained on.

507 508 REFERENCES

509 S. Alamdari, N. Thakkar, R. van den Berg, A. X. Lu, N. Fusi, A. P. Amini, and K. K. Yang. Protein
 510 generation with evolutionary diffusion: sequence is all you need. *bioRxiv*, Sept. 2023.

511 A. N. Amin, N. Gruver, and A. G. Wilson. Why masking diffusion works: Condition on the jump
 512 schedule for improved discrete diffusion. In *Frontiers in Probabilistic Inference: Learning meets
 513 Sampling*, Apr. 2025.

515 B. D. O. Anderson. Reverse-time diffusion equation models. *Stoch. Process. Their Appl.*, 12(3):
 516 313–326, May 1982.

517 J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg. Structured denoising diffusion
 518 models in discrete state-spaces. *Adv. Neural Inf. Process. Syst.*, 34:17981–17993, 2021.

520 P. Avdeyev, C. Shi, Y. Tan, K. Dudnyk, and J. Zhou. Dirichlet diffusion score model for biological
 521 sequence generation. *arXiv [cs.LG]*, May 2023.

523 E. Baron, A. N. Amin, R. Weitzman, D. S. Marks, and A. G. Wilson. A diffusion model to shrink
 524 proteins while maintaining their function. In *The Exploration in AI Today Workshop at ICML 2025*,
 525 June 2025.

526 R. F. Bass. *Stochastic Processes*. Cambridge University Press, Oct. 2011.

528 D. Calderon, R. Blecher-Gonen, X. Huang, S. Secchia, J. Kentro, R. M. Daza, B. Martin, A. Dulja,
 529 C. Schaub, C. Trapnell, E. Larschan, K. M. O’Connor-Giles, E. E. M. Furlong, and J. Shendure.
 530 The continuum of *drosophila* embryonic development at single-cell resolution. *Science*,
 531 377(6606):eabn5800, 2022. doi: 10.1126/science.abn5800. URL <https://www.science.org/doi/10.1126/science.abn5800>.

533 A. Campbell, J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet. A continuous
 534 time framework for discrete denoising models. In *Advances in Neural Information Processing
 535 Systems*, Oct. 2022.

536 N. A. Chandra, Y. Hu, J. D. Buenrostro, S. Mostafavi, and A. Sasse. Refining sequence-to-activity
 537 models by increasing model resolution. *bioRxiv*, 2025. doi: 10.1101/2025.01.24.634804.

539 O. Davis, S. Kessler, M. Petrache, I. I. Ceylan, M. Bronstein, and A. J. Bose. Fisher flow matching
 540 for generative modeling over discrete data. *arXiv [cs.LG]*, May 2024.

540 S. Dieleman, L. Sartran, A. Roshannai, N. Savinov, Y. Ganin, P. H. Richemond, A. Doucet, R. Strudel,
 541 C. Dyer, C. Durkan, C. Hawthorne, R. Leblond, W. Grathwohl, and J. Adler. Continuous diffusion
 542 for categorical data. *arXiv.org*, 2022.

543

544 F. Eijkelboom, G. Bartosh, C. Andersson Naesseth, M. Welling, and J.-W. van de Meent. Variational
 545 flow matching for graph generation. *Advances in Neural Information Processing Systems*, 37:
 546 11735–11764, 2024.

547 S. N. Ethier and T. G. Kurtz. *Markov Processes: Characterisation and Convergence*. Probability &
 548 Mathematical Statistics S. John Wiley & Sons, Nashville, TN, May 1986.

549

550 G. Floto, T. Jonsson, M. Nica, S. Sanner, and E. Z. Zhu. Diffusion on the probability simplex. *arXiv*
 551 [*cs.LG*], Sept. 2023.

552 F. Gotze. On the rate of convergence in the multivariate CLT. *Ann. Probab.*, 19(2):724–739, 1991.

553

554 R. C. Griffiths. Asymptotic line-of-descent distributions. *J. Math. Biol.*, 21(1):67–75, Dec. 1984.

555

556 N. Gruver, S. D. Stanton, N. C. Frey, T. G. J. Rudner, I. Hotzel, J. Lafrance-Vanassee, A. Rajpal,
 557 K. Cho, and A. G. Wilson. Protein design with guided discrete diffusion. In *Thirty-seventh
 558 Conference on Neural Information Processing Systems*, Nov. 2023.

559 X. Han, S. Kumar, and Y. Tsvetkov. SSD-LM: Semi-autoregressive simplex-based diffusion language
 560 model for text generation and modular control. *arXiv [cs.CL]*, Oct. 2022.

561

562 B. L. Hie, V. R. Shanker, D. Xu, T. U. J. Bruun, P. A. Weidenbacher, S. Tang, W. Wu, J. E. Pak, and
 563 P. S. Kim. Efficient evolution of human antibodies from general protein language models. *Nat.
 564 Biotechnol.*, 42(2):275–283, Apr. 2023.

565 J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato,
 566 R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*,
 567 volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

568

569 F. M. Hoppe. Polya-like urns and the ewens' sampling formula. *J. Math. Biol.*, 20(1):91–94, Aug.
 570 1984.

571 P. A. Jenkins and D. Spanò. Exact simulation of the Wright–Fisher diffusion. *Ann. Appl. Probab.*, 27
 572 (3):1478–1509, June 2017.

573

574 F. Johansson and Others. *mpmath: a Python library for arbitrary-precision floating-point arithmetic
 575 (version 0.14)*, Feb. 2010.

576

577 D. D. Johnson, J. Austin, R. van den Berg, and D. Tarlow. Beyond in-place corruption: Insertion
 578 and deletion in denoising probabilistic models. In *ICML Workshop on Invertible Neural Networks,
 579 Normalizing Flows, and Explicit Likelihood Models*, 2021.

580 M. Kimura. Solution of a process of random genetic drift with a continuous model. *Proc. Natl. Acad.
 581 Sci. U. S. A.*, 41(3):144–150, Mar. 1955.

582 B. Li, Z. Gao, and L. Xu. Unifying continuous and discrete text diffusion with non-simultaneous
 583 diffusion processes. *arXiv [cs.CL]*, May 2025.

584

585 Z. Li, Y. Ni, G. Xia, W. Beardall, A. Das, G.-B. Stan, and Y. Zhao. Absorb & escape: Overcoming
 586 single model limitations in generating heterogeneous genomic sequences. *Advances in Neural
 587 Information Processing Systems*, 37:21949–21978, 2024.

588 Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli,
 589 A. dos Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives. Evolutionary-scale
 590 prediction of atomic-level protein structure with a language model. *Science*, 379(6637):1123–1130,
 591 2023. doi: 10.1126/science.ade2574. URL <https://www.science.org/doi/abs/10.1126/science.ade2574>.

592

593 A. Lou and S. Ermon. Reflected diffusion models. *ICML*, abs/2304.04740:22675–22701, Apr. 2023.

594 A. Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the data
 595 distribution. In *41 st International Conference on Machine Learning*, Oct. 2023.

596

597 S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, and J. Ma. Antigen-specific antibody design and
 598 optimization with diffusion-based generative models for protein structures. In *Advances in Neural*
 599 *Information Processing Systems 35*. Cold Spring Harbor Laboratory, July 2022.

600 R. K. Mahabadi, H. Ivison, J. Tae, J. Henderson, I. Beltagy, M. E. Peters, and A. Cohan. TESS:
 601 Text-to-text self-conditioned simplex diffusion. *arXiv [cs.CL]*, May 2023.

602

603 J. W. Miller. Asymptotic normality, concentration, and coverage of generalized posteriors. *arXiv*
 604 *[math.ST]*, July 2019.

605 J. Ou, S. Nie, K. Xue, F. Zhu, J. Sun, Z. Li, and C. Li. Your absorbing discrete diffusion secretly
 606 models the conditional distributions of clean data. *arXiv [cs.LG]*, June 2024.

607

608 A. Raghu, S. W. Ober, M. Kazman, and H. Elliott. Guided sequence-structure generative modeling
 609 for iterative antibody optimization. In *ICLR 2025 Workshop on Generative and Experimental*
 610 *Perspectives for Biomolecular Design*, 2025.

611 P. H. Richemond, S. Dieleman, and A. Doucet. Categorical SDEs with simplex diffusion. *arXiv*
 612 *[cs.LG]*, Oct. 2022.

613

614 H. Robbins. A remark on stirling's formula. *Am. Math. Mon.*, 62(1):26, Jan. 1955.

615

616 S. S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and V. Kuleshov.
 617 Simple and effective masked diffusion language models. *arXiv [cs.CL]*, June 2024.

618

619 S. S. Sahoo, J. Deschenaux, A. Gokaslan, G. Wang, J. Chiu, and V. Kuleshov. The diffusion duality.
 620 *arXiv [cs.LG]*, June 2025.

621

622 A. Sarkar, Z. Tang, C. Zhao, and P. K. Koo. Designing DNA with tunable regulatory activity using
 623 discrete diffusion. *bioRxiv*, page 2024.05.23.595630, May 2024.

624

625 A. Shabalin, V. Meshchaninov, and D. Vetrov. Smoothie: Smoothing diffusion on token embeddings
 626 for text generation. *arXiv [cs.CL]*, May 2025.

627

628 J. Shi, K. Han, Z. Wang, A. Doucet, and M. K. Titsias. Simplified and generalized masked diffusion
 629 for discrete data. *arXiv [cs.LG]*, June 2024.

630

631 H. Stark, B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola. Dirichlet flow matching
 632 with applications to DNA sequence design. *arXiv [q-bio.BM]*, Feb. 2024.

633

634 C. Stone. Limit theorems for random walks, birth and death processes, and diffusion processes.
 635 *Illinois J. Math.*, 7(4):638–660, Dec. 1963.

636

637 B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu. UniRef: comprehensive and
 638 non-redundant UniProt reference clusters. *Bioinformatics*, 23(10):1282–1288, May 2007.

639

640 S. Tang, Y. Zhang, A. Tong, and P. Chatterjee. Gumbel-softmax flow matching with straight-through
 641 guidance for controllable biological sequence generation. *arXiv [cs.LG]*, Mar. 2025.

642

643 S. Tavaré. Line-of-descent and genealogical processes, and their applications in population genetics
 644 models. *Theor. Popul. Biol.*, 26(2):119–164, Oct. 1984.

645

646 A. W. van der Vaart. *Asymptotic Statistics*. 1998.

647

648 X. Wang, Z. Zheng, F. Ye, D. Xue, S. Huang, and Q. Gu. Diffusion language models are versatile
 649 protein learners. *ICML*, abs/2402.18567, Feb. 2024a.

650

651 X. Wang, Z. Zheng, F. Ye, D. Xue, S. Huang, and Q. Gu. DPLM-2: A multimodal diffusion protein
 652 language model. *arXiv [cs.LG]*, Oct. 2024b.

653

654 L. Winkler, L. Richter, and M. Opper. Bridging discrete and continuous state spaces: Exploring the
 655 ehrenfest process in time-continuous diffusion models. *arXiv [stat.ML]*, May 2024.

648 R. Wu, F. Ding, R. Wang, R. Shen, X. Zhang, S. Luo, C. Su, Z. Wu, Q. Xie, B. Berger, J. Ma,
649 and J. Peng. High-resolution *de novo* structure prediction from primary sequence. *bioRxiv*, page
650 2022.07.21.500999, July 2022.
651
652 K. K. Yang, N. Fusi, and A. X. Lu. Convolutions are competitive with transformers for protein
653 sequence pretraining. *Cell Systems*, 15(3):286–294, 2024.
654
655 Y. Zhang, B. Hartl, H. Hazan, and M. Levin. Diffusion models are evolutionary algorithms. *arXiv
preprint arXiv:2410.02543*, 2024.
656
657 K. Zheng, Y. Chen, H. Mao, M.-Y. Liu, J. Zhu, and Q. Zhang. Masked diffusion models are secretly
658 time-agnostic masked models and exploit inaccurate categorical sampling. *arXiv [cs.LG]*, Sept.
659 2024.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A EXTENDED RELATED WORK**
703

704 We add more related work beyond those in Sec. 2.

705 **Classical theories unifying discrete and continuous stochastic processes** There is a long history
706 of deriving continuous limits of discrete processes, the “forward” processes of diffusion models.
707 Groundbreaking work by Stone (1963) derived Gaussian diffusion as a limit to biased one-dimensional
708 random walks. In one of the most celebrated results in mathematical genetics, Kimura (1955) also
709 derived a continuous limit of the Wright-Fisher process with non-zero reproduction. These models
710 were originally developed to describe the stochastic fluctuations of allele frequencies, also called
711 genetic drift. We (1) apply these results to understand and improve diffusion models, (2) also show
712 convergence of the ELBO of diffusion models, and, to our knowledge, (3) derive a new result – the
713 multi-dimensional Gaussian-diffusion limit of Wright-Fisher with zero reproductions – demonstrating
714 previously un-characterized behaviour dependent on the eigenspace of the mutation operator. Results
715 (2) and (3) are what allow us to compare likelihoods and hyperparameters.716 **Parameterizations of discrete diffusion models** In diffusion, one uses a neural network to “denoise”
717 sequences; we call the choice of inputs and outputs of these neural networks the “**parameterization**”.
718 A number of works suggest superficially distinct, but ultimately equivalent parameterizations (Camp-
719 bell et al., 2022; Lou et al., 2023). Austin et al. (2021) however suggested a distinct parametrization
720 for discrete diffusion models by scaling the output of the neural network to “automatically” incor-
721 porate the information about the noised token about that particular location; we call this choice the
722 “hollow” parametrization for reasons discussed below. Zheng et al. (2024), Ou et al. (2024), and
723 Sahoo et al. (2024) suggested that masking diffusion enables a special choice of “time-invariant”
724 parametrization; in App. D our theory shows on the contrary that every diffusion model can be made
725 time-invariant.726 **Gaussian diffusion which appears as simplicial diffusion** Han et al. (2022); Mahabadi et al.
727 (2023); Shabalin et al. (2025), and Floto et al. (2023) suggest a stable diffusion model on the simplex
728 by applying softmax to Gaussian diffusion and using Itô’s theorem. This parameterization is stable
729 because forward and backward diffusion can occur as Gaussian diffusion in the logit-space. Lou
730 and Ermon (2023) has a similar idea, swapping the softmax for an asymmetric transformation and
731 Gaussian diffusion with reflected Gaussian diffusion. With these simplifications however, the process
732 is exactly (reflected) Gaussian diffusion except the input to the neural network is transformed onto
733 a simplex; in particular, it doesn’t interact with the topology of the simplex. In other words, this
734 implements simplicial diffusion in the parametrization of the neural network, but not in the sampling
735 or loss computation.736 **Another unification theory** Li et al. (2025) looked at Gaussian diffusion with a generalized noising
737 strategy; they noted a special case resembled masking diffusion. However the training procedure and
738 ELBO of this special case are distinct from standard masking diffusion (Shi et al., 2024).739 **Diffusion models for discrete and sequential data** Zhang et al. (2024) connect diffusion with the
740 evolution process to suggest an optimization algorithm, but do not formally establish connections with
741 biological evolution. In contrast, our work makes this connection explicit. Recent work has explored
742 various approaches to applying diffusion models to discrete domains: Eijkelboom et al. (2024)
743 propose using Gaussian diffusion for categorical data by constraining the clean data distribution to
744 the simplex hyperplane and training using cross entropy, while Li et al. (2024) achieve state-of-the-art
745 results in large-scale DNA generation by combining autoregressive and discrete diffusion.746 **B MATHEMATICAL ERROR IN SAHOO ET AL. (2025)**
747748 In Theorem 3.1, Sahoo et al. (2025) shows that the ELBO of a discrete diffusion model is always
749 tighter than that of a Gaussian diffusion model. In its proof, with w_t from Gaussian diffusion,
750 $z_t = \text{argmax}(w_t)$, and $x = z_0 = w_0$, they state “Since the transition $z_t \rightarrow z_s$ is Markov, we get:
751 $q(z_s | w_t, z_t, x) = q(z_s | z_t, x)$ ”. Putting aside the correctness of this statement, it is clear that the
752 proof as stated requires the Markov property of $(z_t)_t$.753 The way the Markov property is shown is as follows. They first define a discrete diffusion model, let’s
754 call this $(\tilde{z}_t)_t$, such that \tilde{z}_0 comes from the data distribution and \tilde{z} evolves with respect to a uniform
755 forward process with rate parameter $\beta(t)$ chosen such that the marginals match $p(z_t | z_0) = p(\tilde{z}_t | \tilde{z}_0)$.
In Eqn. 29 they compute $\frac{d}{dt}p(z_t | z_0)$ and in Eqn. 32 they compute $\frac{d}{dt}p(\tilde{z}_t | \tilde{z}_0)$ for all starting points

and show they are identical. After noting the equivalence of equations 29 and 32, they state "This pmf and the ODE are the unique signatures of a Uniform-state discrete diffusion process (Lou et al., 2023; Schiff et al., 2025)." and from this conclude that the path distributions of $(\tilde{z}_t)_t$ and $(z_t)_t$ are equivalent, and in particular, that $(z_t)_t$ is Markov⁹.

However, despite a similar result for Markov chains (two Markov processes with identical semi-groups are equivalent), $p(z_t|z_0) = p(\tilde{z}_t|\tilde{z}_0)$ and $\frac{d}{dt}p(z_t|z_0) = \frac{d}{dt}p(\tilde{z}_t|\tilde{z}_0)$ for all starting points is not enough to conclude the identity of the path distributions $p((z_t)_t|z_0) = p((\tilde{z}_t)_t|\tilde{z}_0)$. First note that $\frac{d}{dt}p(z_t|z_0) = \frac{d}{dt}p(\tilde{z}_t|\tilde{z}_0)$ is not an independent condition: it follows from $p(z_t|z_0) = p(\tilde{z}_t|\tilde{z}_0)$. Next consider this counter example:

- $\tilde{z}_0 = 1$ and $(\tilde{z}_t)_t$ evolves by switching sign with rate 1. Therefore $p(\tilde{z}_t = 0) = 1 - \frac{1}{2}e^{-2t}$.
- $z_0 = 1$ and $(z_t)_t$ has a 50% chance to stay at 0 forever and a 50% chance to swap sign at time $-\frac{1}{2} \log U$ for a $U \sim \text{Uniform}$ and never again. Therefore $p(\tilde{z}_t = 1) = \frac{1}{2}(1 + p(-\frac{1}{2} \log \text{Uniform} > t)) = 1 - \frac{1}{2}e^{-2t}$.
- When $z_0 = -1$ or $\tilde{z}_0 = -1$, then swap signs.

We have $p(z_t|z_0) = p(\tilde{z}_t|\tilde{z}_0)$ for all z_0 and therefore $\frac{d}{dt}p(z_t|z_0) = \frac{d}{dt}p(\tilde{z}_t|\tilde{z}_0)$ but clearly $p((z_t)_t) \neq p((\tilde{z}_t)_t)$.

Simple computer simulations indeed show that $p((\text{argmax}(w_t))_t)$ and $p((\tilde{z}_t)_t)$ are different. We show this in Fig. 8. Indeed a statistical test applied to these simulations shows $p((\text{argmax}(w_t))_t) \neq p((\tilde{z}_t)_t)$: a Mann-Whitney test shows that the paths of the argmax of Gaussian diffusion have more transitions than those of discrete diffusion with $p < 10^{-300}$.

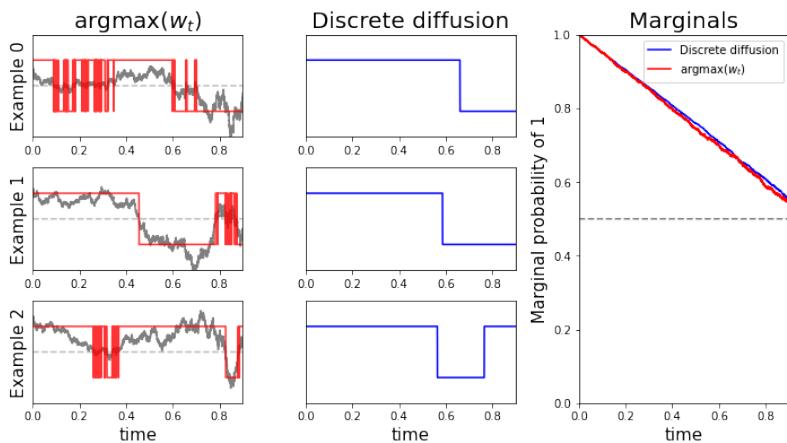


Figure 8: **The argmax of Gaussian diffusion appears different from discrete diffusion in simulation, despite having the same marginals.** We compare example paths of $p((\text{argmax}(w_t))_t)$ (left, red; we show Gaussian diffusion w_t in grey), $p((\tilde{z}_t)_t)$ for uniform discrete diffusion (centre, blue), and their empirical marginals over 10'000 simulations (right); we simulate using a grid size of 0.0001. Note the two processes have the same marginals but their paths appear different; in particular, whenever w_t is near 0, $(\text{argmax}(w_t))_t$ undergoes a very large number of transitions in a small time¹⁰.

C WRIGHT-FISHER SAMPLING AND SCORE CALCULATIONS

Here we discuss the details of the methods in Sec. 5. Note, just like App. E.1, we can deal with \vec{x}_t rather than the actual sequences x_t . In App. C.1 we discuss details about our algorithms, in particular

⁹This interpretation of the text was confirmed in personal communication with the first author of Sahoo et al. (2025)

¹⁰Indeed, noting the self-similarity of Brownian motion, one can show that, conditioned on $w_t = 0$, with probability 1 $(z_t)_t$ makes infinitely many transitions in the interval $[t, t + \epsilon]$ for any $\epsilon > 0$. The probability of infinitely many transitions in a bounded interval for discrete diffusion however is 0.

810 how to sample from $A(\psi, \tau_t)$ and calculate the functions $\vec{s}(\vec{v} \mid x_0)$. In App. C.2 we discuss the
 811 computational complexity and stability of these algorithms in theory and in experiment. In App. C.3
 812 we discuss how we sample and calculate the ELBO at low t . Finally, in App. C.4 we discuss our
 813 conditional sampling procedure.

814 We also note two more differences between our method and that of Avdeyev et al. (2023):
 815

- 816 Our neural network directly predicts \vec{x}_0 rather than the “score” \vec{s} .
 817
- 818 As described in App. E.5.1, we use the natural permutation-symmetric “multi-allelic” extension
 819 to the 1D SDE when $B > 2$, while they use a stick-breaking procedure.
 820
- 821 We use high-precision operations to calculate large alternating series accurately, as described
 822 in App. C.2.
 823

C.1 ALGORITHM DETAILS

824 **Sample noisy x_t** We’ve discussed the algorithm from Jenkins and Spanò (2017) in the main text.
 825 We now present their algorithm for sampling from $A(\psi, \tau_t)$.
 826

827 **Algorithm 5** Exact sampling from ancestral process $A(\psi, \tau_t)$

```

828 1: Define coefficients:  $c_{km}^\psi = \frac{(2k+\psi-1)(\psi+m)(k-1)}{m!(k-m)!} e^{-k(k+\psi-1)\tau_t/2}$  for  $k \geq m$ 
829 2: Sample  $U \sim \text{Uniform}[0, 1]$ 
830 3: Initialize  $M \leftarrow 0$ 
831 4: Initialize an empty vector  $\vec{k} = ()$ 
832 5: while True do
833 6:   Find  $k_M \geq M$  such that  $c_{(k_M+1)M}^\psi < c_{k_M M}^\psi$ 
834 7:   Make  $k_M$  even:  $k_M \leftarrow 2\lceil k_M/2 \rceil$ 
835 8:   Update lower bound:  $S^- \leftarrow S^- + \sum_{k=M}^{k_M+1} (-1)^{k-M} c_{kM}^\psi$ 
836 9:   Update upper bound:  $S^+ \leftarrow S^+ + \sum_{k=M}^{k_M} (-1)^{k-M} c_{kM}^\psi$ 
837 10:  Update  $\vec{k} = (k_0, \dots, k_{M-1}, k_M)$ 
838 11:  while  $S^- < U < S^+$  do
839 12:    Update lower bound:  $S^- \leftarrow S^- + \sum_{m=0}^M (c_{(k_m+2)m}^\psi - c_{(k_m+3)m}^\psi)$ 
840 13:    Update upper bound:  $S^+ \leftarrow S^+ + \sum_{m=0}^M (-c_{(k_m+1)m}^\psi + c_{(k_m+2)m}^\psi)$ 
841 14:    Update  $\vec{k} = \vec{k} + (2, \dots, 2)$ 
842 15:  end while
843 16:  if  $S^- > U$  then
844 17:    return  $m = M$ 
845 18:  else if  $S^+ < U$  then
846 19:     $M \leftarrow M + 1$ 
847 20:  end if
848 21: end while
849
  
```

850
 851 **Compute loss** We present a formula for $\vec{s}(\vec{v} \mid x_0, t) = \nabla \log p(\vec{x}_t \mid x_0, t) \mid \vec{v}$ to enable computation
 852 of the loss. Avdeyev et al. (2023) computed these scores using a previously determined result with
 853 $B = 2$ then generalizing to higher dimensions with their stick-breaking procedure and a change of
 854 variables. We are instead able to derive it directly from first principles.
 855

856 There are two infinite series which will be important,
 857

$$\begin{aligned}
 G_\psi(\tau, x_0, \vec{x}_t) &= 1 + \sum_{k=1}^{\infty} (-1)^k a_k^\psi(\tau, \pi_{x_0}, \vec{x}_{t,x_0}) \\
 F_\psi(\tau, x_0, \vec{x}_t) &= 1 + \sum_{k=1}^{\infty} (-1)^k b_k^\psi(\tau, \pi_{x_0}, \vec{x}_{t,x_0})
 \end{aligned}$$

864 where

$$866 \quad a_k^\psi(\tau, \pi_{x_0}, \vec{x}_{t,x_0}) = e^{-\frac{k(k+\psi-1)\tau}{2}} \frac{(2k+\psi-1)(\psi)_{(k-1)}}{k!} {}_2F_1(-k, \psi+k-1; \psi\pi_{x_0}; \vec{x}_{t,x_0})$$

$$867$$

$$868 \quad b_k^\psi(\tau, \pi_{x_0}, \vec{x}_{t,x_0}) = e^{-\frac{k(k+\psi+1)\tau}{2}} \frac{(\psi)_{(k)}}{k!} \frac{(2k+\psi+1)(\psi+k)}{(\psi+1)\psi} {}_2F_1(-k, \psi+k+1; \psi\pi_{x_0}+1; \vec{x}_{t,x_0})$$

$$869$$

870 where ${}_2F_1$ is the hypergeometric function. Although these look complicated, in practice, most terms
 871 in the numerators and denominator of a and b nearly cancel to 1, and, when t is not too small,
 872 $e^{-k(k+\psi+1)\tau/2}$ decays extremely quickly.

873 Using the results in Tavaré (1984) we compute $\vec{s}(\vec{v} \mid x_0)$ in terms of these series. Since we're only
 874 interested in differences for calculating the ELBO, $\vec{s}(\vec{v} \mid x_0, t) - \vec{s}(\vec{v} \mid \tilde{x}_0, t)$ we ignore constants not
 875 depending on x_0 .

876 **Proposition C.1.** *(Proof in App. E.6)*

$$878 \quad p(\vec{x}_t \mid x_0, t) = \text{Dirichlet}(\pi\psi)(\vec{x}_t) G_\psi(\tau_t, x_0, \vec{v}).$$

879 For $\vec{c}(\vec{v}) = \nabla \log \text{Dirichlet}(\pi\psi)(\vec{x}_t) = (\psi\vec{\pi} - \mathbb{1})/\vec{x}_t$ which does not depend on x_0 ,

$$881 \quad \vec{s}(\vec{v} \mid x_0, t) = \vec{c}(\vec{v}) + \vec{x}_0 w(x_0, \vec{v}) \quad (2)$$

882 where

$$883 \quad w(x_0, \vec{v}) = \frac{e^{-\psi\tau_t/2}(\psi+1)}{\pi(x_0)} \frac{F_\psi(\tau_t, x_0, \vec{v})}{G_\psi(\tau_t, x_0, \vec{v})}.$$

$$884$$

$$885$$

886 With the hollow parameterization, calling $\vec{w}_b = w(b)$, we get

$$887$$

$$888 \quad \vec{s}(\vec{v} \mid \tilde{x}_0, t)_b = \vec{c}(\vec{v})_b + \frac{e^{-\psi\tau_t/2}(\psi+1)}{\pi(x_0)} \frac{\tilde{x}_{0,b} F_\psi(\tau_t, b, \vec{v})}{\sum_{b'} \tilde{x}_{0,b'} G_\psi(\tau_t, b', \vec{v})}.$$

$$889$$

890 C.2 COMPUTATIONAL COMPLEXITY AND STABILITY

891 **Numerical stability** Sampling from $A(\psi, \tau_t)$ and calculating G_ψ and F_ψ involve alternating
 892 series of many terms which vary by many orders of magnitude, and cancel out leaving very small
 893 residuals – known as “catastrophic cancellation”. To calculate these accurately, we may need higher
 894 precision than provided by `float64`; we perform any high precision calculations using the `mpmath`
 895 library Johansson and Others (2010). Avdeyev et al. (2023) did not use high precision in their
 896 calculations, potentially introducing errors and instability to their loss computation.

897 We perform all calculations at `float64` to take advantage of parallel GPU computations, estimate
 898 the error of each computation using a *condition number* and recompute just those terms with condition
 899 number above a threshold in `mpmath` on a CPU. In practice, we only need to perform calculations at
 900 high precision for small t , before we switch to the “low time regimen” $\tau_t < 0.05$ where we switch to
 901 the Griffiths approximation.

902 The condition number of a series $a_1 + a_2 + \dots + a_M$ is defined as $\eta = \sum_m |a_m| / |\sum_m a_m|$; one can
 903 estimate the error of their summation at finite precision by

$$904 \quad \text{error} \approx \eta \times \text{precision}.$$

905 When there is catastrophic cancellation, the denominator in the definition of η will be very large, rep-
 906 resenting that error might be high. To estimate η , we keep track of $\tilde{\sum}_m |a_m|$ ($\tilde{\sum}$ representing our finite-
 907 precision summation) and estimate $\eta \approx \tilde{\sum}_m |a_m| / |\tilde{\sum}_m a_m|$. If $\eta > \text{desired error}/\text{float 64 precision} =$
 908 $10^{-6} \times 2^{52}$, then we recompute at higher precision.

909 **Sampling** The complexity for sampling \vec{x}_t involves (1) $O(m)$ for sampling m , which is $O(1/\tau_t)$
 910 in expectation (see App. C.3), and (2) $O(B)$ time for sampling \vec{x}_t from a Dirichlet. Crucially, the
 911 complex calculations involving an infinite series occur in (1) and are independent of the alphabet size
 912 B . Comparatively, sampling from the SDE requires $O(BT/\Delta t)$ compute. A higher Δt will decrease
 913 compute but lead to lower-fidelity samples, especially at low t where even small fluctuations in x_t can
 914 lead to instability. We also parallelize the computations in Alg. 5 to benefit from GPU acceleration.
 915 The result is that, except when we must switch to high precision, our sampling procedure is much
 916 faster than that using an SDE (Fig. 9a), and much more stable at low τ (Fig. 9b).

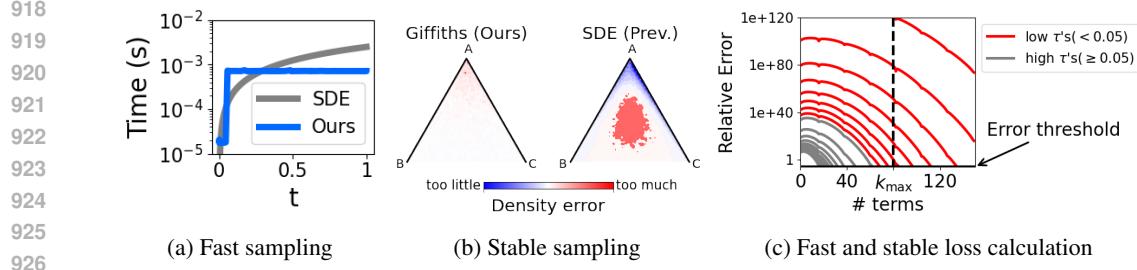


Figure 9: **Leveraging mathematical genetics literature, we build fast and stable simplicial diffusion.** (a) We plot the time it takes to sample a sequence of $D = 500$ using an SDE, versus our exact sampling for various values of t on an A100 80GB GPU. We threshold switching to the Griffiths approximation at $\tau_t = 0.1$. (b) For $\tau = 0.1$ and $B = 3$ we sample 3×10^7 points from the exact sampling method, Griffith’s approximation, and using an SDE with 25 steps as used in Avdeyev et al. (2023). We then perform density estimates of these data and plot the error to the exact samples. We plot a $\times 6$ zoom into the vertex A . We see the SDE struggles to sample near the corner. We use $\psi = 3$, $\vec{\pi} = [0.25, 0.4, 0.35]$ (c) We plot the accuracy of our approximation of the infinite series $G_\psi(\tau, x_0, \vec{x}_t)$ including different numbers of terms for various values of $\tau \in [0, 0.2]$. We choose $\psi = B = 4$ and $\vec{\pi}$ uniform, and plot the relative error for two values of \vec{x}_{t, x_0} . We only use the series approximation for $\tau \geq 0.05$ (grey), which allows us to only use 80 terms. Meanwhile (Avdeyev et al., 2023) used 1000 terms to accommodate smaller τ (red). Our error threshold is 10^{-6} .

Loss computation The complexity for computing the loss involves (1) $O(Bk_{\max})$ computations for the series F_ψ and G_ψ , and (2) $O(B)$ computations for computing the loss given the vectors \vec{s} . Crucially, the complex calculations involving an infinite series occur in (1) and can be parallelized across B allowing massive acceleration on GPU. k_{\max} should become very large as t becomes small, leading (Avdeyev et al., 2023) to choose $k_{\max} = 1000$. Instead we only use the series computation for $\tau \geq 0.05$, allowing us to use $k_{\max} = 80$ (Fig. 9c), and compute a $O(B)$ ELBO for $\tau < 0.05$ in App. C.3.

C.3 LOW TIME REGIMEN

When t is small, sampling from $A(\psi, \tau_t)$ or calculating G_ψ, F_ψ become unstable and can require unbounded compute. Griffiths (1984) suggested a Gaussian approximation for $A(\psi, \tau_t)$ which we will also use for deriving stable approximations of $\vec{s}(\vec{v} | x_0, t)$ which require bounded compute.

Sample noisy x_t We copy the following from Jenkins and Spanò (2017). Note compute does not scale with τ_t .

Algorithm 6 Sampling from ancestral process $A(\psi, \tau_t)$ - Low t approximation

```

1: Set  $\beta \leftarrow \frac{1}{2}(\psi - 1)\tau_t$ 
2: if  $\beta \neq 0$  then
3:   Set  $\eta \leftarrow \beta/(e^\beta - 1)$ 
4:   Set  $\mu \leftarrow \frac{2\eta}{\tau_t}$ 
5:   Set  $\sigma^2 \leftarrow \frac{2\eta}{\tau_t} (\eta + \beta)^2 \left(1 + \frac{\eta}{\eta + \beta} - 2\eta\right) \beta^{-2}$ 
6: else
7:   Set  $\mu \leftarrow \frac{2}{\tau_t}$ 
8:   Set  $\sigma^2 \leftarrow \frac{2}{3\tau_t}$ 
9: end if
10: Sample  $Z \sim \mathcal{N}(\mu, \sigma^2)$ 
11: return  $m = \max(0, \lfloor Z + 0.5 \rfloor)$   $\triangleright$  Round to nearest non-negative integer

```

Compute loss The loss in this regimen, even with the Griffiths approximation, becomes intractable; instead we use the Griffiths approximation to simply bound the loss.

972 When t is small, x_0 is almost always $b^* = \text{argmax}_b \vec{x}_{t,b}$. We therefore set $\tilde{x}_0 = \delta_{b^*}$. In practice, in
973 our protein setting, we only see $b^* \neq \text{argmax}_b \vec{x}_{t,b}$ with $\tau_t < 0.05$ at a rate of less than 1 in 7×10^7 .
974 Since $x_0 \neq b^*$ is so rare we only aim to find a loose bound. Calling $\vec{v} = \vec{x}_t$ we bound the loss by
975

$$976 \quad L \leq \frac{\dot{\tau}_t}{2} (\|\vec{s}(\vec{v} \mid x_0, t) - \vec{c}(\vec{v})\|_{\text{Diag}(\vec{v}) - \vec{v}\vec{v}^T} + \|\vec{s}(\vec{v} \mid b^*, t) - \vec{c}(\vec{v})\|_{\text{Diag}(\vec{v}) - \vec{v}\vec{v}^T})^2 \\ 977 \\ 978 \quad = \frac{\dot{\tau}_t}{2} (w(x_0, \vec{v}) \sqrt{\vec{v}_{x_0}} + w(b^*, \vec{v}) \sqrt{\vec{v}_{b^*}})^2. \\ 979$$

980 In the next proposition we give an alternate formula for $w(x_0, \vec{v})$ which will allow us to Griffith's
981 approximation and a saddle point approximation to estimate $w(b^*, \vec{v})$. It will also allow us to bound
982 $w(x_0, \vec{v})$. To our knowledge, this strategy is original.

983 **Proposition C.2.**

$$984 \quad w(x_0, \vec{v}) = \vec{v}_{x_0}^{-1} \tilde{\mathbb{E}}_{\vec{v}_{x_0}, \vec{\pi}_{x_0}} m_t$$

985 where $\tilde{\mathbb{E}}_{\vec{v}_{x_0}, \vec{\pi}_{x_0}}$ is over the weighted, normalized distribution $p(A(\psi, \tau_t) = m_t) \frac{(\psi)_{(m_t)}}{(\psi \pi_{x_0})_{(m_t)}} \vec{v}_{x_0}^{m_t}$.
986

987 *Proof.* Inspection of first expression of the proof of Prop. C.1. \square
988

989 We can now bound $w(x_0, \vec{v}) \vee w(b^*, \vec{v}) \leq \vec{v}_{x_0}^{-1} \tilde{\mathbb{E}}_{1,p} m_t$ where $p = \vec{\pi}_{x_0} \wedge \vec{\pi}_{b^*}$. Therefore, we get
990

$$991 \quad L \leq 2\dot{\tau}_t \vec{v}_{x_0}^{-1} (\tilde{\mathbb{E}}_{1,p} m_t)^2. \quad (3)$$

992 Now we only need to calculate $\tilde{\mathbb{E}}_{1,p} m_t$; to do so we apply a saddle point approximation to Griffith's
993 approximation to get Eqn. 4 below. Note compute does not scale with τ_t .
994

995 **Saddle point approximation** Let's take the Griffiths approx as t becomes small, so $w_t \sim N(\mu, \sigma)$
996 where μ, σ are from Alg. 6. We can use a Stirling approximation to get
997

$$998 \quad \frac{(\psi)_{(m_t)}}{(\psi p)_{(m_t)}} \propto (1 + O(1/m)) \left(1 + \frac{(1-p)\psi}{\psi p + m_t - 1}\right)^{(\psi p + m_t - 1) + 1/2} (\psi + m_t - 1)^{(1-p)\psi} \\ 999 \\ 1000 \quad = (1 + O(1/m))(\psi + m_t - 1)^{(1-p)\psi}. \\ 1001$$

1002 We take a saddle point approximation of $\tilde{\mathbb{E}}_{1,p} m_t$, i.e. take its value as the maximizer of the approxi-
1003 mate log likelihood

$$1004 \quad C - \frac{1}{2\sigma^2} (m_t - \mu)^2 + (1-p)\psi \log(\psi + m_t - 1) + O(1/m_t).$$

1005 We therefore get the approximation

$$1006 \quad \tilde{\mathbb{E}}_{1,p} m_t \approx \left((\mu - (\psi - 1)) + \sqrt{(\mu - (\psi - 1))^2 + 4(1-p)\psi\sigma^2} \right) / 2. \quad (4)$$

1007 Noting $m_t \sim \tau_t^{-1}$, this approximation has relative error roughly $O(\tau_t^2)$. And as $\tau_t \rightarrow 0$, $\mu \sim \tau_t^{-1}$
1008 and $\sigma \sim \tau_t^{-1/2}$ so

$$1009 \quad \tilde{\mathbb{E}}_{1,p} m_t \approx \mu \approx 2/\tau_t.$$

1010 **C.4 TIME REVERSAL SDE**

1011 Reversing the SDE Eqn. 5 using the result of Anderson (1982), we get

$$1012 \quad d\vec{z}_\tau = \left(\frac{\psi}{2} (\vec{\pi} - \vec{z}_\tau) - B(\mathbb{1}/B - \vec{z}_\tau) - (\text{diag}(\vec{z}_\tau) - \vec{z}_\tau \vec{z}_\tau^T) \nabla \log p(\vec{x}_t \mid t) \right) d\tau \\ 1013 \\ 1014 \quad + \text{diag} \left(\sqrt{\vec{z}_\tau} \right) \left(I - \sqrt{\vec{z}_\tau} \sqrt{\vec{z}_\tau}^T \right) d\vec{W}_\tau$$

1015 where $\vec{z}_{\tau_t} = \vec{x}_t$. $\vec{s}(\vec{x}_t \mid \tilde{x}_0, t)$ approximates $\mathbb{E}_{x_0 \mid \vec{x}_t} \log p(\vec{x}_t \mid x_0, t) = \nabla \log p(\vec{x}_t \mid t)$, meaning we
1016 can substitute it into the place of $\nabla \log p(\vec{x}_t \mid t)$. We sample by discretizing this SDE and sampling
1017 backwards.

1018 To perform classifier guidance conditioning on a variable y , we can add $\nabla \log p(y \mid x_t)$ to
1019 $\vec{s}(\vec{x}_t \mid \tilde{x}_0, t)$. In practice, we perform the classic one-step approximation $\nabla \log p(y \mid x_t) \approx$
1020 $\nabla \log \mathbb{E}_{x_0 \sim q_\theta(x_0 \mid x_t, t)} p(y \mid x_0)$. If we have a classifier $f(x_0) = p(y \mid x_0)$ then we approximate
1021 $E_{x_0 \sim q_\theta(x_0 \mid x_t, t)} p(y \mid x_0)$ using the “one-shot” prediction $f(\tilde{x}_0)$.
1022

1026 **D TIME-INVARIANT DISCRETE DIFFUSION MODELS**
1027

1028 Zheng et al. (2024), Ou et al. (2024), and Sahoo et al. (2024) noted that for masking diffusion, it is
1029 not necessary to pass t to the neural network – it has “time-invariant” parametrization. Zheng et al.
1030 (2024) suggests this makes masking models a fundamentally different object than other diffusion
1031 models: “we reveal that both training and sampling of [masked models] are theoretically free from the
1032 time variable, arguably the key signature of diffusion models, and are instead equivalent to masked
1033 models.” Our sufficient-statistic parameterization shows on the contrary that every diffusion model
1034 can be made time-invariant by a choice of parameterization, with masking as a special case.

1035 Does this suggest that every diffusion may perform as well as masking diffusion after this choice of
1036 parameterization? Amin et al. (2025) suggests that masking performs well not because of its choice
1037 of parameterization, but because of “schedule conditioning”.

1038 **Time-invariance is a function of parameterization:** Masking is time-invariant due to a choice of
1039 parametrization. To see this, imagine applying a time-dependent rotation to each x_t^d ; we are essentially
1040 performing the same diffusion but now must also pass t to q_θ so it can “undo” the transformation. The
1041 $\vec{\phi}$ can be thought of as automatically transforming x_t so F^d is independent of time in any diffusion
1042 model.

1043 **Masking uses SSP:** Indeed the SSP of masking diffusion, $\vec{\phi}(x_t^d, t) = \delta_{x_t}$ if $x_t \neq \text{mask}$ and
1044 $\vec{\phi}(x_t^d, t) = [\frac{1}{B}, \dots, \frac{1}{B}]$ otherwise, is exactly the canonical parametrization. Thus the time-invariance
1045 of masking isn’t special – rather masking’s most convenient parametrization happens to be the SSP.

1046 **E THEORETICAL RESULTS**
10471048 **E.1 MUTATION POPULATION DISCRETE DIFFUSION LOSS**
1049

1050 In this appendix we derive Alg. 3 by showing it is equivalent to Alg. 1. Namely, we assume $D = 1$
1051 and x_t is a sequence of length ζ and show

- 1052 • **Predict de-noised x_0 :** the target of $q_\theta(x_0 \mid x_t, t)$, $p(x_0 \mid x_t, t)$, only depends on the
1053 vectorized \vec{x}_t .
- 1054 • **Compute loss:** $L = \sum_{x' \neq x_t} \mathcal{L}_{x' \rightarrow x_t} \dot{\tau}_t \mathbb{D} \left(\frac{p(x' \mid x_0, t)}{p(x_t \mid x_0, t)} \middle\| \frac{p(x' \mid \tilde{x}_0, t)}{p(x_t \mid \tilde{x}_0, t)} \right)$ is equivalent to the form
1055 in Alg 3.

1056 Given prediction and loss computation only depend on \vec{x}_t , we can also replace sampling x_t with just
1057 sampling $\vec{x}_t \sim \text{Mult}(\zeta, \vec{x}_0^T e^{\tau_t \mathcal{L}}) / \zeta$, giving Alg. 3.

1058 **Predict de-noised x_0** Simply note

$$\begin{aligned}
 p(x_0 \mid x_t, t) &\propto p(x_0) p(x_t \mid x_0, t) \\
 &= p(x_0) \prod_{z=0}^{\zeta} (\vec{x}_0^T e^{\tau_t \mathcal{L}})_{x_t^{(z)}} \\
 &= p(x_0) \prod_{b=1}^B (\vec{x}_0^T e^{\tau_t \mathcal{L}})_b^{\zeta \vec{x}_{t,b}}.
 \end{aligned}$$

1059 **Compute loss** For sequences $x \neq x$ of length ζ which differ in exactly one position, say $x^{(z)} = b \neq$
1060 $b' = x'^{(z)}$, then $\mathcal{L}_{x \rightarrow x'} = \mathcal{L}_{b \rightarrow b'}$ and for every x_0

$$\frac{p(x' \mid x_0, t)}{p(x \mid x_0, t)} = \frac{\vec{x}_0 e^{\tau_t \mathcal{L}} \vec{b}'}{\vec{x}_0 e^{\tau_t \mathcal{L}} \vec{b}}.$$

1080 If x, x' differ in more than one position, then $\mathcal{L}_{x \rightarrow x'} = 0$. Call $x_t^{[z,b]}$ a sequence which has all the
 1081 same letters as x_t except has b in position z . Then calling $\vec{p} = \vec{x}_0^T e^{\tau_t \mathcal{L}}$ and $\vec{q} = \tilde{x}_0^T e^{\tau_t \mathcal{L}}$,
 1082

$$\begin{aligned} L &= \sum_{x' \neq x_t} \mathcal{L}_{x' \rightarrow x_t} \dot{\tau}_t \mathbb{D} \left(\frac{p(x' | x_0, t)}{p(x_t | x_0, t)} \middle\| \frac{p(x' | \tilde{x}_0, t)}{p(x_t | \tilde{x}_0, t)} \right) \\ &= \sum_{z=0}^{\zeta} \sum_{b' \neq x_t^{(z)}} \mathcal{L}_{b' \rightarrow x_t^{(z)}} \dot{\tau}_t \mathbb{D} \left(\frac{\vec{p}_{b'}}{\vec{p}_{x_t^{(z)}}} \middle\| \frac{\vec{q}_{b'}}{\vec{q}_{x_t^{(z)}}} \right) \\ &= \sum_b \#\{z | x_t^{(z)} = b\} \sum_{b' \neq b} \mathcal{L}_{b' \rightarrow b} \dot{\tau}_t \mathbb{D} \left(\frac{\vec{p}_{b'}}{\vec{p}_b} \middle\| \frac{\vec{q}_{b'}}{\vec{q}_b} \right) \\ &= \sum_{b' \neq b} \mathcal{L}_{b' \rightarrow b} \dot{\tau}_t \zeta \vec{x}_{t,b} \mathbb{D} \left(\frac{\vec{p}_{b'}}{\vec{p}_b} \middle\| \frac{\vec{q}_{b'}}{\vec{q}_b} \right). \end{aligned}$$

1094 E.2 PROOF OF GAUSSIAN CONVERGENCE

1095 Our formal statement of the theorem adds some mild positivity assumptions for τ, π and P_1 which
 1096 are satisfied by any reasonable choice of τ and almost every choice of \mathcal{L} . It is also more specific
 1097 about the limiting behaviour of \vec{x}_t^ζ in non-dominant eigenspaces: we also limit to Gaussian diffusion,
 1098 but with meaningless embeddings sampled from random Gaussian vectors independent of x_0 .
 1099

1100 Let us interpret the embedding Q_1 . In the case that \mathcal{L} is doubly stochastic, or reversible,
 1101 $\pi = [\frac{1}{B}, \dots, \frac{1}{B}]$ and \mathcal{L} is symmetric; in this case $Q_1 = \mathbf{j}_1 P_1$ is just the orthogonal projec-
 1102 tion onto the dominant eigenspace. In the more general case that \mathcal{L} satisfies detailed balance,
 1103 $(\text{diag}(\pi)^{1/2} \mathcal{L} \text{diag}(\pi)^{-1/2})_{ij} = \sqrt{\frac{\pi_i}{\pi_j}} \mathcal{L}_{ij}$ is symmetric so \tilde{Q}_1 is the orthogonal projection onto the
 1104 dominant eigenspace of the “symmetrized” generator.
 1105

1106 In more general cases, we don’t get a symmetrized operator or an orthogonal projection \tilde{Q}_1 , so
 1107 we must “correct” for this with the adjustment $(\tilde{Q}_1 \tilde{Q}_1^T)^{-1/2} \tilde{Q}_1$ which makes $Q_1^T Q_1$ an orthogonal
 1108 projection.

1109 **Theorem E.1.** (Formal statement and proof of Thm. 4.1) Call $-\lambda_1 > -\lambda_2 > \dots$ the negative
 1110 eigenvalues of \mathcal{L} and P_1, P_2, \dots the projections onto the corresponding left eigen-space. Without
 1111 loss of generality, assume $\lambda_1 = 1$. Assume $\dot{\tau}_t$ is bounded on every compact interval of $(0, 1)$,
 1112 $\pi_b > 0$ and $P_1 \vec{b} \neq 0$ for all b and $P_1 \vec{b} \neq P_1 \vec{b}'$ for any $b \neq b'$. For each ζ pick time dilation $\tau_t^\zeta =$
 1113 $\frac{1}{2} \log(\zeta e^{2\tau_t} - \zeta + 1)$ and rescale $\vec{x}_t^\zeta = \sqrt{\zeta - (\zeta - 1)e^{-2\tau_t}} (\vec{x}_t - \pi) / \sqrt{\pi}$. Define the embedding
 1114 into $\mathbb{R}^{\text{rank}(P_i)}$, $Q_i = \mathbf{j}_i (\tilde{Q}_i \tilde{Q}_i^T)^{-1/2} \tilde{Q}_i$ where $\tilde{Q}_i = \text{diag}(\pi)^{-1/2} P_i \text{diag}(\pi)^{1/2}$ and \mathbf{j}_i is any isometry
 1115 from $\text{Im}(\tilde{Q}_i) \rightarrow \mathbb{R}^{\text{rank}(P_i)}$.
 1116

1117 Fix an x_0 .

- 1118 • (Path convergence) Call $(\vec{z}_t)_{t=0}^1$ the paths with $\vec{z}_0 = Q_1(\vec{x}_0 / \sqrt{\pi})$ evolving under the
 1119 Ornstein-Uhlenbeck process

$$d\tilde{z}_\tau = -\tilde{z}_\tau d\tau + \sqrt{2} dW_\tau$$

1120 for a Brownian motion $(W_\tau)_{\tau=0}^\infty$ and call $\vec{z}_t = \tilde{z}_{\tau_t}$. Then $(Q_1 \vec{x}_t^\zeta)_{t \in (0,1)}$ converges in
 1121 distribution to $(\vec{z}_t)_{t \in (0,1)}$ in the sense of Lem. E.8.

- 1122 • (Convergence of non-dominant directions) The component of \vec{x}_t^ζ in $\text{Ker}Q_1$ is $\sum_{i>1} \tilde{Q}_i \vec{x}_t^\zeta$.
 1123 Each component $(Q_i \vec{x}_t^\zeta)_t$ also converges to a Gaussian diffusion independent of \vec{x}_0 with
 1124 modified time-dilation and scaling: call $(\tilde{z}_t)_{t=0}^1$ the paths with $\tilde{z}_0 \sim \mathcal{N}(0, I)$ independent of
 1125 x_0 evolving, forward and backward on $(-\infty, \infty)$, under the stationary Ornstein-Uhlenbeck
 1126 process

$$d\tilde{z}_\tau = -\tilde{z}_\tau d\tau + \sqrt{2} dW_\tau$$

1127 for a Brownian motion $(W_\tau)_{\tau=0}^\infty$ and call $\vec{z}_t = \tilde{z}_{\tau_t^{(i)}}$ where $\tau_t^{(i)} = \frac{\lambda_i}{2} \log(e^{2\tau_t} - 1)$. Then

$$((1 - e^{-2\tau_t})^{-1/2} Q_i \vec{x}_t^\zeta)_{t \in (0,1)} \rightsquigarrow (\tilde{z}_t)_{t \in (0,1)}.$$

1134 • Call the ELBO in Alg. 3

1135

$$1136 \quad L(\vec{x}_t^\zeta, t, \vec{x}_0, \tilde{x}_0) = \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \dot{\tau}_t^\zeta \zeta \vec{x}_{t,b_1}(\vec{x}_t^\zeta) \mathbb{D}(\hat{w}(x_0)_{b_2,b_1} || \hat{w}(\tilde{x}_0)_{b_2,b_1})$$

1137

1138 where $\vec{x}_{t,b_1}(\vec{v})$ is the inverse of the transform from \vec{x}_{t,b_1} to \vec{x}_{t,b_1}^ζ . Then, for all $\vec{v}, t, \vec{x}_0, \tilde{x}_0$

1140

$$1141 \quad L(\vec{v}, t, \vec{x}_0, \tilde{x}_0) \rightarrow \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} \|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2,$$

1142

1143 the ELBO in Alg. 2, which, in particular, is independent of the value of \vec{v} .

1144 *Proof.* We prove the convergence of paths using Lem. E.8 which makes use of standard techniques.
 1145 We break the proof up into four sections: the first three verify the conditions of Lem. E.8 and the last
 1146 shows the convergence of the ELBO.

1147 **Part 1. Convergence of Marginals:** Note

1149

$$\vec{z}_t \sim e^{-\tau_t} \vec{z}_0 + \sqrt{1 - e^{-2\tau_t}} \mathcal{N}(0, I).$$

1150

1151 We want to prove convergence to this quantity. Note, writing Mult for a multinomial distribution,

1152

$$1153 \quad \vec{x}_t^\zeta \sim \frac{\sqrt{\zeta - (\zeta - 1)e^{-2\tau_t}}}{\zeta} \left(\text{Mult}(\zeta, \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}) - \zeta \vec{\pi} \right) / \sqrt{\vec{\pi}}$$

1154

$$1155 \quad = (1 + o(1)) \sqrt{1 - e^{-2\tau_t}} \left(\zeta^{-1/2} (\text{Mult}(\zeta, \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}) - \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}) + \zeta^{1/2} (\vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}} - \vec{\pi}) \right) / \sqrt{\vec{\pi}}.$$

1156

1157 The second term is

1158

$$1159 \quad \sqrt{1 - e^{-2\tau_t}} \zeta^{1/2} (\vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}} - \vec{\pi}) = \sqrt{1 - e^{-2\tau_t}} \sum_i \zeta^{1/2} e^{-\lambda_i \tau_t^\zeta} P_i \vec{x}_0$$

1160

$$1161 \quad = \sum_i \left(\frac{\zeta (1 - e^{-2\tau_t})}{(\zeta (e^{2\tau_t} - 1) + 1)^{\lambda_i}} \right)^{1/2} P_i \vec{x}_0$$

1162

$$1163 \quad \rightarrow e^{-\tau_t} P_1 \vec{x}_0.$$

1164

1165 For the first term, we need a “uniform” central limit theorem as the underlying distribution changes
 1166 with ζ because of $\vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}$. Lem. E.9 shows that $\zeta^{-1/2} (\text{Mult}(\zeta, \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}) - \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}})$ approaches
 1167 $\mathcal{N}(0, \text{diag}(\vec{p}_t) - \vec{p}_t \vec{p}_t^T)$ for $\vec{p}_t = \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}$, which itself approaches $\vec{\pi}$ as $\tau_t^\zeta \rightarrow \infty$. Therefore the first
 1168 term, divided by $\sqrt{\vec{\pi}}$ approaches

$$\sqrt{1 - e^{-2\tau_t}} \mathcal{N}(0, I - \sqrt{\vec{\pi}} \sqrt{\vec{\pi}}^T).$$

1170 Note $\tilde{Q}_i \sqrt{\vec{\pi}} = \sqrt{\vec{\pi}}^{-1} P_i \vec{\pi} = 0$ for each i and, for $i > 1$, $\tilde{Q}_i (P_1 \vec{x}_0 / \sqrt{\vec{\pi}}) = \sqrt{\vec{\pi}}^{-1} P_i P_1 \vec{x}_0 = 0$.
 1171 Therefore, as desired,

1174

$$1175 \quad Q_1 x_t^\zeta \rightsquigarrow \sqrt{1 - e^{-2\tau_t}} \mathcal{N}(0, I) + e^{-\tau_t} \text{emb}(x_0),$$

1176

1177 and for $i > 1$,

$$(1 - e^{-2\tau_t})^{-1/2} Q_i x_t^\zeta \rightsquigarrow \mathcal{N}(0, I).$$

1178 **Part 2. Local uniform convergence of conditionals:** Note

1180

$$\vec{z}_t | \vec{z}_s \sim e^{-(\tau_t - \tau_s)} \vec{z}_s + \sqrt{1 - e^{-2(\tau_t - \tau_s)}} \mathcal{N}(0, I).$$

1181

1182 We want to prove convergence to this quantity. Note

1183

$$1184 \quad \vec{x}_t | \vec{x}_s \sim \sum_b \text{Mult}(\zeta \vec{x}_{s,b}, \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) / \zeta$$

1185

1186 where $\vec{x}_t = \sqrt{\pi} \circ \vec{x}_t^\zeta / \sqrt{\zeta - (\zeta - 1)e^{-2\tau_t}} + \pi$ are the “unscaled” versions of the vector and \vec{x}_s is
 1187 similar. It will be convenient below to extend this definition to \vec{x}_s^ζ for which $\zeta \vec{x}_{s,b}$ are not integers,
 1188 but which still satisfy $\sum_b \sqrt{\pi_b} \vec{x}_{t,b}^\zeta = 0$. To do so, we just round $\zeta \vec{x}_{s,b}$ down to $\lfloor \zeta \vec{x}_{s,b} \rfloor$.

1188 Fix \vec{v} . We now show $\vec{x}_t^\zeta | \vec{x}_s^\zeta = \vec{v} \rightsquigarrow \vec{z}_t | \vec{z}_s = \vec{v}$; a very similar argument also shows $\vec{x}_t^\zeta \rightsquigarrow \vec{z}_t$. Call \vec{x}^ζ
 1189 a variable distributed as $\vec{x}_t^\zeta | \vec{x}_s^\zeta = \vec{v}$, so, calling
 1190

$$1191 \quad 1192 \quad w_t^\zeta = \frac{\sqrt{\zeta - (\zeta - 1)e^{-2\tau_t}}}{\zeta}, \\ 1193 \quad 1194 \quad N_{s,b}^\zeta = \sqrt{\pi_b} \vec{v}_b / w_s^\zeta + \zeta \pi_b, \\ 1195 \quad 1196 \quad C_{t,b}^\zeta \sim \text{Mult} \left(\left\lfloor N_{s,b}^\zeta \right\rfloor, \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \right) \text{ independent across } b,$$

1197 then

$$1199 \quad 1200 \quad \vec{x}_t^\zeta \sim w_t^\zeta \left(\sum_b C_{t,b}^\zeta - \zeta \pi \right) / \sqrt{\pi} \\ 1201 \quad 1202 \quad = w_t^\zeta \left(\sum_b \left[(C_{t,b}^\zeta - N_{s,b}^\zeta \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) + N_{s,b}^\zeta (\vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} - \pi) \right] \right) / \sqrt{\pi}$$

1205 noting $\sum_b p_{t,b}^\zeta = \zeta$. This is exactly the “noise, signal” breakdown we had in the proof sketch.

1207 For the signal (second term), first note

$$1209 \quad 1210 \quad \sum_b \pi_b (\vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} - \vec{\pi}) = \vec{\pi}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} - \vec{\pi} = 0,$$

1212 so, ignoring the π term in $N_{s,b}^\zeta$ the second term is

$$1214 \quad 1215 \quad \frac{w_t}{w_s} \left(\sum_b \sqrt{\pi_b} \vec{v}_b (\vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} - \vec{\pi}) \right) / \sqrt{\pi} = \frac{w_t}{w_s} \left((\sqrt{\pi} \circ \vec{v})^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \right) / \sqrt{\pi} \\ 1216 \quad 1217 \quad = (1 + o(1)) \sum_i \left(\frac{1 - e^{-2\tau_s}}{1 - e^{-2\tau_t}} \right)^{(\lambda_i - 1)/2} e^{-\lambda_i(\tau_t - \tau_s)} \tilde{Q}_i \vec{v}.$$

1222 For the first term, we again apply Lem. E.9, noting $N_{s,b}^\zeta = (1 + o(1)) \zeta \pi_b$ to get

$$1224 \quad 1225 \quad \sum_b w_t (C_{t,b}^\zeta - N_{s,b}^\zeta \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) / \sqrt{\pi} \\ 1226 \quad 1227 \quad \rightsquigarrow \sqrt{1 - e^{-2\tau_t}} \sum_b \sqrt{\pi_b} \mathcal{N} \left(0, \text{diag}(\vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) - e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}^T} \vec{b} \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \right) / \sqrt{\pi} \\ 1228 \quad 1229 \quad = \sqrt{1 - e^{-2\tau_t}} \mathcal{N} \left(0, \text{diag}(\vec{\pi}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) - e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}^T} \text{diag}(\vec{\pi}) e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \right) / \sqrt{\pi} \\ 1230 \quad 1231 \quad = \sqrt{1 - e^{-2\tau_t}} \mathcal{N} \left(0, \text{diag}(\vec{\pi}) - \left(\sum_i e^{-\lambda_i(\tau_t^\zeta - \tau_s^\zeta)} P_i \right) \text{diag}(\vec{\pi}) \left(\sum_i e^{-\lambda_i(\tau_t^\zeta - \tau_s^\zeta)} P_i^T \right) \right) / \sqrt{\pi} \\ 1232 \quad 1233 \quad = \sqrt{1 - e^{-2\tau_t}} \mathcal{N} \left(0, I - \left(\sum_i e^{-\lambda_i(\tau_t^\zeta - \tau_s^\zeta)} \tilde{Q}_i \right) \left(\sum_i e^{-\lambda_i(\tau_t^\zeta - \tau_s^\zeta)} \tilde{Q}_i^T \right) \right).$$

1236 Therefore, as desired,

$$1239 \quad 1240 \quad Q_1 \vec{x}_t^\zeta | \vec{x}_s^\zeta = \vec{v} \sim e^{-(\tau_t - \tau_s)} Q_1 \vec{v} + \sqrt{(1 - e^{-2\tau_t}) \left(1 - \frac{1 - e^{-2\tau_s}}{1 - e^{-2\tau_t}} e^{-2(\tau_t - \tau_s)} \right)} \mathcal{N}(0, I) \\ 1241 \quad = \vec{v} \sim e^{-(\tau_t - \tau_s)} Q_1 \vec{v} + \sqrt{1 - e^{-2(\tau_t - \tau_s)}} \mathcal{N}(0, I)$$

and similarly

$$\begin{aligned}
(1 - e^{-2\tau_t})^{-1/2} Q_i \vec{x}_t^\zeta \mid \vec{x}_s^\zeta = \vec{v} &\sim \left(\frac{1 - e^{-2\tau_s}}{1 - e^{-2\tau_t}} \right)^{\lambda_i/2} e^{-\lambda_i(\tau_t - \tau_s)} ((1 - e^{-2\tau_2})^{-1/2} Q_i \vec{v}) \\
&+ \sqrt{1 - \left(\frac{1 - e^{-2\tau_s}}{1 - e^{-2\tau_t}} \right)^{\lambda_i} e^{-2\lambda_i(\tau_t - \tau_s)}} \mathcal{N}(0, I) \\
&= e^{-(\tau_t^{(i)} - \tau_s^{(i)})} ((1 - e^{-2\tau_2})^{-1/2} Q_i \vec{v}) \\
&+ \sqrt{1 - e^{-2(\tau_t^{(i)} - \tau_s^{(i)})}} \mathcal{N}(0, I)
\end{aligned}$$

Finally, convergence is clearly uniform for nearby \vec{v} using the uniformity of Lem. E.9.

Part 3. Tightness: Pick $s < t \in (0, 1)$.

$$\mathbb{E}\|\vec{x}_t^\zeta - \vec{x}_s^\zeta\|^2 = \mathbb{E}\|\mathbb{E}[\vec{x}_t^\zeta | \vec{x}_s^\zeta] - \vec{x}_s^\zeta\|^2 + \mathbb{E}\|\vec{x}_t^\zeta - \mathbb{E}[\vec{x}_t^\zeta | \vec{x}_s^\zeta]\|^2$$

The first term has, for each x_0 ,

$$\begin{aligned}
& \mathbb{E} \|\mathbb{E}[\vec{x}_t^\zeta | \vec{x}_s^\zeta] - \vec{x}_s^\zeta\|^2 = \mathbb{E} \|w_t(\vec{x}_s e^{(\tau_t^\zeta - \tau_s^\zeta)\mathcal{L}} - \vec{\pi}) / \sqrt{\pi} - \vec{x}_s^\zeta\|^2 \\
&= \frac{1}{\min_b \pi_b} \mathbb{E} \|w_t(\vec{x}_s e^{(\tau_t^\zeta - \tau_s^\zeta)\mathcal{L}} - \vec{x}_s) - (w_s - w_t)(\vec{x}_s - \vec{\pi})\|^2 \\
&\leq \frac{1}{\min_b \pi_b} \mathbb{E} \left(|w_t| \|\vec{x}_s e^{(\tau_t^\zeta - \tau_s^\zeta)\mathcal{L}} - \vec{x}_s\| + |w_s - w_t| \|\vec{x}_s - \vec{\pi}\| \right)^2 \\
&= \frac{1}{\min_b \pi_b} \mathbb{E} \left(|w_t| \|(\vec{x}_s - \vec{\pi})^T (I - e^{(\tau_t^\zeta - \tau_s^\zeta)\mathcal{L}})\| + |w_s - w_t| \|\vec{x}_s - \vec{\pi}\| \right)^2 \\
&\leq \frac{1}{\min_b \pi_b} \mathbb{E} \left(|w_t| (1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B}) \|\vec{x}_s - \vec{\pi}\| + |w_s - w_t| \|\vec{x}_s - \vec{\pi}\| \right)^2 \\
&= \frac{1}{\min_b \pi_b} \left(|w_t| (1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B}) + |w_s - w_t| \right)^2 \mathbb{E} \|\vec{x}_s - \vec{\pi}\|^2 \\
&\leq \frac{\zeta}{\min_b \pi_b} \left((1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B}) + \left| 1 - \frac{w_s}{w_t} \right| \right)^2 \\
&\quad \times \left(\mathbb{E} \text{TrCov}(\text{Mult}(\zeta, \vec{x}_0^T e^{\tau_s^\zeta \mathcal{L}} / \zeta) + \|\vec{x}_0^T e^{\tau_s^\zeta \mathcal{L}} - \vec{\pi}\|^2) \right) \\
&\leq \frac{1}{\min_b \pi_b} \left((1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B}) + \left| 1 - \frac{w_s}{w_t} \right| \right)^2 (1 + \zeta e^{-2\tau_s^\zeta}) \\
&\leq \frac{1}{\min_b \pi_b} \left((1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B}) + \left| 1 - \frac{w_s}{w_t} \right| \right)^2 \left(1 + \frac{1}{e^{2\tau_s} - 1} \right)
\end{aligned}$$

Now

$$\begin{aligned}
1 - e^{-(\tau_t^\zeta - \tau_s^\zeta)\lambda_B} &= 1 - e^{-2\lambda_B(\tau_t - \tau_s)} \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right)^{\lambda_B/2} \\
&\leq 1 - e^{-2\lambda_B(\tau_t - \tau_s)} \\
&\quad + 1 - \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right)^{\lambda_B/2}.
\end{aligned}$$

When $|\tau_s - \tau_t| < 1/4\lambda_B$

$$1 - e^{-2\lambda_B(\tau_t - \tau_s)} \leq 4\lambda_B(\tau_t - \tau_s) \leq 4\lambda_B|t-s| \sup_{u \in [s, t]} |\dot{\tau}_u|.$$

1296 Next note that if $\alpha \geq 1$, $x \mapsto 1 - x^\alpha$ has decreasing derivative, from 0 to $-\alpha$ on the interval $x \in [0, 1]$,
 1297 so, it is dominated on this interval by $\alpha(1 - x)$. If $\zeta > 1$,

$$\begin{aligned}
 1299 \quad 1 - \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right)^{\lambda_B/2} &\leq 1 - \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right)^{1 \vee (\lambda_B/2)} \\
 1300 \quad &\leq (1 \vee (\lambda_B/2)) \left(1 - \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right) \right) \\
 1301 \quad &\leq (1 \vee (\lambda_B/2)) \left(\frac{(e^{-2\tau_s} - e^{-2\tau_t})(1 - \zeta^{-1})}{1 - e^{-2\tau_t}} \right) \\
 1302 \quad &\leq \frac{1 \vee (\lambda_B/2)e^{-2\tau_s}}{1 - e^{-2\tau_t}} \left(1 - e^{-2(\tau_t - \tau_s)} \right) \\
 1303 \quad &\leq \frac{4 \vee (2\lambda_B)e^{-2\tau_s}}{1 - e^{-2\tau_t}} |t - s| \sup_{u \in [s, t]} \dot{\tau}_u
 \end{aligned}$$

1312 Finally

$$1313 \quad 1 - \frac{w_s}{w_t} = 1 - \left(\frac{1 - e^{-2\tau_s}(1 - \zeta^{-1})}{1 - e^{-2\tau_t}(1 - \zeta^{-1})} \right)^{1/2}.$$

1316 which is similar to above.

1317 The second term has

$$\begin{aligned}
 1319 \quad \mathbb{E} \|\vec{x}_t^\zeta - \mathbb{E}[\vec{x}_t^\zeta | \vec{x}_s^\zeta]\|^2 &\leq \frac{2\zeta}{\min_b \pi_b} \sum_b \mathbb{E} \text{TrCov}(\text{Mult}(\zeta \vec{x}_{s,b}, \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}}) / \zeta | \vec{x}_t^\zeta) \\
 1320 \quad &= \frac{2}{\min_b \pi_b} \sum_b \mathbb{E} \vec{x}_{s,b}^\zeta \sum_{b'} (\vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \vec{b}') (1 - \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \vec{b}') \\
 1321 \quad &\leq \frac{2}{\min_b \pi_b} \left(\sum_{b \neq b'} \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \vec{b}' + \sum_b (1 - \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \vec{b}) \right) \\
 1322 \quad &= \frac{4}{\min_b \pi_b} \sum_b (1 - \vec{b}^T e^{(\tau_t^\zeta - \tau_s^\zeta) \mathcal{L}} \vec{b}) \\
 1323 \quad &\leq \frac{4B}{\min_b \pi_b} (1 - e^{-(\tau_t^\zeta - \tau_s^\zeta) \lambda_B})
 \end{aligned}$$

1326 which is bounded similar to the first term.

1333 **Part 4. Convergence of the ELBO:** Define $p = \vec{x}_0^T e^{\tau_t^\zeta \mathcal{L}}$. We've shown above that

$$1335 \quad p = \vec{\pi} + \sqrt{\frac{1}{\zeta(e^{2\tau_t} - 1)}} P_1 \vec{x}_0 + o(\zeta^{-1/2})$$

1338 so

$$1339 \quad \frac{p_{b_2}}{p_{b_1}} = \frac{\pi_{b_2}}{\pi_{b_1}} + \frac{1}{\pi_{b_1}} \sqrt{\frac{1}{\zeta(e^{2\tau_t} - 1)}} \left(\vec{b}_2 - \frac{\pi_{b_2}}{\pi_{b_1}} \vec{b}_1 \right)^T P_1 \vec{x}_0 + o(\zeta^{-1/2})$$

1342 and similar for q . Using a second-order Taylor expansion on \mathbb{D} , we get

$$1344 \quad \mathbb{D}(\hat{w}(x_0)_{b_2, b_1} || \hat{w}(\tilde{x}_0)_{b_2, b_1}) = \frac{1}{2} \frac{\pi_{b_1}}{\pi_{b_2}} \frac{1}{\pi_{b_1}^2 \zeta(e^{2\tau_t} - 1)} \left(\left(\vec{b}_2 - \frac{\pi_{b_2}}{\pi_{b_1}} \vec{b}_1 \right)^T P_1 (\vec{x}_0 - \tilde{x}_0) \right)^2 + o(\zeta^{-1}).$$

1347 Next note $\dot{\tau}_t^\zeta = \dot{\tau}_t \frac{e^{2\tau_t}}{e^{2\tau_t} - 1} + o(1)$. Finally note

$$1349 \quad \vec{x}_t(\vec{v}) = \sqrt{\pi} \circ \vec{v} / \sqrt{\zeta - (\zeta - 1)e^{-2\tau_t}} + \pi = \pi + o(1).$$

1350

Putting this together, we get

1351

$$L(\vec{v}, t, \vec{x}_0, \tilde{x}_0)$$

1353

$$\begin{aligned} &= \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \dot{\tau}_t^\zeta \zeta \vec{x}_{t, b_1}(\vec{v}) \mathbb{D} \left(\frac{p_{b_2}}{p_{b_1}} \middle\| \frac{q_{b_2}}{q_{b_1}} \right) \\ &= \dot{\tau}_t \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \frac{e^{2\tau_t}}{e^{2\tau_t} - 1} \pi_{b_1} \frac{1}{2\pi_{b_2} \pi_{b_1}} \frac{1}{(e^{2\tau_t} - 1)} \left(\left(\vec{b}_2 - \frac{\pi_{b_2}}{\pi_{b_1}} \vec{b}_1 \right)^T P_1(\vec{x}_0 - \tilde{x}_0) \right)^2 + o(1) \\ &= \frac{\dot{\tau}_t e^{2\tau_t}}{2(e^{2\tau_t} - 1)^2} \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \left(\left(\vec{b}_2 - \sqrt{\frac{\pi_{b_2}}{\pi_{b_1}}} \vec{b}_1 \right)^T \tilde{Q}_1 \left((\vec{x}_0 - \tilde{x}_0) / \sqrt{\vec{\pi}} \right) \right)^2 + o(1) \\ &= \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} \left\| \tilde{Q}_1 \left((\vec{x}_0 - \tilde{x}_0) / \sqrt{\vec{\pi}} \right) \right\|_\Sigma^2 + o(1) \end{aligned}$$

1355

where

1365

$$\Sigma = \frac{1}{2} \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \left(\vec{b}_2 - \sqrt{\frac{\pi_{b_2}}{\pi_{b_1}}} \vec{b}_1 \right) \left(\vec{b}_2 - \sqrt{\frac{\pi_{b_2}}{\pi_{b_1}}} \vec{b}_1 \right)^T.$$

1366

To solve Σ , we note

1367

$$\begin{aligned} \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} \vec{b}_2 \vec{b}_2^T &= \sum_{b_2} \vec{b}_2 \vec{b}_2^T \sum_{b_1 \neq b_2} \mathcal{L}_{b_2 \rightarrow b_1} = - \sum_{b_2} \vec{b}_2 \vec{b}_2^T \mathcal{L}_{b_2, b_2} \\ \sum_{b_1 \neq b_2} \frac{\pi_{b_2}}{\pi_{b_1}} \mathcal{L}_{b_2 \rightarrow b_1} \vec{b}_2 \vec{b}_2^T &= \sum_{b_1} \vec{b}_1 \vec{b}_1^T \sum_{b_2 \neq b_1} \frac{\pi_{b_2}}{\pi_{b_1}} \mathcal{L}_{b_2 \rightarrow b_1} = - \sum_{b_1} \vec{b}_1 \vec{b}_1^T \mathcal{L}_{b_1, b_1} \\ \sum_{b_1 \neq b_2} \sqrt{\frac{\pi_{b_2}}{\pi_{b_1}}} \mathcal{L}_{b_2 \rightarrow b_1} \vec{b}_2 \vec{b}_1^T &= \text{diag}(\sqrt{\vec{\pi}}) (\mathcal{L} - \text{diag}(\mathcal{L})) \text{diag}(1/\sqrt{\vec{\pi}}) \\ \sum_{b_1 \neq b_2} \sqrt{\frac{\pi_{b_2}}{\pi_{b_1}}} \mathcal{L}_{b_2 \rightarrow b_1} \vec{b}_1 \vec{b}_2^T &= (\text{diag}(\sqrt{\vec{\pi}}) (\mathcal{L} - \text{diag}(\mathcal{L})) \text{diag}(1/\sqrt{\vec{\pi}}))^T. \end{aligned}$$

1379

1380

So,

1381

$$\Sigma = -\frac{1}{2} \text{diag}(\sqrt{\vec{\pi}}) \mathcal{L} \text{diag}(1/\sqrt{\vec{\pi}}) - \frac{1}{2} (\text{diag}(\sqrt{\vec{\pi}}) \mathcal{L} \text{diag}(1/\sqrt{\vec{\pi}}))^T.$$

1383

In particular, since $\tilde{Q}_1^T \text{diag}(\sqrt{\vec{\pi}}) \mathcal{L} \text{diag}(1/\sqrt{\vec{\pi}}) = -\tilde{Q}_1^T$,

1384

$$\tilde{Q}_1^T \Sigma \tilde{Q}_1 = \tilde{Q}_1^T \tilde{Q}_1 = Q_1^T Q_1.$$

1385

This gives us

1386

$$L(\vec{v}, t, \vec{x}_0, \tilde{x}_0) \rightarrow \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} \|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2.$$

1387

1388

1389

1390

E.3 HOLLOW PARAMETERIZATION SOLVES GAUSSIAN ELBO SINGULARITY

1391

Here we show that the hollow parametrization introduced in Sec. 4.2 resolves the singularity of the Gaussian ELBO in Alg. 2 at $t \rightarrow 0^+$. Before going into the proof, let us give some intuition. Assume, x_0^d were distributed uniformly and independently. Then

1392

1393

1394

1395

$$p(x_0^d | x_t, t) \propto p(x_t^d | x_0^d, t) p(x_0^d | x_t^{-d}, t),$$

1396

1397

where x_t^{-d} includes all positions but d . However

1398

1399

1400

$$p(x_0^d | x_t^{-d}, t) = \int p(x_0^d | x_0^{-d}) dp(x_0^{-d} | x_t^{-d}, t) = \text{Uniform}.$$

1401

1402

1403

Therefore, we get $p(x_0^d | x_t, t) \propto p(x_t^d | x_0^d, t)$. At initialization, we can say our neural network $q_\theta(x_0^d | x_t^{-d}, t) \approx \text{Uniform}$, so,

$$q_\theta(x_0^d | x_t, t) \approx p(x_0^d | x_t, t).$$

1404 Therefore, **the hollow parametrization initializes the diffusion model near a uniform, site-wise**
 1405 **independent model.** The proof below involves a lot of algebra, but the basic intuition for why we
 1406 should not see singularities is that by initializing at a *valid* diffusion model, we get comparable
 1407 ELBOs.

1408 Again we assume $D = 1$ for simplicity as results are straightforward to generalize to higher D .
 1409

1410 **Proposition E.2.** *Assume emb is injective and τ_t is increasing and differentiable. Define*

$$1412 L = \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} \|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2,$$

1414 and the normalized vectors $\vec{\phi}(x_t, t) \propto p(x_t \mid x_0, t)$. For \tilde{x}_0 build using the hollow predictor $\tilde{x}_0 =$
 1415 $\vec{\phi}(x_t, t) \circ \vec{q}/\vec{\phi}(x_t, t)^T \circ \vec{q}$ for a vector t bounded away from 0 and ∞ ,
 1416

$$1417 0 < c = \min_b \vec{q}_b \leq \max_b \vec{q}_b < C < \infty,$$

1419 we have

$$1420 \mathbb{E}_{t, x_0, x_t} L < \infty.$$

1422 *Proof.* Note first

$$1423 \|\text{emb}(x_0) - \text{emb}(\tilde{x}_0)\|^2 \leq \|\text{emb}\|^2 \|\vec{x}_0 - \tilde{x}_0\|$$

1424 and, simplifying $\vec{\phi} = \vec{\phi}(x_t, t)$,

$$1426 \mathbb{E}_{x_0 \mid x_t} \|\vec{x}_0 - \tilde{x}_0\| = \|\vec{\phi} \circ \vec{p}/\vec{\phi}^T \vec{p} - \vec{\phi} \circ \vec{q}/\vec{\phi}^T \vec{q}\|$$

1428 for $\vec{p}_b = p(x_0)$.

1429 Call $b = \text{argmax}_{b'} \vec{\phi}_{b'}$, so

$$1431 \|\vec{\phi} \circ \vec{p}/\vec{\phi}^T \vec{p} - \vec{\phi} \circ \vec{q}/\vec{\phi}^T \vec{q}\| \leq \left(\frac{\vec{\phi}_b \vec{p}_b}{\vec{\phi}^T \vec{p}} - \frac{\vec{\phi}_b \vec{q}_b}{\vec{\phi}^T \vec{q}} \right)^2 + (1 - \vec{\phi}_b)^2 \sum_{b' \neq b} \left(\frac{\vec{p}_{b'}}{\vec{\phi}^T \vec{p}} - \frac{\vec{q}_{b'}}{\vec{\phi}^T \vec{q}} \right)^2$$

$$1432 = \left(\frac{1}{1 + \sum_{b' \neq b} \frac{\vec{\phi}_{b'} \vec{p}_{b'}}{\vec{\phi}_b \vec{p}_b}} - \frac{1}{1 + \sum_{b' \neq b} \frac{\vec{\phi}_{b'} \vec{q}_{b'}}{\vec{\phi}_b \vec{q}_b}} \right)^2$$

$$1433 + \left(\frac{C}{c} \right)^2 B(1 - \phi_b)^2$$

$$1434 \leq \left(1 - \frac{1}{1 + \frac{CB(1 - \phi_b)}{c}} \right)^2$$

$$1435 \leq \left(\frac{CB}{c} \right)^2 (1 - \phi_b)^2 + \left(\frac{C}{c} \right)^2 B(1 - \phi_b)^2.$$

1446 We've therefore bounded $\mathbb{E}_{t, x_0, x_t} L$ above by some constant times $\mathbb{E}_{t, x_0} \frac{\dot{\tau}_t e^{-2\tau_t}}{(1 - e^{-2\tau_t})^2} (1 - \max_b \vec{\phi}_b)^2$.
 1447

1448 Note without the hollow parameterization, we wouldn't have the $(1 - \max_b \vec{\phi}_b)^2$ term; we now show
 1449 this becomes small very fast as $t \rightarrow 0$ (because x_0 becomes “obvious” from x_t), cancelling out the
 1450 singularity.

1451 Next note, calling $b = \text{argmin}_{b'} \|\text{emb}(b') - \vec{x}_t\|$,

$$1452 (1 - \max_b \vec{\phi}_b)^2 = \left(1 - \frac{1}{1 + \sum_{b' \neq b} \exp(-\frac{1}{2(1 - e^{-2\tau_t})^2} (\|\text{emb}(b') - \vec{x}_t\|^2 - \|\text{emb}(b) - \vec{x}_t\|^2))} \right)^2$$

$$1453 \leq \sum_{b' \neq b} \exp \left(-\frac{1}{2(1 - e^{-2\tau_t})} (\|\text{emb}(b') - \vec{x}_t\|^2 - \|\text{emb}(b) - \vec{x}_t\|^2) \right),$$

1458 which is only large if \vec{x}_t is roughly equidistant to two potential x_0 . Call $\epsilon = \min_{b \neq b'} \|\text{emb}(b) - \text{emb}(b')\|/4$, so, if $\min_{b'} \|\text{emb}(b') - \vec{x}_t\| < \epsilon$ then, by the triangle inequality

$$\begin{aligned} 1461 \|\text{emb}(b') - \vec{x}_t\|^2 - \|\text{emb}(b) - \vec{x}_t\|^2 &\geq (\|\text{emb}(b) - \text{emb}(b')\| - \|\text{emb}(b) - \vec{x}_t\|)^2 \\ 1462 &\quad - \|\text{emb}(b) - \vec{x}_t\|^2 \\ 1463 &= \|\text{emb}(b) - \text{emb}(b')\| \\ 1464 &\quad - 2\|\text{emb}(b) - \text{emb}(b')\|\|\text{emb}(b) - \vec{x}_t\| \\ 1465 &\geq 16\epsilon^2 - 8\epsilon^2 = 8\epsilon^2. \end{aligned}$$

1467 Therefore, $\mathbb{E}_{t,x_t} \frac{\dot{\tau}_t e^{-2\tau_t}}{(1-e^{-2\tau_t})^2} (1 - \max_b \vec{\phi}_b)^2$ is bounded by

$$1469 B \mathbb{E}_t \frac{\dot{\tau}_t e^{-2\tau_t}}{(1-e^{-2\tau_t})^2} \left(\exp\left(-\frac{4\epsilon^2}{(1-e^{-2\tau_t})}\right) + p(\min_{b'} \|\text{emb}(b') - \vec{x}_t\| \geq \epsilon) \right).$$

1470 To deal with the first term, perform a change of variables $u = (1 - e^{-2\tau_t})^{-1}$, giving

$$1473 \mathbb{E}_t \frac{\dot{\tau}_t e^{-2\tau_t}}{(1-e^{-2\tau_t})^2} \exp\left(-\frac{4\epsilon^2}{(1-e^{-2\tau_t})}\right) = \frac{1}{2} \int_0^\infty du \exp(-4\epsilon^2 u) < \infty.$$

1475 For the second term, note

$$\begin{aligned} 1477 p(\min_{b'} \|\text{emb}(b') - \vec{x}_t\| \geq \epsilon) &\leq \sum_b p(x_0 = b) p(\|\mathcal{N}(0, (1 - e^{-2\tau_t}) I_{r \times r})\| > \epsilon) \\ 1478 &= p(\chi_r^2 / \epsilon^2 > 1 / (1 - e^{-2\tau_t})) \end{aligned}$$

1480 where χ_r^2 is a chi-squared distribution with r degrees of freedom. Finally, by the same change of
1481 variables u as above, we get

$$1483 \mathbb{E}_t \frac{\dot{\tau}_t e^{-2\tau_t}}{(1-e^{-2\tau_t})^2} p(\min_{b'} \|\text{emb}(b') - \vec{x}_t\| \geq \epsilon) = \frac{1}{2} \int_0^\infty du p(\chi_r^2 / \epsilon^2 > u) = \frac{1}{2} \mathbb{E} \chi_r^2 / \epsilon^2 < \infty.$$

1485 □

1487 E.4 EVERY EMBEDDING CAN BE INDUCED FROM SOME INFINITESIMAL GENERATOR

1488 Define an injective embedding $\text{emb} : \{1, \dots, B\} \rightarrow \mathbb{R}^r$ for some r . For an infinitesimal generator
1489 \mathcal{L} with a unique stationary distribution $\vec{\pi}$, define $Q_1 = j_1(\tilde{Q}_1 \tilde{Q}_1^T)^{-1/2} \tilde{Q}_1$, j_1 is some isometry,
1490 $\tilde{Q}_1 = \text{diag}(\vec{\pi})^{-1/2} P_1 \text{diag}(\vec{\pi})^{1/2}$ where P_1 is the projection onto the first left eigenspace. Is there a
1491 choice of \mathcal{L} such that $Q_1(\vec{x}_0 / \sqrt{\vec{\pi}_{x_0}}) = \text{emb}(x_0)$ for every x_0 ?

1493 If we restrict to $\mathcal{L} \in \mathbb{R}^{B \times B}$ then the answer is no. To see this, call $W \in \mathbb{R}^{B \times r}$ the matrix with
1494 $W\vec{b} = \text{emb}(b)$. Then, defining $D = \text{diag}(\vec{\pi})^{-1/2}$, we need $W^T W = D Q_1 Q_1^T D = D P D$ for
1495 some orthogonal projection P of rank r . The space $\{W^T W \mid W \in \mathbb{R}^{B \times r}\}$ generates all rank- r
1496 positive-semi-definite matrices, an algebraic variety of dimension $B \times r$. Meanwhile, P has $r(B - r)$
1497 degrees of freedom and D has $B - 1$, so $D P D$ generates an algebraic variety of dimension at most
1498 $B \times r - r^2 + B - 1$, which is less than $B \times r$ when r is large.

1499 If however we allow $r + 1$ “dummy” tokens, to let $\mathcal{L} \in \mathbb{R}^{(B+r) \times (B+r)}$, then the next proposition
1500 shows that the answer is yes. This demonstrates an important distinction between the design space of
1501 Gaussian and discrete diffusions: dummy variables which never appear in the data have no effect on
1502 the training of Gaussian diffusion, but can serve as transient states in discrete diffusion.

1503 **Proposition E.3.** *There is some infinitesimal generator $\mathcal{L} \in \mathbb{R}^{(B+r+1) \times (B+r+1)}$ such that
1504 $Q_1(\vec{x}_0 / \sqrt{\vec{\pi}}) = \text{emb}(x_0)$ for every $x_0 \in \{1, \dots, B\}$. There are infinitely many such generators.*

1506 *Proof.* Call $W \in \mathbb{R}^{B \times r}$ the matrix with $W\vec{b} = \text{emb}(b)$. Call $\Lambda = W^T W$ and without loss of
1507 generality, assume its first r rows are linearly independent. We split the proof into two parts: first
1508 we show that $Q_1^T Q_1$ can equal $D P D$ for any orthogonal projection matrix P with $P\sqrt{\vec{\pi}} = 0$ and
1509 $D = \text{diag}(\vec{\pi})^{-1/2}$ for any distribution π ; then we show that Λ can be written as the top $B \times B$
1510 submatrix of $D P D$ for some choice of D and P . This will show that there is a Q_1 such that
1511 $Q_1(\cdot / \sqrt{\vec{\pi}})$ is equivalent to emb up to isometry.

1512 **Part 1** Pick an orthogonal projection P and a distribution π such that $P\sqrt{\pi} = 0$ Call $\tilde{P} =$
 1513 $\text{diag}(\vec{\pi})^{-1/2}P\text{diag}(\vec{\pi})^{1/2}$ and
 1514

$$1515 \quad \mathcal{L}_\mu = -(I - \mathbb{1}\vec{\pi}^T) + \mu\tilde{P}.$$

1516 Clearly, for every μ , $\mathcal{L}_\mu \mathbb{1} = 0$ and $\vec{\pi}^T \mathcal{L}_\mu = 0$. Also, $\mathcal{L}_1 = -I + \mathbb{1}\vec{\pi}^T$, so for μ in a neighbourhood
 1517 of 1, \mathcal{L}_μ has positive entries off the diagonal – therefore it's an infinitesimal generator – and \mathcal{L}_μ has a
 1518 kernel of dimension 1 – so π is the unique stationary distribution of \mathcal{L}_μ .
 1519

1520 When μ is slightly greater than 0, the first eigenspace of \mathcal{L}_μ is that of \tilde{P} ; in particular, when \tilde{P} is a
 1521 projection, $P_1 = \tilde{P}^T$ so $\tilde{Q}_1 = P$. Note $Q_1^T Q_1 = \tilde{Q}_1^T (\tilde{Q}_1 \tilde{Q}_1^T)^{-1} \tilde{Q}_1$ which is the projection onto the
 1522 orthogonal complement of $\text{Ker} \tilde{Q}_1 = \text{Ker} P$; therefore it is equal to P .
 1523

1524 P and $\vec{\pi}$ are the same for any small value of μ , justifying the “infinitely many” proposal in the
 1525 statement.

1526 **Part 2** First we need to ensure the rare case that $\mathbb{1}$ is orthogonal to the top eigenspace of Λ does not
 1527 occur. To ensure this, simple add another embedding $\text{emb}(B+1) = \sum_b \vec{w}_b \text{emb}(b)$ for some \vec{w} to
 1528 get a new matrix Λ adding this extra token:
 1529

$$1530 \quad \tilde{\Lambda} := \begin{bmatrix} \Lambda & \Lambda \vec{w} \\ (\Lambda \vec{w})^T & \vec{w}^T \Lambda \vec{w} \end{bmatrix}$$

1533 Pick a \vec{v} so $\vec{v}^T \Lambda \vec{v} \neq 0$ and $\vec{w} = \eta \vec{v}$. As $\eta \rightarrow \infty$, $\tilde{\Lambda}/\eta^2 \rightarrow \vec{v}^T \Lambda \vec{v} (\vec{e} \vec{e}^T)$ where \vec{e} is the indicator vector
 1534 for position $B+1$. Therefore for some η , the top eigenvector approaches \vec{e} and is not orthogonal to
 1535 $\mathbb{1}$. Below we simply assume that $\mathbb{1}$ is not orthogonal to the top eigenspace of Λ .
 1536

1537 Decompose $\Lambda = \eta V \text{diag}(\vec{\lambda}/\eta) V^T$ for a matrix $V \in \mathbb{R}^{B \times r}$ with orthonormal columns, a vector $\vec{\lambda}$ of
 1538 eigenvalues, and a scalar $\eta > \max_i \lambda_i$ to be chosen later. For an orthonormal matrix $U \in \mathbb{R}^{r \times r}$ to be
 1539 chosen later, define

$$1540 \quad \tilde{V} = \begin{bmatrix} V \text{diag}(\vec{\lambda}/\eta)^{1/2} \\ U(I - \text{diag}(\vec{\lambda}/\eta))^{1/2} \end{bmatrix}$$

1542 so \tilde{V} has orthonormal columns. Define the orthogonal projection $P = \tilde{V} \tilde{V}^T$, so in particular, the
 1543 upper $B \times B$ submatrix of P is Λ/η .
 1544

1545 Finally we'll pick η and U to get a positive normalized vector $\vec{\pi}$ such that $\vec{\pi}_b = 1/\eta$ for all $b \in$
 1546 $\{1, \dots, B\}$ and $\tilde{V} \sqrt{\vec{\pi}} = 0$, completing the proof. Breaking $\vec{\pi}$ into its first B components and other r
 1547 components, $[\mathbb{1}/\eta, \vec{\pi}_2]$, we can write the equation $\tilde{V}^T \sqrt{\vec{\pi}} = 0$ as
 1548

$$1549 \quad \vec{\pi}_2 = -\eta^{-3/2} U^{-1} \text{diag} \left(\frac{\vec{\lambda}}{I - \vec{\lambda}/\eta} \right)^{1/2} V^T \mathbb{1}.$$

1553 We can always choose U to rotate to get $\vec{\pi}_2 = \mathbb{1}\eta'$ where

$$1554 \quad \eta' = \eta^{-3/2} \left\| \text{diag} \left(\frac{\vec{\lambda}}{I - \vec{\lambda}/\eta} \right)^{1/2} V^T \mathbb{1} \right\| / \sqrt{r}.$$

1558 Finally we need to solve for η in

$$1560 \quad 1 = B/\eta + \eta^{-3} \left\| \text{diag} \left(\frac{\vec{\lambda}}{I - \vec{\lambda}/\eta} \right)^{1/2} V^T \mathbb{1} \right\|^2.$$

1564 This is possible by the intermediate value theorem as the right hand side goes to 0 as $\eta \rightarrow \infty$ and
 1565 goes to ∞ as $\eta \rightarrow \max_i \lambda_i$ from above (as we've assumed $V_{:,i}^T \mathbb{1} \neq 0$ for i where λ_i is the maximum
 eigenvalue). \square

1566 E.5 PROOF OF WRIGHT-FISHER CONVERGENCE

1567 Define $\Delta^B \subset \mathbb{R}^B$ be the simplex, i.e. the set of non-negative vectors with components summing
 1568 to 1. Let $(\vec{x}_t^\zeta)_{t=0}^1$ be a stochastic process on $(\frac{1}{\zeta} \mathbb{Z}^B) \cap \Delta^B$ with $\vec{x}_0^\zeta = \vec{x}_0$ evolving with respect to
 1569 $\mathcal{L}^{\text{mut}} + \zeta \mathcal{L}^{\text{wf}}$ where

$$1571 \quad \mathcal{L}_{\vec{x}^\zeta \rightarrow \vec{x}'^\zeta}^{\text{wf}} = \frac{\zeta!}{\prod_b \zeta \vec{x}_b^\zeta!} \prod_b (\vec{x}_b^\zeta)^{\zeta \vec{x}_b'^\zeta} = \text{Mult}(\zeta, \vec{x}^\zeta)(\zeta \vec{x}'^\zeta),$$

1574 and, if $\vec{x}^\zeta, \vec{x}'^\zeta$ differ by one count $b \rightarrow b'$,

$$1576 \quad \mathcal{L}_{\vec{x}^\zeta \rightarrow \vec{x}'^\zeta}^{\text{mut}} = (\psi(\mathbb{1}\vec{\pi}^T - I))_{b,b'} = \psi \vec{\pi}_{b'}$$

1577 otherwise it's 0. Let $(\vec{z}_t)_t$ be a continuous Wright-Fisher process, that is, $\vec{z}_t = \vec{x}_0$ and

$$1579 \quad d\vec{z}_t = \frac{\psi}{2} (\vec{\pi} - \vec{z}_t) dt + \text{diag} \left(\sqrt{\vec{z}_t} \right) \left(I - \sqrt{\vec{z}_t} \sqrt{\vec{z}_t}^T \right) d\vec{W}_t \quad (5)$$

1581 where $(W_t)_t$ is a Brownian motion.

1582 E.5.1 CONVERGENCE OF THE FORWARD PROCESS

1583 We have convergence of the forward processes from previous literature.

1584 **Theorem E.4.** (Thm 1.1 Ethier and Kurtz (1986, Chapter 10)) Assume $\mathcal{L} = \psi \times (\mathbb{1}\vec{\pi}^T - I)$. In the
 1585 topology of convergence of compact sets, $(\vec{x}_t^\zeta)_{t \in [0,1]} \rightsquigarrow (\vec{z}_{\tau_t})_{t \in [0,1]}$.

1586 Note when $B = 2$, $(\vec{z}_t)_t$ is distributed as the Jacobi process described in Avdeyev et al. (2023).

1587 When $B > 2$ Avdeyev et al. (2023) considers $B - 1$ parallel Wright-Fisher processes with $B = 2$;
 1588 they then use a stick-breaking procedure to get an SDE on the simplex. This SDE is distinct to ours in
 1589 Eqn. 5 and is not symmetric to the order of letters – it requires us to specify a first letter, second letter,
 1590 and so on, which behave differently in paths $(x_t)_t$ – except for at stationary. We instead directly
 1591 consider the multi-allelic Wright-Fisher from Ethier and Kurtz (1986, Chapter 10) which is invariant
 1592 to permutations of letters in the alphabet and simplifies our derivations.

1593 E.5.2 CONVERGENCE OF THE ELBO

1594 Call $\vec{s}(\vec{v} | x_0) = \nabla \log p(z_t | x_0, t) |_{z_t=\vec{v}}$, and $\vec{s}(\vec{v} | \tilde{x}_0, t) = \sum_b \tilde{x}_{0b} \vec{s}(\vec{v} | x_0 = b, t)$.

1595 **Theorem E.5.** (Proof of Thm 5.1) Call the ELBO in Alg. 1

$$1596 \quad L^\zeta(\vec{x}^\zeta, t, x_0, \tilde{x}_0) = \sum_{\vec{x}'^\zeta \neq \vec{x}^\zeta} (\zeta \mathcal{L}_{\vec{x}'^\zeta \rightarrow \vec{x}^\zeta}^{\text{wf}} + \mathcal{L}_{\vec{x}'^\zeta \rightarrow \vec{x}^\zeta}^{\text{mut}}) \dot{\tau}_t \mathbb{D} \left(\frac{p(\vec{x}'^\zeta | x_0, t)}{p(\vec{x}^\zeta | x_0, t)} \middle\| \sum_b \tilde{x}_{0b} \frac{p(\vec{x}'^\zeta | x_0 = b, t)}{p(\vec{x}^\zeta | x_0 = b, t)} \right).$$

1597 For \vec{v} for which $\zeta \vec{v}$ are not integers, define $L(\vec{v}, t, x_0, \tilde{x}_0) = L^\zeta(\vec{x}^\zeta, t, x_0, \tilde{x}_0)$ for a \vec{x}^ζ nearest to \vec{v} .
 1598 Then, for all \vec{v} in the interior of Δ^B , $t \in (0, 1)$, $\tilde{x}_0 \in \Delta^B$, and x_0 ,

$$1600 \quad L^\zeta(\vec{v}, t, x_0, \tilde{x}_0) \rightarrow \frac{\dot{\tau}_t}{2} \|\vec{s}(\vec{v} | x_0, t) - \vec{s}(\vec{v} | \tilde{x}_0, t)\|_{\text{diag} \vec{v} - \vec{v} \vec{v}^T}^2$$

1601 **Proof.** **Overview of proof:** For notational convenience, define

$$1602 \quad \mathbb{D}(\vec{x}'^\zeta) = \mathbb{D} \left(\frac{p(\vec{x}'^\zeta | x_0, t)}{p(\vec{x}^\zeta | x_0, t)} \middle\| \sum_b \tilde{x}_{0b} \frac{p(\vec{x}'^\zeta | x_0 = b, t)}{p(\vec{x}^\zeta | x_0 = b, t)} \right).$$

1603 Much of the proof consists of checking uniform convergence and regularity conditions. The main
 1604 idea however is that when ζ is very large, the transition rates $\zeta \mathcal{L}_{\vec{x}'^\zeta \rightarrow \vec{x}^\zeta}^{\text{wf}} + \mathcal{L}_{\vec{x}'^\zeta \rightarrow \vec{x}^\zeta}^{\text{mut}}$ are only large for
 1605 \vec{x}'^ζ very close to \vec{v} . For those terms, we can perform a second order Taylor expansion

$$1606 \quad \mathbb{D}(\vec{x}'^\zeta) \approx \frac{1}{2} \|\vec{s}(\vec{v} | x_0, t) - \vec{s}(\vec{v} | \tilde{x}_0, t)\|_{(\vec{x}'^\zeta - \vec{v})(\vec{x}'^\zeta - \vec{v})^T}^2$$

1607 so

$$1608 \quad L^\zeta(\vec{v}, t, x_0, \tilde{x}_0) \approx \frac{\dot{\tau}_t}{2} \|\vec{s}(\vec{v} | x_0, t) - \vec{s}(\vec{v} | \tilde{x}_0, t)\|_{\Sigma}^2$$

1620 where $\Sigma = (\sum_{\vec{x}'_t \neq \vec{x}_t^\zeta} \zeta \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{wf}} + \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{mut}})(\vec{x}'_t^\zeta - \vec{v})(\vec{x}'_t^\zeta - \vec{v})^T$. Finally, we show
1621 $\sum_{\vec{x}'_t \neq \vec{x}_t^\zeta} \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{mut}}(\vec{x}'_t^\zeta - \vec{v})(\vec{x}'_t^\zeta - \vec{v})^T \rightarrow 0$, and through a central limit theorem,
1622 $\sum_{\vec{x}'_t \neq \vec{x}_t^\zeta} \zeta \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{wf}}(\vec{x}'_t^\zeta - \vec{v})(\vec{x}'_t^\zeta - \vec{v})^T \rightarrow \text{diag} \vec{v} - \vec{v} \vec{v}^T$.
1623

1624 Crucial to our proof is Lem. E.10 which states that for each \vec{x}_t^ζ in the interior of the simplex,
1625

$$1626 p(\vec{x}_t^\zeta | x_0, t) = \mathbb{E}_{m \sim A(\zeta)(\psi, \tau_t)} \mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta)$$

1627 for a distribution $A^{(\zeta)}(\psi, \tau_t)$ such that $A^{(\zeta)}(\psi, \tau_t)(m) \rightarrow A(\psi, \tau_t)(m)$ quickly for each $m \leq \zeta$ as
1628 $\zeta \rightarrow \infty$.
1629

1630 **Part 1: Eliminating the boundary** For a small $\epsilon > 0$, call Δ_ϵ^B the points in Δ^B that have an entry
1631 less than ϵ ; in particular, define $\epsilon < (4B)^{-2/\min_b \vec{v}_b}$. We first show that the contribution from the
1632 epsilon-boundary vanishes, i.e.
1633

$$1634 E(\zeta) = \sum_{\vec{x}'_t \notin \Delta_\epsilon^B} (\zeta \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{wf}} + \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{mut}}) \dot{\tau}_t \mathbb{D}(\vec{x}'_t^\zeta) \rightarrow 0.$$

1635 First note for large enough ζ , $\mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{mut}} = 0$ for all $\vec{x}'_t \notin \Delta_\epsilon^B$ and
1636

$$1637 \mathcal{L}_{\vec{x}'_t \rightarrow \vec{x}_t^\zeta}^{\text{wf}} \leq \left(\frac{\zeta}{\zeta \vec{x}_t^\zeta} \right) (\min_b \vec{x}_{t,b}^\zeta)^{\min_b \zeta \vec{x}_{t,b}^\zeta(\vec{v})} \leq C(\epsilon^{\min_b \vec{v}_b})^\zeta < C(4B)^{-\zeta}$$

1638 for some $C > 0$. Also note for any \vec{x}_t^ζ ,
1639

$$1640 1 \geq p(\vec{x}_t^\zeta | x_0, t) \geq p(A(\psi, \tau_t) = 0) \mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi})} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta)$$

1641 Taking the leading term of the divergence $\mathbb{D}(\vec{x}_t^\zeta)$,
1642

$$1643 E(\zeta) \lesssim \sum_{\vec{x}'_t \notin \Delta_\epsilon^B} (4B)^{-\zeta} \frac{-\log \mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi})} \text{Mult}(\zeta, \vec{p})(\vec{x}'_t^\zeta)}{\mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi})} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta)}.$$

1644 Now $\text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta) \geq (\min_b \vec{p}_b)^\zeta$ so the denominator is $\geq P_{\vec{p} \sim \text{Dir}(\psi \vec{\pi})} (\min_b \vec{p} \geq 1/2B) (2B)^{-\zeta}$.
1645 Therefore

$$1646 E(\zeta) \lesssim (4B)^{-\zeta} \sum_{\vec{x}'_t \notin \Delta_\epsilon^B} \frac{\zeta \log(2B)}{(2B)^{-\zeta}} \\ 1647 \lesssim 2^{-\zeta} \zeta \times \zeta^{B-1} \\ 1648 \rightarrow 0$$

1649 since there are $O(\zeta^{B-1})$ elements with $\vec{x}_t^\zeta \notin \Delta_\epsilon^B$.
1650

1651 **Part 2: Uniform convergence of the likelihood** Next we show $\frac{p(\vec{x}_t^\zeta(\vec{v}) | x_0, t)}{p(\vec{z}_t = \vec{v} | x_0, t)} = 1 + O(\zeta^{-1})$
1652 uniformly in Δ_ϵ^B . While something like this is implied by the convergence of the process from
1653 previous work, the fast uniform convergence will be important for our results below.
1654

1655 We will do so by showing the same property for each of the quotients
1656

$$1657 \frac{\mathbb{E}_{m \sim A(\zeta)(\psi, \tau_t)} \mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta(\vec{v}))}{\mathbb{E}_{m \sim A(\zeta)(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{x}_t^\zeta(\vec{v}))}, \frac{\mathbb{E}_{m \sim A(\zeta)(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{x}_t^\zeta(\vec{v}))}{\mathbb{E}_{m \sim A(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{v})}.$$

1658 The first quotient converges by the concentration of a Bayesian posterior (Miller, 2019). In particular,
1659 by the uniform Stirling approximation (Robbins, 1955) uniformly for $\vec{x}_t^\zeta \in \Delta_{\epsilon/2}^B$,
1660

$$1661 \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta) = (1 + O(\zeta^{-1})) \left(\prod_b \vec{x}_b^\zeta \right)^{-1/2} (2\pi\zeta)^{-(B-1)/2} e^{-\zeta \text{KL}(\vec{x}_t^\zeta || \vec{p})}.$$

We'd like to write this as approximately a normal density with mean \vec{x}^ζ and variance restricted to vectors summing to 0 $\{\vec{w} \in \mathbb{R}^B \mid \vec{w}^T \mathbb{1} = 0\}$. We can do so with a Taylor expansion; for \vec{p} near \vec{x}^ζ ,

$$\text{KL}(\vec{x}_t^\zeta \mid \vec{p}) = \frac{1}{2} \|\vec{x}_t^\zeta - \vec{p}\|_{\text{diag}(\vec{x}_t^\zeta)^{-1}}^2 - O(\|\vec{x}_t^\zeta - \vec{p}\|^3).$$

We can also write $\|\vec{x}^\zeta - \vec{p}\|_{\text{diag}(\vec{x}_t^\zeta)^{-1}}^2 = \|\vec{x}^\zeta - \vec{p}\|_{\Lambda^\dagger}^2$ where $\Lambda = \text{diag}(\vec{x}^\zeta - \vec{x}^\zeta \vec{x}^{\zeta T})$ has kernel orthogonal to vectors summing to 0 and

$$\Lambda^\dagger = \text{diag}(\vec{x}_t^\zeta)^{-1} - \frac{1}{B} \vec{x}_t^{\zeta-1} \mathbb{1}^T - \frac{1}{B} \mathbb{1} \vec{x}_t^{\zeta-1, T} + \frac{\sum_b \vec{x}_{t,b}^{\zeta-1}}{B^2} \mathbb{1} \mathbb{1}^T.$$

Note also that the pseudo-determinant of Λ is $\prod_b \vec{x}_b^\zeta$ so we can write

$$\text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta) = (1 + O(\zeta^{-1}))(1 - O(\zeta \|\vec{x}^\zeta - \vec{p}\|^3)) \mathcal{N}(\vec{x}_t^\zeta, \zeta^{-1} \Lambda).$$

This allows us to write

$$\frac{\mathbb{E}_{P(\vec{p})} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta)}{P(\vec{x}_t^\zeta)} = (1 + O(\zeta^{-1})) \frac{\mathbb{E}_{\vec{w} \sim \mathcal{N}(0, \Lambda)} P(\vec{x}_t^\zeta + \zeta^{-1/2} \vec{w})(1 - O(\|\vec{w}\|^3 / \zeta^{1/2}))}{P(\vec{x}_t^\zeta)}.$$

For a small $\delta < \epsilon/4$ call ϕ a C^∞ function with support in the δ -ball, and which is 1 in the $\delta/2$ -ball. We break the numerator up into

$$\begin{aligned} & \mathbb{E}_{\vec{w} \sim \mathcal{N}(0, \Lambda)} \phi(\zeta^{-1/2} \vec{w}) P(\vec{x}_t^\zeta + \zeta^{-1/2} \vec{w})(1 - O(\|\vec{w}\|^3 / \zeta^{1/2})) \\ & + \mathbb{E}_{\vec{w} \sim \mathcal{N}(0, \Lambda)} (1 - \phi(\zeta^{-1/2} \vec{w})) P(\vec{x}_t^\zeta + \zeta^{-1/2} \vec{w})(1 - O(\|\vec{w}\|^3 / \zeta^{1/2})). \end{aligned}$$

The second term is less than

$$\begin{aligned} \mathbb{E}_{P(\vec{p})} (1 - \phi(\vec{p} - \vec{x}_t^\zeta)) \mathcal{N}(0, \Lambda) (\sqrt{\zeta} (\vec{x}_t^\zeta - \vec{p})) & \leq \mathbb{E}_{P(\vec{p})} \mathbb{1}(\|\vec{x}_t^\zeta - \vec{p}\| > \delta/2) \mathcal{N}(0, \Lambda) (\sqrt{\zeta} (\vec{x}_t^\zeta - \vec{p})) \\ & \lesssim e^{-\zeta C \delta^2} \end{aligned}$$

for some C . For the first term, we can define $\tilde{P}(\vec{p}) = P(\vec{p}) \phi(\vec{p} - \vec{x}_t^\zeta)$ which is a compactly supported C^∞ function. Therefore

$$\begin{aligned} & \mathbb{E}_{\vec{w} \sim \mathcal{N}(0, \Lambda)} \tilde{P}(\vec{x}_t^\zeta + \zeta^{-1/2} \vec{w})(1 - O(\|\vec{w}\|^3 / \zeta^{1/2})) \\ & = \tilde{P}(\vec{x}_t^\zeta) + \nabla \tilde{P}(\vec{x}_t^\zeta)^T \mathbb{E}_{\vec{w} \sim \mathcal{N}(0, \Lambda)} (\zeta^{-1/2} \vec{w} + O(\zeta \|w\|^2)) (1 - O(\|\vec{w}\|^3 / \zeta^{1/2})) \\ & = P(\vec{x}_t^\zeta) + O(\zeta^{-1}). \end{aligned}$$

For the second quotient, note the denominator is bounded below for $\vec{v} \in \Delta_\epsilon^B$. By Lem. E.10

$$\begin{aligned} \sup_{\vec{v} \in \Delta_\epsilon^B} |\mathbb{E}_{m \sim A^{(\zeta)}(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{x}_t^\zeta(\vec{v})) - \mathbb{E}_{m \sim A(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{x}_t^\zeta(\vec{v}))| \\ \lesssim \zeta^{-1} \sum_m e^{-cm^2} \sup_{\vec{v} \in \Delta_{\epsilon/2}^B} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{v}). \end{aligned}$$

Since $\sup_{\vec{v} \in \Delta_{\epsilon/2}^B} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{v}) \leq (m + \psi)^\psi (1 - \epsilon/2)^{m-1}$ is eventually decreasing in m , the whole quotient is $O(\zeta^{-1})$. Next note the derivative of $\mathbb{E}_{m \sim A(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\cdot)$ is bounded on the compact set Δ_ϵ^B so

$$\begin{aligned} \sup_{\vec{v} \in \Delta_\epsilon^B} |\mathbb{E}_{m \sim A(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{x}_t^\zeta(\vec{v})) - \mathbb{E}_{m \sim A(\psi, \tau_t)} \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)(\vec{v})| \\ = O(\|\vec{x}_t^\zeta(\vec{v}) - \vec{v}\|) = O(\zeta^{-1}). \end{aligned}$$

Part 3: Taylor expansion of the divergence Given the calculation above, for ζ large enough and any $\vec{x}_t'^\zeta = \vec{x}_t^\zeta(\vec{v}) + O(\zeta^{-1/2})$, we can approximate

$$\begin{aligned} \frac{p(\vec{x}_t'^\zeta \mid x_0, t)}{p(\vec{x}_t^\zeta(\vec{v}) \mid x_0, t)} & = \exp \left(\log p(\vec{z}_t = \vec{x}_t'^\zeta \mid x_0, t) - \log p(\vec{z}_t = \vec{x}_t^\zeta(\vec{v}) \mid x_0, t) \right) + O(\zeta^{-1}) \\ & = 1 + \vec{s}(\vec{v} \mid x_0, t)^T (\vec{x}_t'^\zeta - \vec{v}) + O(\zeta^{-1}). \end{aligned}$$

1728 A second order Taylor expansion then gives
 1729

$$\begin{aligned} \mathbb{D}(\vec{x}_t'^\zeta) &= \frac{1}{2} \left((\vec{s}(\vec{v} \mid x_0, t) - \vec{s}(\vec{v} \mid \tilde{x}_0, t))^T (\vec{x}_t'^\zeta - \vec{v}) \right)^2 + o(\zeta^{-1}) \\ &= \frac{1}{2} \|\vec{s}(\vec{v} \mid x_0, t) - \vec{s}(\vec{v} \mid \tilde{x}_0, t)\|_{(\vec{x}_t'^\zeta - \vec{v})(\vec{x}_t'^\zeta - \vec{v})^T}^2 + o(\zeta^{-1}). \end{aligned}$$

1734 Given the calculation above, we note that since $\mathcal{L}_{\vec{x}_t'^\zeta \rightarrow \vec{x}_t^\zeta(\vec{v})}^{\text{mut}}$ is only non-zero for ζ values of $\vec{x}_t'^\zeta$ each
 1735 with $\vec{x}_t'^\zeta = \vec{x}_t^\zeta(\vec{v}) + O(\zeta^{-1})$,

$$\sum_{\vec{x}_t'^\zeta} \mathcal{L}_{\vec{x}_t'^\zeta \rightarrow \vec{x}_t^\zeta(\vec{v})}^{\text{mut}} \mathbb{D}(\vec{x}_t'^\zeta) = O(\zeta \times \zeta^{-2}) = o(1).$$

1739 This gives

$$L^\zeta(\vec{v}, t, x_0, \tilde{x}_0) = \frac{\dot{\tau}_t}{2} \|\vec{s}(\vec{v} \mid x_0, t) - \vec{s}(\vec{v} \mid \tilde{x}_0, t)\|_\Sigma^2 + o(1)$$

1740 where

$$\Sigma = \sum_{\vec{x}_t'^\zeta \in \Delta_\epsilon^B} \zeta \mathcal{L}_{\vec{x}_t'^\zeta \rightarrow \vec{x}_t^\zeta(\vec{v})}^{\text{wf}} (\vec{x}_t'^\zeta - \vec{v})(\vec{x}_t'^\zeta - \vec{v})^T.$$

1745 The proof is therefore finished if we show $\Sigma \rightarrow \text{diag}(\vec{v} - \vec{v}\vec{v}^T)$.

1746 **Part 4: Convergence of Σ** Note, by the uniform Stirling approximation (Robbins, 1955) uniformly
 1747 for $\vec{x}'^\zeta \in \Delta_\epsilon^B \setminus \{\vec{x}_t^\zeta\}$, the infinitesimal generator approximates a Normal distribution near \vec{v} ,

$$\begin{aligned} \mathcal{L}_{\vec{x}'^\zeta \rightarrow \vec{x}^\zeta(\vec{v})}^{\text{wf}} &= (1 + o(1)) \left(\prod_b \vec{v}_b \right)^{-1/2} (2\pi\zeta)^{-(B-1)/2} e^{-\zeta \text{KL}(\vec{v} \mid \mid \vec{x}'^\zeta)} \\ &= (1 + o(1) + O(\zeta \|\vec{v} - \vec{x}'^\zeta\|^3)) \mathcal{N}(\vec{v}, \zeta^{-1}(\text{diag}(\vec{v}) - \vec{v}\vec{v}^T)) (\vec{x}'^\zeta) \end{aligned}$$

1753 Noting that, by Pinsker's inequality, $\text{KL}(\vec{v} \mid \mid \vec{x}'^\zeta) \geq 2\|\vec{v} - \vec{x}'^\zeta\|_1^2 \geq \frac{2}{B}\|\vec{v} - \vec{x}'^\zeta\|^2$, for some very small
 1754 $\delta > 0$

$$\begin{aligned} \|\Sigma - (\text{diag}(\vec{v} - \vec{v}\vec{v}^T))\| &\lesssim \sum_{\vec{x}_t'^\zeta \in \Delta_\epsilon^B, \|\vec{x}_t'^\zeta - \vec{v}\| > \zeta^{-1/3-\delta}} \zeta^{-(B-1)/2+1} e^{-\zeta \text{KL}(\vec{v} \mid \mid \vec{x}'^\zeta)} \\ &\lesssim \zeta^{-(B-1)/2+B} e^{-\frac{2}{B}\zeta\zeta^{-2/3-2\delta}} \\ &= o(1) \end{aligned}$$

1760 \square

1762 E.6 WRIGHT-FISHER LOSS CALCULATIONS

1763 See the discussion above Prop. C.1 for definitions.

1764 **Proposition E.6.** *(Proof of Prop. C.1)*

$$p(\vec{x}_t \mid x_0, t) = \text{Dirichlet}(\pi\psi)(\vec{x}_t) G_\psi(\tau_t, x_0, \vec{x}_t).$$

1766 For $\vec{c}(\vec{x}_t) = \nabla \log \text{Dirichlet}(\pi\psi)(\vec{x}_t)$ which does not depend on x_0 ,

$$\vec{s} = \vec{s}(\vec{x}_t \mid x_0, t) = \vec{c}(\vec{x}_t) + \vec{x}_0 w(x_0)$$

1769 where

$$w(x_0) = \frac{e^{-\psi\tau_t/2}(\psi+1)}{\pi(x_0)} \frac{F_\psi(\tau_t, x_0, \vec{x}_t)}{G_\psi(\tau_t, x_0, \vec{x}_t)}.$$

1773 *Proof.* For $m_t \sim A(\psi, \tau_t)$,

$$\begin{aligned} p(\vec{x}_t \mid x_0, t) &= \mathbb{E}_{m_t} \text{Dirichlet}(\psi\pi + m_t x_0)(\vec{x}_t) \\ &= \prod_{b \neq x_0} \vec{x}_{t,b}^{\psi\pi_b - 1} \mathbb{E}_{m_t} \frac{\Gamma(\psi + m_t)}{\Gamma(\psi\pi_{x_0} + m_t) \prod_{b \neq x_0} \Gamma(\psi\pi_b)} \vec{x}_{t,x_0}^{\psi\pi_{x_0} + m_t - 1} \\ &= \frac{\Gamma(\psi)}{\prod_{b \in \mathcal{B}} \Gamma(\psi\pi_b)} \prod_{b \in \mathcal{B}} \vec{x}_{t,b}^{\psi\pi_b - 1} \mathbb{E}_{m_t} \frac{\Gamma(\psi\pi(x_0))\Gamma(\psi + m_t)}{\Gamma(\psi)\Gamma(\psi\pi_{x_0} + m_t)} \vec{x}_{t,x_0}^{m_t} \\ &= \text{Dirichlet}(\psi\pi)(\vec{x}_t) \mathbb{E}_{m_t} \frac{(\psi)_{(m_t)}}{(\psi\pi(x_0))_{(m_t)}} \vec{x}_{t,x_0}^{m_t}. \end{aligned}$$

1782 From Eqn. 5.2 of Tavaré (1984), we have
 1783

$$1784 \quad p(m_t = j) = \sum_{k=j}^{\infty} e^{-k(k+\psi-1)\tau_t/2} (-1)^k (-1)^j \frac{(2k+\psi-1)(j+\psi)_{(k-1)}}{j!(k-j)!}.$$

$$1785$$

$$1786$$

1787 He wrote, in Eqn. A5,

$$1788$$

$$1789 \quad \sum_{j=1}^{\infty} x^j p(m_t = j)$$

$$1790$$

$$1791 \quad = \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} (-1)^k (2k+\psi-1) \sum_{j=1}^k \frac{x^j}{j!} \frac{(j+\psi)_{(k-1)}}{(k-j)!(-1)^j}$$

$$1792$$

$$1793 \quad = \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} (-1)^k (2k+\psi-1) \sum_{j=1}^k \frac{x^j}{j!} \frac{(\psi)_{(j+k-1)}(-k)_{(j)}}{k! \psi_{(j)}}$$

$$1794$$

$$1795 \quad = \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} \frac{(-1)^k (2k+\psi-1)(\psi)_{(k-1)}}{k!} \sum_{j=1}^k \frac{x^j}{j!} \frac{(\psi+k-1)_{(j)}(-k)_{(j)}}{\psi_{(j)}}.$$

$$1796$$

$$1797$$

$$1798$$

$$1799$$

$$1800$$

1801 The last sum is then written as ${}_2F_1(-k, \psi+k-1; \psi; x) - 1$ for the hyper-geometric function ${}_2F_1$.
 1802 A very simple extension gives us

$$1803 \quad \sum_{j=1}^{\infty} \frac{(\psi)_{(j)}}{(\psi \pi_{x_0})_{(j)}} x^j p(m_t = j) = \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} \frac{(-1)^k (2k+\psi-1)(\psi)_{(k-1)}}{k!}$$

$$1804$$

$$1805 \quad \times ({}_2F_1(-k, \psi+k-1; \psi \pi_{x_0}; x) - 1).$$

$$1806$$

$$1807$$

1808 Including the $j = 0$ term, by Eqn 5.3 of Tavaré (1984), cancels out the -1 in the brackets above, so
 1809 our expectation

$$1810 \quad E_{m_t} \frac{(\psi)_{(m_t)}}{(\psi \pi_{x_0})_{(m_t)}} \vec{x}_{t,x_0}^{m_t} = 1 + \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} \frac{(-1)^k (2k+\psi-1)(\psi)_{(k-1)}}{k!}$$

$$1811$$

$$1812 \quad \times {}_2F_1(-k, \psi+k-1; \psi \pi_{x_0}; \vec{x}_{t,x_0})$$

$$1813$$

$$1814 \quad = G_{\psi}(t, x_0, \vec{x}_t).$$

$$1815$$

$$1816$$

Finally, using identities of the hypergeometric function,

$$1817 \quad \nabla_{\vec{x}_{t,x_0}} G_{\psi}(t, x_0, \vec{x}_t) = \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} \frac{(-1)^k (2k+\psi-1)(\psi)_{(k-1)}}{k!} \frac{-k(\psi+k-1)}{\psi \pi_{x_0}}$$

$$1818$$

$$1819 \quad \times {}_2F_1(-k+1, \psi+k; \psi \pi_{x_0} + 1; \vec{x}_{t,x_0})$$

$$1820$$

$$1821 \quad = \frac{1}{\psi \pi_{x_0}} \sum_{k=1}^{\infty} e^{-k(k+\psi-1)\tau_t/2} \frac{(-1)^{k-1} (2k+\psi-1)(\psi+k-1)(\psi)_{(k-1)}}{(k-1)!}$$

$$1822$$

$$1823 \quad \times {}_2F_1(-k+1, \psi+k; \psi \pi_{x_0} + 1; \vec{x}_{t,x_0})$$

$$1824$$

$$1825 \quad = \frac{1}{\psi \pi_{x_0}} \sum_{k=0}^{\infty} e^{-(k+1)(k+\psi)\tau_t/2} \frac{(-1)^k (2k+\psi+1)(\psi+k)(\psi)_{(k)}}{k!}$$

$$1826$$

$$1827 \quad \times {}_2F_1(-k, \psi+k+1; \psi \pi_{x_0} + 1; \vec{x}_{t,x_0})$$

$$1828$$

$$1829 \quad = \frac{e^{-\psi t/2} (\psi+1)}{\pi_{x_0}} \sum_{k=0}^{\infty} e^{-k(k+\psi+1)\tau_t/2} \frac{(-1)^k (\psi)_{(k)}}{k!} \frac{(2k+\psi+1)(\psi+k)}{(\psi+1)\psi}$$

$$1830$$

$$1831 \quad \times {}_2F_1(-k, \psi+k+1; \psi \pi_{x_0} + 1; \vec{x}_{t,x_0})$$

$$1832$$

$$1833 \quad = \frac{e^{-\psi t/2} (\psi+1)}{\pi_{x_0}} F_{\psi}(t, x_0, \vec{x}_t).$$

$$1834$$

$$1835$$

□

1836 E.7 PROOF OF SUFFICIENT STATISTICS
18371838 **Proposition E.7.** (Proof of Prop. 6.1) *There is a function F^d , depending on $p(x_0)$ and not on the
1839 diffusion process or t , such that*

1840
$$p(x_0^d | x_t^{-d}, t) = F^d(\vec{\phi}(\vec{x}_t^1, t), \dots, \vec{\phi}(\vec{x}_t^D, t)).$$

1841

1842 *Proof.*

1843
$$\begin{aligned} p(x_0^d | x_t^{-d}) &= \int p(x_0^d | x_0^{-d}) dp(x_0^{-d} | x_t^{-d}) \\ 1844 &= \frac{1}{p(x_t^{-d})} \int p(x_0^d | x_0^{-d}) p(x_t^{-d} | x_0^{-d}) dp(x_0^{-d}) \\ 1845 &= \frac{1}{p(x_t^{-d})} \int p(x_0^d | x_0^{-d}) \prod_{d' \neq d} p(x_t^{d'} | x_0^{d'}) dp(x_0^{-d}) \\ 1846 &= \frac{\prod_{d' \neq d} \sum_b p(x_t^{d'} | x_0^{d'} = b)}{p(x_t^{-d})} \int p(x_0^d | x_0^{-d}) \prod_{d' \neq d} \frac{p(x_t^{d'} | x_0^{d'})}{\sum_b p(x_t^{d'} | x_0^{d'} = b)} dp(x_0^{-d}) \\ 1847 &= E_{p(x_0^{-d})} \left(p(x_0^d | x_0^{-d}) \prod_{d' \neq d} \vec{\phi}(x_t^{d'})_{x_0^{d'}} \right) / E_{p(x_0^{-d})} \left(\prod_{d' \neq d} \vec{\phi}(x_t^{d'})_{x_0^{d'}} \right), \end{aligned}$$

1848
1849
1850
1851
1852
1853
1854
1855
1856

□

1857 E.8 LEMMAS
18581859 Our first lemma establishes conditions for convergence of paths using standard techniques inspired
1860 by arguments used throughout Ethier and Kurtz (1986) or Bass (2011) for example.
18611862 **Lemma E.8.** *Say $(\vec{x}_t^\zeta)_{t \in (0,1)}$ are Markov processes on \mathbb{R}^r for $\zeta = 1, 2, \dots$ and $(\vec{z}_t)_{t \in (0,1)}$ is another
1863 Markov process on \mathbb{R}^r . Say the following conditions are satisfied*
18641865 1. (Convergence of marginals) $\vec{x}_t^\zeta \rightsquigarrow \vec{z}_t$ for each t .
1866 2. (Local uniform convergence of conditionals) Conditional distributions exist such that for
1867 each $\vec{v} \in \mathbb{R}^r$, $s < t$, and bounded compactly supported measurable function f , there is an
1868 $\epsilon > 0$, such that
1869
$$\sup_{\|\vec{w} - \vec{v}\| < \epsilon} |\mathbb{E}_{\vec{x}_t^\zeta | \vec{x}_s^\zeta = \vec{w}} f - \mathbb{E}_{\vec{z}_t | \vec{z}_s = \vec{w}} f| \rightarrow 0.$$

1870
1871 3. (Tightness) For every $[a, b] \subset (0, 1)$, there are $\beta, \theta, M > 0$ such that for all $s, t \in [a, b]$,
1872
$$\sup_{\zeta > M} \mathbb{E} \|\vec{x}_s^\zeta - \vec{x}_t^\zeta\|^\beta < C(s - t)^\theta.$$

18731874 Then, with the topology of convergence on compact sets¹¹, the paths converge in distribution
1875

1876
$$(\vec{x}_t^\zeta)_{t \in (0,1)} \rightsquigarrow (\vec{z}_t)_{t \in (0,1)}.$$

1877

1878 *Proof.* Pick a compact set $[a, b] \subset (0, 1)$. We show $(\vec{x}_t^\zeta)_{t \in [a,b]} \rightsquigarrow (\vec{z}_t)_{t \in [a,b]}$. Say $(\vec{x}_t^{\zeta_m})_{t \in [a,b]}$ is a
1879 subsequence which doesn't enter a neighbourhood of $(\vec{z}_t)_{t \in [a,b]}$; we'll now show a contradiction.
1880 By Prokhorov's theorem, since it's tight by Assumption 3 and Thm. 8.8 of Ethier and Kurtz (1986,
1881 Chapter 3), it has a subsequence which converges to a process $(\vec{y}_t)_{t \in [a,b]}$. As we'll show below, for
1882 every set $a \leq t_1 < t_2 < \dots < t_m \leq b$, $(\vec{y}_t)_{t \in \{t_i\}_{i=1}^m} = (\vec{z}_t)_{t \in \{t_i\}_{i=1}^m}$. This must mean $(\vec{y}_t)_t = (\vec{z}_t)_t$
1883 by the Kolmogorov extension theorem, a contradiction.
18841885 What remains is to show, for $a \leq t_1 < t_2 < \dots < t_m \leq b$, $(\vec{x}_t^\zeta)_{t \in \{t_i\}_{i=1}^m} \rightsquigarrow (\vec{z}_t)_{t \in \{t_i\}_{i=1}^m}$. It is
1886 sufficient to prove that for any $t_1 < \dots < t_m$ and compactly supported continuous function on \mathbb{R}^r , h ,
1887

1888
$$Eh(\vec{x}_1^\zeta, \dots, \vec{x}_m^\zeta) \rightarrow Eh(\vec{z}_1, \dots, \vec{z}_m). \quad (6)$$

1889

¹¹This is a standard topology for these results. See for example Thm 1.1 of Ethier and Kurtz (1986, Chapter 10).

1890 By the Stone-Weierstrass theorem, each such h can be arbitrarily well approximated by product of
 1891 m univariate functions, so it is sufficient to consider $h(\vec{z}_1, \dots, \vec{z}_m) = \prod_{i=1}^m h_i(\vec{z}_i)$. Finally, by the
 1892 Markov property,

$$1893 \quad \mathbb{E}h(\vec{x}_1^\zeta, \dots, \vec{x}_m^\zeta) = \mathbb{E}_{\vec{x}_1^\zeta | \vec{x}_0^\zeta} h_1(\vec{x}_1^\zeta) \mathbb{E}_{\vec{x}_2^\zeta | \vec{x}_1^\zeta} h_2(\vec{x}_2^\zeta) \cdots \mathbb{E}_{\vec{x}_m^\zeta | \vec{x}_{m-1}^\zeta} h_m(\vec{x}_m^\zeta).$$

1896 We can call $\tilde{h}_{m-1}^\zeta(\vec{x}_{m-1}^\zeta) = h_m(\vec{x}_{m-1}^\zeta) \mathbb{E}_{\vec{x}_m^\zeta | \vec{x}_{m-1}^\zeta} h_m(\vec{x}_m^\zeta)$. By Assumption 2 $\tilde{h}_{m-1}^\zeta(\vec{x}_{m-1}^\zeta)$ con-
 1897 verges uniformly to $h_m(\vec{x}_{m-1}^\zeta) \mathbb{E}_{\vec{z}_m | \vec{z}_{m-1} = \vec{x}_{m-1}^\zeta} h_m(\vec{z}_m)$, a bounded function with compact support.
 1898 Therefore, to prove Eqn. 6 it is sufficient to show the result replacing h with $h_1 \times h_2 \times \cdots \times h_{m-2} \times$
 1899 \tilde{h}_{m-1} . By induction, we reach $h = \tilde{h}_1$ for which we get Eqn. 6 by Assumption 1. \square

1901 Our next Lemma is a non-asymptotic bound on the convergence of multinomials to Normal distri-
 1902 butions. It states that as long as $\zeta \rightarrow \infty$ and the probabilities don't get too low, we can bound the
 1903 expectation of a function by $O(\zeta^{-1/2})$.

1905 **Lemma E.9.** *Let $Y_\zeta \sim \text{Mult}(\zeta, \vec{p})$ for probability vector $\vec{p} \in \mathbb{R}^B$ with $\min_i p_i \geq c > 0$. Call
 1906 $Z_\zeta = \zeta^{-1/2}(Y_\zeta - \zeta p)$. For any bounded measurable function f ,*

$$1908 \quad |\mathbb{E}f(Z_\zeta) - \mathbb{E}f(Z)| = o_{c,B,f}(1)$$

1910 where $Z \sim \mathcal{N}(0, \text{diag}(\vec{p}) - \vec{p}\vec{p}^T)$ and the rate of decay $o_{c,B,f}(1)$ only depends on c, B , and f .

1912 *Proof.* For every ϵ , pick a compactly supported C^∞ function g_ϵ such that $\|g_\epsilon - f\|_\infty < \epsilon/2$, so

$$1914 \quad |\mathbb{E}f(Z_\zeta) - \mathbb{E}f(Z)| = \epsilon + |\mathbb{E}g_\epsilon(Z_\zeta) - \mathbb{E}g_\epsilon(Z)| = \epsilon + o_{c,B,g_\epsilon}(1)$$

1915 by Thm 1.3 of Gotze (1991). \square

1917 Our final lemma characterizes the distribution of the finite population Wright-Fisher process as
 1918 described in Sec. 5 and App. C.

1920 **Lemma E.10.** *For each \vec{x}_t^ζ in the interior of the simplex,*

$$1922 \quad p(\vec{x}_t^\zeta | x_0, t) = \mathbb{E}_{m \sim A(\zeta)(\psi, \tau_t)} \mathbb{E}_{\vec{p} \sim \text{Dir}(\psi \vec{\pi} + m \vec{x}_0)} \text{Mult}(\zeta, \vec{p})(\vec{x}_t^\zeta)$$

1924 for a distribution over the natural numbers $A(\zeta)(\psi, \tau_t)$ supported on $\{1, \dots, \zeta\}$ such that
 1925 $|A(\zeta)(\psi, \tau_t)(m) - A(\psi, \tau_t)(m)| = C\zeta^{-1} \exp(-C'm^2)$ for constants C, C' only depending on
 1926 ψ, τ_t , each m .

1928 *Proof.* This is standard in the population genetics literature. Define $A(\zeta)(\psi, \tau_t)(m)$ the probability
 1929 that m alleles survive backwards in the coalescent of population ζ up to time τ_t . Conditioned on
 1930 observing m individuals with allele x_0 , Hoppe (1984) showed that sampling more individuals from
 1931 the population is equivalent to sampling from a Pólya urn with allele probabilities $\psi \vec{\pi} + m \vec{x}_0$, giving
 1932 the Dirichlet multinomials.

1933 Tavaré (1984) shows $A(\psi, \tau_t)(m) = \lim_{\zeta \rightarrow \infty} A(\zeta)(\psi, \tau_t)(m)$ and for $m > 0$

$$1935 \quad A(\zeta)(\psi, \tau_t)(m) = \sum_{k=m}^{\zeta} e^{-k(k+\psi-1)\tau_t/2} (-1)^{k-m} \frac{(2k+\psi-1)(m+\psi)_{(k-1)}}{m!(k-m)!} \frac{(\zeta-k+1)_{(k)}}{(\zeta+\psi)_{(k)}}.$$

1938 Note

$$1939 \quad \frac{(m+\psi)_{(k-1)}}{(k-m)!} \leq \frac{(m+\psi)_{(k-1)}}{(k-1)!} \frac{(k-1)!}{(k-m)!} \leq k^{m+\psi} (m+\psi)^c k^m$$

1941 for some $c > 0$ and

$$1943 \quad \left| \frac{(\zeta-k+1)_{(k)}}{(\zeta+\psi)_{(k)}} - 1 \right| \lesssim k^2/\zeta.$$

1944 Therefore

$$\begin{aligned}
 1946 |A^{(\zeta)}(\psi, \tau_t)(m) - A(\psi, \tau_t)(m)| &\lesssim \sum_{k=m}^{\infty} e^{-k(k+\psi-1)\tau_t/2} (2k+\psi-1) k^{2m+\psi} \frac{m^c}{m!} \left(\frac{k^2}{\zeta} \wedge 1 \right) \\
 1947 &\lesssim \zeta^{-1} \frac{m^c}{m!} \sum_{k=m}^{\infty} e^{-k(k+\psi-1)\tau_t/2} k^{2m+\psi+3} \\
 1948 &\lesssim \zeta^{-1} \frac{m^c}{m!} e^{-m(m+\psi-1)\tau_t/2} \sum_{j=0}^{\infty} e^{-j(m+\psi-1)\tau_t/2} (j+m)^{2m+\psi+3}
 \end{aligned}$$

1953 and

$$\begin{aligned}
 1955 \sum_{j=0}^{\infty} e^{-j(m+\psi-1)\tau_t/2} (j+m)^{2m+\psi+3} &\leq \sum_{j=0}^m (j+m)^{2m+\psi+3} \\
 1956 &\quad + \sum_{j=m}^{\infty} e^{-j(m+\psi-1)\tau_t/2} (j+m)^{2m+\psi+3} \\
 1957 &\leq m(2m)^{2m+\psi+3} + \sum_{j=m}^{\infty} e^{-j(m+\psi-1)\tau_t/2} (2j)^{2m+\psi+3} \\
 1958 &\leq (2m)^{2m+\psi+4} + 2^{2m+\psi+3} \sum_{j=0}^{\infty} e^{-j(m+\psi-1)\tau_t/2} j^{2m+\psi+3} \\
 1959 &= (2m)^{2m+\psi+4} + 2^{2m+\psi+3} \sum_{j=1}^{\infty} e^{-(j - \frac{4}{\tau_t} \log j)(m+\psi-1)\tau_t/2} j^{5-\psi} \\
 1960 &\leq (2m)^{2m+\psi+4} + 2^{2m+\psi+3} \sum_{j=1}^{\infty} e^{-(j - \frac{4}{\tau_t} \log j)(\psi-1)\tau_t/2} j^{5-\psi} \\
 1961 &\lesssim (2m)^{2m+\psi+4} + 2^{2m+\psi+3}.
 \end{aligned}$$

□

1975 F EXPERIMENTAL DETAILS

1976 F.1 DNA

1977 We describe the experiments in Sec. 5.2.

1979 **Training and data** For all DNA models, we use the same base CNN model and optimizer hyper-
 1980 parameters used to train DDSM (Avdeyev et al., 2023) and Dirichlet flow matching (Stark et al.,
 1981 2024) with code from <https://github.com/jzhoulab/ddsm> used with compliance with
 1982 their licence and <https://github.com/HannesStark/dirichlet-flow-matching>
 1983 used with an MIT licence. We train our Wright-Fisher simplicial model on the FlyBrain enhancer
 1984 data from <https://zenodo.org/records/10184648>.

1985 We trained our model on an A100 80GB GPU over 11 h for 700 epochs like Avdeyev et al.
 1986 (2023). We trained a DDSM model using the code in <https://github.com/jzhoulab/ddsm>
 1987 and used a pre-trained flow-matching model from [https://github.com/HannesStark/](https://github.com/HannesStark/dirichlet-flow-matching)
 1988 [dirichlet-flow-matching](https://github.com/HannesStark/dirichlet-flow-matching).

1989 **Computational comparison** All three models we tested need to pass their noisy \vec{x}_t through a
 1990 neural network. We chose the same neural network for our diffusion model as used in (Avdeyev
 1991 et al., 2023) and (Stark et al., 2024). For a reasonably sized model, like the ESM model for protein
 1992 experiments, the neural network computations took 75% of our compute time on average, meaning
 1993 the overhead from sampling and loss computations cannot be more than 25%.

1994 However the DNA architecture was very small, at only 3 M parameters. For the DNA setting then
 1995 we precomputed and cached \vec{x}_t, F_ψ and G_ψ so that a majority of training time would come from the
 1996 neural network. Indeed our model took 3 hours on an A100 to train for 200 epochs, comparable to 7
 1997 hours on an A6000 for 200 epochs in Stark et al. (2024).

1998 **DNA accessibility (ATAC) predictor** To get accurate predictions of a position-resolution epigenetic marker for DNA-accessibility (a property one often wants to design), we use the CNN
 1999 bpAITAC model from Chandra et al. (2025) to predict chromatin accessibility traces with code
 2000 from <https://github.com/nuriachandra/bpAITAC>. The model is trained on embryonic
 2001 drosophila chromatin accessibility from the Calderon et al. (2022) developmental fly dataset 16-20
 2002 hour subset, with ATAC-seq reads combined across cell types, using held-out chromosome chr2L for
 2003 validation. bpAITAC was trained on a single NVIDIA TITAN RTX GPU (24GB) with early stopping
 2004 based on validation loss.
 2005

2006 bpAITAC produces two outputs: 1) total counts (a measure of regional accessibility), and 2) probability
 2007 distribution of the counts. The base-pair resolution counts prediction is easily computed by
 2008 multiplying the two outputs. The resulting per-base counts are modelled by a Poisson distribution.
 2009 That is, bpAITAC takes a one-hot-encoded sequence x_0 of length $D = 500$ and predicts a positive
 2010 250-dimensional vector that represents the predicted “accessibility-profile” in the centre 250 positions
 2011 of the sequence. For a target profile of 250 numbers, $\vec{y} \in \mathbb{N}^{250}$, we compute the probability by using
 2012 the bpAITAC predictions as means of independent Poisson distributions
 2013

$$2014 p(\vec{y}|x_0) = \prod_{d=1}^D \text{Poisson}(\vec{v}_d)(\vec{y}_d)$$

$$2015$$

2016 where $\vec{v} = \text{bpAITAC}(x_0)$ is the output of the predictor. Since bpAITAC is a neural network which
 2017 accepts one-hot-encoded x_0 , we may also pass x_0 which have each position $x_{0,d}$ lying on the
 2018 simplex.

2019 **Evaluation** We use the `ode_likelihood` function to evaluate the likelihood of the trained
 2020 diffusion model in the code of Avdeyev et al. (2023).

2021 We collected 100 trace predictions from Calderon et al. (2022) validation chromosome chr2L to use
 2022 as targets, picking the 100 peaks with the highest combined signal. For each target and model we
 2023 sampled 10 conditional samples using 1000 function evaluations. We sampled from our simplicial
 2024 diffusion model using the procedure described in App. C.4. To sample from the flow matching model
 2025 in Stark et al. (2024), we modified the `get_cls_score` function in their code to return the one-step
 2026 predictor that we used in our App C.4. Finally, we write custom code based on reversing an SDE to
 2027 sample from the simplicial diffusion model in Avdeyev et al. (2023). To do so, we note they perform
 2028 diffusion in a space with each position $\vec{v}_{t,d} \in [0, 1]^{B-1}$. We compute their prediction $\tilde{x}_0(\vec{v}_t)$ by
 2029 transforming the output of their neural network and then compute a prediction of $\nabla_{\vec{v}_t} \log p(y|\tilde{x}_0(\vec{v}_t))$
 2030 with a one-step estimator as in in our App C.4, and add it to their score for \vec{v} every step. We add this
 2031 modification into their function `Euler_Maruyama_Sampler`.

2032 To calculate $\tilde{x}_0(\vec{v}_t)$ we note they build a neural network to predict $\vec{s} = \nabla_{\vec{v}_t} \log p(\vec{v}_t)$ which equals
 2033

$$2034 \sum_b \tilde{x}_{0,b} \nabla_{\vec{v}_t} \log p(\vec{v}_t | x_0 = b)$$

$$2035$$

2036 for some implicit prediction $\tilde{x}_{0,b}$ which we must solve for. Now note, by the choice of the re-
 2037 verse stick-breaking procedure of Avdeyev et al. (2023), $\hat{U}_{b,b'} := (\nabla_{\vec{v}_t} \log p(\vec{v}_t | x_0 = b))_{b'} =$
 $\nabla_{v_{t,b'}} \log p(v_{t,b'} | v_{0,b'} = \delta_{b,b'})$ for $b' \leq b$ and $(\nabla_{\vec{v}_t} \log p(\vec{v}_t | x_0 = b))_{b'} = \nabla_{\vec{v}_{t,b'}} \log \text{Beta}(1, B -$
 $2038 b')(\vec{v}_{t,b'})$ otherwise. So, $\vec{s} = U\tilde{x}_0 = U_{:,:-1}\tilde{x}_{0,:-1} + U_{:,-1}(1 - \tilde{x}_{0,:-1}^T \mathbb{1}) = (U_{:,:-1} - U_{:,-1}\mathbb{1}^T)\tilde{x}_{0,:-1} +$
 $2039 U_{:,-1}$. Therefore we can solve for $\tilde{x}_{0,:-1}$ by solving this linear system.
 2040

2041 F.2 PROTEIN

2042 We describe the protein experiments in Sec. 6.2.

2043 **Training and data** For all protein models, we started from pre-trained ESM2 150M weights (Lin
 2044 et al., 2023) under an MIT license as in MDLM (Wang et al., 2024a). We trained with a learning
 2045 rate of 10^{-5} for an A100 80GB GPU over 48 h for 3 million sequences, substantially less than the
 2046 training budget of Wang et al. (2024a). We trained on UniRef50 (Suzek et al., 2007) data from
 2047 <https://zenodo.org/records/6564798>.
 2048

2049 **Evaluation** From each model we sampled 1000 sequences of length 200. We used a uniform grid of
 2050 100 points and integrated backwards, and we applied 4 corrector steps per predictor step as described
 2051 in Campbell et al. (2022). Then we predicted pLDDTs of sequences with Omegafold Wu et al. (2022)
 under the Apache-2.0 License, with 1 cycle for each sequence.

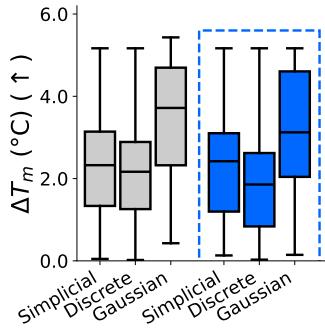
2052 F.3 LANGUAGE

2053 We describe the language experiments in Sec. 6.2.

2054 **Training and data** We used the same architecture and training settings
2055 as Lou et al. (2023), using their code at <https://github.com/louaaron/>
2056 Score-Entropy-Discrete-Diffusion under an MIT license. We trained our model on 4
2057 A100 80GB GPUs on 33 billion tokens taken from the lm1b dataset. We used a learning rate of
2058 3×10^{-4} and an EMA of 0.9999. Our diffusion transformer had an embedding dimension of 768
2059 with 12 layers and 12 attention heads. The Gaussian models used pre-trained BERT embeddings
2060 scaled by a factor of 8.
20612062 For our individual discrete and Gaussian language models, each device used a physical batch size of
2063 64 and took 2 gradient accumulation steps for an overall batch size of 512. For our unified model, we
2064 accumulated over Gaussian and discrete batches to get an overall batch size of 1024.2065 **Evaluation** We sample using 1000 iterations. Following Lou et al. (2023), we evaluate the sample
2066 quality of our models through the generative perplexity of their unconditional samples according to
2067 GPT2-large.
2068

2069 G SUPPLEMENTARY EXPERIMENTS

2070 G.1 ANTIBODY OPTIMIZATION DOWNSTREAM TASK

2071 We test our unified models from Sec. 6.2 on a different downstream task. Hie et al. (2023) suggested
2072 that generative protein models can be used to suggest mutations that improve the stability of antibody
2073 sequences. To test our diffusion model’s ability to successfully improve antibody properties, we
2074 perturb a parental VHH sequence by noising a UniRef50-trained diffusion model by t then denoising
2075 with 128 steps.¹² To emulate a realistic wet lab setting, we investigate sampling 50 unique single-
2076 and double-point mutants of the seed VHH by rejection sampling. We repeat this process 100 times,
2077 selecting the top resulting sequence from each repeat “experiment” according to a proprietary ther-
2078 mostability oracle. The amount of noising for each of the individual Gaussian, simplicial, and discrete
2079 diffusion models was determined by a hyperparameter sweep over $t \in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5]$,
2080 where the chosen hyperparameter gave the most unique sequences with fewer than or equal to 5
2081 mutations to the parental sequence. This hyperparameter was then shared with each sub-model of the
2082 unified model.
20832084 The thermostability oracle we used is an ensemble of 10 CARP/ByteNet regressors (Yang et al.,
2085 2024), pretrained on approximately 537,000 sequences from phage display, processed using Next
2086 Generation Sequencing (NGS), and 9556 T_m datapoints obtained from NanoDSF. The resulting
ensemble achieved a test cross-validated Spearman correlation of 0.72.2087 In Fig. 10 we see that unification does not substantially harm performance on this downstream task.
20882101 **Figure 10: The sufficient statistic parametrization enables a single model to perform competitive**
2102 **discrete, Gaussian, and simplicial optimization of antibodies.** Using our protein models from
2103 Fig. 7, we “denoise” antibody sequences and plot the predicted improvement in melting temperature
2104 in libraries of size 100.2105 ¹²Note that this follows established methods for ML-based antibody diversification as in Raghu et al. (2025).

2106 **G.2 FITTING IMAGE DATA: MNIST**
 2107 We perform the analysis of Fig. 7 for image data and find a similar result.
 2108
 2109 We evaluate our unified discrete diffusion framework on the MNIST dataset, consisting of 28x28
 2110 grayscale images. We discrete the pixel intensities to $N = 8$ levels using uniform quantization,
 2111 preserving the continuous structure of the token identities while reducing the computational cost. We
 2112 compare the performance of our single unified model (SSP) to the performance of three individually-
 2113 trained diffusion models: discrete, simplicial, and Gaussian.
 2114 All models use a U-Net backbone with an embedding size of 128, 4 downsampling/upsampling
 2115 blocks, and ReLU activations. Models are trained with the Adam optimizer with learning rate 0.001
 2116 and batch size 128 for 20 epochs. For Gaussian diffusion, we map each class index $x \in \{0, \dots, C\}$
 2117 to a 2D continuous embedding with a circular parameterization $\text{emb}(x) = (\text{angle} \cos(\theta), \sin(\theta))$
 2118 where $\theta = \frac{x}{C-1}\pi$. This embeddings encodes the similarity of different pixel values and ensures that
 2119 the resulting diffusion process closely resembles continuous diffusion. We found models with a 1-D
 2120 parameterization $\text{emb}(x) = 2 \times (\frac{x}{C-1}) - 1$ performed much worse.
 2121 We evaluate the model performance using validation likelihood, as shown in Figure 11. First, as in
 2122 Fig. 7 we find that the likelihoods between the unified model are competitive with the individually
 2123 trained models. In fact, we are even able to achieve slightly better performance for discrete and
 2124 Gaussian diffusion, perhaps because the parameterization is easier to learn from, or because of a
 2125 benefit from learning on diverse data.
 2126 As well, while we might expect Gaussian diffusion to achieve the best data fit due to the continuous
 2127 nature of the data, we see the opposite: among our individual models, Gaussian surprisingly achieves
 2128 the worst likelihood. This demonstrates the importance of considering multiple types of diffusion
 2129 paradigms depending on the downstream tasks, thereby motivating our approach of training a single
 2130 unified model.
 2131 We also generate 64 unconditional samples per model using 1,000 steps of ancestral sampling.
 2132 Through our visualizations in Figure 12, we see that the unified model does not lead to compromised
 2133 sample quality compared to individual models.
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

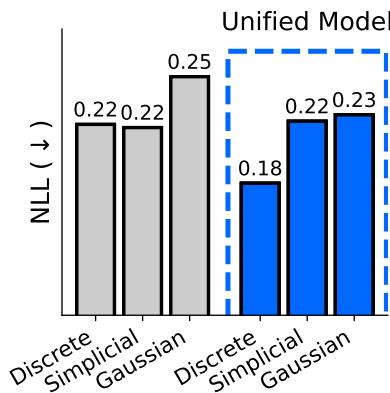


Figure 11: The sufficient statistic parametrization enables a single model to perform competitive discrete, Gaussian, and simplicial diffusion on MNIST. We train all models for 20 epochs.

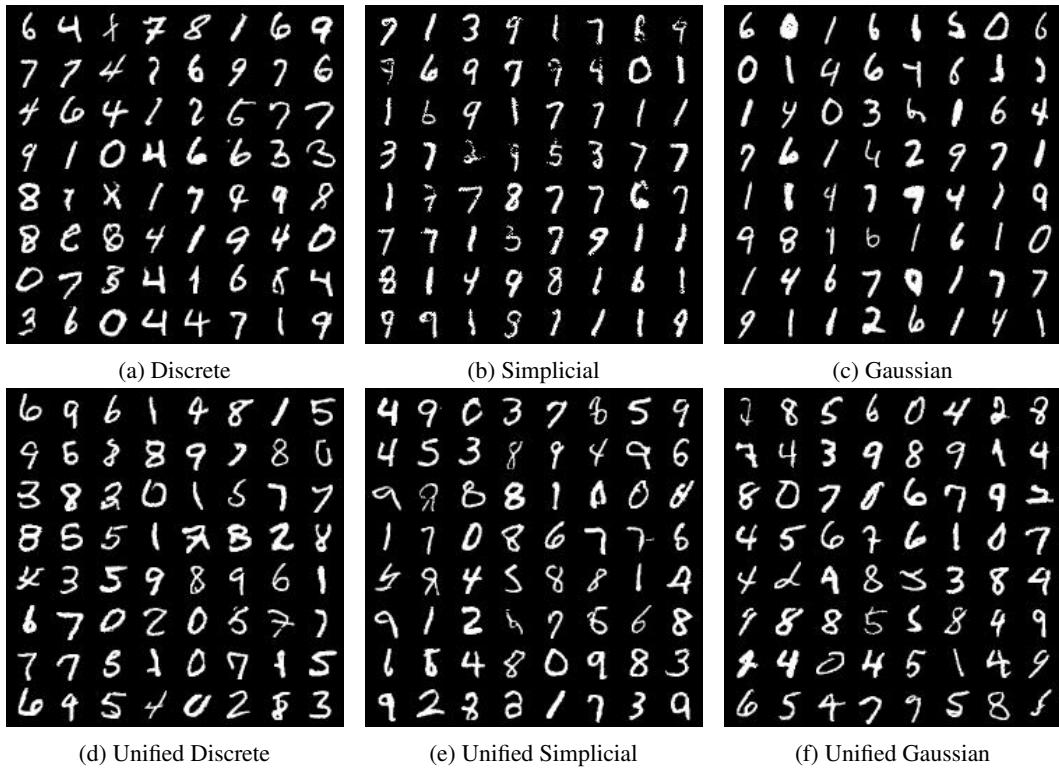


Figure 12: Unconditional MNIST samples.