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ABSTRACT

To model discrete sequences such as DNA, proteins, and language using diffusion,
practitioners must choose between three major methods: diffusion in discrete
space, Gaussian diffusion in Euclidean space, or diffusion on the simplex. Despite
their shared goal, these models have disparate algorithms, theoretical structures,
and tradeoffs: discrete diffusion has the most natural domain, Gaussian diffusion
has more mature algorithms, and diffusion on the simplex in principle combines
the strengths of the other two but in practice suffers from a numerically unstable
stochastic processes. Ideally we could see each of these models as instances of the
same underlying framework, and enable practitioners to switch between models
for downstream applications. However previous theories have only considered
connections in special cases. Here we build a theory unifying all three methods of
discrete diffusion as different parameterizations of the same underlying process:
the Wright-Fisher population genetics model. In particular, we find simplicial and
Gaussian diffusion as two large-population limits. Our theory formally connects
the likelihoods and hyperparameters of these models and leverages decades of
mathematical genetics literature to unlock stable simplicial diffusion. Finally, we
relieve the practitioner of balancing model trade-offs by demonstrating it is possible
to train a single model that can perform diffusion in any of these three domains at
test time. Our experiments show that Wright-Fisher simplicial diffusion is more
stable and outperforms previous simplicial diffusion models on conditional DNA
generation. We also show that we can train models on multiple domains at once
that are competitive with models trained on any individual domain.

1 INTRODUCTION

To generate high quality sequences conditioned on desired properties, practitioners build diffusion
models of language, DNA, and proteins (Sahoo et al.| |2024; [Sarkar et al., 2024} |Alamdari et al.|
2023} |L1 et al} 2024). These models corrupt each letter in a sequence — the “forward" process —
and train a model to reverse that corruption — the “backward” process. A model which has been
trained to de-noise can be used for high-quality conditional generation (Wang et al.l |2024b), for
optimization (Gruver et al.,[2023)), and myriad other downstream tasks (Luo et al., 2022; Baron et al.|
2025)).

A practitioner has three main choices of forward process (Fig.[Ib)), each with their own strengths:
1. Discrete: occurs in the most natural domain (Campbell et al., 2022).
2. Gaussian: has more mature sampling and training procedures (Dieleman et al., 2022).

3. Simplicial: in theory inherits the continuous algorithms of Gaussian diffusion while in a
natural space, but in practice suffers from numerical instability (Avdeyev et al.,|[2023).

Unfortunately, there is little theoretical infrastructure to compare these models, and thus practitioners
have little tacit knowledge to rely on when selecting or designing a model. This gap in understanding
is particularly evident in two basic comparison problems which have yet to be solved. First, despite
models from the three frameworks achieving similar likelihood values, there is a belief that the
“continuous-space likelihood is not directly comparable with discrete-space likelihood" (Avdeyev
et al.;2023). Second, forward processes in each of these models are specified by hyperparameters
with vastly different interpretations. It is unclear how to qualitatively compare the assumptions
embedded into each set of hyperparameters across models.
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Figure 1: Discrete, Gaussian, and Simplicial diffusion for discrete data are unified by Wright-
Fisher diffusion. (a) Wright-Fisher diffusion with population size ( = 6, showing mutation and
reproduction processes across generations. (b) The three diffusion methods emerge as different limits
of Wright-Fisher: discrete diffusion corresponds to ¢ = 1, while Gaussian and simplicial diffusion
arise as ( — oo with zero and non-zero reproduction rates.

Here we address these theoretical and practical challenges by unifying these streams with a process
from human population genetics — the Wright-Fisher (WF) model. Our contributions are as follows.

* We formally prove all three methods are instances of WF (Fig. [I). In particular discrete
diffusion corresponds to the WF model with a population size of 1, and simplicial and
Gaussian diffusion correspond to large population limits with and without reproduction.

* We use this connection to answer the two comparison questions above. Surprisingly, we
show that likelihoods can only be compared in some cases, depending on a seemingly
inconsequential parameterization choice introduced for only discrete diffusion models in
Austin et al.| (2021)) which we call the hollow parameterization.

* We apply our theory to explain and solve the instability of simplicial diffusion by leveraging
decades of mathematical genetics literature. We show that this stable simplicial diffusion is
superior in conditional generation of DNA.

* We leverage our theory to show that a particular parameterization choice — the sufficient-
statistic parameterization — allows one to train a single model that can perform diffusion
on all three domains at test time{ﬂ We show in experiment that models trained this way
are competitive with models trained on single domains. This removes the necessity for the
practitioner to choose a particular model before training.

2 RELATED WORK

We discuss past unification theories and attempts at stable simplicial diffusion. In App.[A]we discuss
related works in classical diffusion theory, and parameterizations of diffusion models.

Theories unifying discrete and continuous diffusion |Winkler et al.|(2024) indirectly used a result
from (Stonel [1963) to connect the special case of one-dimensional, unbiased discrete diffusion to
one-dimensional Gaussian diffusion. They use this observation to heuristically argue, or conjecture,
the convergence of the backwards processes as well. |Sahoo et al.| (2025) suggested that by taking
Gaussian diffusion and applying argmax, one recovers discrete diffusion. E] They used this insight
to answer the loss comparison problem by proving that the ELBO of discrete diffusion is always

'Of independent interest, it also explains the root of the noted “time-invariance” of masking diffusion and
extends this property to every diffusion model. We discuss this in App.

*Interestingly, Stone|(1963) also wrote discrete diffusion as the function of an underlying Gaussian diffusion.
However the function from Stone| (1963) was a path-dependent time-dilation rather than argmax.
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superior to that of continuous diffusion. Unfortunately, this is based on a mathematical error (details
in App. [B): by applying argmax to Gaussian diffusion one does not get a Markov process, a property
which was crucial to their proof of the loss comparison question. In our approach, we build a
mathematically rigorous foundation to compare these models.

Stable simplicial diffusion models |Richemond et al.|(2022) and |Avdeyev et al.[(2023) suggest
diffusion on a simplex using two processes used in finance: the “Cox-Ingersoll-Ross process”, and its
normalization onto the simplex, the “Jacobi process”. However these models struggle from numerical
instability. One solution to this instability is to essentially perform Gaussian diffusion (see App.[A).
Another is to build flow-matching models on the simplex (Stark et al.,[2024; [Tang et al., [2025} |Davis
et al.,2024). However these sacrifice the ability to straightforwardly calculate a likelihood and access
to many diffusion algorithms, such as classifier guidance.

3 BACKGROUND AND MOTIVATION

First we describe diffusion models for discrete data and the challenges unifying the frameworks.

3.1 DIFFUSION MODELS FOR DISCRETE DATA

We consider modelling a distribution p(z() over a discrete space of size B, and will extend to
sequences of discrete objects below. Our model will begin with a distribution that is easy to sample
from, ¢(z1), and then applies a stochastic process parametrized by 6 from time 1 to 0. This produces
a trajectory qo((7;)1_,) and we hope to pick 6 so that gg(zo) ~ p(zo).

Markov processes To generate training data to fit g ((z;);_, ), we take samples zg ~ p(zo) and
evolve it according to a Markov process to get a trajectory p((z¢);_,). We can train gs on these
trajectories by optimizing a negative ELBO

QG((xt)%:o)
p((2¢)i—olzo)

o ((24)i—o|71)
=—E (2 | l0g ——F————
P((¢);—olZ0) gp(($t)%=0|xo,x1)

—1log go(x0) < = Epy((a)i_, a0 108
(1)
+ KL(p(z1]x0)|g(z1)).

The time dilation function To make the second term of Eqn. [I|small we need p(z1|zo) = q(z1).
Conveniently, applying a Markov process to z usually leads to p(z¢|z¢) converging to a stationary
distribution p(z) as t — o0, a good choice for g(z1). However our ¢ is on the interval [0, 1], so
we compress [0, o0) into [0, 1]: we pick an increasing “time dialation” function 7 : [0, 1] — [0, o0)
and simulate x; so that it has had the Markov process applied to it for time time 7. In particular,
if 7y is very large, p(x1|xo) ~ p(ze) = ¢(x1). 7¢ is @ more convenient parametrization for our
presentation than equivalent functions 3; = 7¢,a; = exp(—m¢) in other works (Shi et al., [2024).
Picking 7 very large, the second term of the ELBO can be made arbitrarily small, so we leave it out
of the presentation below.

Matching forward and backward flow ¢y is usually parameterized to take x4, ¢ and predict the xg
that generated x;, that is, approximate p(zq | +,t); we represent this prediction o = gg (x|, t)
as a vector of probabilities over the B tokens »}, Zo; = 1. Some rearrangement then allows one to
rewrite the first term of Eqn. [T]as an expectation of a term L that can be interpreted as the divergence
between the “infinitesimal flow” forward p and backward gy at x:

By tnit(0,1) Ep(ay|zo) L(Tt, t, T0, To)-

Thus getting a stochastic estimate of the ELBO has 3 steps: (1) Sample noisy z; by simulating the
Markov process for time 7, (2) Predict de-noised xo with gg(z¢ | ¢, t), and (3) Estimate the ELBO
by computing the particular form of L.

Moving to multiple dimensions To model sequences of discrete objects zg = - - - zf’, we
simply apply the forward process to each position x¢ independently. “Sample noisy z;" remains
the same, repeated for every d. The “infinitesimal flow” for each position is also independent: the
“Estimate ELBO” step also remains the same, repeated for every d and then summed across all d.
Therefore, in the “Predict de-noised x” step we will predict 7 = g (28| x4, t) for each d.
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3.2 CHALLENGES COMPARING DOMAINS FOR DISCRETE DIFFUSION

Comparing diffusion models A practitioner much choose a forward process which will determine
how they train their diffusion model. For discrete diffusion, the forward process is mutation defined
with a rate matrix £; the form for L was derived in|Campbell et al|(2022). This gives Alg. E], where
Zp is the indicator vector for the token zq, D(A1[|A2) = A1 log i—; — A1 + Ao is the KL divergence
between two Poisson distributions, w(Zo) := >, Zopw(b), and 7; is the derivative of 7. For Gaussian
diffusion, the forward process is Brownian motion on embeddings emb(z() € R"; the form for L
was derived in Ho et al.| (2020). This gives Alg.[2} Now, how can a practitioner compare how well
each model fits its data, and how can they leverage their expert knowledge when designing their
forward process? Unfortunately there is little infrastructure for answering these questions.

Algorithm 1 ELBO for discrete diffusion Algorithm 2 ELBO for Gaussian diffusion
1: Sample ¢ ~ Unif(0, 1) 1: Sample ¢ ~ Unif(0, 1)
2: Sample noisy x;: 2: Sample noisy x;:
3: Sample z; ~ Categorical (FZ e™%) 3: Setx; = e "temb(xg) + /1 — e 27 N(0, )
4: Predict de-noised z: 4: Predict de-noised z:
5: Predict Zg = gg(xo|xt,t) 5: Predict Zg = gg(xo|xt,t)
6: Estimate ELBO: 6: Estimate ELBO:
7: w(b) = (bTe™E) (1 /b e )T 7. L= %Hemb(azo) — emb(Zo)|?
8 L= > Ly, 7D (0(0)bx, |[|0(Z0)bz,) 8

b#xs

Likelihood comparison We would like to compare the ELBOs E[ L] of discrete and Gaussian diffusion,
but the later are infinity due to a singularity as ¢t becomes smalé Practitioners must therefore choose
a minimum tmi Formally this is equivalent to estimating an ELBO for log p(z;,,, ) instead of
log p(x). However, p(zy,,,) is a continuous density, fundamentally a different object than the
probability of a discrete object p(z). Paradoxically, the values of the ELBOs of the two models are
often close suggesting they may nevertheless be formally comparable.

Hyperparameter comparison Discrete and Gaussian diffusion models are specified by hyperparame-
ters £ and emb with vastly different interpretations: a matrix whose entry £, 5, describes the rate
at which b; mutates to by, versus an embedding function emb that takes the alphabet into Euclidean
space R" for some r (we write emb(Z) as shorthand for )}, o semb(b)).

Stability of simplex diffusion Below we’ll also discuss simplicial diffusion which in principle
combines the combines the strengths of discrete and Gaussian diffusion. In practice, it is numerically
unstable and slow as Sample noisy z; involves “sampling from Jacobi diffusion processes [which] is
more expensive than commonly used SDEs”, and Estimate ELBO involves a calculation which “at
very small ¢ tends to become very large and cause numerical issues” (Avdeyev et al.| 2023).

Practical unification Currently, practitioners must commit to a gg(zo | x4, t) trained on one these
three modalities before training, restricting their access to downstream algorithms. Ideally they could
avoid making this choice.

4 UNIFYING DISCRETE AND GAUSSIAN DIFFUSION

To build the infrastructure for comparing domains for discrete diffusion, we unify discrete and
Gaussian diffusion in a broader framework. Our results lead to better understanding of loss and
hyperparameter comparisons. In the following section we extend our framework to simplicial
diffusion.

3To see this, note at initialization ||emb(2¢) — emb(&o)|? is roughly a constant, and for the classical choice
T = —% log(1 — t), the square error in Alg.[2|is weighted by 21%2, so the loss is 2 Sé t~2dt = oo; a different
choice of 7, only acts as a change-of-variables, and therefore cannot make the loss finite.

*Some discrete diffusion models also have a singularity at ¢ — 07, requiring one to specify a t,,;, (Campbell
et al., |2022; |Lou et al.l [2023). This is not the case for “schedule-conditioned” models, including masking,

partially explaining its popularity (Amin et al., 2025} |Shi et al.| [2024).
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Algorithm 3 ELBO for ( discrete diffusion

Sample ¢ ~ Unif(0,1)

Sample noisy z;:

Sample #; ~ Multinomial(¢, 2 e™*) /¢
Predict de-noised x:

Predict g = gg(xo | &, t)

Estimate ELBO:

B(b) = (bTem™L)(1/bT e L) T

o L :bZ;) Ly Te Ty D (W (20) b |10 (Z0) b )
75 /

A B

Figure 2: Discrete diffusion with a large popu-
lation converges to Gaussian diffusion. With
¢ = 1000, we show example trajectories (Z;);
that converge to approximate Gaussians near 7.

A S o

4.1 UNIFICATION RESULT

Our idea is to represent each dimension of a sequence with { copies to get a sequence of sequences.
ex. for ( = 4,29 = A|C|C|T is represented as AAAA | CCCC|CCCC|TTTT.

Then each letter in each sequence is evolved by the mutation matrix £. When { = 1 we get discrete
diffusion and we show that as ( — o0 we get Gaussian diffusion. Below we discuss the case where
x is a single letter / token, which can naturally be extended to a multi-dimensional diffusion model.

Z; on the simplex We will ultimately arrive at a Gaussian limit in Euclidean space, but we first

represent z;; on the simplex. Above, ; was one of B tokens; now it’s one of B¢ sequences of B

tokens x; = xgl) e xEO. It can be generated by sampling each xﬁz) ~ Categorical (FLe™*). In

App. [E.1]we note that the loss and target p(xo | 24, t) do not depend on the order of x,. Therefore
we can represent x; as a normalized vector of counts & ;, = #{b in x}/¢. In App. we derive the
ELBO, giving Alg. 3] differences to discrete diffusion in Alg.[T]are in blue.

Gaussian limit as ( — o0 The main idea of our proof below is that as { — o0, trajectories converge
quickly to 7, the stationary distribution of £, and behave like Gaussians near 7 because of the central
limit theorem (Fig.2). As ( — oo we will zoom further and further into the neighbourhood of 7
where the diffusion occurs — we move from diffusion on the simplex to diffusion in Euclidean space.
Our proof extends previous results in one-dimension (Stonel |1963), but uses more modern machinery;
interestingly, we see that in the multi-dimensional case, the relevant Gaussian diffusion occurs in a
subspace determined by the first eigenspace of L. E}

Theorem 4.1. (Formal statement and proof in App. Call0 > —\; > —Xg > ... the eigenvalues
of L and Py thelﬁrojection onto the left eigenspace corresponding to \1. Without loss of generality,

assume \i = For each ( pick time dilation Tf = %log (Ce_Q” -+ 1) and rescale ff =

¢ — (¢ —1)e2me(d, — T)/7A. Define the embedding into R™F1) Q; = j;(Q,QT)~12Q,
where Q1 = diag(7) /2 Pydiag(7)/? and i, is any isometry from Tm(Q;) — Rrank(P1),

When ¢ = 1 we get discrete diffusion: T = 7, and T% is only linearly transformed (%, — 7)/\/7.
When ( — oo, we get Gaussian diffusion in the first eigenspace:

* Only the first eigenspace has signal: the component of xf in KerQ)y becomes independent
of xg.

 The paths (Qlff )te(0,1) converge in distribution to paths from Gaussian diffusion with time
dilation 7, and embedding emb(z¢) = Q1 (Zo/V/7T).

* The ELBO in Alg.[3|converges to the ELBO in Alg. 2]

>This is analogous to asymptotic methods that zoom into a point in a bounded space to get a limit in its
unbounded tangent plane (ex. chapter 20 of [van der Vaart| (1998))

This assumption is for convenience. Rescale £ = ﬁﬁ and 7, = A\17¢ to get the same diffusion.
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Proof idea: As ( — o0, by the law of large numbers, ; approaches Zl e™* which itself goes to the
stationary distribution of £. We can therefore decompose

- - — < - o — <
Ty —T=72geE — T4+ 7 —TLeE.
signal noise

The “noise” term is Z; — EZ;. Since x; is an average of ¢ samples, by the central limit theorem, it is
approximately Gaussian with scale ¢~/ and independent of x(. The “signal” term therefore is what
allows us to predict xg.

The only relevant behaviour is that of the slowest-decaying eigenspaces of L: the top eigen-space
represents the convergence to 7 and cancels with —7, the next one is P; with eigenvalue —1, and all

others vanish quickly. Therefore the signal is approximately e P, %y. This means

—

1
7~ e P+ —N(0,X) for some .

Ve

Finally, choosing the right scaling and Tf gives us Gaussian diffusion. Most of the formal proof
involves checking regularity conditions. (]

4.2  APPLICATION: UNDERSTANDING COMPARISONS OF LOSSES AND HYPERPARAMETERS

Loss comparison Thm.[4.1|suggests that there is virtually no dif- c

ference to training a discrete diffusion model with ¢ = 101°° and Random
training Gaussian diffusion with Alg.[2Jon a computer, suggesting Hollow
their ELBOs are comparable. Yet the limiting Gaussian ELBO is {

infinite! Fig. 2| suggests why: paths from Z; have two phases, a

nearly deterministic phase at low ¢ (Fig[2]left), and then a random \s

phase (Fig[2]right). Diffusion models reversing these paths should
therefore go through a random phase, until p(xo | Z¢, t) becomes
obvious, and then trace a deterministic path back to . How-
ever, at initialization, xq is “never obvious” to the neural network Flg.ure _3: The hollow parame-
qo(zo | T4, ), leading to mismatches to the deterministic paths in terization leads to realistic re-
samples (Fig.[3]“Random"). As ¢ gets larger, the paths get more ~Verse path samples. ¢ = 300.
deterministic, causing the singularity in the limit.

A B

The practical solution is simple — weight the output of the neural network by the evidence for
each xg, go(xo | x4, t)ocp(xs | xo,t)qe(xo) Where p(x; | xo,t) “automatically handles” deciding
when z is obvious (Fig. [3]“Hollow”). This was suggested in the appendix of [Austin et al.| (2021)
as way to improve discrete diffusion models, but becomes important here as a way to build new
Gaussian diffusion models with formally comparable likelihoods’} |Amin et al. (2025) showed that in
higher dimensions this becomes equivalent to using the “hollow” predictorE] qo(zd | m¢, t)ocp(xd |
xd 1) qo(xd|x; %, t) where 2% is all positions except d. In App. we formally prove that the
hollow parametrization removes the singularity of the ELBO.

Hyperparameter comparison Thm.[4.1]gives us a formula for

ke mm Hyarophobic  emb determined by the slowest-decaying directions in £. App.

¢ } — g‘lzrrged also shows that every emb can be induced from some £. Remarkably,

“ | mm Aromatic this connection accommodates embeddings in different dimensions

§ gy | W Small R": r is determined by the dimension of the dominant eigenspace

Fe g g | = Other of £. In Fig. 4| we show emb for the BLOSUM stochastic processes

for amino acids, and see it clusters similar amino acids together. The
Figure 4: emb of amino practical implications are (1) one can sanity-check their designed
acids from BLOSUM L. L by plotting its induced embeddings, and (2) discrete diffusion
emb(zq) from Thm. for L offers a richer design space, as one can specify all the interacting
from [Amin et al.|(2025]). eigenspaces of L rather than just the dominant one, emb.

"Note the hollow parametrization is specific to discrete data where there are only finitely many possible zo.
8This does not require a change of architecture: the network can take in x; but must learn to disregard .
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5 UNIFYING SIMPLICIAL DIFFUSION

Now we add simplicial diffusion to our unification of discrete and Gaussian diffusion. Proving the
equivalence of the forward process: we add reproduction to our population of  letters and simply
refer to the well known result of [Kimura (1955) from mathematical genetics. We also derive new
results on the limit of the ELBO and explore our connection with theory of mathematical genetics;
this will allow us to address the instabilities that plague simplicial diffusion models.

5.1 UNIFICATION RESULTS

The Wright-Fisher model We now allow our population of ¢ to reproduce. The population is
swapped with a new generation at rate ¢ (that is, a new generation occurs at A7 ~ Exp(1)/¢)
and at each generation we create ¢ “children” which pick a parent uniformly at random. Between
generations, individuals also mutate according £ (Fig.[Ta). We now ask what happens when ¢ — o0.

The limit of p((x;);) [Kimura (1955) was the first to derive the ( — oo limit of the stochastic
process. Unlike the mutation-only case which zooms in to 7, this limiting distribution has paths that
travel throughout the simplex (Fig.[Tb). This limit, often itself called “Wright-Fisher diffusion” is
exactly the forward process in simplicial diffusion (Avdeyev et al.,2023)). Details are in App.
One biologically reasonable assumption past works make is a parent-independent mutation rate
matrix, that is, £ = 1 x (]17?T — I for stationary distribution 7 and mutation rate 1) > 0. This does
not restrict the design space of simplicial diffusion, which is specified by an intensity parameter 1)
and stationary distribution 7, so we make the same assumption.

The limit of the ELBO We derive the limit of the discrete diffusion ELBO. Remarkably, we get an
objective that matches “score functions” s'like that heuristically derived in|Avdeyev et al.|(2023).

Theorem 5.1. (Proof in App. As ¢ — oo, the discrete diffusion objective in Alg. [I| converges to
the quantity in line 9 of Alg.

The main idea of the proof is an application of a Taylor expansion and Stirling’s approximation; the
main challenge is handling of behaviour at the boundaries of the simplex and regularity conditions.

5.2 APPLICATION: FAST AND STABLE SIMPLICIAL DIFFUSION

We have unified simplicial diffusion with discrete and Gaussian diffusion, in particular allowing like-
lihood comparison, which will be crucial in the following section. Our unification also immediately
suggests a connection to the mathematical genetics literature. We now apply the solutions from that
literature to improve simplicial diffusion models. Many of the formulas are standard but long — we
save their statement and experimental validation to App.[Cl

Algorithm 4 ELBO for simplicial diffusion. Our changes to|Avdeyev et al.|(2023) are coloured.

Sample ¢ ~ Unif(0, 1)

Sample noisy x;:

Sample m ~ A(, 7;) with Alg.[5} if 7, < 0.05, use Alg.

Sample ¥; ~ Dirichlet(¢7 + mZy).

Predict de-noised x(:

Predict Zo = gg(zo | 24, 1)

Estimate ELBO:

Compute 5(Z; | zo,t) = Vg, log p(x¢|zo,t) with Eqn. 2]

L = % |5(% | xo,t) — 5(Z¢ | wo,t) zr (this is an ELBO); if 74 < 0.05, use Eqn.

W NHERN T

2
Hdiag(;ﬁr,)*;ﬂ

Sampling noisy z; |Avdeyev et al.[(2023) and |[Richemond et al.| (2022) sample z; by costly and
approximate simulation from a stochastic differential equation (SDE). Instead, the suggestively titled
paper “Exact simulation of the Wright-Fisher diffusion” (Jenkins and Spanol 2017) gives a fast
exact formula for the marginals ;. The algorithm samples Z; from a Dirichlet that is centred at the
stationary mutation distribution 7 when m = 0 and becomes more concentrated around the signal xg
when m is larger. m itself is an integer sampled from a distribution A(v), 7) that represents, going
back in time 7;, how many ancestors the population descend from — it is small when 7; is large, when
everyone descended from a handful of individuals from far back in time.
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Figure 5: Improved simplicial diffusion performs accurate conditional DNA generation. We
generate DNA samples of length 500 conditioned on accessibility with a classifier. (a) For an example
target, we plot predicted accessibility profiles at the centre 150 positions of 5 example samples from
each model. We smooth profiles with a bandwidth of 2. (b) For 1000 targets and 10 samples from
each model, we plot the error between the predicted and target profiles and its standard error.

Computing the loss For the loss,/Avdeyev et al.[(2023) derived a likelihood that involved calculating
the derivative the predictor gy (o | 2+, ) making it too expensive to train on. They instead suggest
training a heuristically motivated loss matching the vector § to a ground truth. In Thm. |5.1| we
recognize this loss as an ELBO and derive the appropriate scaling %+ and metric diag(7;) — 7T,

Low ¢ behaviour Both the simulation of A(v, 7¢) and the calculation of the gradients V, log p(x; |
x) involves an infinite series (Tavaré, |1984). Luckily the terms converge extremely fast. This is
not true however at low ¢, which is the primary cause of the instability of simplicial diffusion. This
instability is also well known in the genetics literature, with Gritfiths| (1984) emphatically stating that
using the infinite series at low ¢ “produces nonsense from a computer.”

The solution at low ¢ is to replace the series approximation, which gets worse with lower ¢, with a
central limit approximation for A (v, 1) (Griffiths, [1984; Jenkins and Spand, 2017) that improves
with lower ¢; this is analogous to how reflected diffusion models were made stable despite their
own infinite series expansion with the same problem |Luo et al.(2022). We picked the 7 < 0.05
threshold as recommended by [Jenkins and Spano|(2017). In App.[C.3|we describe how to use this
approximation to also stabilize the loss computation.

State of the art DNA generation conditioned on a classifier Simplicial diffusion models are state
of the art tools for generating DNA conditioned on high-dimensional epigenetic properties (Avdeyev
et al.l 2023)); however they have recently been surpassed by flow-matching models (Stark et al.|
2024)), which are more stable but sacrifice a closed-form ELBO and access to diffusion sampling
algorithms. Given our stability improvements above, we expect to be able to generate higher quality
sequences than previous methods. We fit the state of the art diffusion model (Avdeyev et al.l 2023
and flow-matching model (Stark et al.| 2024) to DNA data (B = 4) of length D = 500; then we
generate samples from these models conditioned on achieving target “DNA accessibility profiles”.

First we see our model leads to a much better fit of the data. The diffusion model from|Avdeyev et al.
(2023), was only able to achieve an average ELBO of 8 nats / position (12.7 before training), while a
trivial model which predict uniform letters in each position achieves 1.39. In contrast, our model
achieves an ELBO of 1.30. In Fig.[5|we also see our new model generates conditional samples with
profiles that much better match the target. Experimental details are in App. [F]

6 PRACTICAL UNIFIED DIFFUSION MODELS

Our results show that diffusion, Gaussian and simplicial diffusion are three views of the same process.
But which view should a practitioner choose for their particular downstream task? Unfortunately,
there is limited theoretical infrastructure we can use to answer such a question.

Instead our theory provides a practical solution: leveraging our finding that these methods have
comparable likelihoods, we show through a particular parameter choice (Fig. [6), one can train a
single neural network that can perform diffusion on any domain at test time. In App. [D|we also show
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Figure 7: The sufficient statistic parametrization enables a single model to perform competitive
discrete, Gaussian, and simplicial diffusion. We compare individual models for each modality
with a single unified model using the SSP. (a) We train on proteins and measure sample quality by
predicted protein fold-ability (pLDDT). Each model was trained for the same amount of time. (b) We
train on language and measure sample quality using the perplexity of a much larger language model.
Each model was trained for 33 epochs.

this parameterization will also allow us to make any diffusion model time-invariant, explaining and
generalizing a celebrated property of masking diffusion.

6.1 THE SUFFICIENT STATISTIC PARAMETERIZATION (SSP)

The goal of a diffusion model is to predict zd. To do so,

one must integrate over the unseen To Welghted by their Domain param. Unified param.
Discrete - -
likelihood of producing the data xt : x=B N ¢, 1)
Gaussian A
plat | 7%) = [ ptai | ol | 7). 5= [05,06,04) > g
Simplicial /1
%,=103, 0.6, 0.1] C

We can summarilze this ,“evidence” in the normalized vector
S, thoep(af | t,xf = b) (Fig.

Some algebra shows that ¢’s are sufficient statistics, that
is, they contain all relevant information about the diffusion
process and ¢, leaving a regression task that invariant to both.

Figure 6: The sufficient statistic
parameterization represents I,
from all diffusion models in the
same space.

Proposition 6.1. (Proof in App. @) There is a function 'Y, depending on p(x() and not on the
diffusion process or t, such that

— —

p(l‘g|x;d’t) ( (xtv )7' ’ (xt ’ ))

Therefore we can parametrize our neural network go (8 | 2%, 1) = (¢_>'(xt7 t),...,0(ZP, 1)) for
a neural network Féi that tries to learn the “universal” F'?.

6.2 APPLICATION: UNIFIED DIFFUSION MODELS

Practitioners must commit upfront to the domain their diffusion occurs. The SSP instead enables
training a single neural network that can perform diffusion on any domain at test time: as long the
target distribution p(z() remains constant the optimum F'¢ remains the same. Furthermore, we’ve
shown above that the ELBOs of each modality are comparable, so we can train Fjy by alternating
minimizing the ELBO of a different modality in each batch.

We train discrete, Gaussian, and simplicial diffusion models on proteins and compare to a single
model trained using the SSP which alternates between discrete, Gaussian, and simplicial training
steps. We trained our models to approach the performance of state-of-the-art protein diffusion model
DPLM (Wang et al.,[20244) in likelihoods (2.36) and a “foldability” metric for samples (45.2) (Amin
et al} [2025). In Fig.[7|we see that a single SSP model trained on proteins for 48 hours is competitive
in perplexity and sample quality with three single-domain models each trained for the same amount
of time. We perform a similar experiment for discrete and Gaussian language models (simplicial
diffusion models are challenging to scale to a large vocabulary size of B ~ 3 x 10%) and see similar
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results; we also see the unified model training can even slightly improve sample quality. We trained
our language models for the same amount of time as a state-of-the-art diffusion language model (Lou
et al.,2023) matching its likelihood (SEDD uniform has an NLL of 3.70). Experimental details are in
App. [F] another downstream task is tested in App.[G.I] and we also repeat these results on MNIST

images in App.
7 CONCLUSION

Our theoretical and practical unification developed foundations that we used to improve simplicial
diffusion and avoid the need to choose a specific model at train time. However, the theory suggests a
number of other directions we have not yet explored.

Notable omissions from our presentation are reflected diffusion, flow matching, masking diffusion,
and diffusion with insertions and deletions. The later two can likely be easily accommodated with
previous theories unifying masking and uniform diffusion on one hand (Amin et al.l |2025), and
substitution and insertion - deletion diffusion on the other (Johnson et al., 2021).

As well, our framework suggests new types of diffusion models “between” the three existing streams
of diffusion which we only use as a lens for understanding existing models. Implementing these
intermediate models may be of independent practical interest.

Finally, the SSP can be used to unify models beyond the three modalities. For instance it can be used
to train models across hyperparameter settings, or optimize hyperparameters without retraining. In
principle, the SSP can even be used to transfer a model to a modality it was not trained on.
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A EXTENDED RELATED WORK
We add more related work beyond those in Sec.[2]

Classical theories unifying discrete and continuous stochastic processes There is a long history
of deriving continuous limits of discrete processes, the “forward” processes of diffusion models.
Groundbreaking work by|Stone|(1963) derived Gaussian diffusion as a limit to biased one-dimensional
random walks. In one of the most celebrated results in mathematical genetics, Kimural(1955)) also
derived a continuous limit of the Wright-Fisher process with non-zero reproduction. These models
were originally developed to describe the stochastic fluctuations of allele frequencies, also called
genetic drift. We (1) apply these results to understand and improve diffusion models, (2) also show
convergence of the ELBO of diffusion models, and, to our knowledge, (3) derive a new result — the
multi-dimensional Gaussian-diffusion limit of Wright-Fisher with zero reproductions — demonstrating
previously un-characterized behaviour dependent on the eigenspace of the mutation operator. Results
(2) and (3) are what allow us to compare likelihoods and hyperparameters.

i

Parameterizations of discrete diffusion models In diffusion, one uses a neural network to “denoise’
sequences; we call the choice of inputs and outputs of these neural networks the “parameterization”.
A number of works suggest superficially distinct, but ultimately equivalent parameterizations (Camp+{
bell et al.| 2022} Lou et al.| [2023). |Austin et al.|(2021)) however suggested a distinct parametrization
for discrete diffusion models by scaling the output of the neural network to “automatically” incor-
porate the information about the noised token about that particular location; we call this choice the
“hollow” parametrization for reasons discussed below. Zheng et al.[(2024)), Ou et al.|(2024)), and
Sahoo et al|(2024) suggested that masking diffusion enables a special choice of “time-invariant”
parametrization; in App.|D|our theory shows on the contrary that every diffusion model can be made
time-invariant.

Gaussian diffusion which appears as simplicial diffusion |Han et al.[(2022); [ Mahabadi et al.
(2023); |Shabalin et al.| (2025)), and |Floto et al.|(2023)) suggest a stable diffusion model on the simplex
by applying softmax to Gaussian diffusion and using It6’s theorem. This parameterization is stable
because forward and backward diffusion can occur as Gaussian diffusion in the logit-space. [Lou
and Ermon| (2023) has a similar idea, swapping the softmax for an asymmetric transformation and
Gaussian diffusion with reflected Gaussian diffusion. With these simplifications however, the process
is exactly (reflected) Gaussian diffusion except the input to the neural network is transformed onto
a simplex; in particular, it doesn’t interact with the topology of the simplex. In other words, this
implements simplicial diffusion in the parametrization of the neural network, but not in the sampling
or loss computation.

Another unification theory |Li et al.[(2025) looked at Gaussian diffusion with a generalized noising
strategy; they noted a special case resembled masking diffusion. However the training procedure and
ELBO of this special case are distinct from standard masking diffusion (Shi et al., 2024)).

Diffusion models for discrete and sequential data |[Zhang et al.|(2024)) connect diffusion with the
evolution process to suggest an optimization algorithm, but do not formally establish connections with
biological evolution. In contrast, our work makes this connection explicit. Recent work has explored
various approaches to applying diffusion models to discrete domains: |Ejjkelboom et al.| (2024))
propose using Gaussian diffusion for categorical data by constraining the clean data distribution to
the simplex hyperplane and training using cross entropy, while L1 et al.|(2024) achieve state-of-the-art
results in large-scale DNA generation by combining autoregressive and discrete diffusion.

B MATHEMATICAL ERROR IN SAHOO ET AL. (2025)

In Theorem 3.1, |Sahoo et al.|(2025) shows that the ELBO of a discrete diffusion model is always
tighter than that of a Gaussian diffusion model. In its proof, with w; from Gaussian diffusion,
z = argmax(wy), and x = zy = wy, they state “Since the transition z; — z, is Markov, we get:
q(zs | we, z¢, ) = q(zs | 2t, 2)”. Putting aside the correctness of this statement, it is clear that the
proof as stated requires the Markov property of (z;);.

The way the Markov property is shown is as follows. They first define a discrete diffusion model, let’s
call this (Z;), such that Z, comes from the data distribution and Z evolves with respect to a uniform
forward process with rate parameter 5(¢) chosen such that the marginals match p(z;|z0) = p(Z:|20).
In Eqn. 29 they compute % p(2¢|20) and in Eqn. 32 they compute % p(Z¢|20) for all starting points
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and show they are identical. After noting the equivalence of equations 29 and 32, they state "This
pmf and the ODE are the unique signatures of a Uniform-state discrete diffusion process (Lou et al.,
2023; Schiff et al., 2025)." and from this conclude that the path distributions of (Z;); and (z;); are
equivalent, and in particular, that (z;); is Markovﬂ

However, despite a similar result for Markov chains (two Markov processes with identical semi-
groups are equivalent), p(2¢|20) = p(Z|Zo) and £p(2¢|20) = % p(Z|Z0) for all starting points is not
enough to conclude the identity of the path distributions p( zt t|z0 = p((Z:)¢|Z0). First note that

= L n(2]20) = 4 4 1(%|%0) is not an independent condition: it follows from p(z;|20) = p(Z:|Zo). Next
consider this counter example:

* Zp = 1 and (%) evolves by switching sign with rate 1. Therefore p(Z; = 0) = 1 — 1~ 2",

e zp =1 and (2¢): has a 50% chance to stay at 0 forever and a 50% chance to swap sign
at time — log U for a U ~ Uniform and never again. Therefore p(z, = 1) = (1 +

2
p(—ilogUnlform >1)=1- 12
* When zp = —1 or zy = —1, then swap signs.

We have p(2|20) = p(Z:|2o) for all zg and therefore “£p(z|20) = 4-p(Z|20) but clearly p((z:);) #
P((Ze))-

Simple computer simulations indeed show that p((argmax(w;));) and p((Z:):) are different. We
show this in Fig.[8] Indeed a statistical test applied to these simulations shows p((argmax(w;));) #
p((2¢)t): a Mann-Whitney test shows that the paths of the argmax of Gaussian diffusion have more
transitions that those of discrete diffusion with p < 107390,
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Figure 8: The argmax of Gaussian diffusion appears different from discrete diffusion in sim-
ulation, despite having the same marginals. We compare example paths of p((argmax(w;)):)
(left, red; we show Gaussian diffusion w; in grey), p((2;)) for uniform discrete diffusion (centre,
blue), and their empirical marginals over 10’000 simulations (right); we simulate using a grid size of
0.0001. Note the two processes have the same marginals but their paths appear different; in particular,
whenever w; is near 0, (argmax(w;)); undergoes a very large number of transitions in a small timﬂ

C WRIGHT-FISHER SAMPLING AND SCORE CALCULATIONS

Here we discuss the details of the methods in Sec. |5 Note, just like App.[E.1| we can deal with &'
rather than the actual sequences z¢. In App.[C.I|we discuss details about our algorithms, in particular

°This interpretation of the text was confirmed in personal communication with the first author of Sahoo et al.
(2025))

"YIndeed, noting the self-similarity of Brownian motion, one can show that, conditioned on w; = 0, with
probability 1 (z¢); makes infinitely many transitions in the interval [¢, ¢ + €) for any € > 0. The probability of
infinitely many transitions in a bounded interval for discrete diffusion however is 0.
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how to sample form A(w), ) and calculate the functions §(¢ | z). In App. we discuss the
computational complexity and stability of these algorithms in theory and in experiment. In App.
we discuss how we sample and calculate the ELBO at low ¢. Finally, in App. [C.4] we discuss our
condiitonal sampling procedure.

We also note two more differences between our method and that of |Avdeyev et al.|(2023):
* Our neural network directly predicts &y rather than the “score” s.

* As described in App. we use the natural permutation-symmetric “multi-allelic” exten-
sion to the 1D SDE when B > 2, while they use a stick-breaking procedure.

* We use high-precision operations to calculate large alternating series accurately, as described

in App.

C.1 ALGORITHM DETAILS

Sample noisy x; We’ve discussed the algorithm from [Jenkins and Spano|(2017) in the main text.
We now present their algorithm for sampling from A (v, 7).

Algorithm 5 Exact sampling from ancestral process A(v, 7¢)

1: Define coefficients: ¢/ = EFFY—DWTM Gy o —k(htv=1)7/2 for |; > m
km m!(k—m)! =

2: Sample U ~ Uniform|0, 1]

3: Initialize M < 0 .

4: Initialize an empty vector k = ()

5: while True do

6:  Findky > M suchthatcl, ) < i

7: Make ks even: kys < 2[kps/2]

8: Update lower bound: S~ « S~ + Z:fj}l(fl)k*Mc;fM

9: Update upper bound: St — St + lesz(—l)k*Mc}é’M
10: Update k = (ko,...,k]\/[_l,kM)
11: while S~ < U < S* do M y
12: Update lower bound: S « 5™ + > (¢, 1oy = €1 +3)m)

_ M

13: Update upper bound: ST «— S~ + Zm:o(*czbkmu)m + C?}kmw)m)
14: Update k =k + (2,...,2)

15: end while
16: if S~ > U then

17: return m = M
18: else if ST < U then
19: M<— M+1
20: end if

21: end while

Compute loss We present a formula for (¥ | zg,t) = Vlogp(Z; | o, )| to enable computation
of the loss. |Avdeyev et al.[(2023)) computed these scores using a previously determined result with
B = 2 then generalizing to higher dimensions with their stick-breaking procedure and a change of
variables. We are instead able to derive it directly from first principles.

There are two infinite series which will be important,

(_1)kaf(7—’ Mg, ft,wo)

18

Gw(T, $07ft) =1 +

o
I

1

(—1)"0) (7, Ty, T,y
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where
LTRSS b (2k + 1 — 1)("1’)(7@*1)

2F1(_k7w + k‘ - 1; wﬂ-xo;ft,xo)

a,l/f;) (7—7 Trl'() 9’ ft,xo) =€

k!
. _rerernr (V) ) 2k + ¥ 4+ 1)(¢ + k) -
by (7, Tags Brag) = €7 2 k:'( ) TET 2F1 (k) + K+ Lmeg + 15 8 ag)

where o F is the hypergeometric function. Although these look complicated, in practice, most terms
in the numerators and denominator of a and b nearly cancel to 1, and, when ¢ is not too small,
e~ k(k+¥+1)7/2 decays extremely quickly.

Using the results in|Tavaré|(1984) we compute §(¥ | ) in terms of these series. Since we’re only
interested in differences for calculating the ELBO, §(¢ | zo,t) — §(¥ | &g, t) we ignore constants not
depending on xg.

Proposition C.1. (Proof in App.[E.6)
p(Z¢ | o, t) = Dirichlet(m))(Zy) Gy (72, zo, V).
For ¢(¥) = V log Dirichlet(m))(#;) = (Y7 — 1)/Z; which does not depend on x,
3(U | zo,t) = (V) + Zow(xo, V) 2)
where
e VT2 (h + 1) Fy (74,20, 7)

=

m(x0) Gy (11, 20, 7)

w(zg, V) =

With the hollow parameterization, calling W, = w(b), we get
e VT2(p + 1) FopFy(re,b, D)

(V| Zg,t)y = (U .
5(T | &o,t)y = c(V)p + z0) S G0sCo (0,7

C.2 COMPUTATIONAL COMPLEXITY AND STABILITY

Numerical stability Sampling from A(i,7;) and calculating G and F, involve alternating
series of many terms which vary by many orders of magnitude, and cancel out leaving very small
residuals — known as “catastrophic cancellation”. To calculate these accurately, we may need higher
precision than provided by £1oat 64; we perform any high precision calculations using the mpmath
library [Johansson and Others| (2010). |Avdeyev et al.| (2023)) did not use high precision in their
calculations, potentially introducing errors and instability to their loss computation.

We perform all calculations at f1oat 64 to take advantage of parallel GPU computations, estimate
the error of each computation using a condition number and recompute just those terms with condition
number above a threshold in mpmath on a CPU. In practice, we only need to perform calculations at
high precision for small ¢, before we switch to the “low time regimen” 7; < 0.05 where we switch tot
he Griffiths approximation.

The condition number of a series a; + ag + - - - + apr is defined as = Y |am|/| X5, @m]; one can
estimate the error of their summation at finite precision by

error & 1) X precision.

When there is catastrophic cancellation, the denominator in the definition of n will be very large, rep-
resenting that error might be high. To estimate 7), we keep track of } |a, | (3] representing our finite-

precision summation) and estimate ) &~ Y |am|/|>,,am|. If > desired error/float 64 precision =
10~6 x 252, then we recompute at higher precision.

Sampling The complexity for sampling Z; involves (1) O(m) for sampling m, which is O(1/7¢)
in expectation (see App. , and (2) O(B) time for sampling &; from a Dirichlet. Crucially, the
complex calculations involving an infinite series occur in (1) and are independent of the alphabet size
B. Comparatively, sampling from the SDE requires O(BT/At) compute. A higher At will decrease
compute but lead to lower-fidelity samples, especially at low ¢ where even small fluctuations in z; can
lead to instability. We also parallelize the computations in Alg. [5|to benefit from GPU acceleration.
The result is that, except when we must switch to high precision, our sampling procedure is much
faster than that using an SDE (Fig. [9a), and much more stable at low 7 (Fig. [9b).
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10-2 1e+120
—_ Glfﬁths (Ours) SDE Prev) 5 1 — low T's(<0.05)
v 10-3 1] £ lerso ! —— high T's(= 0.05)
Q ) 1
— >
£ 1074 SDE 5 1e+40
= m— OUrs T; Error threshold
10-5 15 . ‘ e«
0 05 1 *
too little —:—too much 0 40 kmax 120
t Density error # terms
(a) Fast sampling (b) Stable sampling (c) Fast and stable loss calculation

Figure 9: Leveraging mathematical genetics literature, we build fast and stable simplicial
diffusion. (a) We plot the time it takes to sample a sequence of D = 500 using an SDE, versus our
exact sampling for various values of ¢ on an A100 80GB GPU. We threshold switching to the Griffiths
approximation at 7, = 0.1. (b) For 7 = 0.1 and B = 3 we sample 3 x 107 points from the exact
sampling method, Griffith’s approximation, and using an SDE with 25 steps as used in |Avdeyev,
et al.| (2023)). We then perform density estimates of these data and plot the error to the exact samples.
We plot a x6 zoom into the vertex A. We see the SDE struggles to sample near the corner. We use
Y = 3,7 = [0.25,0.4,0.35] (c) We plot the accuracy of our approximation of the infinite series
Gy (T, o, #;) including different numbers of terms for various values of 7 € [0,0.2]. We choose
1 = B = 4 and 7 uniform, and plot the relative error for two values of & ,,. We only use the series
approximation for 7 > 0.05 (grey), which allows us to only use 80 terms. Meanwhile (Avdeyev et al.|
2023) used 1000 terms to accommodate smaller T (red). Our error threshold is 1075.

Loss computation The complexity for computing the loss involves (1) O(Bkpax) computations
for the series Fyy, and Gy, and (2) O(B) computations for computing the loss given the vectors 3.
Crucially, the complex calculations involving an infinite series occur in (1) and can be parallelized
across B allowing massive acceleration on GPU. k. should become very large as ¢ becomes small,
leading (Avdeyev et al.,[2023) to choose ky,.x = 1000. Instead we only use the series computation
for 7 > 0.05, allowing us to use kmax = 80 (Fig. , and compute a O(B) ELBO for 7 < 0.05 in

App.[C3|
C.3 Low TIME REGIMEN

When ¢ is small, sampling from A(v, 7;) or calculating G, Fy;, become unstable and can require
unbounded compute. Griffiths|(1984) suggested a Gaussian approximation for A(t), ;) which we
will also use for deriving stable approximations of (¥ | o, t) which require bounded compute.

Sample noisy z; We copy the following from Jenkins and Spano|(2017). Note compute does not
scale with 7.

Algorithm 6 Sampling from ancestral process A(v, 7¢) - Low ¢ approximation

Set B — 1(— )7y
if 8 # 0 then
Setn « B/(e? — 1)

2n

Set 0% « i—?(n—l—ﬂ)Q (1 + 715 —277) B
else
Set T%
Seto? «— 52
end if
Sample Z ~ N (u,0?)
return m = max(0, |Z + 0.5]) = Round to nearest non-negative integer

e A S A A U

—_ =

Compute loss The loss in this regimen, even with the Griffiths approximation, becomes intractable;
instead we use the Griffiths approximation to simply bound the loss.
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When ¢ is small, z( is almost always b* = argmax,Z; ;. We therefore set £y = Jp«. In practice, in
our protein setting, we only see b* # argmax, ¥+, with 7 < 0.05 at a rate of less than 1 in 7 x 107,
Since zy # b* is so rare we only aim to find a loose bound. Calling ¥ = #; we bound the loss by

Tt /(= — IV VSN IV
L <5 (I5(7 | zo.t) — &(0) |piag() —wwr + 8T ] b%,¢) — &) |piag(z)—57)*

T N~ -
:é(w(azo,v) Ty + w(b*, V)7 Ty )2

In the next proposition we give an alternate formula for w(xzq, ¥) which will allow us to Griffith’s
approximation and a saddle point approximation to estimate w(b*, ¥/). It will also allow us to bound
w(zg, V). To our knowledge, this strategy is original.

Proposition C.2.
— ——1 ad
w(xo, ) = Uy, By, 7, 0
~ . . . C o . (%) (my)
where Eazo e, IS OVer the weighted, normalized distribution p(A(1, 7¢) = my) m Uit

Proof. Inspection of first expression of the proof of Prop.[C.1} O

We can now bound w(zg, %) v w(b*,v) < U, E1 ,m; where p = T, A Ty . Therefore, we get
(T 2
L < 27}1}10 (El,pmt) . (3)

Now we only need to calculate I~E1,pmt; to do so we apply a saddle point approximation to Griffith’s
approximation to get Eqn. ] below. Note compute does not scale with 7;.

Saddle point approximation Let’s take the Griffiths approx as ¢ becomes small, so w; ~ N (u, o)
where p, o are form Alg.[6] We can use a Stirling approximation to get

W)emy. (1 + O(1/m)) (1 +

(1—p) >(¢P+mt—1)+1/2 0
(@/JP)(mt) !

Yp+my —1
=(1+O0(1/m)) (¢ +m; — 1)I=PY,

We take a saddle point approximation of ]El,pmt, i.e. take its value as the maximizer of the approxi-
mate log likelihood

L (me — 1)? + (1 = p)log(e) + my — 1) + O(1/my).

202
We therefore get the approximation
Erpme ~ (0= (0 =1) +y/(u+ = DP +4(1—p)vo?) /2. @
Noting m; ~ Tfl, this approximation has relative error roughly O(77). And as 7y — 0, y ~ 7'[1
ando ~ 772 50

fEmet LR 2/7}.

C.4 TIME REVERSAL SDE
Reversing the SDE Eqn. [5]using the result of [Anderson| (1982), we get

dz, = (12”(7? — %) — B(1/B — z,) — (diag(2,) — 2,27) Vlog p(& | t)) dr

™ o
+ diag (\/2}) (1 —EAE ) AW,
where z;, = Z;. 5(Z | Zo,t) approximates E, |z, log p(Z; | 20,t) = V1og p(Z; | t), meaning we

can substitute it into the place of V log p(Z; | t). We sample by discretizing this SDE and sampling
backwards.

To perform classifier guidance conditioning on a variable y, we can add Vlegp(y | x:) to
3(#; | Zo,t). In practice, we perform the classic one-step approximation Vlogp(y | x:) =~
Vi10g Eqygy(aolzr,)P(¥ | o). If we have a classifier f(xo) = p(y | zo) then we approximate
E o~ qo(ola:,t)P(Y | o) using the “one-shot” prediction f(Zo).
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D TIME-INVARIANT DISCRETE DIFFUSION MODELS

Zheng et al.[(2024),[Ou et al.| (2024)), and [Sahoo et al.| (2024) noted that for masking diffusion, it is
not necessary to pass ¢ to the neural network — it has “time-invariant" parametrization. |[Zheng et al.
(2024)) suggests this makes masking models a fundamentally different object than other diffusion
models: “we reveal that both training and sampling of [masked models] are theoretically free from the
time variable, arguably the key signature of diffusion models, and are instead equivalent to masked
models.” Our sufficient-statistic parameterization shows on the contrary that every diffusion model
can be made time-invariant by a choice of parameterization, with masking as a special case.

Does this suggest that every diffusion may perform as well as masking diffusion after this choice of
parameterization? |/Amin et al.| (2025) suggests that masking performs well not because of its choice
of parameterization, but because of “schedule conditioning”.

Time-invariance is a function of parameterization: Masking is time-invariant due to a choice of
parametrization. To see this, imagine applying a time-dependent rotation to each z; we are essentially
performing the same diffusion but now must also pass ¢ to gg so it can “undo” the transformation. The

(5 can be thought of as automatically transforming x; so F'¢ is independent of time in any diffusion
model.

Masking uses SSP: Indeed the SSP of masking diffusion, ¢(z¢,t) = &,, if #; # mask and

ozl t) = [%, NN B] otherwise, is exactly the canonical parametrization. Thus the time-invariance

of masking isn’t special — rather masking’s most convenient parametrization happens to be the SSP.

E THEORETICAL RESULTS

E.1 MUTATION POPULATION DISCRETE DIFFUSION LOSS

In this appendix we derive Alg.[3|by showing it is equivalent to Alg.[I] Namely, we assume D = 1
and z; is a sequence of length ¢ and show

* Predict de-noised x: the target of go(zo | 2¢,t), p(zo | 2¢,t), only depends on the
vectorized Z;.

p(a'|&o,t)
p(t|Zo,t)

» Computeloss: L =3 Loy, 7D (;’E;ﬂtligg
in Alg[3]

) is equivalent to the form

Given pred1ct10n and loss computatlon only depend on Z;, we can also replace sampling x; with just
=T 1 L

sampling @ ~ Mult(¢, Z) e™*)/¢, giving Alg. l

Predict de-noised xy Simply note

P(330 | T, )OCp(xo)p(xt | Zo, )
¢

=p(zo) H T et
z=0

B
_p 1,0 H =T ‘rt sz o
b=1

Compute loss For sequences = # x of length ¢ which differ in exactly one position, say z(*) = b #
¥ = 2'®) then Ly, = Ly_ and for every zg

(x| wo,t) Toe™t Ll

p(x | zo,t)  Foemlh
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If 2, 2’ differ in more than one position, then £,_,,» = 0. Call xE S sequence which has all the

same letters as x; except has b in position z. Then calling 5 = & e™* and ¢ = &l e™*,

/ /
L = 2 EI/*)CEt/].—tD ( | xo’ H | xo’ )

. p(xe [ xo,t) || p(zt | To,t
< - =
-3 % g (2]
=0 b’;&wiz) szZ) QIEZ)

z) Py
—Z#{Z | z¢”" = b} 2 Ly p7¢D <
b #b Po
Py || @y
= > Ly (T D < )
Do || @
Our formal statement of the theorem adds some mild positivity assumptions for 7, 7 and P; which

b £b
are satisfied by any reasonable choice of 7 and almost every choice of L. It is also more specific

about the limiting behaviour of & m non-dominant eigenspaces: we also limit to Gaussian diffusion,
but with meaningless embeddmgs sampled from random Gaussian vectors independent of z.

q >
b

E.2 PROOF OF GAUSSIAN CONVERGENCE

Let us interpret the embedding ;. In the case that £ is doubly stochastic, or reversible,
1

T o= [%, ..., ) and L is symmetric; in this case Q1 = j1 P is just the orthogonal projec-

tion onto the dominant eigenspace. In the more general case that £ satisfies detailed balance,

(diag(m)Y2Ldiag(m)Y/2);; = /XLy is symmetric so Q1 is the orthogonal projection onto the
J

dominant eigenspace of the “symmetrized” generator.

In more general cases, we don’t get a symmetrized operator or an orthogonal projection Q1. so
we must “correct” for this with the adjustment (@ QIT)*l/ 2(); which makes Q¥'Q; an orthogonal
projection.

Theorem E.1. (Formal statement and proof of Thm. Call —\1 > —Xo > ... the negative
eigenvalues of L and Py, Ps, . .. the projections onto the corresponding left eigen-space. Without
loss of generality, assume \y = 1. Assume i is bounded on every compact interval of (0,1),

mp, > 0 and Pll; # 0 for all b and Plg # Pll_)" forany b # V. For each ( pick time dilation Tf =
3 log (CeQTt ¢ + 1) and rescale fg = 4/C - (¢ — 1)e=2?mt(zy — 7)/+/7. Define the embedding
into R#&(Ps) Q. — 3,(Q; QT) 12Q; where Q; = diag(m)~Y/?Pidiag(w)"? and j; is any isometry
from Im(Ql) — Rrank(F),

Fix an xg.

s (Path convergence) Call (Z;)i_, the paths with Zy = Q1(Zo/\/T) evolving under the
Ornstein-Uhlenbeck process

dz, = —Z;dr + /2dW,
for a Brownian motion (W,)*_, and call Z, = Z.,. Then (lef)te(m) converges in

distribution to (Z;)se(0,1) in the sense of Lem.

* (Convergence of non-dominant directions) The component of jf inKerQy is 2,4 szﬁ .

Each component (Q,»i“f )¢ also converges to a Gaussian diffusion independent of Ty with
modified time-dilation and scaling: call (Z;)i_ the paths with Zo ~ N'(0, I) independent of
xo evolving, forward and backward on (—o0, 0), under the stationary Ornstein-Uhlenbeck
process

dz. = —z.dr +V2dW,

for a Brownian motion (W,)Y_ and call z; = Z_u:) where Tt(i) = A log(e®™ —1). Then
(1= e™) 7 2QiE ie(o.1) ~ (F)ie(0,1)-
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* Call the ELBO in Alg.[3]
L(ftca t, T, To) = Z Ly, —b, %fcftbl (fg)D ('Lb(wo)b2,b1 | |w(‘%0)b27b1)
b1 #ba

where %y, (V) is the inverse of the transform from %y, to ff by Then, for all U, t, ¥y, Tg
7.',56_27—’5

(1—e2m)2
the ELBO in Alg. 2} which, in particular, is independent of the value of v.

L(T,t, %o, &o) — lemb () — emb(Zo)|?

Proof. We prove the convergence of paths using Lem. [E.§| which makes use of standard techniques.
We break the proof up into four sections: the first three verify the conditions of Lem. and the last
shows the convergence of the ELBO.

Part 1. Convergence of Marginals: Note

Zi~e T+ 1 —e 2 N(0, ).

We want to prove convergence to this quantity. Note, writing Mult for a multinomial distribution,
_ — 1)e—2m
ff N C—(¢ Je
¢
=(1+o0(1)V/1—e2m (C‘l/Q(Mult(C,fgeTfﬁ) ZTem &) 4 (V2(@T e £ — 7?)) VR
The second term is

V31— e—2TtC1/2(fOTeTt<£ —7) =/1—e 2" Z Cl/Qe_’\”tcPifo
B C(1—e2m) V2 pi
Z 27—, _ 1 1)>\i o

—e 7—t'P)l.’L‘O.

(Mute(¢, 7 e ) - ¢7) V7

For the first term, we need a “uniform” central limit theorem as the underlying distribution changes

with ¢ because of ZTe™ £. Lem. [E.9| shows that ¢~/2(Mult(¢, #Te™ £) — ZTe™ £) approaches

N(0, diag(py) — pypr ) for py = a:OTe 7L, which itself approaches 7 as 7 — 0. Therefore the first

term, divided by v/7 approaches
Vi—e 2N (0,1 - VAvFE ).
Note Q;V/7 = \/?_IPJT’ = 0 for each ¢ and, for s > 1, QZ-(P@O/\/%) = ﬁ_lﬂPlfo =0

Therefore, as desired,
Q135 ~ /1 — 27N (0,1) + e~ Temb(zo),

(1— e_QTt)_l/QQixf ~ N(0,1).

and forz > 1,

Part 2. Local uniform convergence of conditionals: Note

7|2 ~ e 2 4 /1 — e 2(me=mI N0, ).

We want to prove convergence to this quantity. Note

7, ~ 2 Mult(CZs , b7 e =)L) /¢

where Ty = /7 o Z; / V44 Je=27 + 7 are the “unscaled” versions of the vector and Z is
similar. It will be convenient below to extend this definition to xﬁ for which (s ;, are not integers,
but which still satisfy >, « /wb;if » = 0. To do so, we just round (&, ;, down to [(Zs ]
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Fix 7. We now show Z$|7¢ = zt|zs — 7, a very similar argument also shows Z5 ~+ Z,. Call Z¢
a variable distributed as j’f \f U, so, calling

¢ S (S O

U)t = C )
Nib = \/W»bgb/wg + C’/Tbv
th,b ~ Mult ({N‘be ,gTe(Tf _Tg)ﬁ) independent across b,

then
5 (2 5, - @) n
b

766 766
—wf (Z (€5, — NPT =78) 4 NE (BT e 705 - w)]) VT

b
noting >}, pf) » = ¢. This is exactly the “noise, signal” breakdown we had in the proof sketch.

For the signal (second term), first note

C_ ¢ - — C_ ¢ -
Zﬂb(gTe(Tt TIE 7y = 7lelm—TIL _ 7 = 0,
$0, ignoring the 7 term in Ngb the second term is

(vab prelr=o) —ﬁ))/f =t (Wro o)) v

1—e2m

1— 6727’S (Ai—1)/2 -
=(1+ 0(1))2 <> e M=) 9,7,

For the first term, we again apply Lem. noting Nib = (14 o(1))¢m to get
D wn(Cly = NS BTeli=m) |V
b
/T —e 2 Z VRN (0, diag(B e T8 — (ETOLTGT T E ) /7
:mj\/ (0,diag(7’r’ e(ri—TE ) — e _T§)£Tdiag(7_r’)e(”<_7§)£) N7
=V1—e 2N (0 diag(7 (Z e~ M= )P)dlag Ze’)‘ ire = )PT)) N7

=+/1 —e 2T N (071 o (Z efAi('rff'rﬁ)Qi)(Z =i ( TC)QT)>

% A

Therefore, as desired,

1—e2m

Qi | 75 =0~ e T T + \/(1 —e72m) (1 =
=0~ e QT + A1 — e 2T IN(0, 1)
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and similarly

—27\—1/2 2 | =€ _ = I —Xi(Te—Ts) —270\—1/2 1y
(I—e77") Q% |25 =0~ e M TT)((1 — e7272) Q.0)

1—e2m\ M
/L= <1_€_27> em 2 (m=TIN(0, 1)

—e~ =T (1 - e22)"12Q,7)

+4/1 = e=20 =N (0, 1)

Finally, convergence is clearly uniform for nearby ¢ using the uniformity of Lem. [E.9

Part 3. Tightness: Pick s < t € (0,1).
E|&; — &5)* = E|E[27]25] — 25| + E|2} — E[27]2S])?
The first term has, for each z,

E|E[2¢]2S] — 252 =Ewy (e ~)E — 7) V7 — &)

1 O S S L
i WbIEHwt(:cse(Tt T~ F) = (ws — we) (B — 7))

1
<—;
ming 7y

1 = T (r¢=rS)L =)
————E (Jwil (@ — A7 = L) + fw, - wi] |, - 7])
ming 7y

1
<—
ming 7y
1

P Zoe =
o (jurl(U = ) o, — i) Bl - 72

¢ ¢_.¢ ws \°
< ((16(Tt TS>AB)+|1S|>
Wt

~ .
ming 7y

x (ETrcov(Muu(g FTemOL ey 4 |ZTem £ — 7?“2)

(¢ . A
E (JullZoe ™ T8 — &) 4 fw, - wi] |7 — 7] )

2
E (Jwe (1 — =% |7, — 7] + Jw, — wil|F, — 7))

1 S\
<— ((1 - e*(TtC*TS())‘B) +]1— w|> (I+ Ce*%sc)
ming mp Wt

1 ¢_ ¢ wy \ > 1
< 1= e (e =732 1- == 14 ——
ming, 7 <( € )+ Wy + e27s — 1

Cor LN AB/2
1— e (=X 1 _ =22B(7=7s) 1—e?"(1-¢H\™
1—e2(1—-¢1)

A

Now,

<1-— 672>\5(th75)

1_6727'5(1_@‘71) AB/2
+1_<1—e—2ﬂ(1—<—1)) |

When |75 — 71| < 1/4\p

1— e 22B(m—7s) AAp(1e — 75) < 4Ap|t — 8| sup 7.
u€[s,t]
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Next note that if & > 1, 2 — 1 —2* has decreasing derivative, from 0 to —« on the interval z: € [0, 1],
$0, it is dominated on this interval by a((1 — z). If { > 1,

) 1— 672TS<1 _ Cfl) AB/2 <1 1— 67275(1 _ Cfl) 1v(AB/2)
B (1—e—2ﬂ<1—<—1>> o (1—e—2ﬂ<1—<-1>)

<(1v (AB/2)) <1 - <1:Z—z;8 g 3))
<(1v (\s/2) <(em T Cl))

1 v (Ag/2)e —27, (1 _ e_g(n—Ts))
1- 6_2Tf

4 \ (2)\3) Ts
1— —27}

| 75| sup 7.'u
u€[s,t]

Finally

oW (1—6—%(1—4—1))“
wp l—e2m(1-¢1))

which is similar to above.

The second term has

E&S — B[ |])? <—oe— Z]ETrCov(Mult(Cmsb,be LY /¢ | &)

mlnb Ty
Z ]ECE ) Z C(Tt b /)(1 o Z_)Te(Tt 77'5()[,5/)
b

mlnb Th

2 ST (VLT ¢ oy

<— Bl =)Ly £ NY(1 — pT el —T)LY

ming 7y (b;’ ;( )
4 .
(1 BTelm L)

B minb Tp 5
4B

~ .
ming 7y

1 — e*(‘ff*ﬁ))\B)

which is bounded similar to the first term.

Part 4. Convergence of the ELBO: Define p = fgeﬂ( £. We’ve shown above that

1
_ = Pz -1/2
p=7+ 7«62” ) 170 + o(¢77)
SO
Db T 1 1 S omy e \T
= -z 4 b—2b> Py + o(¢C1?
Db, by by C(eth - 1) < 2 by ' e ( )

and similar for ¢g. Using a second-order Taylor expansion on D, we get

T 2
D (620 0 180 (Fo)by ) = 2t g ((52— T, b1> Pﬂ%—%)) Fo(¢).

2 m, Ty ( (€2 — 1) b,
Next note 7 = %tefi%l + o(1). Finally note

Ty (T) = A/mo¥/A/C— (. —1)e 2™ + 7 =7 + o(1).
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Putting this together, we get
L(U,t, an i'())

Can . Db
= Z £b2—>b1 thcxtJH (U)]D) (2

qb,

by £by Db,y
2T, 1 1 T 2
e“’t - Thy 7 . _
=Ty Ly, b Ty (bg — b1> P1(.230 — xo) + 0(1)
bl;)g 270 o2 1t 27Tb277b1 (62Tt — 1) ( Ty
T 2
Tre? - [T ~ L. =
_ 2t Z £b2—>b1 <<b2 — ba b1> Ql ((,IQ — .To)/\/;)> + 0(1)
(e2m —1)2
b1#bo
3 7'_te—27't ~ . 5 \/: 2 1
T ez | (@ =3 VR) o)

where

T
T, g Thy
Z Lb,—b, (b2 —a = b1> (bz — 4 /2b1)
bl7ﬁb2 b oy
To solve X, we note

> Loy, baby —Zm D Loty = — Y babs Loy,
ba

by #bo by #ba
o > T
> - —2 L4, 1, baby :Zblbl > — Lo, = =) bibi Lo,
by #bo b ba#by by by

4 /7”’2 Ly, bob! = diag(V7) (£ — diagL) diag(1/V/7)
b1 #bo

\ / Tg Ebz_,blble = (diag(V/7) (£ — diagL) diag(1/v7))".
bl?&bz

So,
Y= —%diag(\/%)ﬁdiag(l/\/;—f) — %(diag(\/%)ﬁdiag(l/\/%)):r.

In particular, since Q7 diag(v/7) Ldiag(1/v/7) = —Q7,
Q01 = Q Q1 = QT Q1.

This gives us
7'_t672-rt _ 9
. 7(1 T [emb(zg) — emb(Zg)|” .

E.3 HOLLOW PARAMETERIZATION SOLVES GAUSSIAN ELBO SINGULARITY

Here we show that the hollow parametrization introduced in Sec.[d.2]resolves the singularity of the

Gaussian ELBO in Alg. at t — 0. Before going into the proof, let us give some intuition. Assume,

xd were distributed uniformly and independently. Then

—d
p(§ | @, ocp(af | g, tp(af | 27, 1),
where z; ¢ includes all positions but d. However

p(xg | :C;d,t) = fp(xf)i | xad)dp(xad | x;d,t) = Uniform.

Therefore, we get p(xd | x4, t)ocp(zd | xd,t). At initialization, we can say our neural network
qo(xd | ;7% t) ~ Uniform, so,

QG(Ig ‘ xtyt) ~ p(xg ‘ It7t)'
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Therefore, the hollow parametrization initializes the diffusion model near a uniform, site-wise
independent model. The proof below involves a lot of algebra, but the basic intuition for why we
should not see singularities is that by initializing at a valid diffusion model, we get comparable
ELBOs.

Again we assume D = 1 for simplicity as results are straightforward to generalize to higher D.

Proposition E.2. Assume emb is injective and Ty is increasing and differentiable. Define

—27

L= 1%,

Tie )
o amypllemblzo) = emb(zo)

and the normalized vectors ¢(xy,t)ocp(ay | @o,t). For &y build using the hollow predictor &y =
(xt, t)o q/qb(mt, t)T o §'for a vector t bounded away from 0 and oo,

O<c-m1nqb maxqb<C<oo

we have
Et,wo,th < 0.

Proof. Note first

[emb (o) — emb(io)[* < [lemb]?|Fo — Zo |
and, simplifying ¢ = 5(1:15, t),

Eoolo, |%0 — Zo|| = |$0p/¢ 5 — ¢ o §/"q]
for pj, = p(xo).

Call b = argmax;,, 51,/, S0

= N 2
oDy Do =10 (ﬁb/ Q@ )2
do P < | =2 -2 +(1—-9¢ e
|¢oF/é" 5~ oq/etql ( Ty ¢)Tq'> ( b) bgb T,
2

1 1
(Z;/q/ Q;la/
RETE RS T

#b 4y,
2
+ (f) B(1 — ¢p)?

1 2
< (1 B 14 €B0= ¢b)>
2
(Y 1o+ (C) pu-ar

. .27y -
We’ve therefore bounded E; ;, ., L above by some constant times E; ,, % (1 — maxy ¢b)2.

Note without the hollow parameterization, we wouldn’t have the (1 — max; 5;,)2 term; we now show
this becomes small very fast as t — 0 (because zy becomes “obvious” from x;), cancelling out the
singularity.

Next note, calling b = argmin,, [emb(d’) — 2|,

2
14 Dy e exp(— m(“emb(b/) — Z[? — emb(b) — 7))

< 3% e (= gy b (¥) = & @) — 41%) )

b'#b

(1- max B)*
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which is only large if #; is roughly equidistant to two potential zg. Call € = ming.y [emb(b) —
emb(b')||/4, so, if miny [|emb(b’) — Z;| < € then, by the triangle inequality

lemb(b') — Z¢|* — emb(b) — Z|* =(Jlemb(b) — emb ()| — [emb(b) — ;)
— Jlemb(b) — 7
=[lemb(b) — emb(d')|
— 2[emb(b) — emb(b)|lemb(b) — Z4|

>16€? — 8¢? = 8¢2.

- e—ZTt

Therefore, E; ,, (Qefw)z(l — maxy $b)2 is bounded by

> —2T

Ti€ 462 . —
B8 s (o (- ey )+ planinenb(®) — 1] > ©)).

To deal with the first term, perform a change of variables u = (1 — e~2™)~!, giving

L 52Ty 42 1 (®
Ti€ € 5
Etm exp (—M> = §J0 du exp(—4e“u) < oo.

For the second term, note

p(miny [emb(b') — 7| = €) <. p(wo = b)p(IN(0, (1 — e ) [r)]| > €)
b

=p(x7/€* > 1/(1 — ™))

where x? is a chi-squared distribution with r degrees of freedom. Finally, by the same change of
variables u as above, we get

e 2T : / I 2,2 Lo, 2
B grplming femb () — 7 > o = 5 | dup(x/e > u) = FEx <0
O
E.4 EVERY EMBEDDING CAN BE INDUCED FROM SOME INFINITESIMAL GENERATOR
Define an injective embedding emb : {1,..., B} — R" for some r. For an infinitesimal generator

£ with a unique stationary distribution 7, define Q; = j1(Q1QT)~Y2Q. j; is some isometry,
Q1 = diag(7) Y2 Pidiag(7)'/? where P is the projection onto the first left eigenspace. Is there a
choice of £ such that Q1 (Zo/+/Tx,) = emb(xg) for every x?

If we restrict to £ € RE*E then the answer is no. To see this, call W € RE*" the matrix with

Wb = emb(b). Then, defining D = diag(7) /2, we need WTW = DQ1QTD = DPD for
some orthogonal projection P or rank r. The space {WTW | W € RB*"} generates all rank-r
positive-semi-definite matrices, an algebraic variety of dimension B x r. Meanwhile, P has r(B —r)
degrees of freedom and D has B — 1, so DPD generates an algebraic variety of dimension at most
B xr—1r%2+ B —1, which is less than B x r when r is large.

If however we allow 7 + 1 “dummy” tokens, to let £ € R(B+7)*(B+7) then the next proposition
shows that the answer is yes. This demonstrates an important distinction between the design space of
Gaussian and discrete diffusions: dummy variables which never appear in the data have no effect on
the training of Gaussian diffusion, but can serve as transient states in discrete diffusion.

Proposition E.3. There is some infinitesimal generator £ € RB++UxX(B+r+1) guen thar
Q1(Zo/V7) = emb(x) for every zo € {1,..., B}. There are infinitely many such generators.

Proof. Call W € RB*" the matrix with Wb = emb(b). Call A = WTW and without loss of
generality, assume its first  rows are linearly independent. We split the proof into two parts: first
we show that QT Q; can equal DPD for any orthogonal projection matrix P with Pr/7 = 0 and
D = diag(7)~"/? for any distribution ; then we show that A can be written as the top B x B
submatrix of DPD for some choice opf D and P. This will show that there is a (J; such that
Q1(-/+/7.) is equivalent to emb up to isometry.
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Part 1 Pick an orthogonal projection P and a distribution 7 such that P/7Z = 0 Call P =
diag(7) Y2 Pdiag(7)"/? and

L, =—(I1-17") + pP.

Clearly, for every p1, £,1 = 0 and 77 L,, = 0. Also, £; = —I + 177, so for ;1 in a neighbourhood
of 1, £,, has positive entries off the diagonal — therefore it’s an infinitesimal generator —and £,, has a
kernel of dimension 1 — so 7 is the unique stationary distribution of £,,.

When . is slightly greater than 0, the first eigenspace of £, is that of P; in particular, when P is a
projection, P, = PT s0 Q1 = P. Note QT Q1 = QT (Q1QT)~1Q; which is the projection onto the
orthogonal complement of Ker@); = Ker P; therefore it is equal to P.

P and 7 are the same for any small value of u, justifying the “infinitely many” proposal in the
statement.

Part 2 First we need to ensure the rare case that 1 is orthogonal to the top eigenspace of A does not
occur. To ensure this, simple add another embedding emb(B + 1) = }, Wyemb(b) for some w0 to
get a new matrix A adding this extra token:

i oA Ad
= Ad)T wT AT

Pick a 7 so 0T AT # 0 and @ = n7. As p — 0, A/n? — T AG(€ET) where e is the indicator vector
for position B + 1. Therefore for some 7, the top eigenvector approaches € and is not orthogonal to
1. Below we simply assume that 1 is not orthogonal to the top eigenspace of A.

Decompose A = aniag(X/ n)VT for a matrix V' € RB*" with orthonormal columns, a vector A of
eigenvalues, and a scalar 77 > max; A; to be chosen later. For an orthonormal matrix U € R"*" to be
chosen later, define

V_ [ Vdiag(X/g)1/2
U(I — diag(3/m) "

so V has orthonormal columns. Define the orthogonal projection P = VVT, soin particular, the
upper B x B submatrix of Pis A/n.

Finally we’ll pick  and U to get a positive normalized vector 7 such that 7, = 1/n for all b €
{1,...,B} and V7 = 0, completing the proof. Breaking 7 into its first B components and other r
components, [1 /1, ], we can write the equation V7'/7 = 0 as

3 1/2
7ty = —n 32U diag - vT1.
I—MX\/n

We can always choose U to rotate to get 7y = 11’ where

—

1/2
X
"= %2 | dia S VT //r.
n = g<IA/n> VT

Finally we need to solve for 7 in

2

- 1/2
A
1 = B/n+n~?|diag q vTi
/ I'—Xn

This is possible by the intermediate value theorem as the right hand side goes to 0 as  — o0 and
goes to oo as 7 — max; A; from above (as we’ve assumed V:?;]l # 0 for 7 where )\; is the maximum
eigenvalue). O
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E.5 PROOF OF WRIGHT-FISHER CONVERGENCE

Define A” < R” be the simplex, i.e. the set of non-negative vectors with components summing
to 1. Let (Z5)1_, be a stochastic process on (¢Z7) n AP with I§ = &, evolving with respect to

L£mut £V where

¢! Z° — 2
fucc_nfc = W}:{@i)c b= MUI’C(CJC)(Q@C%

and, if ¢, #'¢ differ by one count b — ¥/,
LR e = WATT = 1))y = Y7y

otherwise it’s 0. Let (Z;); be a continuous Wright-Fisher process, that is, z; = &y and
™ -
dz = %(ﬁ ~ Z)dt + ding (V&) (T-VEAVE ) a 5)
where (W), is a Brownian motion.

E.5.1 CONVERGENCE OF THE FORWARD PROCESS
We have convergence of the forward processes from previous literature.

Theorem E.4. (Thm 1.1|Ethier and Kurtz) (1986, Chapter 10)) Assume L = 1) x (177 — I). In the
topology of convergence of compact sets, (:E'tC Jte[0,1) ~ (5n)te[0,1)'

Note when B = 2, (2;), is distributed as the Jacobi process described in /Avdeyev et al.| (2023).

When B > 2|Avdeyev et al.|(2023) considers B — 1 parallel Wright-Fisher processes with B = 2;
they then use a stick-breaking procedure to get an SDE on the simplex. This SDE is distinct to ours in
Eqn.[5]and is not symmetric to the order of letters — it requires us to specify a first letter, second letter,
and so on, which behave differently in paths (x;); — except for at stationary. We instead directly
consider the multi-allelic Wright-Fisher from Ethier and Kurtz (1986, Chapter 10) which is invariant
to permutations of letters in the alphabet and simplifies our derivations.

E.5.2 CONVERGENCE OF THE ELBO
Call 5(¥ | o) = Vlogp(2¢|xo,t)|.,—5, and 5(T | Zo,t) = >3 Top5(V | xo = b, t).
Theorem E.5. (Proof of Thm[5.1) Call the ELBO in Alg.[]|

Lc(fcvta$07'i0) = Z (C‘CA’C 4( + ‘CT/?t ) t]D) <

xt | Zo,t ‘
A

(xt | Zo,t

p(Z | 2o = b,t)
; |lo—bt)>

For ¥ for which (v are not integers, define L(v,t,xq, o) = LS(Z°,t, 20, To) for a £° nearest to v.
Then, for all U in the interior of AP, t € (0,1), o € AP, and x,

S . Tt .
Lc(vvtaan‘TO) - éHS(’U | Io,t) - S(U | Io,t) H?ﬂiagﬁf_‘ffT

Proof. Overview of proof: For notational convenience, define
=/C =19
9 t ~ = b, t
D(ES) = D p(ﬂﬁj< | o )‘ Zmp(affC ED) )\
p(xt | x07t) b p(xt | To = ba t)
Much of the proof consists of checking uniform convergence and regularity conditions. The main

idea however is that when ( is very large, the transition rates ¢ E‘;j’,ﬂ # + ﬁq,c % are only large for
t

—/ — .
xtc very close to U. For those terms, we can perform a second order Taylor expansion

1. Y ~
D) ~5 1807 | 20,8) = 57| 0P ey e

SO

" - Tt | 2y o~
LC(Uatax(th) ~ éHS(’U | $0,t) - S(U | ant)“%
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where ¥ = (244;&#4 Cﬁﬂ,C w T ET,‘CH )(a?'f — §)(&° — ©)T. Finally, we show
Zalg £ EIB}“ (ff - v)(*lg — @7 — 0, and through a central limit theorem,

P gc LI (@ — ) (& — )T — diagt — 707 .
Crucial to our proof is Lem. which states that for each :E'f in the interior of the simplex,

p(ftc | Zo, t) = Em~A(O(w Tt)E Dlr(l/}ﬂ+m$o)Mu1t(C ﬁ)(xt)

for a distribution A() (1), ;) such that A (¢, 7)(m) — A(xp, 7)(m) quickly for each m < ¢ as
¢ — 0.

Part 1: Eliminating the boundary For a small € > 0, call AZ the points in A? that have an entry
less than €; in particular, define ¢ < (4B)~2/ ™™ % We first show that the contribution form the
epsilon-boundary vanishes, i.e.

B(Q) = Y, (CLYe z +Lm )RD(F) — 0.

F AP

First note for large enough ¢, Lg};glff = 0 for all a':’f ¢ AP and

Eﬂ,c " < (C€(> (mblnf/C )minb (ffvb(f)‘) < C<€2minb ﬁb)C < C(4B)—C

S 7
for some C' > 0. Also note for any ff s

12 p( | 70,8) = pIA, 70) = O)Ep iy Mult(C, 7)(79)
Taking the leading term of the divergence D(]°),

EQS ) (43)—<*1°gEﬁ~Dir<wﬁ)MUIt(C,ﬁ)(iﬁg)
" aiean B Dir (o) Mult (¢, 7) (77)

Now Mult(¢, 5)(#;°) = (miny, )¢ so the denominator is = Py piy(ym) (min, 7 = 1/2B)(2B) ¢
Therefore

Clog QB
E() Y
~/C¢AB
$270¢ x (P
—0

since there are O(¢5~1) elements with ¢ ¢ AB.

. ; Lali (Z ()|zo,t) _ -
Part 2: Uniform convergence of the likelihood Next we show W =1+0(

uniformly in AZ. While something like this is implied by the convergence of the process from
previous work, the fast uniform convergence will be important for our results below.

We will do so by showing the same property for each of the quotients

E i 4 (.m0 e Dir (7 +mz) MU (C, D) (5 () e a0 () DiT(07 + midi) (27 (7))
E i ) (3,7 DI (V7 + mT) (75 () " Epeaq,r) Dir(97 + mio)(0)

The first quotient converges by the concentration of a Bayesian posterior (Miller, 2019). In particular,
by the uniform Stirling approximation (Robbins| |1955) uniformly for ff € Af/Q,

—1/2
Mult(¢, 7)(&) =(1 + O(¢ (be) (2m¢)~(B=D/2e=CKLEID),
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We’d like to write this as approximately a normal density with mean Z¢ and variance restricted to
vectors summing to 0 {w € RZ | w71 = 0}. We can do so with a Taylor expansion; for {5 near 7°,

1
KL(Z][5) = 517 — P36, — QU = 71°)-

We can also write |7 _m|(2iiag(§:’c)*1 = | —p|3; where A = diagZ® —Z°@T has kernel orthogonal
t

to vectors summing to 0 and

1 1 5!
Al = diag(75)~" — Eﬁ‘lﬂ - En:&f‘“ + 71’35”’ 117

Note also that the pseudo-determinant of Ais [ [, fg SO we can write

Mult (¢, 9)() =(1+O0(¢))(1 = O — FI°)N (@, ¢ A).
This allows us to write
Ep@Mult(C, §)(5f) o Eaen o PE + CV28) (1 - O([@]?/¢1?))
paE o P |

For a small § < €/4 call ¢ a C*® function with support in the J-ball, and which is 1 in the §/2-ball.
We break the numerator up into

Egnr(o,0)®(CY20) P& + 20 (1 — O] /¢1/?))
+ Egno.n) (1 — o(¢CV20)) P& + ¢2w) (1 — O([[w]/¢1/2).
The second term is less than

Ep (1 — ¢ — )N (0, (V@ —5) <Epp L(1F — 7] > 6/2)N (0, A)(V(F — 7))

<008

for some C'. For the first term, we can define P() = P(j)¢(5 — &5 ) which is a compactly supported
C* function. Therefore

Ew~N(o,A)P(f§ +¢2w) (1 = O(Jw*/¢M?))
=P(&7) + VP(53) " Egnro.n) (0 + O(C|w]|*) (1 — O(Jw]/¢1/2))
=P(#) +0(¢).

For the second quotient, note the denominator is bounded below for @' € Af . By Lem. m

SUp [Epp 46 () DI (T + M) (75 (9)) = By a7 Dir(97 + miZo) (7 (7))

veAB

<¢! Z e—em’ sup Dir(y7 + mZy) (V).
m

ﬁeAf;z

Since supgeap, Dir(¢7 + m%o)(¥) < (m + ¥)¥ (1 — €/2)™ ! is eventually decreasing in m, the
whole quotient is O(¢ ). Next note the derivative of E,,, 4y, -,)Dir(47 + m@)(-) is bounded on

the compact set AZ so

SUp [ i, Dir(7 + mio) (7 (0) ~Epnn ay,r Dir($7 + mo) ()]

veAB

=0(|7¢ (3) — ) = 0(¢™).

Part 3: Taylor expansion of the divergence Given the calculation above, for ¢ large enough and

any ¢ = 7% (%) + O(C™/2), we can approximate

(& | z0,1)

oD (ot P (logp (Et =7 | wo»t) —logp (Zt = 73(7) | xo,t)) +0(¢h)

=1+ 8(7 | 2o, ) (T — 7) + O(C).
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A second order Taylor expansion then gives
-, 1/, IV 2\ 2 _
D(@) = ((5(7] w0,1) = 57 | G0, )" (@ = 7)) +0(¢ ™)
115 | 20, 8) = 57| 50, )P e H0(CTY)
2 ’ TG AR (AR K :

Given the calculation above, we note that since a“,gt

with Zi* = Z$(7) + O(¢™Y),
doLmt D(F) = 0(C x ¢72) = o(1).

a/ (

() is only non-zero for ¢ values of nl_c';C each

This gives .
- ~ Tt ) o — |~
LC(’U,t,:L'o,"Eo) = 5“5(0 | $07t) - S(U | ant)”% + 0(1)
where .
DLy (@ —o)@E -
It —>1}t
TfenB

The proof is therefore finished if we show ¥ — diagé — v .

Part 4: Convergence of ¥ Note, by the uniform Stirling approximation (Robbins| [1955)) uniformly
for ¢ € AB\{Z¢}, the infinitesimal generator approximates a Normal distribution near 7,

—1/2
w > —(B— - bIES
£3ze =(1+ o(1) (H) (2) (P12 L)
b

=(1+0(1) + O(¢[7 = T )N (7,6 (diag(5) — 507)) (&)

Noting that, by Pinsker’s inequality, KL(7]|Z'¢) > 2|7 — &¢[? > £ |7 — 2|2, for some very small

0>0
|2 — (diagi — 757)|| < Z C—(B—l)/2+le—CKL(73H5/<)
FlenB |F —a|>¢1/5=s

<~ (B-D/2+B, — 2T

=o(1)

E.6 WRIGHT-FISHER LOSS CALCULATIONS
See the discussion above Prop. [C.1| for definitions.
Proposition E.6. (Proof of Prop.
p(Zy | zo,t) = Dirichlet(m))(Z) Gy (11, To, Tt)-
For &(Z;) = V log Dirichlet(m)) (&) which does not depend on x,
§=35(Z | wo,t) = () + Pow(xo)

where
e VT2 (Y + 1) Fy(m, xo, Tr)

() Gy (T, 0, Tt)

w(zo) =

Proof. Formy ~ A(, 1¢),
p(&y | o, t) =E,,,Dirichlet(ym + myzo)(Z)

_ —*¢ﬂ'b 1 F(¢ + mt) —ﬂ/)ﬂ'mo +m—1
bl;lo mt I‘(@ZJ?T% + mt) Hb#rg F({lpﬂ-b) ‘rt,l‘o
O TW) oy aemeny DET(@o)TE A+ me) L,
hhesTWm) Q” e T gy T me)
_ @om) m,
W (@0)) (my) 0T

=Dirichlet(¢7)(Z;)E
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From Eqn. 5.2 of [Tavaré| (1984), we have

p(my = 7) i —k(ky—1)me/2(_ 1)k(_1)j(2k+z/)—1)(j+¢)(k_1)'

k=j ]'(k 7])'

He wrote, in Eqn. AS,

w .

ijp(m =

j=1

0 k
+ _
_ Z e—k(kw—l)n/z(_l)k(% +p—1) Z - ( 1’/’)(1C 1

k=1 j=
< 5 ad () ger—n (k)

_ —k(k+p—1)7/2 K9k + b — 1 7 W) G+k-1) (4)
;; (—1)"(2k + ¢ )jZZl 7 T

L3 et 1)k<2k+z}i; D@ o . “/’”;),“( M)
k=1 j=1 (4)

The last sum is then written as o Fy (—k, ¢ + k — 1;4; 2) — 1 for the hyper-geometric function o F}.
A very simple extension gives us

w'p(my = j) =
=1 wﬂ-%)(j) k=1 k!

x (oF1 (=K, + k— 1L ¢pmyp,;2) — 1)

Including the j = 0 term, by Eqn 5.3 of [Tavaré|(1984), cancels out the —1 in the brackets above, so
our expectation

i ( (1/1)(3) i . i efk;(k;JrrL/)fl)t/Q (_1)k(2k + 'l/} - 1)(1/})(16—1)

(V) (o) a1 i o k(E+v—1)r/2 (—D*(2k + ¢ — 1)(¢) h-1)
(V7o) (me) k=1 k!
X 2F1(_ka'l/] +k— 1; djﬂwo;ft,mo)
:Gw(t,xo,:ﬁ}).
Finally, using identities of the hypergeometric function,
DHEE+ ¢ — D))y ~k(Y+ k— 1)
k! Y,
X oF1(=k+ 1,9 + k¢, + 15 %4 5, )
B O e S [UR S P
17[}71-360 k=1 (k - 1)'
X QFI(_k + 1#? + ka wﬂ-zo + 1;‘%’157930)
_ 1 i e—(k+1)(k+¢)7t/2 (71)16(21C + 1/’ + 1)(1/) + k)(w)(k)
YT, = k!
X 2F1(—7€,¢ + k + 1;1/}7‘—950 + ]-;ft,mo)
:efwt/z(@b +1) i k(172 (=D*() ey (2k + 4 + 1) (3 + k)
X 2F1(_k7 w + k + 1; wﬂ-wo + 1; ft,wo)

Va_:*t’lo t x07‘rt Z e~ k‘+ﬂ) Tt/2 (7

e V2 (h + 1 .
=:¢Fw(t,xo,xt).
To
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E.7 PROOF OF SUFFICIENT STATISTICS

Proposition E.7. (Proof of Prop. There is a function F¢, depending on p(z) and not on the
diffusion process or t, such that

plad | a7 t) = FUG(EL L), ..., o(ZP 1)
Proof.
a7 ) = [ plof 5 an(ay? o)
1 _ _ _ _
o [ oot 1wl | (o)
P(l"t )
1 J‘ d
=4 C100 | 950 n p(z | xo dp(% )
p(xt ) d'£d
, d/ d/ _ b / ’
=Hd #d pr(fftd | ) J p(ad | a5 H xt | 350/) dp(z77)
p(zy ) d'£d pr | Ty = b)
=Epzgh ( $0|5170 n zd > /Ep(gggd) (H ég(l’gl/)wg) )
d'#d d'£d
O

E.8 LEMMAS

Our first lemma establishes conditions for convergence of paths using standard techniques inspired
by arguments used throughout |[Ethier and Kurtz| (1986) or Bass| (2011} for example.

Lemma E.8. Say (fg)te(m) are Markov processes on R” for ¢ = 1,2,... and (Zt)se(0,1) is another
Markov process on R". Say the following conditions are satisfied

1. (Convergence of marginals) ff ~+ Zy for each t.

2. (Local uniform convergence of conditionals) Conditional distributions exist such that for
each v € R", s < t, and bounded compactly supported measurable function f, there is an
€ > 0, such that

sup |E“C‘ *f Ezt\zqfw.ﬂ — 0.

|@—v]<e

3. (Tightness) For every [a,b] < (0,1), there are 3,0, M > 0 such that for all s,t € [a,b],
sups a BT — 757 < C(s — )"

Then, with the topology of convergence on compact set the paths converge in distribution

(fg)te(o,l) ~ (5t)te(o,1)-

Proof. Pick a compact set [a,b] = (0,1). We show (ﬁ)te[a 5] ~ (2t )te[a,b]- SAY (ﬁm)te[a pis a
subsequence which doesn’t enter a neighbourhood of (Z;)e[q,51; We’ll now show a contradiction.
By Prokhorov’s theorem, since it’s tight by Assumption [3|and Thm. 8.8 of [Ethier and Kurtz| (1986|
Chapter 3), it has a subsequence which converges to a process (¥/;)sc[q,5]- As we’ll show below, for
every seta <ty <ty < -+ <ty < b, (Ji)efs, i = (2t)te(t;ym - This must mean (%;) = ()
by the Kolmogorov extension theorem, a contradiction.

What remains is to show, fora < t; <ty < -+- < t,, < b, (ff)te{ti}".';l s (Zt)te{ti}m:l. It is
sufficient to prove that for any t; < - - - < t,,, and compactly supported continuous function on R", h,

EWIS, ..., 1) — Eh(Z,...,Zn). (6)

''This is a standard topology for these results. See for example Thm 1.1 of |Ethier and Kurtz|(1986, Chapter 10).
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By the Stone-Weierstrass theorem, each such h can be arbitrarily well approx1mated by product of

m univariate functions, so it is sufficient to consider h(Z, ..., Z,) = [ [~ hi(Z;). Finally, by the
Markov property,
Eh(a‘fg, v ,ffn) = Efg\fghl (a_ﬁ)Efg@g h2(fg) o 'Ef$n|f< _lhm(ffn)~

We can call b5, (75, ) = ham (25, DEz 7 hin(Z i%). By Assumptlonlhm 1(&5,_1) con-
N o

verges uniformly to A, (75 1) E> # R (Zm), a bounded function with compact support.
n—1

Zm|Zm—1=
Therefore, to prove Eqn. [f]it is sufficient to show the result replacing h with Ay X hg X -+ X Iypy_o X
J— By induction, we reach h = h4 for which we get Eqn. @by Assumptlonl O

Our next Lemma is a non-asymptotic bound on the convergence of multinomials to Normal distri-
butions. It states that as long as { — oo and the probabilities don’t get too low, we can bound the

expectation of a function by O(¢~1/?).

Lemma E.9. Let Y; ~ Mult((,p) for probability vector f € RE with min;p; > ¢ > 0. Call
Ze = (Y2(Y: — (p). For any bounded measurable function f,

[Ef(Zc) —Ef(Z)| = 0c,5,5(1)

where Z ~ N (0, diag(p) — pp” ) and the rate of decay o.. . ¢(1) only depends on ¢, B, and f.

Proof. For every e, pick a compactly supported C* function g, such that ||g. — f| < €/2, so
[Ef(Ze) —Ef(Z)] = e+ |Ege(Z¢) — Ege(Z)] = € + 0c.8.4. (1)
by Thm 1.3 of |Gotze|(1991). O

Our final lemma characterizes the distribution of the finite population Wright-Fisher process as
described in Sec.[5]and App.[C]

Lemma E.10. For each ff in the interior of the simplex,

p(T | mo,t) = EmNA(C)(qp,Tt)Eﬁ~Dir(wﬁ+mfo)MUIt(Cam(jf)

for a distribution over the natural numbers AS) (1, 1;) supported on {1,...,C} such that
|A (), 1) (m) — AW, 7)(m)| = CC ' exp(—C'"m?) for constants C,C" only depending on
P, T, each m.

Proof. This is standard in the population genetics literature. Define A() (), 7;)(m) the probability
that m alleles survive backwards in the coalescent of population ¢ up to time 7;. Conditioned on
observing m individuals with allele x,[Hoppe| (1984)) showed that sampling more individuals from
the population is equivalent to sampling from a Pélya urn with allele probabilities ¥7 + may, giving
the Dirichlet multinomials.

Tavaré|(1984) shows A(¢), 7;)(m) = lim¢_. A (), 7)(m) and for m > 0

i ity _qye-m KLY =DM+ Vo =k + Doy

@y
A© (4, 7,)( mi(k —m)! €+ V)

Note
(m+ -1 _ (m+d)g—) (k=1
G-m)! = (h-1! (k—m)

for some ¢ > 0 and

< k7n+w(m + ,(/))

‘(C_k+1)(k) B

< k2/C.
(C+ V) LS
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Therefore
- me [ k>
[A© (@, 71) (m) — A, 7)(m)| $ Y. e PEH=Dm2 () 4 g — 1)p2mte (c A 1>
m:
k=m
L me o
<CH— k(k+ep—1)7:/2 . 2m+4+3
N m ;
o0
gc—lﬁ'e—m(m-‘rw—l)ﬂﬂ Z e—j(77L+’w—1)7—,,/2(j + m>2m+1p+3
m! =
and
0 m
Z j(m—+y— n/2(j + m)2m+¢+3 < Z (J + m)2m+w+3

=0

[ee}
+ 2 e*j(mJF"P*l)Tt/Q(j +m)2m+w+3

j=m

0
<m(2m)2m+w+3+ Z efj(m+w71)n/2(2j)2m+w+3
j=m
[e¢]
<(2m)2m+w+4 + 22m+w+3 Z efj(m+w71)7t/2j2m+w+3

7=0
® .y .
:(Zm)2m+w+4 + 22m+w+3 Z 67(3777 log])(m+w71)n/2j57w
j=1
o
.4 .
<(2m)2m+w+4 + 22m+w+3 Z 67(3777 logj)(w71)71/2j57w

j=1
S(Qm)2m+w+4 + 22m+¢+3.

F EXPERIMENTAL DETAILS

F.1 DNA
We describe the experiments in Sec.[5.2]

Training and data For all DNA models, we use the same base CNN model and optimizer hyper-
parameters used to train DDSM (Avdeyeyv et al., [2023) and Dirichlet flow matching (Stark et al.,
2024) with code from https://github.com/jzhoulab/ddsmused with compliance with
their licence and https://github.com/HannesStark/dirichlet-flow—matching
used with an MIT licence. We train our Wright-Fisher simplicial model on the FlyBrain enhancer
data from https://zenodo.org/records/10184648.

We trained our model on an A100 80GB GPU over 11 h for 700 epochs like |Avdeyev et al.
(2023)). We trained a DDSM model using the code inhttps://github.com/jzhoulab/ddsm
and used a pre-trained flow-matching model from https://github.com/HannesStark/
dirichlet-flow-matching.

Computational comparison All three models we tested need to pass their noisy #; through a
neural network. We chose the same neural network for our diffusion model as used in (Avdeyev
et al.,|2023)) and (Stark et al.,[2024). For a reasonably sized model, like the ESM model for protein
experiments, the neural network computations took 75% of our compute time on average, meaning
the overhead from sampling and loss computations cannot be more than 25%.

However the DNA architecture was very small, at only 3 M parameters. For the DNA setting then
we precomputed and cached &, F;, and G so that a majority of training time would come from the
neural network. Indeed our model took 3 hours on an A100 to train for 200 epochs, comparable to 7
hours on an A6000 for 200 epochs in |Stark et al.| (2024).
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DNA accessibility (ATAC) predictor To get accurate predictions of a position-resolution epi-
genetic marker for DNA-accessibility (a property one often wants to design), we use the CNN
bpAITAC model from (Chandra et al.| (2025) to predict chromatin accessibility traces with code
from https://github.com/nuriachandra/bpAITAC. The model is trained on embryonic
drosophila chromatin accessibility from the (Calderon et al.[(2022) developmental fly dataset 16-20
hour subset, with ATAC-seq reads combined across cell types, using held-out chromosome chr2L for
validation. bpAITAC was trained on a single NVIDIA TITAN RTX GPU (24GB) with early stopping
based on validation loss.

bpAITAC produces two outputs: 1) total counts (a measure of regional accessibility), and 2) proba-
bility distribution of the counts. The base-pair resolution counts prediction is easily computed by
multiplying the two outputs. The resulting per-base counts are modelled by a Poisson distribution.
That is, bpAITAC takes a one-hot-encoded sequence z( of length D = 500 and predicts a positive
250-dimensional vector that represents the predicted “accessibility-profile” in the centre 250 positions
of the sequence. For a target profile of 250 numbers, 77 € N2°°, we compute the probability by using
the bpAITAC predictions as means of independent Poisson distributions

D
p(¥lzo) = H Poisson () (Ya)
d=1
where ¥ = bpATITAC(x) is the output of the predictor. Since bpAITAC is a neural network which
accepts one-hot-encoded zt, we may also pass xy which have each position zg 4 lying on the
simplex.

Evaluation We use the ode_likelihood function to evaluate the likelihood of the trained
diffusion model in the code of |Avdeyev et al.|(2023).

We collected 100 trace predictions from (Calderon et al.| (2022) validation chromosome chr2L to use
as targets, picking the 100 peaks with the highest combined signal. For each target and model we
sampled 10 conditional samples using 1000 function evaluations. We sampled from our simplicial
diffusion model using the procedure described in App.[C.4} To sample from the flow matching model
in|Stark et al.|(2024), we modified the get_cls_score function in their code to return the one-step
predictor that we used in our App[C.4] Finally, we write custom code based on reversing an SDE to
sample from the simplicial diffusion model in|Avdeyev et al.| (2023)). To do so, we note they perform
diffusion in a space with each position 7 4 € [0,1]”~'. We compute their prediction Zo(7;) by
transforming the output of their neural network and then compute a prediction of Vg, log p(y|Zo (7))
with a one-step estimator as in in our App and add it to their score for ¥ every step. We add this
modification into their function Euler_Maruyama_Sampler.

To calculate Z¢(7;) we note they build a neural network to predict § = V3, log p(;) which equals

> %04V, log p(#i|zo = b)
b

for some implicit prediction Zo; which we must solve for. Now note, by the choice of the re-
verse stick-breaking procedure of |Avdeyev et al.| (2023), Ub,b/ = (Vg logp(tilzg = b))y =
Vo, o log p(vy v |voy = dppy) for O < band (Vi logp(ti]zg = b))y = Vi, , log Beta(l, B —
b/)(ﬁt’b/) otherwise. So, 5= UZg = U;7;_1f0,;_1JrU;,_l(l*ng::_l]].) = (U:7:_17U:7_1]].T)f0,;_1+
U.,_1. Therefore we can solve for Z .1 by solving this linear system.

F.2  PROTEIN
We describe the protein experiments in Sec. [6.2}

Training and data For all protein models, we started from pre-trained ESM2 150M weights (Lin
et al.,|2023)) under an MIT license as in MDLM (Wang et al., [2024a)). We trained with a learning
rate of 1075 for an A100 80GB GPU over 48 h for 3 million sequences, substantially less than the
training budget of Wang et al.| (2024a)). We trained on UniRef50 (Suzek et al., 2007) data from
https://zenodo.org/records/6564798.

Evaluation From each model we sampled 1000 sequences of length 200. We used a uniform grid of
100 points and integrated backwards, and we applied 4 corrector steps per predictor step as described
in|Campbell et al.|(2022). Then we predicted pLDDTs of sequences with Omegafold [Wu et al.|(2022)
under the Apache-2.0 License, with 1 cycle for each sequence.
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F.3 LANGUAGE
We describe the language experiments in Sec.[6.2}

Training and data We used the same architecture and training settings
as [Lou et al|] (2023), using their code at fhttps://github.com/louaaron/
Score—Entropy-Discrete-Diffusion/under an MIT license. We trained our model on 4
A100 80GB GPUs on 33 billion tokens taken from the 1m1b dataset. We used a learning rate of
3 x 10~* and an EMA of 0.9999. Our diffusion transformer had an embedding dimension of 768
with 12 layers and 12 attention heads. The Gaussian models used pre-trained BERT embeddings
scaled by a factor of 8.

For our individual discrete and Gaussian language models, each device used a physical batch size of
64 and took 2 gradient accumulation steps for an overall batch size of 512. For our unified model, we
accumulated over Gaussian and discrete batches to get an overall batch size of 1024.

Evaluation We sample using 1000 iterations. Following Lou et al. (2023), we evaluate the sample
quality of our models through the generative perplexity of their unconditional samples according to
GPT2-large.

G SUPPLEMENTARY EXPERIMENTS

G.1 ANTIBODY OPTIMIZATION DOWNSTREAM TASK

We test our unified models from Sec.[6.2]on a different downstream task. suggested
that generative protein models can be used to suggest mutations that improve the stability of antibody
sequences. To test our diffusion model’s ability to successfully improve antibody properties, we
perturb a parental VHH sequence by noising a UniRef50-trained diffusion model by ¢ then denoising
with 128 stepsE| To emulate a realistic wet lab setting, we investigate sampling 50 unique single-
and double-point mutants of the seed VHH by rejection sampling. We repeat this process 100 times,
selecting the top resulting sequence from each repeat “experiment” according to a proprietary ther-
mostability oracle. The amount of noising for each of the individual Gaussian, simplicial, and discrete
diffusion models was determined by a hyperparameter sweep over ¢ € [0.01,0.02,0.05, 0.1, 0.2, 0.5],
where the chosen hyperparameter gave the most unique sequences with fewer than or equal to 5
mutations to the parental sequence. This hyperparameter was then shared with each sub-model of the
unified model.

The thermostability oracle we used is an ensemble of 10 CARP/ByteNet regressors
[2024)), pretrained on approximately 537,000 sequences from phage display, processed using Next
Generation Sequencing (NGS), and 9556 T,,, datapoints obtained from NanoDSF. The resulting
ensemble achieved a test cross-validated Spearman correlation of 0.72.

In Fig. [I0]we see that unification does not substantially harm performance on this downstream task.
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Figure 10: The sufficient statistic parametrization enables a single model to perform competitive
discrete, Gaussian, and simplicial optimization of antibodies. Using our protein models from
Fig.[7] we “denoise” antibody sequences and plot the predicted improvement in melting temperature
in libraries of size 100.

"2Note that this follows established methods for ML-based antibody diversification as in Raghu et al.| (2025).
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G.2  FITTING IMAGE DATA: MNIST
We perform the analysis of Fig. [7]for image data and find a similar result.

We evaluate our unified discrete diffusion framework on the MNIST dataset, consisting of 28x28
grayscale images. We discrete the pixel intensities to N = 8 levels using uniform quantization,
preserving the continuous structure of the token identities while reducing the computational cost. We
compare the performance of our single unified model (SSP) to the performance of three individually-
trained diffusion models: discrete, simplicial, and Gaussian.

All models use a U-Net backbone with an embedding size of 128, 4 downsampling/upsampling
blocks, and ReLLU activations. Models are trained with the Adam optimizer with learning rate 0.001
and batch size 128 for 20 epochs. For Gaussian diffusion, we map each class index x € {0, --- ,C}
to a 2D continuous embedding with a circular parameterization emb(z) = (langle cos(0), sin(0))
where 6 = %5 7. This embeddings encodes the similarity of different pixel values and ensures that
the resulting diffusion process closely resembles continuous diffusion. We found models with a 1-D
parameterization emb(z) = 2 x (z%7) — 1 performed much worse.

We evaluate the model performance using validation likelihood, as shown in Figure[TT] First, as in
Fig.[7]we find that the likelihoods between the unified model are competitive with the individually
trained models. In fact, we are even able to achieve slightly better performance for discrete and
Gaussian diffusion, perhaps because the parameterization is easier to learn from, or because of a
benefit from learning on diverse data.

As well, while we might expect Gaussian diffusion to achieve the best data fit due to the continuous
nature of the data, we see the opposite: among our individual models, Gaussian surprisingly achieves
the worst likelihood. This demonstrates the importance of considering multiple types of diffusion
paradigms depending on the downstream tasks, thereby motivating our approach of training a single
unified model.

We also generate 64 unconditional samples per model using 1,000 steps of ancestral sampling.
Through our visualizations in Figure[T2] we see that the unified model does not lead to compromised
sample quality compared to individual models.
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Unified Model

Figure 11: The sufficient statistic parametrization enables a single model to perform competitive
discrete, Gaussian, and simplicial diffusion on MNIST. We train all models for 20 epochs.
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Figure 12: Unconditional MNIST samples.
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