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Abstract001

Long Context Language Models (LCLMs) have002
emerged as a new paradigm to perform Infor-003
mation Retrieval (IR), which enables the direct004
ingestion and retrieval of information by pro-005
cessing an entire corpus in their single context,006
showcasing the potential to surpass traditional007
sparse and dense retrieval methods. However,008
processing a large number of passages within009
in-context for retrieval is computationally ex-010
pensive, and handling their representations dur-011
ing inference further exacerbates the process-012
ing time; thus, we aim to make LCLM retrieval013
more efficient and potentially more effective014
with passage compression. Specifically, we pro-015
pose a new compression approach tailored for016
LCLM retrieval, which is trained to maximize017
the retrieval performance while minimizing the018
length of the compressed passages. To accom-019
plish this, we generate the synthetic data, where020
compressed passages are automatically created021
and labeled as chosen or rejected according to022
their retrieval success for a given query, and023
we train the proposed Compression model for024
Long context Retrieval (CoLoR) with this data025
via preference optimization while adding the026
length regularization loss on top of it to enforce027
brevity. Through extensive experiments on 9028
datasets, we show that CoLoR improves the re-029
trieval performance by 6% while compressing030
the in-context size by a factor of 1.91.031

1 Introduction032

The context size of Language Models (LMs) refers033

to the maximum number of tokens that the model034

can process in a single input, which has rapidly ex-035

panded, growing from a few hundred to 128K, and036

recently reaching 1M tokens in Long Context Lan-037

guage Models (LCLMs) (OpenAI, 2023; Reid et al.,038

2024; Anthropic, 2024). Notably, this expansion039

has unlocked new capabilities, enabling models to040

handle tasks that require extensive context lengths,041

such as summarization or question answering over042

long articles (Xu et al., 2023; Kim et al., 2024). In 043

addition to this, LCLMs go beyond these relatively 044

simple tasks to handle more complex tasks, such as 045

Information Retrieval (IR) or Text-to-SQL, which 046

not only demand long-range context understanding 047

but also involve reasoning across multiple docu- 048

ments or structured queries (Lee et al., 2024; An 049

et al., 2023; Liu et al., 2023; Xu et al., 2023). Fur- 050

thermore, due to their impressive performance, they 051

have established a new paradigm in LM utilization 052

and task solving. For example, in IR tasks that we 053

focus on, LCLMs are capable of processing an en- 054

tire corpus with a large number of documents along 055

with a user query in their single context, leading to 056

more precise identification of relevant information 057

and further surpassing traditional sparse or dense re- 058

trieval approaches in many cases (Lee et al., 2024). 059

Yet, LCLMs face the limitation that the required 060

computational resources scale with the input length, 061

which has been overlooked by existing work. 062

To tackle this challenge, we propose a more ef- 063

ficient (and potentially more effective) method for 064

LCLM retrieval. To be specific, instead of relying 065

on the original passages, our approach uses com- 066

pressed passages that retain the core information 067

while filtering our irrelevant details, leading to the 068

substantial reduction in input size. It is worth not- 069

ing that, while there are existing compression meth- 070

ods (Jiang et al., 2023; Xu et al., 2024) particularly 071

designed for text generation or retrieval-augmented 072

generation, they are largely suboptimal for retrieval 073

since they are not trained to prioritize key elements 074

crucial for precise retrieval, such as relevance to 075

the query or fine-grained document distinctions. In 076

contrast, our compression model is trained to opti- 077

mize the LCLM retrieval performance, while mini- 078

mizing the passage length with the regularization 079

term added on top of the optimization objective. 080

Specifically, to train our compression model, we 081

leverage the strategy of Odds Ratio Preference Op- 082

timization (ORPO) (Hong et al., 2024), a method 083
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Figure 1: Comparison of different IR approaches. (A) Dense Retrieval. To identify relevant documents to the given query, it first
embeds them into the vector space and then calculates their semantic similarity. (B) LCLM Retrieval. The LCLM takes and
processes the raw passages from the corpus along with the query in the input context, and identifies the relevant passages. (C)
CoLoR. We compress the raw passages, and use the compressed passages alongside the query as the LCLM input for retrieval.

well-suited for maximizing the preference by com-084

paring pairs of samples and learning to prefer one085

over the other based on the specific objective. We086

note that this is particularly useful for our scenario087

since it allows us to rank compressed passages ac-088

cording to their retrieval performance, helping the089

model distinguish between more and less effective090

compressions, without the need for generating the091

ground-truth compression outputs manually. In092

other words, to generate the training data for it, we093

automatically create multiple compressed versions094

of each raw passage in the corpus and evaluate their095

retrieval success with the LCLM retrieval outcome.096

Subsequently, compressed samples are labeled as097

either chosen or rejected based on this evaluation,098

which can ultimately guide the model toward gen-099

erating the effective compression for passages for100

retrieval during preference optimization. However,101

using ORPO alone might not sufficiently reduce the102

output length of the compressed passages. Thus,103

to overcome this, we further introduce a dynamic104

regularization term that adjusts the odds ratio loss105

in the training objective based on the length differ-106

ence between chosen and rejected samples (where107

we additionally consider the compressed passages108

with the correct retrieval as rejected if there exist109

more shorter ones with the correct retrieval), which110

can encourage the model to prioritize brevity while111

at the same time optimizing the retrieval accuracy.112

We refer to our approach as Compression for Long113

Context Language Model Retrieval (CoLoR), il-114

lustrated in Figure 1 with previous IR methods.115

We experimentally validate the effectiveness of116

CoLoR on 9 datasets for LCLM retrieval, including117

5 single-document and 4 multi-document retrieval118

scenarios. On a battery of tests conducted, we then119

demonstrate that our approach not only improves120

the retrieval performance by 6% but also reduces121

the context length for retrieval by a factor of 1.91122

over the baseline that uses the original passages, 123

and it is further superior to the existing text com- 124

pression (or summarization) methods. Further, we 125

show that our compression method can be general- 126

izable to datasets not seen during its training. 127

2 Related Work 128

Information Retrieval The goal of Information 129

Retrieval (IR) is to fetch documents relevant to a 130

query, which has evolved significantly with their 131

application to various tasks, such as web search and 132

question answering. Early approaches used sparse 133

retrieval methods, such as BM25 (Robertson and 134

Zaragoza, 2009), which are based on lexical match- 135

ing between queries and documents. As the field 136

progressed, dense retrieval techniques have devel- 137

oped, leveraging text embedding models to capture 138

richer semantic relationships between queries and 139

documents. Notable examples of dense retrievers 140

include SentenceBERT (Reimers and Gurevych, 141

2019), Dense Passage Retrieval (DPR) (Karpukhin 142

et al., 2020), and SentenceT5 (Ni et al., 2021). 143

More recently, researchers have begun transform- 144

ing Large Language Models (LLMs) into retrieval 145

systems (BehnamGhader et al., 2024), which aim 146

to utilize the vast contextual understanding capabil- 147

ity of LLMs in representing documents and queries. 148

Following this line of approaches, our work extends 149

by utilizing LCLMs as the retrieval mechanism. 150

Long Context Language Models The recent ex- 151

pansion in context length of LLMs, which is called 152

Long Context Language Models (LCLMs), has em- 153

powered them to process and comprehend much 154

larger amounts of information. Specifically, models 155

like YaRN (Peng et al., 2023), Longformer (Belt- 156

agy et al., 2020), Gemini (Reid et al., 2024), GPT- 157

4 (OpenAI, 2023), and Claude (Anthropic, 2024) 158

exemplify this advancement. In tandem with these 159

developments, new benchmarks have been intro- 160

2



duced to assess the capabilities of LCLMs across161

various tasks. For example, many studies (Bai et al.,162

2023; Li et al., 2023a; Liu et al., 2023; Yuan et al.,163

2024; Wang et al., 2024) evaluated their perfor-164

mance in long-context understanding, and there are165

also other studies that focused on more specialized166

areas such as code comprehension (Liu et al., 2024)167

and training-free in-context learning (Bertsch et al.,168

2024; Li et al., 2024). Moreover, Lee et al. (2024)169

demonstrated that LCLMs outperform traditional170

fine-tuned specialized models in several areas (such171

as IR). However, despite these promising results,172

Liu et al. (2023) highlighted the persistent chal-173

lenges LCLMs face in fully grasping complex long174

contexts with high computational costs. In contrast175

to existing work that has mainly explored the po-176

tential and diverse applications of LCLMs, we take177

a different direction on improving the efficiency of178

LCLMs in the context of IR by reducing the context179

size while maintaining or enhancing performance.180

Prompt Compression As LCLMs handle in-181

creasingly longer contexts, the corresponding rise182

in computational costs has sparked research into183

methods for prompt compression. Extractive com-184

pression is one common approach, where only the185

relevant tokens are retained. This often involves186

techniques such as token pruning, which require as-187

sessing the importance of individual tokens based188

on specific metrics, for example, utilizing the self-189

information or perplexity of the model (Jiang et al.,190

2023; Li et al., 2023b). However, these methods191

typically require access to the model’s internal pro-192

cesses, making them feasible only for white-box193

models. In contrast, abstractive compression meth-194

ods generate the condensed prompts without need-195

ing to preserve the original token order or structure,196

and can be applied to both black-box and white-box197

models as they do not rely on internal model access.198

For example, Xu et al. (2024) generate compressed199

content from multiple documents in Retrieval Aug-200

mented Generation (RAG) settings, and Wang et al.201

(2023) use a similar approach to generate distilled202

documents. Despite these advancements, previous203

work focusing on context compression in RAG or204

instruction-following tasks is not well-optimized205

for retrieval tasks, as it does not cater specifically to206

the needs of retrieval. To address this gap, we pro-207

pose an abstractive compression model designed to208

improve the efficacy of LCLM retrieval.209

Preference Optimization Aligning the language210

models with human preferences has become a key211

focus in improving response generation (Ouyang 212

et al., 2022; Zhao et al., 2023; Rafailov et al., 213

2023; Hong et al., 2024). A prominent approach 214

is Reinforcement Learning from Human Feedback 215

(RLHF) (Ouyang et al., 2022; Stiennon et al., 2020), 216

which leverages a reinforcement learning frame- 217

work where a policy model learns to evaluate and 218

choose actions based on the state of an environment, 219

with human feedback acting as a reward signal. 220

Notably, what sets these approaches apart is their 221

ability to train models using only preference selec- 222

tions on outputs, without needing explicit ground 223

truth answers. Additionally, Odds Ratio Preference 224

Optimization (ORPO) (Hong et al., 2024) further 225

simplifies this by removing the requirement for a 226

reference model during training, allowing single- 227

step learning via preference selection of outputs. In 228

our approach, we apply this framework to train the 229

compression model without needing ground truth 230

labels, enabling the model to learn based on a pair 231

of compression outputs and their retrieval results. 232

3 Methodology 233

3.1 Problem Statement 234

We begin with formally explaining IR and LCLMs. 235

Information Retrieval In a typical IR task, given 236

a query q, its objective is to retrieve a ranked list 237

k relevant entries from a corpus C, formulated as 238

follows: {di}ki=1 = Retriever(q, C), where di is 239

a document from C. The query q is typically tex- 240

tual, and C is a collection of documents. Tradition- 241

ally, Retriever is operationalized with the sparse 242

retrieval based on lexical term matching (Robert- 243

son and Zaragoza, 2009) or the neural embedding- 244

based dense methods (Karpukhin et al., 2020). 245

Long Context Language Model Retrieval Re- 246

cently, Long Context Language Models (LCLMs) 247

have emerged with the ability to process extended 248

contexts, enabling them to handle inputs spanning 249

dozens of documents. This capability has given rise 250

to a new paradigm called LCLM Retrieval, which 251

utilizes LCLMs to solve IR tasks (Lee et al., 2024). 252

To be formal, similar to the typical IR approaches, 253

LCLM retrieval aims to retrieve relevant documents 254

from the corpus C for the query q, which can be 255

represented as follows: {di}ki=1 = LCLM(T (q, C)), 256

where T is the prompt template which serves as 257

the structured format that outlines the context for 258

LCLMs (including task descriptions) to direct them 259

in performing retrieval. It is worth noting that, un- 260

like traditional retrieval methods (sparse or dense), 261
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Figure 2: Overview of Training Processes for CoLoR. 1. We first create the training data for CoLoR by generating multiple
compressed passages from their original passages with multiple LMs. 2. The compressed passages and their associated query
are used as input to the LCLM, and their retrieval performance is measured to label them as either chosen or rejected based on
retrieval results. 3. CoLoR is trained using the pairs of chosen and rejected compressed passages obtained from previous steps.

which involve pairing each document with a query262

and calculating similarity scores to rank documents,263

LCLM retrieval takes both the entire corpus and264

the query as the single input and directly identifies265

relevant documents within it. However, a signifi-266

cant challenge with LCLM retrieval lies in the use267

of raw documents (or passages) as input, as they of-268

ten contain unnecessary, redundant, and irrelevant269

context, leading to increased computational costs.270

3.2 CoLoR: Compression for271

Long Context Language Model Retrieval272

To tackle the inefficiency of using raw passages in273

LCLM retrieval, we propose using compressed pas-274

sages to reduce the computational overhead with-275

out compromising retrieval effectiveness. There276

are two common approaches to compressing pas-277

sages: using prompt-based methods with LLMs or278

leveraging off-the-shelf compression models. How-279

ever, prompt-based methods often fail to achieve280

optimal compression ratios and are not tailored to281

enhance IR performance. Likewise, existing com-282

pression models, which are typically designed for283

tasks other than IR (such as RAG or instruction284

following), are not well-suited for LCLM retrieval.285

To address these limitations, we propose CoLoR286

(Compression for Long Context Retrieval), which287

is a novel compression model designed for LCLM288

retrieval. CoLoR generates compressed passages289

by learning to balance two objectives: maintain-290

ing high retrieval accuracy and reducing passage291

length. To achieve this, we leverage preference op-292

timization using synthetic preference data, where293

compressed passages are automatically generated,294

and labeled based on their retrieval success as well295

as their resulting lengths. This allows the model to296

distinguish between more and less effective com-297

pressions without manually collecting labels.298

Formally, let di ∈ C represent a raw document 299

(or passage) from the corpus. Our goal is to apply 300

the CoLoR model to compress each document di 301

into a more concise representation ci = CoLoR(di), 302

where ci is the compressed version of the raw doc- 303

ument. Ideally, the compressed passage ci retains 304

the most relevant information while filtering out 305

unnecessary details, therefore, reducing the length 306

of the input to the LCLM. After compressing every 307

document in the corpus, during the retrieval pro- 308

cess, instead of directly using the original corpus 309

C, the LCLM ingests the compressed corpus C∗ = 310

{ci}|C|i=1, where each element in C is transformed by 311

CoLoR. In other words, the retrieval process can be 312

redefined as follows: {di}ki=1 = LCLM(T (q, C∗)) 313

with |T (q, C∗)| ≪ |T (q, C)| where | · | measures 314

the number of tokens in the resulting prompt. 315

3.2.1 Training Recipe for CoLoR 316

We now turn to explaining the details of how we 317

train our CoLoR to optimize efficiency while im- 318

proving retrieval accuracy, illustrated in Figure 2. 319

Data Collection To train CoLoR for LCLM re- 320

trieval, we need to create a new dataset as no such 321

datasets are available. Our data creation process 322

begins with leveraging multiple LLMs to generate 323

multiple compressed versions of raw documents (or 324

passages), by prompting them with the prompt tem- 325

plate: T = Summarize the following content: 326

{passage}, formalized as follows: c = LLM(T (d)) 327

where c is the compressed passage and d is its orig- 328

inal version. After that, the compressed passages 329

are used as inputs for the LCLM retrieval, which 330

are then labeled as either chosen or rejected based 331

on two criteria: 1) whether the compressed passage 332

is correctly retrieved in response to its associated 333

query and 2) whether its length is shorter than any 334
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of the other successfully retrieved compressed pas-335

sages. For instance, if several compressed versions336

of a passage are retrieved correctly, the shortest337

of these is labeled as chosen, while the others are338

labeled as rejected. Also, if the retrieval with the339

compressed passage fails, it is labeled as rejected.340

This allows us to create the dataset with pairs of341

chosen and reject compression results for training342

CoLoR with preference optimization, which can343

ultimately prioritize compressions that improve re-344

trieval accuracy while minimizing passage length.345

CoLoR Optimization To optimize our compres-346

sion model, we leverage the Odds Ratio Preference347

Optimization (ORPO) (Hong et al., 2024), an ap-348

proach designed for training models by comparing349

pairs of chosen and rejected samples without the350

need for a reference model. ORPO is particularly351

suited for our task, as it allows us to directly opti-352

mize the model to prefer compressed passages that353

yield better retrieval performance with the shortest354

length. Formally, the standard ORPO loss function355

measures the odds ratio between the likelihood of356

generating the chosen response yw and the rejected357

response yl, represented as follows:358

LORPO = E(q,yw,yl) [LSFT + λ · LOR] ,359

where LSFT is the supervised fine-tuning loss for360

the chosen response based on the causal language361

modeling negative log-likelihood, and LOR is the362

loss for the odds ratio of the chosen response over363

the rejected one (See Hong et al. (2024) for details).364

However, while ORPO enables effective prefer-365

ence learning for making the compression model,366

it does not inherently reduce the length of the com-367

pressed passages as much as desired. To overcome368

this, we further propose to use a dynamic regular-369

ization term that adjusts the odds ratio loss based370

on the length difference between rejected and cho-371

sen samples. Specifically, we redefine the ORPO372

loss by multiplying it with a specific factor deter-373

mined as the length difference between yl and yw374

(where yl is always longer than yw based on the375

criteria in our data collection process), as follows:376

LCoLoR = E(q,yw,yl) [LSFT + λ · LOR · (|yl| − |yw|)] ,377

where | · | measures the length of the compressed378

passage. This extra regularization term directly379

allows the model to make larger updates in cases380

where the chosen sample is significantly shorter381

than the rejected one, making it to favor concise382

outputs without sacrificing retrieval accuracy.383

4 Experiment Setup 384

4.1 Datasets 385

We evaluate the performance of CoLoR on 9 widely 386

used LCLM retrieval benchmark datasets, follow- 387

ing the setup from Lee et al. (2024), including 5 388

single-document retrieval datasets: FEVER, FIQA, 389

MS MARCO, NQ, and SciFact (Thorne et al., 390

2018; Maia et al., 2018; Campos et al., 2016; 391

Kwiatkowski et al., 2019; Wadden et al., 2020) and 392

4 multi-document retrieval datasets: HotpotQA, 393

MuSiQue, QAMPARI, and QUEST (Yang et al., 394

2018; Trivedi et al., 2021; Amouyal et al., 2022; 395

Malaviya et al., 2023). Note that single-document 396

retrieval tasks involve retrieving a single document 397

relevant to a query, whereas multi-document re- 398

trieval tasks require retrieving two or more docu- 399

ments. We provide the detailed statistics in Table 7. 400

4.2 Baselines and Our Model 401

We evaluate CoLoR against baselines, as follows: 402

1. Raw Passage – which is a standard approach 403

for LCLM retrieval that directly uses raw passages. 404

2. Document Title – which uses only the titles of 405

the passages without the full content. 3. Zero-Shot 406

Compression – which uses LLMs to compress pas- 407

sages via prompting, including GPT-4o-mini (Ope- 408

nAI, 2023) and Phi3 (Abdin et al., 2024). 4. Se- 409

lective Context – which is an extractive com- 410

pression method that selects tokens based on the 411

self-information of the model (Li et al., 2023b), 412

where we use two compression rates: 0.3 and 0.6. 413

5. LLMLingua – which is an extractive compres- 414

sion method that selects tokens based on the per- 415

plexity scores (Jiang et al., 2023). 6. RECOMP – 416

which is an abstractive compression method that 417

compresses multiple documents designed for RAG 418

scenarios (Xu et al., 2024). 7. COMPACT – which 419

is an abstractive compression method that com- 420

presses and refines passages iteratively for question 421

answering (Yoon et al., 2024). 8. CoLoR (Ours) 422

– which is our abstractive compression method, 423

trained to maximize the retrieval accuracy and min- 424

imize the compressed passage length, with the pref- 425

erence optimization. Additionally, we also include 426

BM25 (Robertson and Zaragoza, 2009) (which is 427

a sparse retriever that scores documents based on 428

term frequency and inverse document frequency) 429

and DPR (Karpukhin et al., 2020) (which is a dense 430

retriever that uses embeddings to match queries and 431

relevant passages) as the reference to the perfor- 432

mance of conventional sparse and dense retrievers, 433

which are neither comparable nor our competitors. 434
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Table 1: Results on LCLM retrieval. Type refers to a compression type: ✗ denotes no compression, Ex. denotes extractive
compression, and Ab. denotes abstractive compression. † denotes multi-document retrieval. Comp. is the compression rate.

FEVER FIQA MS MARCO NQ SciFact

Methods Type R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp.

Raw Passage ✗ 0.95 1.00x 0.63 1.00x 0.90 1.00x 0.97 1.00x 0.57 1.00x
Document Title ✗ 0.97 31.65x N/A N/A N/A N/A 0.86 22.56x 0.68 13.98x
BM25 ✗ 0.93 1.00x 0.41 1.00x 0.78 1.00x 0.79 1.00x 0.75 1.00x
DPR ✗ 0.89 1.00x 0.31 1.00x 0.85 1.00x 0.94 1.00x 0.35 1.00x

Selective Context (0.6) Ex. 0.96 1.83x 0.35 1.83x 0.52 1.92x 0.95 1.88x 0.71 1.89x
Selective Context (0.3) Ex. 0.95 4.58x 0.15 4.24x 0.19 4.69x 0.90 4.91x 0.63 5.33x
LLMLingua Ex. 0.96 1.70x 0.46 1.6x 0.83 1.12x 0.97 1.24x 0.74 1.92x
Comp. w/ GPT Ab. 0.96 1.74x 0.68 2.09x 0.92 1.39x 0.99 1.37x 0.73 1.71x
Comp. w/ Phi Ab. 0.95 1.83x 0.68 2.31x 0.92 1.41x 0.99 1.39x 0.71 1.78x
RECOMP Ab. 0.96 3.02x 0.36 2.00x 0.75 1.77x 0.98 1.97x 0.70 2.31x
COMPACT Ab. 0.96 2.21x 0.48 2.56x 0.88 1.17x 0.98 1.32x 0.77 2.95x
CoLoR (Ours) Ab. 0.94 2.15x 0.73 2.82x 0.95 1.63x 0.98 1.62x 0.75 2.12x

HotPotQA† MuSiQue† QAMPARI† QUEST† Average

Methods Type F1@2 Comp. F1@5 Comp. F1@5 Comp. F1@3 Comp. Perf. Comp.

Raw Passage ✗ 0.87 1.00x 0.35 1.00x 0.56 1.00x 0.33 1.00x 0.68 1.00x
Document Title ✗ 0.65 12.52x 0.38 23.43x 0.25 22.48x 0.11 55.65x 0.60 26.04x
BM25 ✗ 0.82 1.00x 0.39 1.00x 0.76 1.00x 0.37 1.00x 0.64 1.00x
DPR ✗ 0.79 1.00x 0.46 1.00x 0.55 1.00x 0.31 1.00x 0.61 1.00x

Selective Context (0.6) Ex. 0.79 2.06x 0.37 1.93x 0.42 1.95x 0.19 2.01x 0.58 1.92x
Selective Context (0.3) Ex. 0.68 5.49x 0.37 5.10x 0.30 5.30x 0.11 5.41x 0.48 5.01x
LLMLingua Ex. 0.81 1.13x 0.36 1.23x 0.54 1.05x 0.21 1.75x 0.65 1.42x
Comp. w/ GPT Ab. 0.87 1.20x 0.40 1.32x 0.54 1.28x 0.32 1.95x 0.71 1.56x
Comp. w/ Phi Ab. 0.85 1.21x 0.41 1.39x 0.55 1.33x 0.31 2.03x 0.71 1.63x
RECOMP Ab. N/A 0.76x 0.38 1.00x 0.53 0.97x 0.21 1.50x 0.54 1.70x
COMPACT Ab. 0.87 1.14x 0.37 1.47x 0.52 1.51x 0.30 3.47x 0.68 1.98x
CoLoR (Ours) Ab. 0.86 1.37x 0.42 1.55x 0.55 1.50x 0.33 2.39x 0.72 1.91x

4.3 Evaluation Metrics435

For single-document retrieval, we evaluate perfor-436

mance with Recall@1 (R@1), which measures437

the proportion of queries for which the top-ranked438

document is relevant. For multi-document, we use439

F1@k, a metric combining Precision@k (the pro-440

portion of correctly retrieved relevant documents441

in the top k results) and Recall@k (the proportion442

of relevant documents retrieved from up to k to-443

tal). For compression efficiency, we compute the444

compression rate (Comp.), defined as the average445

number of tokens in raw passages divided by the446

average number of tokens in compressed passages.447

4.4 Implementation Details448

To ensure a fair comparison across all experiments,449

we use GPT-4o-mini as the underlying LCLM. We450

use the Phi-3-mini-4k-instruct model as the base451

model for our compression method, CoLoR. For452

the prompt, we structure it as a sequence of the453

corpus, 5-shot examples, and query, following Lee454

et al. (2024). Additional details are in Appendix A.455

5 Experiment Results456

Main Results We report main results in Table 1,457

demonstrating that the proposed CoLoR approach458

consistently outperforms all baseline methods on459

Table 3: Results on out-of-domain datasets, where the target
datasets within each category is excluded for training CoLoR*.

Raw Passage Comp w/ Phi CoLoR*

Perf. Comp. Perf. Comp. Perf. Comp.

Fact-checking
FEVER 0.95 1.00x 0.95 1.83x 0.95 2.14x
SciFact 0.71 1.00x 0.71 1.78x 0.73 2.13x
Average 0.83 1.00x 0.83 1.81x 0.84 2.14x

Multi-document
HotpotQA 0.85 1.00x 0.85 1.21x 0.87 1.36x
MuSiQue 0.35 1.00x 0.41 1.39x 0.40 1.54x
QAMPARI 0.56 1.00x 0.55 1.33x 0.56 1.48x
QUEST 0.33 1.00x 0.31 2.03x 0.32 2.33x
Average 0.52 1.00x 0.53 1.49x 0.54 1.68x

Argument
ArguAna 0.28 1.00x 0.27 2.26x 0.34 2.73x
Touché-2020 0.76 1.00x 0.79 3.79x 0.79 4.66x
Average 0.52 1.00x 0.53 3.03x 0.57 3.70x

both the single-document and multi-document re- 460

trieval tasks while at the same time substantially 461

compressing the input context size of LCLMs for 462

retrieval. Specifically, CoLoR achieves a compres- 463

sion rate that reduces the input size by a factor of 464

1.91, while also improving retrieval performance 465

by 6%, compared to the standard approach with 466

raw passages. Also, our CoLoR provides the su- 467

perior quality compressed passages for retrieval, 468

compared to extractive and abstractive compression 469

models. For instance, when compared with extrac- 470

tive methods (Selective Context and LLMLingua), 471

CoLoR consistently demonstrates better retrieval 472

performance. In addition to this, even against the 473
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Figure 3: The trade-off visualiza-
tion of different methods, showing
their compression rate (x-axis) and
retrieval performance (y-axis).
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Figure 4: Results with varying the
position of (compressed) passages
associated with the query within the
corpus (0% represents beginning).

FIQA SciFact MuSiQue Average

R@1 Comp. R@1 Comp. F1@5 Comp. Perf. Comp.

Phi3 mini 0.68 2.31x 0.71 1.78x 0.41 1.39x 0.68 1.63x
+ CoLoR 0.67 2.82x 0.75 2.12x 0.42 1.55x 0.72 1.91x

Mistral 7B 0.60 1.55x 0.73 1.46x 0.39 1.09x 0.69 1.21x
+ CoLoR 0.63 3.07x 0.80 3.03x 0.40 1.71x 0.71 2.25x

Llama 3.2 0.58 2.19x 0.70 2.17x 0.39 1.63x 0.69 1.84x
+ CoLoR 0.61 2.83x 0.72 3.03x 0.39 1.71x 0.69 2.15x

Table 2: Results with varying the base LM for
CoLoR, such as Phi3, Mistral, and Llama. Note that
Average indicates the average across all 9 datasets,
and we report results with other datasets in Table 9.

Table 4: Manual evaluation results on three sampled pas-
sages per dataset. We report the average number of total facts
(Facts), query-supportive facts (Sup. Facts), the proportion of
supportive facts to total facts (Ratio), and the token count.

Methods Facts Sup. Facts Ratio Tokens

Raw Passages 14.13 1.91 13.52 210.93
CoLoR (Ours) 9.26 1.74 18.80 93.41

strong proprietary and open-source models (such474

as GPT and Phi3), CoLoR excels, particularly in475

terms of the compression rate, highlighting the limi-476

tations of relying on prompting techniques to gener-477

ate compressed passages for retrieval. Lastly, when478

compared with multi-document compression meth-479

ods such as RECOMP and COMPACT, our CoLoR480

significantly outperforms them in the retrieval per-481

formance with the similar compression rate, which482

further confirms the necessity of task-specific train-483

ing for passage compression for LCLM retrieval.484

Results on Out-of-Domain Datasets To assess485

the generalizability of our compression approach486

(CoLoR) on datasets not seen for training, we eval-487

uate its performance in out-of-domain settings by488

excluding a set of datasets from each retrieval cate-489

gory (such as fact-checking, multi-document, and490

argument) from the training process and testing on491

them. As shown in Table 3, we observe that CoLoR492

consistently enhances retrieval performance while493

significantly reducing the input context size, which494

demonstrates the ability of our CoLoR to general-495

ize across diverse retrieval tasks and datasets.496

Qualitative Analysis with Manual Evaluation497

To see whether query-relevant information is pre-498

served after passage compression, we manually499

compare the atomic facts in the compressed pas-500

sages to the ones in the raw passages over randomly501

sampled three examples from each of all datasets502

with two individual persons. As shown in Table 4,503

while the total number of facts in the compressed504

passages decreases, the number of query-relevant505

facts is only slightly reduced (from 1.91 to 1.74506

per passage on average). Also, when we look at 507

the proportion of relevant facts to total facts (Ra- 508

tio), this proportion increases, indicating that the 509

compressed passages contain a higher density of 510

query-related atomic facts (while the proportion 511

of noisy, query-irrelevant information is reduced), 512

which may support the performance improvement 513

of our CoLoR. Additionally, we provide the case 514

study on the compressed passages in Figure 11. 515

Trade Off Between Compression Rate and Re- 516

trieval Performance To examine the trade-off 517

between the compression rate and retrieval perfor- 518

mance, we visualize and analyze them in Figure 3. 519

First of all, we observe that, while extremely high 520

compression rates (such as those achieved by using 521

the compression ratio of 0.3 with the Selective Con- 522

text baseline) drastically reduce the input size, they 523

also lead to significant information loss (potentially 524

due to the removal of crucial information for re- 525

trieval), resulting in the retrieval performance drop 526

of 20 on average compared to using the raw pas- 527

sages. This observation highlights the critical trade- 528

off between compression and performance: simply 529

maximizing compression for efficiency compro- 530

mises accuracy. In contrast, the proposed CoLoR 531

effectively balances this trade-off, ensuring that the 532

reduction in context size does not sacrifice criti- 533

cal information, thanks to our training strategy that 534

guides the model to prefer the compressed passages 535

of successful retrieval over the ones with unsuccess- 536

ful retrieval (while enforcing brevity as well). 537

Analysis on Passage Position In Figure 5, we 538

analyze the position of passages within the input 539

context (associated with the query in the same con- 540

text), to see the potential lost-in-the-middle prob- 541

lem (Liu et al., 2023) in the context of LCLM re- 542

trieval: the retrieval performance can be decreased 543

if the relevant passages to the query are placed 544

in the middle of the input sequence. To measure 545

this, we place documents at intervals of 0%, 20%, 546

40%, 60%, 80%, and 100% across the input cor- 547
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Table 5: Results of an ablation study, where SFT refers to
supervised fine-tuning and ORPO w/ Reg refers to our full
CoLoR model with the dynamic regularization term. Average
indicates the average performance across all 9 datasets.

MS MARCO MuSiQue QUEST Average

R@1 Comp. F1@5 Comp. F1@3 Comp. Perf. Comp.

Base Model 0.92 1.41x 0.41 1.39x 0.31 2.03x 0.71 1.63x
+ SFT 0.88 1.42x 0.39 1.39x 0.32 2.18x 0.72 1.65x
+ ORPO 0.94 1.59x 0.40 1.53x 0.31 2.31x 0.71 1.86x

+ ORPO w/ Reg. 0.95 1.41x 0.42 1.55x 0.33 2.39x 0.72 1.91x

pus, and compare three different approaches: Raw548

Passage, Document Title, and our CoLoR. Then,549

similar to the finding in Liu et al. (2023), placing550

documents towards the middle leads to a certain551

level of performance degradation across all meth-552

ods. Yet, interestingly, our proposed compression553

method (CoLoR) mitigates the lost-in-the-middle554

issue, since it not only filters out irrelevant informa-555

tion within passages during compression but also556

allows for a more compact use of the input context.557

CoLoR with Different LMs To see whether the558

proposed CoLoR is versatile across different under-559

lying LMs in generating compressed passages, we560

vary them with three different LMs: Phi-3-mini-4k-561

instruct, Mistral-7B-Instruct-v0.3, and Llama-3.2-562

3B-Instruct. Then, as shown in Table 2, we observe563

the consistent improvements of our CoLoR in both564

compression rate and retrieval performance across565

all models. This demonstrates that CoLoR and its566

training methodology is not limited to a specific567

model but can be effectively generalized to others.568

We provide results with all datasets in Table 9.569

Ablation Study To see the effectiveness of each570

component of our CoLoR, we perform an ablation571

study and present the results in Table 5. First of572

all, we observe that, while Supervised Fine-Tuning573

(SFT) yields strong retrieval performance, the com-574

pression rate remains comparable to the untrained575

method. On the other hand, by utilizing preference576

optimization with Odds Ratio Preference Optimiza-577

tion (ORPO), we observe an improved compression578

rate, though this comes with a slight performance579

degradation. However, the proposed dynamic reg-580

ularization term (for compressed passage length)581

mitigates this trade-off, further improving both the582

compression ratio and retrieval performance, reaf-583

firming the overall efficacy of our proposed CoLoR584

approach in both the efficiency and effectiveness.585

More detailed results are in Table 10 of Appendix.586

Adaption of CoLoR to Conventional Retrieval587

In Table 6, we investigate how using compressed588

passages impacts the performance of conventional589

Table 6: Results with different retrieval approaches with
raw and compressed passages. In the first couple of columns,
Types refers to retrieval types, and Formats refers to corpus
formats. Average indicates the performance over all 9 datasets.

FEVER MS MARCO HotpotQA Average

Types Formats R@1 Comp. R@1 Comp. F1@2 Comp. Perf. Comp.

BM25 Raw Passage 0.93 1.00x 0.78 1.00x 0.82 1.00x 0.67 1.00x
Comp. w/ GPT 0.91 1.74x 0.78 1.39x 0.80 1.20x 0.64 1.56x
CoLoR (Ours) 0.91 2.15x 0.70 1.63x 0.77 1.37x 0.62 1.91x

DPR Raw Passage 0.89 1.00x 0.85 1.00x 0.79 1.00x 0.61 1.00x
Comp. w/ GPT 0.89 1.74x 0.85 1.39x 0.77 1.20x 0.62 1.56x
CoLoR (Ours) 0.91 2.15x 0.88 1.63x 0.81 1.37x 0.63 1.91x

LCLM CoLoR (Ours) 0.94 2.15x 0.95 1.63x 0.86 1.37x 0.72 1.91x

sparse and dense retrievers as they can bring an 590

additional benefit of faster indexing thanks to the 591

reduced passage size. First, for the sparse retriever 592

(BM25), performance tends to decrease when us- 593

ing compressed passages, likely due to the loss of 594

lexical information that BM25 relies on to match 595

documents based on exact lexical similarities. In 596

contrast, the dense retriever (DPR) shows perfor- 597

mance improvements with compressed passages. 598

We conjecture that this may be because the un- 599

derlying LM for dense retrieval already contains 600

much of the passage’s information within its pa- 601

rameters, and, as a result, compressing the passage 602

still retains essential details in making valuable rep- 603

resentations for it while additionally filtering our 604

irrelevant content (that might lead to noise in em- 605

bedding). However, despite these gains in dense re- 606

trieval with the proposed CoLoR, the performance 607

of LCLM retrieval coupled with CoLoR is substan- 608

tially better than conventional retrieval methods. 609

6 Conclusion 610

In this work, we introduced Compression for Long 611

Context Langauge Model Retrieval (CoLoR), a 612

method specifically designed to improve efficiency 613

and effectiveness of LCLM retrieval by transition- 614

ing from raw to compressed passages. Specifically, 615

the proposed CoLoR, trained with the synthesized 616

preference data (based on retrieval outcomes of the 617

compressed passages) and regularization loss for 618

their lengths, optimizes both brevity and retrieval 619

performance. Through our extensive experiments 620

conducted across 9 datasets spanning single- and 621

multi-document retrieval tasks, we demonstrated 622

that CoLoR not only achieves a 6% improvement 623

in retrieval performance but also reduces context 624

size by a factor of 1.91 over the standard LCLM 625

retrieval, which further surpasses existing text com- 626

pression methods. These highlight the significant 627

advantage of compressed passages to enhance ef- 628

ficiency for LCLM retrieval by reducing the com- 629

putational load and its associated costs, all while 630

even improving retrieval accuracy, making it more 631

scalable and practical for real-world applications. 632
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Limitations633

While our proposed CoLoR approach demonstrates634

significant advantages in LCLM retrieval, there are635

still areas that future work may explore. First, fol-636

lowing the LCLM retrieval benchmark setup (Lee637

et al., 2024), our experiments are conducted with638

a maximum context length of 128K tokens, and,639

while this context length is indeed very large and640

it has been increasingly extended further, in real-641

world applications, the size of the corpus can be642

much larger (even after utilizing our compression643

method), which may necessitate further modifica-644

tions of the overall LCLM retrieval framework. Yet,645

developing the new process for LCLM retrieval is646

beyond the scope of our work and we leave it as647

future work. Another consideration is the compres-648

sion process: it introduces an additional step before649

retrieval; however, this is not a big deal as it only650

needs to be performed once as like the indexing651

process of sparse and dense retrieval approaches.652

Ethics Statement653

It is worth noting that, similar to any other retrieval654

approaches, the retrieval corpus may contain harm-655

ful or offensive content, and the compressed pas-656

sages could potentially reflect these biases. Also,657

additional biases may be induced during the train-658

ing process of LCLMs. Although addressing these659

concerns are obviously beyond the scope of our660

work, we acknowledge the importance of imple-661

menting the safeguards in future research to ensure662

that the retrieval process remains safe and fair.663
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Table 7: Statistics of the generated dataset for preference
optimization for training CoLoR, which includes the number
of samples per dataset and the average length of reject and
chosen tokens. † denotes multi-document retrieval datasets.

Dataset # of Samples Avg. Rejected Token Avg. Chosen Token

FEVER 483 236.19 152.63
FIQA 455 148.15 88.22
MS MARCO 1061 76.06 51.3
NQ 635 158.16 111.67
SciFact 198 229.84 156.26
HotPotQA† 544 93.52 71.11
MuSiQue† 12 107.58 80.5
QAMPARI† 30 107.23 82.77

Total 3418 135.61 91.36

A Additional Experimental Setups937

Fine-tuning Details For Supervised Fine-Tuning938

(SFT), we use a learning rate of 5e-6. Similarly,939

for ORPO with Phi and Llama, we use λ of 2.5940

and a learning rate of 1e-6, while, for Mistral, we941

change the learning rate to 5e-6. Also, all models942

are trained for 10 epochs with a batch size of 8, and943

the best epoch is selected based on the validation944

set. Lastly, we use the TRL library1 for training.945

Computational Resources We train and infer-946

ence all baselines and our model by using one of the947

NVIDIA RTX A6000 and NVIDIA RTX A5000948

GPUs, depending on their availability. With those949

GPUs, the time required to train our model over 10950

epochs ranges from 3 to 5 hours.951

Deep Learning Libraries In our experiments,952

we utilize the following deep learning libraries: Py-953

Torch (Paszke et al., 2019), Transformers (Wolf954

et al., 2020), SentenceTransformers (Reimers and955

Gurevych, 2019), and BEIR (Thakur et al., 2021).956

Also, BM25 is implemented using a python library957

rank_bm252, while, for DPR, we use a BEIR frame-958

work3. Other baselines are sourced from publicly959

available checkpoints on their repositories45.960

Datasets Details In table 7, we provide the statis-961

tics of the dataset that we create for training our962

compression model (CoLoR). Note that, among all963

the samples, we use 3,077 samples for training and964

341 samples for validation, with random selection.965

B Additional Experimental Results966

Results on Long Context Retrieval Benchmark967

We further evaluate our CoLoR on the long con-968

text retrieval scenario, including two long context969

1https://github.com/huggingface/trl
2https://github.com/dorianbrown/rank_bm25
3https://github.com/beir-cellar/beir
4https://huggingface.co/cwyoon99/CompAct-7b
5https://github.com/liyucheng09/Selective_Context

Table 8: Results on the long context retrieval benchmark.
NQ 2WikimQA NarrativeQA Average

R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp.

Raw Passage 0.92 1.00x 0.42 1.00x 0.22 1.00x 0.52 1.00x
Compressed Passage 0.95 63.02x 0.72 29.64x 0.56 555.93x 0.74 216.2x

question-answering datasets from the LongEmbed 970

benchmark (Zhu et al., 2024) as well as the origi- 971

nal corpus for the Natural Questions (NQ) dataset6. 972

To enable comparisons between different methods, 973

the raw passages are truncated (as the context size 974

with original raw passages exceeds its limit) and 975

the compressed passages are generated using GPT- 976

4o-mini (prompted to create summaries under 200 977

words)7. Then, as shown in Table 8, the compres- 978

sion model reduces passage size by 216.2×, while 979

increasing Recall@1 by 42%, compared to using 980

(truncated) raw passages, which further strengths 981

the effectiveness of our compression paradigm, par- 982

ticularly in handling lengthy passages. 983

Full Results on Analyses In Table 9 and Ta- 984

ble 10, we provide the full results of varying the 985

base LM for CoLoR and the ablation study with all 986

datasets, respectively. Also, we provide the results 987

of analysis on passage position with all datasets in 988

Figure 5. 989

Case Study We provide the case study on the 990

compressed passages generated by different ap- 991

proaches in Table 11, which shows that the com- 992

pressed passages from our CoLoR tend to leading 993

to the retrieval success and tend to be shorter. 994

Prompt Details For the prompt construction, we 995

follow the Corpus-in-Context prompting approach 996

from prior work (Lee et al., 2024). An example 997

prompt for the NQ dataset is provided in Table 12, 998

and, for more examples and details on the prompt, 999

please refer to Lee et al. (2024). 1000

6https://github.com/google-research-datasets/natural-
questions

7Due to the excessive length of passages for these datasets,
training CoLoR on them is not feasible within our computa-
tional resources, and we leave this as a future work.
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Table 9: Full results with all datasets by varying the base LM for CoLoR. † indicates multi-document retrieval datasets, and *
denotes out-of-domain datasets (that are not used for training CoLoR).

FEVER FIQA MS MARCO NQ SciFact

Methods R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp.

Phi3 mini 0.95 1.83x 0.68 2.31x 0.92 1.41x 0.99 1.39x 0.71 1.78x
+ CoLoR 0.94 2.15x 0.73 2.82x 0.95 1.63x 0.98 1.62x 0.75 2.12x

Mistral 7B 0.96 1.36x 0.58 1.55x 0.90 0.98x 0.98 1.01x 0.70 1.46x
+ CoLoR 0.96 2.51x 0.63 3.07x 0.91 1.66x 0.98 1.78x 0.80 3.03x

Llama 3.2 0.96 2.03x 0.35 2.19x 0.52 1.47x 0.95 1.68x 0.71 2.17x
+ CoLoR 0.95 2.30x 0.61 2.83x 0.86 2.76x 0.99 1.91x 0.72 2.64x

HotPotQA† MuSiQue† QAMPARI† QUEST†* Average

Methods F1@2 Comp. F1@5 Comp. F1@5 Comp. F1@3 Comp. Perf. Comp.

Phi3 mini 0.85 1.21x 0.41 1.39x 0.55 1.33x 0.31 2.03x 0.68 1.63x
+ CoLoR 0.86 1.37x 0.42 1.55x 0.55 1.50x 0.33 2.39x 0.72 1.91x

Mistral 7B 0.83 0.92x 0.39 1.09x 0.55 1.07x 0.32 1.46x 0.69 1.21x
+ CoLoR 0.85 1.43x 0.40 1.71x 0.56 1.68x 0.33 3.35x 0.71 2.25x

Llama 3.2 0.84 1.42x 0.39 1.63x 0.52 1.64x 0.31 2.33x 0.69 1.84x
+ CoLoR 0.85 1.55x 0.40 1.84x 0.54 1.83x 0.30 2.68x 0.69 2.15x

Table 10: Full results of the ablation study with all datasets. † denotes multi-document retrieval datasets, and * indicates
out-of-domain datasets (not used for training CoLoR). SFT refers to supervised fine-tuning, and ORPO w/ Reg denotes CoLoR.

FEVER FIQA MS MARCO NQ SciFact

Methods R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp. R@1 Comp.

Base Model 0.95 1.83x 0.68 2.31x 0.92 1.41x 0.99 1.39x 0.71 1.78x
+ SFT 0.95 1.82x 0.67 2.28x 0.88 1.42x 0.99 1.42x 0.80 1.83x
+ ORPO 0.94 2.11x 0.64 2.75x 0.94 1.59x 0.99 1.59x 0.74 2.05x

+ ORPO w/ Reg 0.94 2.15x 0.73 2.82x 0.95 1.63x 0.98 1.62x 0.75 2.12x

HotPotQA† MuSiQue† QAMPARI† QUEST†* Average

Methods F1@2 Comp. F1@5 Comp. F1@5 Comp. F1@3 Comp. Perf. Comp.

Base Model 0.85 1.21x 0.41 1.39x 0.55 1.33x 0.23 2.03x 0.71 1.63x
+ SFT 0.88 1.22x 0.39 1.39x 0.57 1.33x 0.32 2.18x 0.72 1.65x
+ ORPO 0.85 1.35x 0.40 1.53x 0.54 1.48x 0.31 2.31x 0.71 1.86x

+ ORPO w/ Reg 0.86 1.37x 0.42 1.55x 0.55 1.50x 0.33 2.39x 0.72 1.91x
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Table 11: Case study on the retrieval sample from the FIQA dataset.

Methods
(# of Tokens) Passage Prediction

Query If an index goes up because an underlying company issues more shares, what happens to the ETF

Raw Passage
(315)

If a stock that makes up a big part of the Dow Jones Industrial Average decided to issue a huge
number of additional shares, that will make the index go up. At least this is what should happen,
since an index is basically a sum of the market cap of the contributing companies. No, indices
can have various weightings. The DJIA is a price-weighted index not market-cap weighted. An
alternative weighting besides market-cap and price is equal weighting. From Dow Jones: Dow Jones
Industrial Average2̆122. Introduced in May 1896, the index, also referred to as The Dow0̆0ae, is a
price-weighted measure of 30 U.S. blue-chip companies. Thus, I can wonder what in the new shares
makes the index go up? If a stock is split, the Dow divisor is adjusted as one could easily see how
the current Dow value isn’t equal to the sum or the share prices of the members of the index. In
other cases, there may be a dilution of earnings but that doesn’t necessarily affect the stock price
directly as there may be options exercised or secondary offerings made. SO if the index, goes up,
will the ETF DIA also go up automatically although no additional buying has happened in the ETF
itself? If the index rises and the ETF doesn’t proportionally, then there is an arbitrage opportunity
for someone to buy the DIA shares that can be redeemed for the underlying stocks that are worth
more in this case. Look at the Creation and Redemption Unit process that exists for ETFs.

325818 ✗

Comp. w/ GPT
(185)

The Dow Jones Industrial Average (DJIA) is a price-weighted index of 30 U.S. blue-chip companies,
meaning its value is based on the share prices of its components rather than their market capitaliza-
tions. If a major stock in the DJIA issues a large number of new shares, the index should theoretically
rise, but adjustments like the Dow divisor may affect this relationship. When a stock splits, for
example, the divisor is adjusted to maintain the index’s integrity. If the index increases, it raises the
question of whether the corresponding ETF (DIA) will also rise automatically, despite no new buying
in the ETF. If the ETF’s price doesn’t align proportionally with the index’s increase, it may create an
arbitrage opportunity, allowing traders to profit by redeeming DIA shares for the underlying, more
valuable stocks. Understanding the creation and redemption unit process is essential for grasping
this dynamic.

325818 ✗

Comp. w/ Phi
(138)

The content discusses how the Dow Jones Industrial Average (DJIA) index, a price-weighted measure
of 30 U.S. blue-chip companies, can be affected by the issuance of additional shares by a major
company. It explains that the index value may not directly reflect the sum of the share prices due to
adjustments in the Dow divisor. The content also addresses the relationship between the DJIA index
and the ETF DIA, stating that if the index rises but the ETF doesn’t proportionally, there may be an
arbitrage opportunity for someone to buy DIA shares and redeem them for the underlying stocks that
are worth more. The creation and redemption process of ETFs is briefly mentioned."

325818 ✗

LLMLingua
(189)

a stock that the IndustrialAverage to a of that will . least what, since is a market the., can have various
The index. Aning. From: Average™. in index also as Dowed ., can what the new shares is the Dow
is adjusted as one could see the value’t sum the the members of the index. In other cases, there may
be a dilution of earnings but that doesn’t necessarily affect the stock price directly as there may be
options exercised or secondary offerings made. SO if the index, goes up, will the ETF DIA also go
up automatically although no additional buying has happened in the ETF itself? If the index rises
and the ETF doesn’t proportionally, then there is an arbitrage opportunity for someone to buy the
DIA shares that can be redeemed for the underlying stocks that are worth more in this case. Look at
the Creation and Redemption Unit process that exists for ETFs.

325818 ✗

Selective
Context (0.3)
(69)

of the Dow Jones Industrial Average to of, up. is what happen of of....: Dow Jones Industrial Average
in, the to as is of., what up is, isn’t to of of., be ofn’t necessarily the stock price may be. up, up?n’t
then is for to buy be for are more. at.

482415 ✗

Selective
Context (0.6)
(175)

up a big part of the Dow Jones Industrial Average to a huge number of additional shares, that make
the index go up. is what happen, is a sum of the market cap of., can. is a price-weighted index
weighted. and is equal weighting.: Dow Jones Industrial Average in May, the also referred to as
is a price-weighted measure of 30 U.S. blue-chip companies., I can what go up? is, is as see the
current Dow valuen’t equal to the sum the share prices of the members of the index., there may be a
dilution of that doesn’t necessarily affect the stock price as there may be or made. up, will go up has
happened in the ETF itself? andn’t then there is an arbitrage opportunity for to buy be redeemed for
the underlying stocks that are more in this case. at for

418150 ✓

COMPACT
(116)

The Dow Jones Industrial Average (DJIA) or "Dow 30" is a price-weighted average of 30 significant
stocks traded on the New York Stock Exchange (NYSE) and the Nasdaq. The DJIA is one of the
most widely followed equity indices. The DJIA is calculated by summing the individual prices of
the 30 stocks in the index, then dividing that total by a divisor. If a stock that makes up a big part
of the Dow Jones Industrial Average decided to issue a huge number of additional shares, that will
make the index go up.

325818 ✗

CoLoR (Ours)
(103)

A stock issuing additional shares can cause the Dow Jones Industrial Average (DJIA) to rise due to
its price-weighted nature. However, the DJIA’s value isn’t directly equal to the sum of its member
stocks’ prices. In cases of stock splits or dilution of earnings, the Dow divisor is adjusted. If the
DJIA rises and the ETF DIA doesn’t proportionally increase, there’s an arbitrage opportunity for
someone to buy DIA shares and redeem them for the underlying stocks worth more.

418150 ✓
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Figure 5: Results with varying the position of (compressed) passages for all datasets. Specifically, we arbitrarily adjust the
positions of the gold and few-shot passages within the corpus relative to the query (0% represents the beginning). The figures at
the top, middle, and bottom represent the results with CoLoR, raw passage, and document title, respectively.
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Table 12: Example of corpus-in-context prompting for the NQ dataset, following Lee et al. (2024). The input is categorized by
type, with all types being provided as input to the LCLM for retrieval.

Types

Instruction

You will be given a list of documents. You need to read carefully and understand all of them. Then you will be
given a query, and your goal is to find all documents from the list that can help answer the query. Print out the
ID and TITLE of each document.

Your final answer should be a list of IDs, in the following format:
Final Answer: [id1, id2, ...]
If there is only one ID, it should be in the format:
Final Answer: [id1]

If there is no perfect answer output the closest one. Do not give an empty final answer.

Corpus
Formatting

ID: 0 | TITLE: English compound | CONTENT: Major style guides advise consulting a dictionary to determine
whether . . . | END ID: 0
ID: 1 | TITLE: The Lord of the Rings: The Return of the King | CONTENT: The music was composed by
Howard Shore . . . | END ID: 1
. . .
ID: 881 | TITLE: Dexter (season 3) | CONTENT: While stalking a murderous drug dealer . . . | END ID: 881
ID: 882 | TITLE: Interstellar medium | CONTENT: In the series of investigations . . . | END ID: 882

Few-shot
Examples

====== Example 1 ======
Which document is most relevant to answer the query? Print out the TITLE and ID of the document. Then
format the IDs into a list.
If there is no perfect answer output the closest one. Do not give an empty final answer.
query: where did the dewey decimal system come from
The following documents can help answer the query:
TITLE: Dewey Decimal Classification | ID: 199
Final Answer: [’199’]
. . .

Query Formatting

====== Now let’s start! ======
Which document is most relevant to answer the query? Print out the TITLE and ID of the document. Then
format the IDs into a list.
If there is no perfect answer output the closest one. Do not give an empty final answer.
query: when does monday night raw come on hulu
The following documents can help answer the query:
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