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ABSTRACT

This paper addresses the problem of maintaining safety during training in Rein-
forcement Learning (RL), such that the safety constraint violations are bounded
at any point during learning. Whilst enforcing safety during training might limit
the agent’s exploration, we propose a new architecture that handles the trade-off
between efficient progress in exploration and safety maintenance. As the agent’s
exploration progresses, we update Dirichlet-Categorical models of the transition
probabilities of the Markov decision process that describes the agent’s behaviour
within the environment by means of Bayesian inference. We then propose a way to
approximate moments of the agent’s belief about the risk associated to the agent’s
behaviour originating from local action selection. We demonstrate that this ap-
proach can be easily coupled with RL, we provide rigorous theoretical guarantees,
and we present experimental results to showcase the performance of the overall
architecture.

1 INTRODUCTION

Traditionally, RL is principally concerned with the policy that the agent generates by the end of the
learning process. In other words, the agent’s policy during learning is overlooked to the benefit of
learning how to behave optimally. Accordingly, many standard RL methods rely on the assumption
that the agent selects each available action at every state infinitely often during exploration (Sut-
ton et al., 2018; Puterman, 2014). A related technical assumption that is often made is that the
MDP is ergodic, meaning that every state is reachable from every other state under proper action
selection (Moldovan & Abbeel, 2012). These assumptions may sometimes be reasonable, e.g., in
virtual environments where restarting is always an option. However, in safety-critical systems, these
assumptions might be unreasonable, as we may explicitly require the agent to never visit certain un-
safe states. Indeed, in a variety of RL applications the safety of the agent is particularly important,
e.g. expensive autonomous platforms or robots that work in proximity of humans. Thus, researchers
are recently paying increasing attention not only to maximising a long-term task-driven reward, but
also to enforcing avoidance of unsafe training.
Related Work The general problem of Safe RL has been an active area of research in which nu-
merous approaches and definitions of safety have been proposed (Brunke et al., 2021; Garcia &
Fernandez, 2015; Pecka & Svoboda, 2014). In (Moldovan & Abbeel, 2012), safety is defined in
terms of ergodicity, with the goal of safety being that an agent is always able to return to its cur-
rent state after moving away from it. In (Chow et al., 2018a), safety is pursued by minimising a
cost associated with worst-case scenarios, when cost is associated with a lack of safety. Similarly,
(Miryoosefi et al., 2019) defines the safety constraint in terms of the expected sum of a vector of
measurements to be in a target set. Other approaches (Li & Belta, 2019; Hasanbeig et al., 2019a;b;
2020; Cai et al., 2021; Hasanbeig et al., 2022) define safety by the satisfaction of temporal logical
formulae of the learnt policy, but do not provide safety while training such policy. Many existing
approaches have been concerned with providing guarantees on the safety of the learned policy some-
times under the assumption that a backup policy is available (Coraluppi & Marcus, 1999; Perkins
& Barto, 2002; Geibel & Wysotzki, 2005; Mannucci et al., 2017; Chow et al., 2018b; Mao et al.,
2019). These methods are applicable to systems if they can be trained on accurate simulations, but
for many other real-world systems we instead require safety during training.
There has also been much research done into the development of approaches to maintaining safety
during training. For instance, (Alshiekh et al., 2017; Jansen et al., 2019; Giacobbe et al., 2021)
leverage the concept of a shield that stops the agent from choosing any unsafe actions. The shield
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assumes the agent has to observe the entire MDP (and opponents) to construct a safety (game)
model, which will be unavailable for many partially-known MDP tasks. The approach in (Garcia
& Fernandez, 2012) assumes a predefined safe baseline policy that is most likely sub-optimal, and
attempts to slowly improve it with a slightly noisy action-selection policy, while defaulting to the
baseline policy whenever a measure of safety is exceeded. However, this measure of safety assumes
that nearby states have similar safety levels, which may not always be the case. Another common
approach is to use expert demonstrations to attempt to learn how to behave safely (Abbeel et al.,
2010), or even to include an option to default to an expert when the risk is too high (Torrey &
Taylor, 2012). Obviously, such approaches rely heavily on the presence and help of an expert,
which cannot always be counted upon. Other approaches on this problem (Wen & Topcu, 2018;
Cheng et al., 2019; Turchetta et al., 2016) are either computationally expensive or require explicit,
strong assumptions about the model of agent-environment interactions. Crucially, maintaining safety
in RL by efficiently leveraging available data is an open problem (Taylor et al., 2021).
Contributions We tackle the problem of synthesising a policy via RL that optimises a discounted
reward, while not violating a safety requirement during learning. This paper puts forward a cautious
RL scheme that assumes the agent maintains a Dirichlet-Categorical model of the MDP. We incor-
porate higher-order information from the Dirichlet distributions, in particular we compute approxi-
mations of the (co)variances of the risk terms. This allows the agent to reason about the contribution
of epistemic uncertainty to the risk level, and therefore to make better informed decisions about how
to stay safe during learning. We show convergence results for these approximations, and propose a
novel method to derive an approximate bound on the confidence that the risk is below a certain level.
The new method adds a functionality to the agent that prevents it from taking critically risky actions,
and instead leads the agent to take safer actions whenever possible, but otherwise leaves the agent
to explore as normal. The proposed method is versatile given that it can be added on to general RL
training schemes, in order to maintain safety during learning.

2 BACKGROUND

2.1 PROBLEM SETUP

Definition 2.1 A finite MDP with rewards (Sutton et al., 2018) is a tuple M = 〈Q,A, q0, P,Re〉
where Q = {q1, q2, q3, ..., qN} is a finite set of states, A is a finite set of actions, without loss of
generality q0 is the initial state, P (q′|q, a) is the probability of transitioning from state q to state q′
after taking action a, and Re(q, a) is a real-valued random variable which represents the reward
obtained after taking action a in state q. A realisation of this random variable (namely a sample,
obtained for instance during exploration) will be denoted by re(q, a).

An agent is placed at q0 ∈ Q at time step t = 0. At every time step t ∈ N0, the agent selects an
action at ∈ A, and the environment responds by moving the agent to some new state qt+1 according
to the transition probability distribution, i.e., qt+1 ∼ P (·|qt, at). The environment also assigns the
agent a reward re(qt, at). The objective of the agent is to learn how to maximise the long term
reward. In the following we explain these notions more formally.

Definition 2.2 A policy π assigns a distribution over A at each state: π(a|q) is the probability of
selecting action a in state q. Given a policy π, we can then define a state-value function

vπ(q) = Eπ
[ ∞∑
t=0

γtre(qt, at)

∣∣∣∣∣ q0 = q

]
,

where Eπ[·] denotes the expected value given that actions are selected according to π, and 0 < γ ≤
1 is a discount factor.

Specifically, this means that the sequence q0, a0, q1, a1, ... is such that an ∼ π(·|qn) and qn+1 ∼
P (·|qn, an). The discount factor γ is a pre-determined hyper-parameter that causes immediate re-
wards to be worth more than rewards in the future, as well as ensuring that this sum is well-defined,
provided the standard assumption of bounded rewards. The agent’s goal is to learn an optimal policy,
namely one that maximises the expected discounted return. This is actually equivalent to finding a
policy that maximises the state-value function vπ(q) at every state (Sutton et al., 2018).

Definition 2.3 A policy π is optimal if, at every state q, vπ(q) = v∗(q) = maxπ′ vπ′(q).
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Definition 2.4 Given a policy π, we can define a state-action-value function vπ(q, a) =
Eπ [

∑∞
t=0 γ

tre(qt, at)| q0 = q, a0 = a] , similarly to the state-value function. This allows us to
reinterpret the state-value function as vπ(q) =

∑
a vπ(q, a)π(a|q), and thus we can see that an

optimal deterministic policy π must assign zero probability to any action a that doesn’t maximise
the state-action value function.

2.2 DIRICHLET-CATEGORICAL MODEL OF THE MDP

We consider a model for an MDP with unknown transition probabilities (Ghavamzadeh et al., 2015).
The transition probabilities for a given state-action pair are assumed to be described by a categorical
distribution over the next state. We maintain a Dirichlet distribution over the possible values of those
transition probabilities: since the Dirichlet distribution is conjugate to the categorical distribution,
we can employ Bayesian inference to update the Dirichlet distribution, as new observations are made
while the agent explores the environment.
Formally, for each state-action pair (qi, a), we have a Dirichlet distribution pi1a , p

i2
a , ..., p

iN
a ∼

Dir(αi1a , α
i2
a , ...α

iN
a ). The random variable pija represents the agent’s belief about the transition

probability P (qj |qi, a). At the start of learning, the agent will be assigned a prior Dirichlet distri-
bution for each state-action pair, according to its initial belief about the transition probabilities. At
every time step, as the agent moves from some state qi to some state qk by taking action a, it will
generate an event qi a−→ qk, which constitutes new data for the Bayesian inference. From Bayes’
rule:

Pr(pi
a = xi

a|qi
a−→ qk) ∝ Pr(qi a−→ qk|pi

a = xi
a)Pr(pi

a = xi
a)

= xika
∏
j

(xija )α
ij
a −1 = [

∏
j 6=k

(xija )α
ij
a −1](xika )(αik

a +1)−1,

which immediately yields

Pr(pi
a = xi

a|qi
a−→ qk) = Dir(αi1a , α

i2
a , ..., α

ik
a + 1, ..., αiNa ).

Thus, the posterior distribution is also a Dirichlet distribution. This update is repeated at each
time step: the relevant information to the agent’s posterior belief about the transition probabili-
ties is the starting prior Dir(αi1a , α

i2
a , ...α

iN
a ) and the “transition counts” cija , keeping track of the

number of times that qi a−→ qj has occurred. The agent’s posterior is then (pi1a , p
i2
a , ..., p

iN
a ) ∼

Dir(αi1a , α
i2
a , ...α

iN
a ): from this distribution, we can distill the expected value p̄ija of each random

variable pija , as well as the covariance of any two pija and pika (therefore also the variance of a single
pija ):

p̄ija = E[pija ] =
αija
αi0a

, Cov[pija , p
ik
a ] =

αija (δjkαi0a − αika )

(αi0a )2(αi0a + 1)
,

where αi0a =
∑N
k=1 α

ik
a , and δjk is the Kronecker delta.

3 RISK-AWARE BAYESIAN RL FOR CAUTIOUS EXPLORATION

In this section we propose a new approach to Safe RL, which will specifically address the problem
of how to learn an optimal policy in an MDP with rewards, while avoiding certain states classified as
unsafe during training. The agent is assumed to know which states of the MDP are safe and which
are unsafe, but instead of assuming that the agent has this information globally, namely for all states
of the MDP, we find it more reasonable that the agent observes states within an area around itself.
This closely resembles real-world situations, where systems may have sensors that allow them to
detect close-by danger areas, but not necessarily know about danger zones that are far away from
them. In particular, we assume that there is an observation “boundary” O, such that the agent can
observe all states that are reachable from the current state within O steps and distinguish which of
those states are safe or unsafe. The rest of this section is structured as follows:

1. In Section 3.1, we define the risk rmc (a) over m steps of taking an action a at the current
state, denoted as qc. We then introduce a random variable Rmc (a) representing the agent’s
belief about the risk;

2. In Section 3.2,we leverage a method from (Casella & Berger, 2021) to approximate the ex-
pected value and variance of the random variable Rmc (a). We provide convergence results
on the approximations of the expectation and variance of Rmc (a);
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3. In Section 3.3, we show how the Cantelli Inequality (Cantelli, 1929) allows us to estimate
a confidence bound on the risk rmc (a);

4. In Section 3.4, we prescribe a methodology for incorporating the expectation and variance
of risk into the action selection during the training of an RL agent.

3.1 DEFINITION AND CHARACTERISATION OF THE RISK

Given the observation boundary O, we reason about the risk incurred over the next m steps after
taking a particular action a in the current state qc, for any m ≤ O. However, note that there is a
dependence between the agent’s estimate of such a risk and the use of that estimate to inform its
action selection policy. In order to solve this dilemma we severe the dependency between the risk
that we calculate and the actions selected generating that risk by fixing a policy over the m-step
horizon, and calculating the risk given that policy. Similar to temporal-difference learning schemes,
this is done by assuming best-case action selection, namely, the m-step risk rmc (a) at state qc after
taking action a is defined assuming that after selecting action a, the agent will select subsequent
actions to minimize the expected risk going forward. Assuming that the agent is at state qc, we
define the agent’s approximation of the m-step risk R̄mc (a) by back-propagating the risk given the
“expected safest policy” over m steps, as follows:

R̄0
k = 1(qk is observed and unsafe); (1)

R̄n+1
k (a) =

{
1 if qk is observed and unsafe∑N
j=1 p̄

kj
a R̄

n
j otherwise;

(2)

R̄n+1
k =

{
1 if qk is observed and unsafe
mina∈A R̄

n+1
k (a) otherwise.

(3)

We terminate this iterative process at n+ 1 = m and once we have calculated R̄mc (a) (c = k) for all
actions a. Note that, despite the use of progressing indices n, this is an iterative back-propagation
that leverages the expected values of agent’s belief about the transition probabilities, i.e., p̄kja . Thus,
R̄mc (a) is the agent’s approximation of the expectation of the probability of entering an unsafe state
within m steps by selecting action a at state qc, and thereafter by selecting actions that it currently
believes will minimize the probability of entering unsafe states over the given time horizon.
The term p̄kja = E[pkja ] is used as a point estimate of the true transition probability tkja =
P (qj |qk, a). The value of R̄mc only relies on states which the agent believes are reachable from
qc within m steps. In particular so long as the horizon m is less than the observation boundary O,
the agent is able to observe all states which are relevant to the calculation of R̄mc (a), so specifically,
1(qj is unsafe) = 1(qj is observed and unsafe) for all relevant states qj (see Appendix G for more
details).

3.2 APPROXIMATION OF EXPECTED VALUE AND COVARIANCE OF THE RISK

Let x denote the vector of variables xija where i, j range from 1 to N and a ranges over A, i.e., x =(
(xija )i,j=1,...,N and a∈A

)
. We assume that these indices are ordered lexicographically by (i, a, j).

This is because i and a will be used to signify a state-action pair (qi, a), and j will be used to
signify a potential next state qj . Introduce a set of functions (we shall see they take the shape of
polynomials) gnk [x] defined, for each state qk, as follows:

g0
k[x] := 1(qk is observed and unsafe);

gn+1
k (a)[x] :=

{
1 if qk is observed and unsafe∑N
j=1 x

kj
a g

n
j [x] otherwise;

gn+1
k [x] :=

{
1 if qk is observed and unsafe
gn+1
k

(
arg mina R̄

n+1
k (a)

)
[x] otherwise.

Then we can write the risk (of selecting action a in state qc, over m steps) defined above as
rmc (a) = gmc (a)[t], where t =

(
(tija )i,j=1,...,N and ∀a∈A

)
is a vector of all “true” transition prob-

abilities tija := P (qj |qi, a). We can similarly write the agent’s approximation of the risk as
R̄mc (a) = gmc (a)[p̄], where similarly p̄ =

(
(p̄ija )i,j=1,...,N and a∈A

)
. We refer to the actions spec-

ified by these argmin operators as the agent’s expected safest action in each state over the next
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m steps. Now, crucially, we can also define a new random variable Rmc (a) = gmc (a)[p], where
p =

(
(pija )i,j=1,...,N and ∀a∈A

)
. Since the pija s are random variables representing the agent’s beliefs

about the true transition probabilities tija , we in fact have that this random variableRmc (a) represents
the agent’s beliefs about the true risk rmc (a). In the following, we show that R̄mc (a) can be viewed
as an approximation of E[Rmc (a)], and we provide and justify an approximation of V ar[Rmc (a)].
These approximations can be used by the agent to reason about the true risk rmc (a).
In order to construct approximations of the expectation and variance of Rmc (a), we make use of the
first-order Taylor expansion of gmc (a)[x] around x = p̄, following a method in (Casella & Berger,
2021). The Taylor expansion is

gmc (a) [x] = gmc (a) [p̄] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(xijb − p̄

ij
b ) + remainder, (4)

where the partial derivatives are also evaluated at p̄. Now we can turn equation 4 into a statistical
approximation by dropping the remainder and reasoning over the random variables p for x, namely:

gmc (a) [p] ≈ gmc (a) [p̄] +
N∑

i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b ). (5)

We can then take the expectation of both sides, obtaining

E[gmc (a) [p]] ≈ E[gmc (a) [p̄]] + E[

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b )]

= gmc (a) [p̄] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
E[(pijb − p̄

ij
b )] = gmc (a) [p̄] ,

where the above steps follow since the only random term in the right-hand side is pijb , for which
E(pijb ) = p̄ijb . Recall that gmc (a) [p] = Rmc (a) and gmc (a) [p̄] = R̄mc (a). Thus, we now have R̄mc (a)
as an approximation of the expectation of Rmc (a). For the approximation of the variance of the
agent’s believed risk, which is again a random variable, we can write:

V ar(gmc (a)[p]) ≈ E[(gmc (a)[p]− gmc (a)[p̄])2]

≈ E


 N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b )

2
 (from equation 5)

=

N∑
i,j,s,t=1

∑
b1,b2∈A

∂gmc (a)

∂xijb1

∂gmc (a)

∂xstb2
Cov(pijb1 , p

st
b2)

=

N∑
i=1

∑
b∈A

N∑
j,t=1

∂gmc (a)

∂xijb

∂gmc (a)

∂xitb
Cov(pijb , p

it
b ) = V̄ mc (a), (6)

where V̄ mc (a) is the approximation for the variance of Rmc (a), i.e., ≈ V ar(Rmc (a)), and the last
line follows from the fact that the covariance between two transition probability beliefs pijb1 and pstb2
is always 0, unless they correspond to the same starting state-action pair (qi, b). In other words,
Cov(pijb1 , p

st
b2

) = 0 unless i = j and b1 = b2. Next, we show consistency of the estimate in the limit
(see Appendix E for the proof).

Theorem 3.1 Under Q-learning convergence assumptions (Watkins, 1989), namely that reachable
state-action pairs are visited infinitely often, the estimate of the mean of the believed risk distribu-
tion R̄mc (a) converges to the true risk rmc (a), and it does so with the variance of the believed risk
distribution V ar(gmc (a)[p]) approaching the estimate of that variance V̄ mc (a). Specifically,(

R̄mc (a)− rmc (a)
)√

V̄ mc (a)
→ N (0, 1) in distribution.
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3.3 ESTIMATING A CONFIDENCE ON THE APPROXIMATION OF THE RISK

So far we have shown that when the agent is in the current state qc, for each possible action a,
approximations of the expectation and variance of its belief Rmc (a) about the risk rmc (a) can be
formally obtained: we denote these two approximations by R̄mc (a) and V̄ mc (a), respectively. We
describe a method for combining these approximations to obtain a bound on the level of confidence
that the risk rmc (a) is below a certain threshold.
We appeal to the Cantelli Inequality, which is a one-sided Chebychev bound (Cantelli, 1929). Hav-
ing computed R̄mc (a) and V̄ mc (a), for a particular confidence value 0 < C < 1 we can define

Pa := R̄mc (a) +
√

V̄m
c (a)C
1−C . From the Cantelli Inequality we then have

Pr(Rmc (a) ≤ Pa) ≥ C.
Specifically, Pa is the lowest risk level such that, according to its approximations, the agent can be
at least 100 × C % confident that the true risk is below level Pa. The agent can therefore leverage
Pa when attempting to perform safe exploration (please refer to Appendix F for more details).

3.4 RISK-AWARE BAYESIAN RL FOR CAUTIOUS EXPLORATION (RCRL)

We propose a setup for Safe RL that leverages the expectation and variance of the risk to allow an
agent to explore the environment safely, while attempting to learn an optimal policy. In order to pick
the most optimal yet safe action at each state, we propose a double-learner architecture, referred to
as Risk-aware Cautious RL (RCRL) and explained next.
The first learner is an optimistic agent that employs Q-learning (QL) to maximize the expected
cumulative return. The second learner is a pessimistic agent that maintains a Dirichlet-Categorical
model of the transition probabilities of the MDP. In particular, this agent is initialized with a prior
Pri that encodes any information the agent might have about the transition probabilities. For each
state-action pair (qi, a) we have a Dirichlet distribution pi1a , p

i2
a , ..., p

iN
a ∼ Dir(αi1a , αi2a , ...αiNa ). As

the agent explores the environment, the Dirichlet distributions are updated using Bayesian inference.
For each action a available in the current state qc, the pessimistic learner computes the approxima-
tions R̄mc (a) and V̄ mc (a) of its belief Rmc (a) of the risk over the next m steps of taking action a in
qc. The “risk horizon” m is a hyper-parameter that, as discussed, should be set at most as the obser-
vation boundary O. The pessimistic learner is also initialized with two hyper-parameters Pmax and
C(n): Pmax represents the maximum level of risk that the agent should be prepared to take, whereas
C(n) is a decreasing function of the number of times n that the current state has been visited, which
satisfies C(0) < 1 and limn→∞ C(n) = 0. From Section 3.3, the agent can then compute, for each
action a, the value

Pa = R̄mc (a) +

√
V̄ mc (a)C(n)

1− C(n)
, (7)

which can thus define a set of safe actions: these are all the actions that the agent believes have risk
less than Pmax, with confidence at least C(n), namely

Asafe = {a ∈ A|Pa ≤ Pmax}.
In case there are no actions a such that Pa ≤ Pmax, the agent instead allows

Asafe = {a ∈ A|R̄mc (a) = min
a′

R̄mc (a)}. (8)

Finally, the agent selects an action a∗ from the set of safe actions using softmax action selection (Sut-
ton et al., 2018) according to the Q-values of those actions, with some temperature t > 0:

Pr(a∗ = a) =
eQ(qc,a)/t∑

a∈Asafe
eQ(qc,a)/t

. (9)

The pseudo-code for the full algorithm is available in Appendix B.
In summary, we effectively have two agents learning to accomplish two tasks. The first agent per-
forms Q-learning to learn an optimal policy for the reward. The second agent determines the best
approximation of the expected value and variance of each action, enabling it to prevent the first
agent from selecting actions that it cannot guarantee to be safe enough (with at least a given confi-
dence). When instead the pessimistic agent cannot guarantee that any action is safe enough, it forces
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Table 1: Total successes and failures. Gridworld: different priors and acceptable risksPmax, averaged
over 10 agents. PacMan: varying risk horizon m, single agent.

Experiment Setup # Successes # Failures Total Episodes

Gridworld

Prior 1, Pmax = 0.33 404.3 54.2 500
Prior 1, Pmax = 0.01 506.0 417.9 1500
Prior 2, Pmax = 0.01 384.6 0.5 500
Prior 3, Pmax = 0.01 407.4 14.4 500
Prior 3, Pmax = 0.0033 421.3 1.1 500
Native Q-Learning 414.6 990.5 1500

PacMan
Risk Horizon m = 2 234 77 311
Risk Horizon m = 3 207 68 275
Native Q-Learning 0 1500 1500

the optimistic learner to go into “safety mode”, i.e., to forcibly select the actions that minimize the
expected value of the risk, as per equation 8. From an empirical perspective, implementing this con-
cept of a “safety mode” allows for continued progress, and pairs extremely well with the definition
of the risk: namely, when the agent deems that a state is too risky, it will go into this “safety mode”
until it is back in a state with sufficiently safe actions.
Finally, note that C(n) represents the level of confidence that the agent requires in an action being
safe enough for it to consider taking that action. When the agent starts exploring and C(n) is at its
highest, the agent only explores actions that it is very confident in. However, it may need to take
actions that it is less confident in order to find an optimal policy. Thus, as it continues exploring,
C(n) is reduced, allowing the agent to select actions upon which it is not as confident. However,
in the limit, when C(n) → 0, we have that Pa = R̄mc (a), which means that the agent never takes
an action if its approximation of the expected value of the risk R̄mc (a) is more than the maximum
allowable risk Pmax.

4 EXPERIMENTS

Gridworld - We first evaluated the performance of RCRL on a Slippery Gridworld Bridge example.
The states of the MDP consist of a 20× 20-grid, as depicted in Figure 2a (Appendix C). The agent
is initialized at q0 in the bottom-left corner (green). The agent’s task is to get to the goal region
without ever entering an unsafe state. In particular, upon reaching a goal state, the agent is given
a reward of 1 and the learning episode is terminated; at every other state it receives a reward of 0,
and upon reaching an unsafe state the learning episode terminates with reward 0. At each time step
the agent might move into one of the 4 neighbouring states, or stay in its current position; thus, the
agent has access to 5 actions at each state, A = {right , up, left , down, stay}. If the agent selects
action a ∈ A, then it has a 96% chance of moving in direction a, and a 4% chance of “slipping”,
namely moving to another random direction. If any movement would ever take the agent outside
of the grid, then the agent will just remain in place. The agent is assumed to have an observation
boundary O = 2 steps. Note that due to the slipperiness of the grid and the narrow passage to reach
the goal state, minimizing the risk is not aligned with maximizing the expected reward.
We tested RCRL with 5 different combinations of a prior Pri and a maximum acceptable risk
Pmax. The following additional hyper-parameters of the algorithm were kept constant: the maximum
number of steps per episodemax steps = 400, the maximum number of episodesmax episodes =
500 (although this was increased to 1500 in two cases when the agent did not converge to near-
optimal policy within the first 500, cf. Table 1); the learning rate µ = 0.85; the discount factor
γ = 0.9; and the risk horizon m = 2 (Appendix B). Recall that a prior consists of a Dirichlet
distribution pi1a , ..., p

iN
a ∼ Dir(αi1a , ..., αiNa ) for every state-action pair (qi, a). We considered three

priors:

• Prior 1 - completely uninformative: in this case we assigned a value of 1 to every α. This
yields a distribution that is uniform over its support.

• Prior 2 - weakly informative: we assigned a value of 12 to the α corresponding to moving
in the correct direction, and a value of 1 to all other α’s. This gives a distribution in between
Prior 1 and Prior 3 in both degree of bias and concentration.
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• Prior 3 - highly informative: we assigned a value of 96 to the α corresponding to moving
in the correct direction, and a value of 1 to all other α’s. This gives a distribution that is
highly concentrated, and for which the mean values of the transition probability random
variables are the true transition probabilities of the MDP, and hence unbiased.

We tested the algorithm with all three priors and a maximum acceptable risk of Pmax = 0.01 and
repeating each experiment 10 times to take averages. On average, the agent with the highly informa-
tive prior (Prior 3) entered unsafe states 14.4 times, and always converged to near-optimality within
about 200 steps, successfully crossing the bridge 407.4 times. For the other 78.2 episodes, the agent
reached the episode limit within crossing the bridge or entering an unsafe state. The agent with Prior
2 interestingly only entered unsafe states an average of 0.5 times per experiment, and converged to a
near-optimal policy within about 300 episodes, successfully crossing the bridge 384.6 times. On the
other hand, the agent with Prior 1 only crossed the bridge less than 30 times. We therefore increased
the total number of episodes to 1500 and tried again, yet still over half the time it did not converge
to a near-optimal policy (Appendix A).
We then tested Prior 1 with a more lenient maximum acceptable risk of Pmax = 0.33, and found
that the agent this time managed to converge to near-optimality within around 200 episodes, entering
unsafe states 54.2 times and successfully crossing the bridge 404.3 times. We also tested Prior 3 with
a stricter Pmax = 0.0033 and found out that it entered unsafe states only 1.1 times and succeeded
421.3 times, converging to near-optimality within 150 episodes (Appendix A).
Finally, we tested native Q-learning, without any safe learning scheme. This native scheme had
almost no successful crossings of the bridge in the first 500 episodes, so we ran it for 1500 episodes
and found that it only converged to a near-optimal policy about half the time, on average entering
unsafe states 990.5 times and successfully crossing the bridge 414.6 times.
Table 1 summarizes the number of successes and failures for each agent. To understand better the
rate of convergence to near-optimality, Figure 1 (Appendix A) displays the number of steps taken by
the agent to cross the bridge at every successful episode (it displays 400 if the agent never managed
to cross the bridge) averaged over the 10 experiments. On each graph we display for comparison
the theoretical least number of steps it could cross the bridge in, which is 22. Note that because the
grid-world is slippery, even an optimal policy would have fluctuations above the 22-steps line.
Discussion The first result of note is how poorly Prior 1 performs with Pmax = 0.01. It mostly
fails to converge to near-optimal behaviour even with 1500 steps as can be seen in Figure 1b (Ap-
pendix A), in fact seeming to converge slower than native Q-learning. This occurs because the
maximum allowable risk is set too low for the given prior. In particular, there are two main issues
with this. The first issue is a type of degenerate behaviour specific to our algorithm and to the com-
pletely uninformative prior with overly strict Pmax: given that the agent starts with no information
on the transition probabilities, it is unable to tell which actions are safe and which are unsafe. In
particular, with Pmax at 1%, the first time the agent arrives at any state qc from which it can observe
some unsafe state, it immediately goes into safety mode as it judges that the risk of every action is
above 1%. Since it has no information on which action is safest, it randomly selects an action (as-
suming the Q-values were initialized to 0). If that randomly-selected action does not take the agent
closer to a risky state, then after updating the agent’s beliefs about the transition probabilities for that
action, it will believe that action is the safest one from that state. Thus every time it encounters that
state again, it will always select that action, never attempting any other actions. This behaviour can
be seen in Figure 2b (Appendix C). The state (13, 1) has been visited significantly more often than
any other state. This has occurred because the first time the agent encountered that state, it chose
action stay, and as above, from then on always chose stay in state (13, 1). This would cause the
agent to remain in (13, 1) until it slipped off of that state.
The second issue with having such a strict Pmax could involve any prior. In this case Pmax is set
so low that actions that may be optimal are simply never tested, as the agent’s initial belief about
those actions causes the expected risk associated with them to always be greater than Pmax. This
should not be viewed as an undesirable consequence of the algorithm, but rather as the algorithm
working as intended. With the maximum allowable risk level Pmax set so low, the agent judges that
certain actions are riskier than acceptable and therefore does not take them. However, this does raise
a more general question about the nature of safe learning in general: ensuring safety while learning
necessarily means avoiding actions we believe are too dangerous, so if we want any guarantees on
safety, then we must accept that the agent may be unable to explore the entire state space.
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The second result of note is that Prior 3 performs much less safely than Prior 2 does at Pmax = 0.01.
This seems counter intuitive at first, given that Prior 3 is more accurate and more confident than Prior
2. However, the explanation is quite simple. Prior 3 (initially) causes the agent’s expected belief to
correctly predict that there is only a 1% chance of moving to an unsafe state on a particular step if the
agent selects the action to move away from it. On the other hand, Prior 2 causes the agent’s expected
belief to predict there is a 6.25% chance of this happening. Thus, Prior 3 (correctly) evaluates the
risk of moving within 1 step of a risky state as much lower than Prior 2 does. It is likely that at
some points in the experiments, the agent with Prior 3 chose to move within 1 step of an unsafe state
where an agent starting with Prior 2 (with the same experiences) would have rejected that action as
too risky. The agent with Prior 3 would then be at risk of slipping into an unsafe state. In Figure 2c
and 2d (Appendix C), we can see exactly this happening, where Prior 3 regularly visits state (13, 8),
which is adjacent to the unsafe state (12, 8). Prior 2 instead regularly moves one more state to the
right before moving up to row 13, since (12, 9) is safe.
Prior 3 with Pmax = 0.0033 shows how we can make use of a highly accurate prior to guarantee
even less risk, and in this case the agent almost never enters unsafe states, while converging faster
than any other setup to near-optimality.
The final result is that the rate of convergence of the native Q-learning agent is much slower on this
MDP than the other agents (excluding Prior 1 with the inappropriate Pmax = 0.01). As in Figure
1 (Appendix A), Q-learning took between 300 and 1500 episodes to converge when it did, and
occasionally failed to converge, compared to 150-300 episodes for the four other agents to converge
in all 10 experiments. This was even the case for the agent with the completely uninformative prior,
with Pmax = 0.33. This is a key result: it shows that not only can RCRL keep the agent safe during
learning when possible, it may also direct the agent to explore more fruitful areas of the state-space.
In this case study in particular, the native Q-learning agent entered unsafe states so often initially
that it took many episodes before it was able to access the bridge and find the reward at the other
side. Conversely, since the safe agents mostly avoided “sinking” situations, they were able to explore
much more of the state space on each episode.
PacMan - We also evaluated the performance of RCRL on a PacMan example. Figure 3a (Ap-
pendix D) depicts the initial state of the environment, where the agent (PacMan) must get to both
yellow dots (food) without getting caught by the ghost. Note that because both the agent and the
ghost move through the maze, the PacMan MDP has about 10 times more states than the Gridworld,
and up to 5 times more possible next states at any given state. Upon picking up the second piece
of food, the agent is given a reward of 1 and the learning episode stops. Every other state incurs a
reward of 0 and if the ghost catches PacMan, the learning episode stops with reward 0. The agent
has access to four actions at each state, A = {right , up, left , down} and will move in the direc-
tion selected, or if that direction moves into a wall, then it will stay still. The ghost will with 90%
probability move in the direction that takes it closest to the agent’s next location, and with 10%
probability will move in a random direction. For this setup, we assumed an observation boundary
O = 3 and compared two values of the risk horizon, m = 2, 3. We therefore kept constant the other
parameters and hyper-parameters: the learning rate µ = 0.85; the discount factor γ = 0.9; the max-
imum number of steps per episode max steps = 400; the maximum acceptable risk Pmax = 0.33;
the prior, which we set to be a completely uninformative prior as in the Gridworld example; the
maximum number of episodes, which we set as 1500 or the number of episodes before the total rate
of successful episodes exceeded 75%.
As in Table 1, the agent with a risk horizon of m = 2 steps exceeded a success rate of 75% after
311 episodes, having failed 77 times. The agent with the larger risk horizon of m = 3 only took 275
steps to exceed that success rate, and only failed 68 times. Figures 3b-3c (Appendix D) display the
number of steps taken by the agent to win (or 400 if they lose) for each agent, as well as the running
average number of steps over the previous 50 episodes.
Discussion The improvement in performance from m = 2 to 3 is likely due to the increased
foresight of the agent leading it to move away from excessively risky scenarios further in advance,
potentially avoiding entering a state from which entering a dangerous state is unavoidable. However,
it may also be simply due to the fact that increasing the risk horizon leads to an overall increase in
risk estimates, which will naturally cause more actions to be considered too risky and may reduce
the number of failures. In other words, we may have been in a situation where decreasing the
maximum acceptable risk Pmax would have led to similar improvements, and the increase in risk
horizon was behaving functionally more like a decrease in Pmax. Both risk-aware agents compare
very favourably against the Native Q-Learning agent, which did not succeed once in 1500 episodes.
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Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3387–3395, 2019.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-Constrained
Reinforcement Learning with Percentile Risk Criteria. Journal of Machine Learning Research
18, pp. 1–51, 2018a.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Advances in neural information processing
systems, pp. 8092–8101, 2018b.

Stefano P. Coraluppi and Steven I. Marcus. Risk-sensitive and minimax control of discrete-
time, finite-state Markov decision processes. Automatica, 35(2):301–309, 1999. doi: 10.1016/
s0005-1098(98)00153-8.

J. Garcia and F. Fernandez. Safe exploration of state and action spaces in reinforcement learning.
Journal of Artificial Intelligence Research, 45:515–564, Dec 2012. ISSN 1076-9757. doi: 10.
1613/jair.3761. URL http://dx.doi.org/10.1613/jair.3761.

Javier Garcia and Fernando Fernandez. A Comprehensive Survey on Safe Reinforcement Learning.
Journal of Machine Learning Research 16, 2015.

P. Geibel and F. Wysotzki. Risk-sensitive reinforcement learning applied to control under con-
straints. Journal of Artificial Intelligence Research, 24:81–108, Jul 2005. doi: 10.1613/jair.1666.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian Reinforcement
Learning: A Survey. Foundations and Trends in Machine Learning, 8(5-6):359–483, 2015. ISSN
1935-8237, 1935-8245. doi: 10.1561/2200000049. URL http://arxiv.org/abs/1609.
04436. arXiv: 1609.04436.

Mirco Giacobbe, Hosein Hasanbeig, Daniel Kroening, and Hjalmar Wijk. Shielding Atari games
with bounded prescience. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent
Systems, 2021.

Hosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Certified reinforcement learning with
logic guidance. arXiv preprint arXiv:1902.00778, 2019a.

Hosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained neural fitted Q-
iteration. In Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems, pp. 2012–2014. International Foundation for Autonomous Agents and Multiagent
Systems, 2019b.

10

https://arxiv.org/abs/2108.06266
http://dx.doi.org/10.1613/jair.3761
http://arxiv.org/abs/1609.04436
http://arxiv.org/abs/1609.04436


Under review as a conference paper at ICLR 2023

Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learning with
temporal logics. In International Conference on Formal Modeling and Analysis of Timed Systems,
pp. 1–22. Springer, 2020.

Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. LCRL: Certified policy synthesis via
logically-constrained reinforcement learning. In International Conference on Quantitative Eval-
uation of Systems, pp. 217–231. Springer, 2022.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alexandru C. Serban, and Roderick Bloem. Safe
reinforcement learning via probabilistic shields, 2019.

Xiao Li and Calin Belta. Temporal logic guided safe reinforcement learning using control barrier
functions, 2019.

Tommaso Mannucci, Erik-Jan van Kampen, Cornelis De Visser, and Qiping Chu. Safe exploration
algorithms for reinforcement learning controllers. IEEE transactions on neural networks and
learning systems, 29(4):1069–1081, 2017.

Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. Towards safe online rein-
forcement learning in computer systems. In 33rd conference on neural information processing
systems (NeurIPS 2019), 2019.
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APPENDICES

A APPENDIX A. GRIDWORLD: AVERAGE NUMBER OF STEPS TO SUCCEED

(a) (b)

(c) (d)

(e) (f)

Figure 1: The number of steps it takes the agent to cross the bridge for every episode where it
crosses. Averaged over 10 experiments. Results for Q-learning only and for RCRL across different
priors and values of risk Pmax. As Q-learning converges, it approaches the lower bound on the
optimal number of steps per episode.
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B APPENDIX B. RISK-AWARE CAUTIOUS RL – PSEUDO CODE

Algorithm 1: Risk-aware Cautious RL (RCRL)
input: Pri, C(n), Pmax, max steps, max episodes, µ, γ, m

(1) initialize Q(q, a) for each state-action pair (q, a);
(2) initialize num steps = 0 ;
(3) initialize num episodes = 0 ;

while num episodes < max episodes do
(4) qc ← q0;
(5) num episodes← num episodes+ 1;

while num steps < max steps and qc is not unsafe do
(6) calculate R̄mc (a) as in (2) ;
(7) calculate V̄ mc (a) as in (6) ;
(8) calculate Pa as in (7) ;
(9) Asafe := {a ∈ A|Pa ≤ Pmax} ;

if Asafe = ∅ then
(10) Asafe ← {a ∈ A|R̄mc (a) = mina′ R̄

m
c (a)} ;

end
(11) choose action a∗ according to (9) ;
(12) pass action a∗ to environment and receive next state q′ and reward re(qc, a∗) ;
(13) update belief p as in section 2 ;
(14) update Q(qc, a∗)← (1− µ)Q(qc, a∗) + µ (re(qc, a∗) + γmaxa′ Q(q′, a′)) ;
(15) qc ← q′ ;
(16) num steps← num steps+ 1;

end
end
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C APPENDIX C. GRIDWORLD EXPERIMENT DETAILS

(a) (b)

(c) (d)

Figure 2: (a) Slippery Gridworld setup: agent is represented by an arrow surrounded by the obser-
vation area (white line). Labels denote target (yellow), unsafe (red) and safe states (blue), and initial
state (q0, green). (b) For a single experiment, number of state-visitations for Prior 1 at Pmax = 0.01.
(c-d) Number of state-visitations, for Priors 2 and 3 at Pmax = 0.01.
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D APPENDIX D. PACMAN EXPERIMENT DETAILS

(a)

(b) (c)

Figure 3: (a) PacMan Setup: agent (PacMan) starts at position (1,3). Food is denoted by yellow
dots, and the ghost starts in the top right corner. (b-c) Number of steps taken to win (i.e. eat both
foods without being caught by the ghost) on episodes where the agent does win (or 400 if the agent
is caught), for risk horizon 2 and 3. The orange line denotes the running average number of steps to
win over the previous 50 episodes.
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E APPENDIX E. CONVERGENCE RESULTS FOR THE APPROXIMATIONS OF
THE EXPECTED VALUE AND VARIANCE OF THE RISK

Theorem E.1 Under Q-learning convergence assumptions (Watkins, 1989), namely that reachable
state-action pairs are visited infinitely often, the estimate of the mean of the believed risk distribu-
tion R̄mc (a) converges to the true risk rmc (a), and it does so with the variance of the believed risk
distribution V ar(gmc (a)[p]) approaching the estimate of that variance V̄ mc (a). Specifically,(

R̄mc (a)− rmc (a)
)√

V̄ mc (a)
→ N (0, 1) in distribution

Proof.
Let us first rewrite the expressions in equation 6 in vector form, first introducing the following
covariance matrix for p:

Σ =


Cov(p11

b1
, p11
b1

) Cov(p11
b1
, p12
b1

) ...
Cov(p12

b1
, p11
b1

) Cov(p12
b1
, p12
b1

)
...

. . .
Cov(pNNbM , pNNbM )

 .

Recall that the variables pija are ordered lexicographically by (i, a, j). Here we wrote b1 for the first
action in A and bM for the last one, assuming |A| = M . Using matrix Σ, we can rewrite equation 6
for the approximate variance as

V ar(Rmc (a)) ≈ (∇gmc (a)[p̄])
T

Σ (∇gmc (a)[p̄]) , ∇gmc (a)[p̄] =



∂gmc (a)

∂x11
b1

∂gmc (a)

∂x12
b1

...
∂gmc (a)

∂xNN
bM



∣∣∣∣∣∣∣∣∣∣∣∣
x=p̄

, (10)

where∇gmc (a)[p̄] is the gradient vector of gmc (a) evaluated at p̄.
In the following, we employ the ‘Delta Method’ as described in (Casella & Berger, 2021) to allow
us to derive a convergence result for the approximations for the mean and variance of Rmc (a) that
we defined above. Let us introduce a semi-vectorised representation of equation 6 where we still
leverage the fact that covariances across different state-action pairs are 0, i.e.,

Σib =


Cov(pi1b , p

i1
b ) Cov(pi1b , p

i2
b ) ...

Cov(pi2b , p
i1
b ) Cov(pi2b , p

i2
b )

...
. . .

Cov(piNb , piNb )


is the variance-covariance matrix for

(
(pijb )j=1,...,N

)
. Since Σ is built by listing the Σib along the

diagonal for i = 1, ..., N and b ∈ A, with zeros elsewhere, we have that equation 6 can be rewritten
as

V ar(Rmc (a)) ≈
N∑
i=1

∑
b∈A

(
∇ibgmc (a)[p̄]

)T
Σ
(
∇ibgmc (a)[p̄]

)
, ∇ibgmc (a)[p̄] =


∂gmc (a)

∂xi1
b

∂gmc (a)

∂xi2
b

...
∂gmc (a)

∂xiN
b



∣∣∣∣∣∣∣∣∣∣∣
x=p̄

,

(11)

where ∇ibgmc (a)[p̄] is the gradient vector (∇gmc (a)[p̄]) restricted to entries ∂gmc (a)

∂xij
b

for j = 1, ..., N .

We refer to this approximation for the variance of Rmc (a) as V̄ mc (a) (≈ V ar(Rmc (a))).
Consider the random vector X = (Xij

a )i,j=1,...,N and a∈A (with the previously discussed lexico-
graphic order on the Xij

a ) where each (Xij
a )Nj=1 follows a Categorical distribution with probabilities
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tija - i.e. a realisation of the vector X represents the result of taking one transition from every
state-action pair. Wherever Xij

a = 1 it represents a transition qi a−→ qj . X then has means t and
covariances

Cov(Xij
a , X

st
b ) =

{
−tija tstb if i = s and a = b

0 otherwise

We can then write the variance-covariance matrix for X as

ΣXX =


Cov(X11

b1
, X11

b1
) Cov(X11

b1
, X12

b1
) ...

Cov(X12
b1
, X11

b1
) Cov(X12

b1
, X12

b1
)

...
. . .

Cov(XNN
bM

, XNN
bM

)

 ,

If we observe independent random samples X(1),X(2), ...,X(n) and denote the sample means as
X̂ij
b = 1

n

∑n
k=1(Xij

b )(k), or X̂ = 1
n

∑n
k=1 X(k) then for the function gnc (a) [x] we have,

gmc (a)[X̂] ≈ gmc (a)[t] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(X̂ij

b − t
ij
b ),

This is a direct result from the first-order Taylor expansion around t, and therefore the derivatives
are evaluated at t. In vector notation, we have

gmc (a)[X̂] ≈ gmc (a)[t] + (∇gmc (a)[t])T (X̂− t),
where

(∇gmc (a)[t]) =


∂gmc (a)

∂x11
b

∂gmc (a)

∂x12
b

...
∂gmc (a)
∂xNN

z



∣∣∣∣∣∣∣∣∣∣∣
x=t

From the ‘Multivariate Delta Method’ theorem (Casella & Berger, 2021), as long as

τ2 := (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) > 0,

which we will prove later in Lemma 1 and Lemma 2, we have the following convergence:

√
n
(
gmc (a)[X̂]− gmc (a)[t]

)
→ N (0, τ2) in distribution. (12)

Note that this is equivalent to
√
n
(
gmc (a)[X̂]− gmc (a)[t]

)
τ

→ N (0, 1) in distribution, (13)

where τ :=
√
τ2.

In the following we define p̄(n) and Σ(n) to be what p̄ and Σ would have been had the agent started
with it’s prior about the transition probabilities p and then witnessed exactly the transitions repre-
sented by the random sample X(1),X(2), ...,X(n). Formally, suppose that the agent’s starting prior
was, for each state-action pair (qi, b), that pi1b , p

i2
b , ..., p

iN
b ∼ Dir(αi1b , α

i2
b , ..., α

iN
b ). Then we can

consider the random variables pi1b
(n), pi2b

(n), ..., piNb
(n) ∼ Dir(αi1b + nX̂i1

b , α
i2
b + nX̂i2

b , ..., α
iN
b +

nX̂iN
b ). Since nX̂ij

b is the count of the number of times Xij
b was 1 in the random sample, this new

distribution is exactly the result of performing Bayesian inference on the prior given the random
sample as our new data. We then let

p̄ijb
(n) := E

[
pijb

(n)
]

=
αijb + nX̂ij

b∑N
k=1

(
αikb + nX̂ik

b

) ,
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and we also define Σ(n) as the covariance matrix of the pijb
(n) over all i, j, b, namely

Σ(n) =


Cov(p11

b
(n), p11

b
(n)) Cov(p11

b
(n), p12

b
(n)) ...

Cov(p12
b

(n), p11
b

(n)) Cov(p12
b

(n), p12
b

(n))
...

. . .
Cov(pNNz

(n), pNNz
(n))

 ,

From Lemma 1, we have

√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability, (14)

and this allows us to use the well-known Slutsky’s Theorem (Slutsky, 1925) on equation 14 and
equation 13 to show that

√
n
(
gmc (a)[p̄(n)]− gmc (a)[t]

)
τ

→ N (0, 1) in distribution. (15)

We must make one more modification to this result. Let

(τ (n))2 :=
(
∇gmc (a)[p̄(n)]

)T
Σ(n)

(
∇gmc (a)[p̄(n)]

)
.

We would like to show that n(τ (n))2 → τ2 in probability. To do this, first note that p̄(n) → t in prob-
ability, so since gmc (a) has continuous derivatives we have that (∇gmc (a)[p̄(n)]) → (∇gmc (a)[t])
in probability. Next we note that nΣ(n) → ΣXX in probability. This is because for the
(i, b1, j), (s, b2, t)-entry we have 0→ 0 if i 6= s or b1 6= b2, and otherwise we have

nCov(pijb
(n), pitb

(n)) =
−n(αijb + nX̂ij

b )(αitb + nX̂it
b )

(
∑N
k=1(αikb + nX̂ik

b ))2(1 +
∑N
k=1(αikb + nX̂ik

b ))

=
−n(αijb + nX̂ij

b )(αitb + nX̂it
b )

(n+
∑N
k=1 α

ik
b )2(n+ 1 +

∑N
k=1 α

ik
b )

→ −tijb t
it
b = Cov(Xij

b , X
it
b ).

Therefore we have that the products converge in probability:

n(τ (n))2 =
(
∇gmc (a)[p̄(n)]

)T
nΣ(n)

(
∇gmc (a)[p̄(n)]

)
→ (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) = τ2.

Since τ2 is always positive, and the square root function is therefore continuous at τ2, we have that√
nτ (n) → τ , and so τ√

nτ(n) → 1 in probability. Now we can finally apply Slutsky’s Theorem to
obtain our final result, which is

(
gmc (a)[p̄(n)]− gmc (a)[t]

)
τ (n)

→ N (0, 1) in distribution. (16)

Recall that gmc (a)[t] is the actual risk in the current state qc, gmc (a)[p̄(n)] is the agent’s approxima-
tion of the expectation of the risk given it’s beliefs, and (τ (n))2 is the agent’s approximation of the
variance of the risk given it’s beliefs (both, in this case, assuming it has seen exactly n transitions
from each state). So indeed our estimate of the mean of the believed risk distribution converges
to the true risk with enough data, and it does so with the variance of the believed risk distribution
approaching our estimate of that variance.
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Lemma 1 Given the definition of the polynomial gmc (a)[x], we have the following:
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability

Proof.
As required for the convergence results in Theorem 3.1, one can see that all of the coefficients in
gmc (a)[x] are either 0 or 1. This means that we can rewrite it as a sum of terms of the form∏

i,j,b

(
xijb

)nij
b

for exponents nijb . This means that we can write
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

as a sum of terms of the form

√
n

τ

∏
i,j,b

(
p̄ijb

(n)
)nij

b −
∏
i,j,b

(
X̂ij
b

)nij
b

 .

Substituting in the definition of p̄ijb
(n) to this expression yields

√
n

τ

∏
i,j,b

 αijb + nX̂ij
b∑N

k=1

(
αikb + nX̂ik

b

)
nij

b

−
∏
i,j,b

(
X̂ij
b

)nij
b


And we can simplify this by leveraging that

∑N
k=1

(
nX̂ik

b

)
= n, to get

√
n

τ

∏
i,j,b

(
αijb + nX̂ij

b

n+
∑N
k=1 α

ik
b

)nij
b

−
∏
i,j,b

(
X̂ij
b

)nij
b


Now, the αijb are constants, as is τ , and the values of X̂ij

b are all bounded between 0 and 1. Thus to
show that this expression converges to 0 in probability, we will write it as one quotient, and show
that some term in the denominator dominates all terms in the numerator. Let M :=

∑
i,j,b n

ij
b . The

expression above is equal to

√
n

τ


∏
i,j,b

(
αijb + nX̂ij

b

)nij
b −

∏
i,j,b

(
X̂ij
b

(
n+

∑N
k=1 α

ik
b

))nij
b

∏
i,j,b

(
n+

∑N
k=1 α

ik
b

)nij
b



Now on the numerator of the inner quotient, there are only two terms of order nM . One is an

nM
∏
i,j,b

(
X̂ij
b

)nij
b

that comes from the product on the left, and one is a

−nM
∏
i,j,b

(
X̂ij
b

)nij
b

from the product on the right, and these cancel each other out. This means the numerator is entirely
of order nM−1 or less. On the other hand, the denominator of the inner quotient contains the term
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nM . Therefore, even after multiplying by the
√
n
τ on the outside, which would mean the highest order

term on in the numerator could be as high as nM−
1
2 , the nM in the denominator still dominates and

the expression as a whole will converge to 0 in probability. Since
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

was a sum of expressions of that form, and they all converge to 0 in probability, we get the result we
desired, which is that

√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability

Lemma 2 The defined variable τ2 := (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) is strictly greater than zero,
namely τ2 > 0.

Proof.
Note that the covariance matrix can be written as ΣXX = E[(X− t)(X− t)T ] (recall t is the mean
vector for X). So we have

τ2 = E[(∇gmc (a)[t])T (X− t)(X− t)T (∇gmc (a)[t])

= E[((∇gmc (a)[t])T (X− t))2]

where we note that s := (∇gmc (a)[t])T (X − t) is a real-valued random variable, so sT = s. Thus
to prove τ2 > 0 we simply have to show that s 6= 0 for some value of X that occurs with non-zero
probability.
Now,

s =
∑
i,j,b

∂gmc (a)

∂xijb

∣∣∣∣∣
x=t

(Xij
b − t

ij
b )

=
∑

state-action pairs (qi,b)

 ∑
possible next states qj

∂gmc (a)

∂xijb

∣∣∣∣∣
x=t

(Xij
b − t

ij
b )


So let sib :=

∑
states qj

∂gmc (a)

∂xij
b

∣∣∣
x=t

(Xij
b − t

ij
b ), then s =

∑
state-action pairs (qi,b) s

i
b.

We need to show that there is some possible value of X such that s 6= 0. Now the value of X is
determined by the values of Xi

b := (Xij
b )Nj=1 for each state-action pair (qi, b). Furthermore, these

Xi
b are independent, and the value of sib depends only on the value of Xi

b. So if there is some
state-action pair (qi, b) such that two possible values of Xi

b yield two distinct values of sib both with
nonzero probability, then we can fix the values of theXhj

b′ for all j and all (h, b′) 6= (i, b) to be some
values that occur with non-zero probability, which would fix the value of s − sib, and so we could
use our two distinct values of sib to find two distinct values of s. Both cannot be 0, so we would be
done.
Now, the value of Xib is characterized by picking one j s.t. Xij

b = 1, and setting all other Xil
b = 0

for l 6= j. This means that to find two different values of some sib, we just need to find states

qi, qj , ql and an action b such that the derivatives ∂gmc (a)

∂xij
b

∣∣∣
x=t

and ∂gmc (a)

∂xil
b

∣∣∣
x=t

are distinct. Then

setting Xij
b = 1 would yield a different value of sib from setting Xil

b = 1. So long as the events
Xij
b = 1 and Xil

b = 1 both have nonzero probability, we would be done.
In order to show that such states qi, qj , ql and such an action b exist, we must introduce vectors An
that will effectively keep track of each state’s contribution towards gmc (a)[t] at the nth step of the
risk backpropagation. First, define the N -by-N matrix P ′n[x] for n = 0, 1, ...,m− 2 such that

(P ′n[x])ij =


1 if i = j and qi is unsafe and observed
0 if i 6= j and qi is unsafe and observed
xijbin otherwise
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where where bin := arg minb R̄
n
i (b). Define P ′m−1[x] as

(P ′m−1[x])ij =


1 if i = j and qi is unsafe and observed
0 if i 6= j and qi is unsafe and observed
xija otherwise

Then the P ′n[x] represent the transition probabilities used in the calculation of gmc (a)[x]. Specifi-
cally, we have that

• gnk [x] is the kth entry of the vector (P ′n−1[x])...(P ′0[x])g0 for n < m

• gmk (a)[x] is the kth entry of the vector (P ′m−1[x])(P ′m−2[x])...(P ′0[x])g0

• So the risk at current state qc, gmc (a)[t], is the cth entry of the vector
(P ′m−1[t])(P ′m−2[t])...(P ′0[t])g0

where g0 is the vector with entries (g0)k := 1(qk is observed and unsafe). We can now define the
vectors An for n ≤ m by

Ani :=

{(
(P ′n−1[t])(P ′n−2[t])...(P ′0[t])g0

)
i

if qi is safely reachable from qc in exactly m− n steps
0 otherwise

Where in this case a state qsn is defined to be safely reachable from the current state qs0 = qc in
exactly n steps if

• there are states qs1 , qs2 , ..., qsn−1 such that each t
spsp+1

bs1
> 0 for actions bs0 = a and

bsk := arg minb R̄
m−k−1
sp (b) determined by the agent’s expected safest policy, and

• the states qs1 , qs2 , ..., qsn−1 are all safe (note that qsn can still be unsafe)

The purpose of these An is just to restrict our attention to the states at step n of the backpropagation
that actually influence gmc (a)[t]. It is easy to see that

(
(P ′m−1[t])...(P ′n[t])An

)
c

= gmc (a)[t] for every n = 0, 1, ...,m (17)

Now we will be able to argue that if gmc (a)[t] is not equal to 0 or 1, there are states qi, qj , ql and
an action b such that tijb and tilb are both non-zero (so there is a positive probability of the events

Xij
b = 1 and Xil

b = 1) and such that ∂gmc (a)

∂xij
b

∣∣∣
x=t

>
∂gmc (a)

∂xil
b

∣∣∣
x=t

.

So assume that gmc (a)[t] is not equal to 0 or 1. Let n0 be the largest index such that An0 contains an
entry (An0)l that is equal to 0 and such that ql is safely reachable from qc in exactly m− n0 steps -
so (An0)l is a 0 that came from (P ′m−1[t])((P ′m−2[t])...(P ′0[t])g0)l.
Since gmc (a)[t] is not 0, n0 < m, and since ql is safely reachable in m − n0 steps, let qc =
qs0 , qs1 , ..., qsm−n0 = ql be a path along which ql is safely reachable. Then let qi = qsm−n0−1 , and
we have that qi is safe, and tilbsm−n0−1

> 0. For brevity, write b′ := bsm−n0−1

Now since qi is safely reachable in m − (n0 + 1) steps, (An0+1)i cannot be equal to 0 (since n0

was maximal), so there must be some state qj such that tijb′ > 0 and An0
j > 0, (in order for the

term tijb′A
n0
j to contribute some positive value to An0+1

i ). Finally, let p be the probability of safely
entering qi in m− (n0 + 1) steps (i.e., the sum over all paths that safely reach qi of the probability
of taking that path by choosing the actions specified by the agent’s expected safest policy). Then by
the chain rule,

∂gmc (a)

∂xijb′

∣∣∣∣∣
x=t

= p

(
1×An0

j + tijb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
j

∂xij

∣∣∣∣∣
x=t

)
> 0

since clearly
((P ′n0−1[x])...(P ′0[x])g0)

j

∂xij

∣∣∣∣
x=t

cannot be negative. On the other hand,
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∂gmc (a)

∂xilb′

∣∣∣∣
x=t

= p

(
1× (An0)l + tilb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
l

∂xilb′

∣∣∣∣∣
x=t

)

= p

(
1× 0 + tilb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
l

∂xilb′

∣∣∣∣∣
x=t

)
= 0

since only one of tilb′ and
((P ′n0−1[x])...(P ′0[x])g0)

l

∂xil
b′

∣∣∣∣
x=t

can be nonzero - if increasing the value of tilb′

could increase the value of (An0)l =
(
(P ′n0−1[t])...(P ′0[t])g0

)
l

from 0 to greater than 0, then tilb′
must have been 0 since

(
(P ′n0−1[t])...(P ′0[t])g0

)
l

is a sum of products of values from t, all of which
are non-negative.

Hence we have found states qi, qj , ql and an action b′ such that the derivatives ∂gmc (a)

∂xij

b′

∣∣∣∣
x=t

and

∂gmc (a)

∂xil
b′

∣∣∣
x=t

are distinct. Hence the claim.

The only detail left to note is that we assumed that gmc (a)[t] is not either equal to 0 or 1. This
assumption is reasonable to make, because if it did not hold, then either our agent would be doomed
to enter an unsafe state within m steps, or there is no chance of entering an unsafe state within m
steps, according to the agent’s expected safest actions. Since what matters to us is how the agent
manages risk, situations involving risk 1 or risk 0 are irrelevant.
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F APPENDIX F. CONFIDENCE BOUND ON THE RISK

To estimate a confidence bound on the risk, we appeal to the Cantelli Inequality, which is a one-
sided Chebychev bound (Cantelli, 1929), and states that for a real-valued random variable R with
expectation E[R] and variance V ar[R], for λ > 0 we have

Pr(R ≤ E[R] + λ) ≥ 1− V ar[R]

V ar[R] + λ2

If we let C := 1 − V ar[R]
V ar[R]+λ2 , then rearranging we get that λ =

√
V ar[R]C

1−C . Thus for a variable R
that represents some sort of risk, and for some value of 0 < C < 1, we can say

Pr(R ≤ P ) ≥ C

where P := E[R] +
√

V ar[R]C
1−C . In words, “there is at least C chance that the risk is at most P .”

Alternatively, “we are at least C
100% confident that the risk is at most P .”
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G APPENDIX G

To understand what exactly R̄mc (a) is an approximation of, consider instead calculating this risk
using the true transition probabilities tkja , We would get

r0
k := 1(qk is observed and unsafe) (18)

rn+1
k (a) :=

{
1 if qk is observed and unsafe∑N
j=1 t

kj
a r

n
j otherwise

(19)

rn+1
k :=

{
1 if qk is observed and unsafe
rn+1
k

(
arg mina∈A R̄

n+1
k (a)

)
otherwise

(20)

Note that we crucially still take the minimum risk action a according to the agent’s approximation
R̄n+1
k (a). In this case, the term rmc (a) is the true probability of entering an unsafe state after select-

ing action a in the agent’s current state qc and thereafter selecting the actions that the agent currently
believes will minimize the probability of entering an unsafe state over the horizon m. R̄mc (a) is the
agent’s approximation of rmc (a).
We will later justify the use of R̄mc (a) as an approximation of rmc (a), but for now let us consider why
it makes sense to define m-step risk as rmc (a). This because the action a that minimizes believed
risk is the action that the agent would choose if it was trying to behave as safely as possible, what
I will call going into ‘safety mode’. Consider the motivating example of a pilot learning to fly
a remote control helicopter by incrementally expanding the set of actions they feels safe taking.
They start by generating just enough lift to begin flying, then immediately land back down again.
They repeat this process a few times until they feel that they have a good understanding of how
the helicopter responds to this limited range of inputs. Then they take a risk (by either flying a bit
higher, or attempting to move horizontally) and once again immediately land. As they repeat this
process of taking small risks and landing to remain safe, they begin to expand their comfort zone.
At some point after taking a risk, they will feel comfortable just coming back to a hovering position
rather than landing, once they have become confident that they can hover safely. This suggests that
a natural process for learning to operate in the face of risks is to repeatedly take small risks followed
by going into safety mode until back in a confidently safe state. Thus, when calculating how risky
an action is, it makes sense to consider the probability of entering an unsafe state given that after the
action the agent will enter safety mode. rmc (a) does exactly this.
As mentioned earlier, the other reason for defining the risk rmc (a) in this way is that it makes it possi-
ble for the agent to attempt to calculate the risk without having to reason about the inter-dependency
between the calculated risk and the agent’s future actions. However, it does more than this. We
will see in the next section that it in fact allows the agent to view R̄mc (a) as (an approximation of)
the expected value of a random variable for the believed risk, where we can also approximate the
variance of that random variable, allowing for deeper reasoning about action-selection for Safe RL.
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