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Abstract

Top-k decoding is a widely used method for sampling from LLMs: at each token,1

only the largest k next-token-probabilities are kept, and the next token is sampled2

after re-normalizing them to sum to unity. Top-k and other sampling methods3

are motivated by the intuition that true next-token distributions are sparse, and4

the noisy LLM probabilities need to be truncated. However, to our knowledge,5

a precise theoretical motivation for the use of top-k decoding is missing. In this6

work, we develop a theoretical framework that both explains and generalizes top-k7

decoding. We view decoding at a fixed token as the recovery of a sparse probability8

distribution. We consider Bregman decoders obtained by minimizing a separable9

Bregman divergence (for both the primal and dual cases) with a sparsity-inducing10

ℓ0 regularization. Despite the combinatorial nature of the objective, we show how11

to optimize it efficiently for a large class of divergences. We show that the optimal12

decoding strategies are greedy, and further that the loss function is discretely convex13

in k, so that binary search provably and efficiently finds the optimal k. We show14

that top-k decoding arises as a special case for the KL divergence, and identify new15

decoding strategies that have distinct behaviors (e.g., non-linearly up-weighting16

larger probabilities after re-normalization).17

1 Introduction18

Large language models (LLMs) are powerful generative AI tools for producing text. When pre-trained19

on large text corpora and aligned according to human preferences, they can be used for a wide range20

of tasks. On a technical level, they are probability distributions over text: given any user text prompt21

x, an LLM samples an answer Y ∼ π(·|x) from a probability distribution π(·|x) over text. However,22

even after obtaining a pre-trained, fine-tuned, and human preference-aligned model π, it is rare to23

directly sample from the model. Instead, several sampling/decoding methods are commonly used,24

including top-k [21] or top-p sampling [32]. These are widely used either by default or as an option25

in many popular LLMs, including the GPT series, Gemini, and Claude. In addition to other decoding26

methods such as beam search, temperature scaling, best-of-N , etc., top-k, top-p and related methods27

are known to improve performance in a broad range of settings compared to direct sampling, see e.g.,28

[12, 21, 32].29

In this paper, we focus on decoding methods that modify each next-token-probability distribution30

to induce sparsity, i.e., to keep only a small number of tokens with a nonzero probability. This31

includes the widely used top-k [21] and top-p [32] sampling methods, among others. These methods32

are motivated by the intuition that the noisy LLMs probabilities need to be truncated to denoise the33

“unreliable tail” [32]. In particular, we focus on the popular top-k decoding method, which keeps only34

the largest k next-token-probabilities at each decoding step. These are re-normalized—via dividing35

by their sum—to a probability distribution from which the next token is sampled.36

Despite the wide use and rich intuition behind top-k decoding, to our knowledge, a precise theoretical37

understanding of top-k decoding is not available—see Section A for a discussion of related work.38
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In this work, we develop a theoretical framework that enables a flexible range of generalizations of39

top-k decoding. For a fixed token, we view decoding as recovering a sparse probability distribution.40

We consider denoisers obtained by minimizing a Bregman divergence (such as a KL divergence or41

Brier score) with a sparsity-inducing ℓ0 regularization. This approach is motivated by a rich literature42

of both Bregman divergences and sparsity, see Section A for details.43

Our approach leads to new decoding methods. As44

an example, we consider Bregman divergences45

generated by the α-entropies x 7→ xα/[α(α− 1)]46

[29, 51]. Top-k decoding arises as an instance47

of this class for α → 1, corresponding to the48

KL divergence. We also identify new decoding49

strategies with distinct behavior. The figure on the50

left shows an example of a distribution over 10051

tokens, the result of top-10 decoding, and results for our Bregman-α decoding with k = 10: for52

α = 1/4, Bregman decoding places relatively more mass on larger probabilities, while for α = 2.5,53

the situation is reversed. In various applications, either behavior may be desired.54

1.1 A roadmap of our contributions55

We start by laying the foundation for out theoretical framework, including presenting a view of56

decoding strategies that decomposes them into two steps: selecting a number of tokens, and re-57

normalizing their entries to a probability distribution (Section 2.1). We present decoding strategies58

obtained by sparsity-regularized Bregman divergence-minimization (Section 2.2). We consider both59

primal and dual decoding methods, minimizing the Bregman divergence with respect to its first and60

second arguments, respectively, as both are widely studied in optimization and statistical learning61

[see e.g., 1, 10, 24, 56, etc].62

In general, ℓ0-regularization leads to combinatorial optimization problems, for which there are no63

known polynomial-time algorithms [11, 42]. Our main contribution is to show that, despite this,64

sparse Bregman decoding can be optimized efficiently for a large class of divergences. Specifically,65

we show two properties: (1) greedy selection—choosing some number k of the largest probabilities—66

is optimal (Theorems 3.2 and 3.3 in Section 3.2); and (2) the loss function is discretely convex in67

k, so that an efficient binary search can be used to find the optimal k∗ (Theorem 3.4 in Section 3.3).68

Showing these properties is non-trivial, and requires us to develop and combine a range of novel69

structural insights into the sparse Bregman objective that could be of independent interest.70

As an example, we discuss α-Bregman decoding strategies, generated by Tsallis α-entropies x 7→71

xα/[α(α− 1)], for which we show that primal renormalization can be solved exactly in several cases72

of interest and converges to water-filling as α→∞ (Section 4). Finally, we illustrate some of the73

decoding schemes described in the paper on open-ended text generation and mathematical problem74

solving tasks with LLMs, where they perform competitively with top-k decoding (Section 5).75

2 Regularized sparse Bregman decoding76

2.1 Top-k decoding preliminaries77

Top-k decoding. Given a probability distribution p = (p1, . . . , pV ) (where V stands for “vocabulary78

size”), and some 1 ⩽ k ⩽ V , top-k decoding first selects the indices Sk = (i1, . . . , ik) of the largest79

k probabilities, breaking ties arbitrarily. Setting all other coordinates to zero in p, one obtains the80

vector p[1 : k] of the k largest entries. Then, it re-normalizes this vector by dividing it by its sum.81

Letting (p(1), p(2), . . . , p(k)) = (pi1 , . . . , pik) be the largest k entries of p,82

top-k(p) = p[1 : k]/

( k∑
j=1

p(j)

)
. (1)

One then draws a sample from the distribution top-k(p).83

Decoding strategies. Next, we aim to generalize top-k decoding. We will refer to any operator84

Dec on probability distributions as a decoding strategy; formally Dec : ∆V → ∆V , where ∆V =85

{x ∈ [0, 1]V :
∑V

i=1 xi = 1} is the simplex of V -dimensional probability distributions. Observe that86
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top-k decoding consists of two steps: selecting the largest coordinates and re-normalizing them. The87

second step can be viewed as “re-distributing” the probability mass that has been thresholded away88

by selection among the remaining indices. This step can be performed in a lot of other meaningful89

ways besides division by the sum. For instance, we may put a larger weight on the larger remaining90

probabilities, if we consider them more reliable.91

Renormalization. Motivated by this, we define the notion of a renormalization mapping, which92

takes as input a thresholded probability vector with k nonzero entries remaining. We consider93

renormalization maps that are permutation-equivariant, i.e., when their input is permuted, their94

output is permuted accordingly; which clearly holds for the sum-division used in top-k. Therefore,95

since the sum of probabilities after selection can be less then unity, we can define them as maps from96

the sub-probability simplex ∆sub,k = {x ∈ [0, 1]k :
∑k

i=1 xi ⩽ 1} to the simplex ∆k.97

Definition 2.1 (Renormalization). For a positive integer k, we call a permutation-equivariant map98

T : ∆sub,k → ∆k a renormalization map.99

A renormalization map can be extended to the full simplex ∆V , by applying it only on the nonzero100

coordinates.1 We can now define generalized top-k decoding as re-normalizing the top-k entries via a101

general re-normalization map.102

Definition 2.2 (Generalized top-k decoding). For a fixed k, a generalized top-k decoding strategy103

Deck,T : ∆V → ∆V , parameterized by the choice of k and renormalization map T , takes as input104

any V -class probability vector p, thresholds it to the sub-vector p[1 : k] consisting of its top-k105

elements, and renormalizes it to T (p[1 : k]) ∈ ∆V .106

Adaptivity. A natural extension is to choose k adaptively based on p. For this, we consider a k-selector107

map k̂ : ∆V → [V ] := {1, . . . , V }, and a collection of renormalization maps Tk : ∆sub,k → ∆k,108

k = 1, . . . , V . We define an adaptive generalized top-k decoding strategy DecT : ∆V → ∆V via109

p 7→ Tk̂(p)(p[1 : k̂(p)]). Below, we will design specific renormalizers T and ways to choose k.110

2.2 Regularized sparse Bregman decoding111

Decoding via sparse divergence minimization. Consider a divergence Div(·, ·) : ∆V ×∆V → R112

between two distributions. Classical examples include the squared error Div(p, q) = ∥p− q∥22 and113

the KL divergence Div(p, q) =
∑V

j=1 pj ln(pj/qj). We define the decoding strategy DecDiv, via114

sparsity-regularized divergence minimization2 under divergence Div, for any probability vector p as:115

DecDiv(p) ∈ argmin
p̂∈∆V

{
Div(p̂, p) + λ ∥p̂∥0

}
(sparsity-regularized decoding). (2)

Here, the ℓ0-pseudonorm ∥p̂∥0 is the number of nonzero entries of p̂, and λ ⩾ 0 is a sparsity cost116

hyperparameter. As λ increases, the optimal solution p̂ = p∗ gets increasingly more sparse.117

Separable Bregman divergences. In this work, we shall instantiate Div in Problem 2 with separable118

Bregman divergences [1, 10]. We will see that this class is expressive enough to induce top-k119

decoding and many fruitful generalizations of it. For a convex domain Dom ⊆ R and a convex120

differentiable function ϕ : Dom→ R, the one-dimensional Bregman ϕ-divergence dϕ is defined as:121

dϕ(x, y) = ϕ(x)− ϕ(y)− ϕ′(y)(x− y), for x, y ∈ Dom. The separable V -dimensional Bregman122

ϕ-divergence Dϕ : DomV → R is then defined as:123

Dϕ(x, y) =
∑
i∈[V ]

dϕ(xi, yi), for x = (x1, . . . , xV ), y = (y1, . . . , yV ) ∈ DomV .

A well-known property of Bregman divergences is that Dϕ(x, y) ⩾ 0 for all x, y, with equality if124

x = y; when ϕ is strictly convex, x = y in fact becomes the unique minimum.125

1Formally, for a vector p ∈ RV and S ⊂ [V ], let pS be the restriction of p to the coordinates in S. Given a
vector p ∈ ∆V such that pSc = 0 outside of a set j ∈ S, a renormalization map T (p) can be extended to ∆V

by embedding it into the original coordinates: [T (p)]j = [T (pS)]j for j ∈ S, and [T (p)]j = 0 otherwise.
2In our examples of interest, we will show that this optimization problem is well-defined. When there are

multiple minimizers, we assume that one is selected in an arbitrary measurable way.
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Figure 1: Illustration of the landscape of the sparse Bregman objective for the primal (left) and dual (right)
cases. We choose a V = 3 dimensional example where the target vector is p = (0.1, 0.01, 0.001)/0.111. We
show an α-Bregman divergence (see Section 4) with α = 10 and λ = 0.01.

Primal and dual Bregman decoding. Since Bregman divergences are generally non-symmetric in126

their arguments, we may instantiate the sparse Bregman decoding Problem 2 in two substantially127

distinct ways: by placing the estimand p̂ in the first (primal) or second (dual) argument:128

Div(p̂, p) := Dϕ(p̂, p) (primal decoding), Div(p̂, p) := Dϕ(p, p̂) (dual decoding). (3)

Both formulations possess a sound theoretical motivation. Bregman projections are commonly defined129

as minimization in the first argument, while Bregman-based proper scoring rules for mean elicitation130

correspond to minimization in the second argument [see e.g., 24, 39, etc].131

The landscapes of primal and dual decoding are illustrated in Figure 1. The dual objective can be132

non-convex even in the interior of the simplex. However, crucially, the objectives are discontinuous133

at the edges of the simplex due to the ℓ0 penalty. While in general these decoding objectives could134

be combinatorial problems that may be hard to solve, we will show in Section 3 that for separable135

Bregman divergences, both the primal and dual problems can be solved efficiently.136

In both the primal and the dual Bregman case, when λ = 0, the corresponding sparse decoding137

Problem 2 is solved at p̂ = p (and uniquely so if ϕ is strictly convex), with the intuition that absent138

sparsity requirements the best guess is to preserve the original distribution p. Henceforth, we will139

focus on the sparse regime λ > 0, thus forcing some entries of p̂ to be zeroed out at optimality. Our140

main results in Section 3 establish, for both primal and dual decoding, that under mild technical141

requirements on Dϕ, the optimal sparsity in fact zeroes out all but top-k∗ coordinates of p, for the142

optimal k = k∗(p), thus leading to a principled and broad generalization of top-k decoding.143

3 The algorithmic structure of primal and dual Bregman decoding144

We now proceed to investigate the properties of primal and dual Bregman decoding. Our goal is to145

show that under mild technical assumptions on the divergence Dϕ, both decoding strategies result146

in adaptive generalized top-k decoding in the sense of Definition 2.2. Explicitly, in Section 3.2 we147

will demonstrate for any p ∈ ∆V that out of the (a-priori) 2V possible sparsity patterns S ⊆ [V ], the148

optimal one must consist of the top-k entries of p for some k ∈ [V ].149

Next, in Section 3.3 we will establish that finding the optimal k∗ = k∗(p) is in fact a (discretely)150

convex optimization problem in k ∈ [V ], which critically enables both strategies to have O(V log V )151

oracle computational complexity under oracle invocations of arbitrary monotone scalar root finding.152

Without this convex structure, the oracle complexity could rise to Ω(V 2), which would be prohibitive153

in language-model-relevant settings in which vocabulary sizes upwards of V ∼ 105 are common.154

3.1 Renormalization for a fixed sparsity pattern155

We first investigate the renormalization component of a Bregman decoding strategy. Once the optimal156

sparsity pattern S ⊆ [V ] (of some size |S| = k) has been identified, the vector x— which denotes the157

sub-vector of p restricted to indices in S — needs to be projected onto the simplex ∆k. Since the ℓ0158

regularization term becomes fixed to λk, Problem (2) becomes equivalent to: argminp̂∈∆k
Div(p̂, x).159

This is a k-dimensional Bregman projection problem to the simplex (without sparsity regularization).160

Primal renormalization We impose the following mild condition on the Bregman generator ϕ.161
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Figure 2: Comparison of primal (left) and dual (right) Bregman α-renormalization maps (see Section 4) on
input vector x = 0.67∑k

i=1
i
k

[
1, k−1

k
, . . . , 1

k

]
∈ ∆sub,k with k = 100. We plot the renormalized values against

the original coordinate values of x.

Assumption 3.1 (Primal validity). The map ϕ is convex and continuously differentiable on [0, 1] as162

well as strictly convex on (0, 1).163

Existing results [33, 34] then imply that for a primal valid potential ϕ, denoting f = ϕ′ (and extending164

its inverse f−1 so that f−1(x) = 0 for x < f(0) and f−1(x) = 1 for x > f(1), making it continuous165

and non-decreasing on all of R), the primal renormalization map Tϕ is given for x ∈ ∆sub,k by:166

[Tϕ(x)]i = f−1(f(xi)+ν) for all i ∈ [k], where ν ∈ R is chosen so that
k∑

i=1

[Tϕ(x)]i = 1. (4)

Since ν 7→ f−1(f(xi) + ν) is non-decreasing3 in ν, the solution can be found efficiently using167

off-the-shelf root-finding algorithms such as Brent’s method.168

Dual renormalization While primal projections are well-studied in prior work [33, 34], we are not169

aware of a direct derivation of dual Bregman projections. Indeed, Bregman divergences are convex in170

the first [3] but generally not the second argument, which can interfere with the uniqueness of dual171

projections. To pave the road towards dual Bregman projections, we will therefore rely on additional172

structure in ϕ and dϕ, expressed as the following dual validity condition.173

Assumption 3.2 (Dual validity). The map ϕ is thrice differentiable on (0, 1] with lim
x→0+

xϕ′′(x) = 0.174

For x∈(0,1],y 7→dϕ(x,y) is strictly convex for y∈[x,1],and y 7→dϕ(0,y) is strictly convex for y∈(0,1].175

We establish in Theorem B.1 (see Appendix B) that subject to dual validity, the dual renormalization176

map T ∗
ϕ is uniquely defined for any x ∈ ∆sub,k with x ̸= 0k by the following implicit equations:177

[T ∗
ϕ (x)]i = xi + ν∗/f ′([T ∗

ϕ (x)]i) for i ∈ [k], with ν∗ ∈ R chosen so that
k∑

i=1

[T ∗
ϕ (x)]i = 1. (5)

Assumption 3.2, short of requiring global convexity of dϕ(x, ·) on [0, 1], only enforces it for y ∈ [x, 1].178

To enable this relaxation, the proof of Theorem B.1 carefully excludes optimal solutions belonging179

to the region y ≤ x or to the simplex boundary. Rather than a mere curiosity, this refinement180

substantially expands the scope of dual decoding. In particular, in our later specialization, it is181

essential for ensuring that dual α-decoding is uniquely defined for all α > 1, not just α ∈ (1, 2]: as182

plots in Appendix H.4 demonstrate, α-Bregman divergences are nonconvex for y ≤ x for α > 2.183

See Section G for algorithmic details on computing the dual map, as well as pseudocode for our184

algorithms. Figure 2 illustrates the primal and dual renormalization maps for α-Bregman divergences185

(introduced in Section 4). In this concrete example, Tϕ and T ∗
ϕ appear similar; however, for different,186

e.g. more “peaked”, inputs x ∈ ∆sub,k, they are more distinct, as we illustrate in Appendix H.3.187

3.2 Greedy property: Justifying top-k selection188

The viewpoint that lower-probability tokens can be considered as noisy [32] suggests that it would be189

natural and indeed desirable for a decoding strategy to be “greedy”—dictating that it is optimal to190

renormalize over the top-k-probability tokens, for some k ∈ [V ]. We formalize this as follows.191

3It is strictly increasing for ν ∈ [−f(xi), 1− f(xi)], but the required ν may lie outside this range.
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Definition 3.1 (Greedy decoding). A decoding strategy Dec : ∆V → ∆V is called greedy if for192

every p ∈ ∆V , the set of nonzero entries of Dec(p) is a set of top-k̂ entries of p, for some k̂ = k̂(p).193

While many popular decoding methods are greedy [12, 21, 32, 38], some are not [22, 36]; justifications194

for non-greediness, i.e., the ability to occasionally throw out some of the top-k tokens, include that195

this can e.g. help generate more “typical” text. As such, our assertion that the primal and dual196

Bregman decoding strategies are greedy is nontrivial and requires proof. First, we state our result for197

primal Bregman decoding.198

Theorem 3.2 (Primal Bregman decoding is greedy). The primal Bregman decoding strategy from (2)199

is greedy for any primal valid potential ϕ.200

The proof is provided in Appendix C. It proceeds by decomposing the Bregman objective into several201

terms, see Lemma C.2, and bounding them with the help of the primal renormalization equations (4).202

The dual case, owing i.a. to the implicit form of the dual renormalization formulas (5), is203

correspondingly more complex to handle. Unlike in Theorem 3.2, our next result requires further204

conditions, which we state as a menu of two options. The relationship between the extra assumptions205

is intricate; Assumption (A2) is implied by, but is strictly weaker than, log-convexity of ϕ′.206

Theorem 3.3 (Dual Bregman decoding is greedy). The dual Bregman decoding strategy from (2) is207

greedy for any dual-valid ϕ with ϕ′(0) = 0 that further satisfies either of the following conditions:208

(A1) ϕ′ is convex;209

(A2) The maps4 u defined as u(x) := xϕ′′(x)/ϕ′(x) for x ∈ (0, 1] and ϕ are nondecreasing.210

The proof is provided in Appendix D. In it, we use two different proof techniques for both conditions:211

For Condition (A1), our proof in Appendix D.1 leverages the decomposition from the primal case212

along with the change of variables dϕ(x, y) = dϕ∗(ϕ′(y), ϕ′(x)), where ϕ∗ is the convex conjugate213

of ϕ. For Condition (A2), we develop a saddle-point proof approach in Appendix D.2. For that, we214

perform a sensitivity analysis of both the renormalized values [T ∗
ϕ (p)]i and of the per-coordinate215

Bregman loss terms, relative to hypothetical changes in the dual Lagrange multiplier ν∗ and in the216

entries pi of p; we carry this out via implicit differentiation of the defining equations (5).217

3.3 Discrete convexity of cost function: Speeding up the search for optimal adaptive k218

Next, we show that when restricted to the greedy (top-k) selection, the primal and dual decoding219

objectives both enjoy discrete convexity with respect to the sparsity parameter k. First, for a general220

divergence Div, denote the ℓ0-regularized cost of each greedy (top-k) choice by cost(k):221

cost(k) := min
p̂∈∆k

{Div ((p̂, 0V−k), p) + λk} . (6)

Recall that a function h : [V ] → R is discretely convex if for all k ∈ [V − 1] − {1}, its discrete222

second derivative ∆2h(k) := ∆h(k+1)−∆h(k) := {h(k+1)−h(k)}−{h(k)−h(k− 1)} ⩾ 0.223

Theorem 3.4 (Discrete primal and dual cost convexity). cost(·) is discretely convex in k ∈ [V ] for:224

1.Div(p̂, p) = Dϕ(p̂, p), if ϕ is primal valid; 2.Div(p̂, p) = Dϕ(p, p̂), if ϕ is dual valid.

In Figure 6 (see Appendix H.5), we illustrate the result of Theorem 3.4 by plotting the cost(·)225

functions for primal and dual Bregman α-decoding (defined in Section 4 below) for assorted α.226

Provable binary search over k: As a direct consequence of Theorem 3.4, the cost increments227

∆cost(k) = cost(k + 1)− cost(k) increase with k, so binary search over k will efficiently identify228

an optimal sparsity parameter k∗ — as one for which ∆cost(k∗) ⩽ 0 and ∆cost(k∗ + 1) ⩾ 0.229

The proof of Theorem 3.4 requires very distinct techniques in the primal and dual cases.230

Primal k-convexity. The proof is developed in Appendix E. As its cornerstone, we use the Legendre231

dual mapping ϕ∗ of the generator ϕ to establish and leverage the following cost structure: for any k,232

cost(k), up to additional terms, can be represented as maxν≥0

[
ν −

∑k
i=1 ϕ

∗(ϕ′(pi) + ν)
]
, where233

the objective is concave in ν and has νk, the optimal Lagrange multiplier for renormalizing the top k234

probabilities of p from (4), as it unique optimizer. From here, we are able to establish ∆2cost(k) ≥ 0.235

4In the economics literature, u(x) = xϕ′′(x)/ϕ′(x) is referred to as the elasticity of the function ϕ′.
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Dual k-convexity. The proof is in Appendix F. The above dualization strategy does not directly apply.236

Instead, we lower bound ∆2cost∗(k) by regrouping the loss contributions of the indices i ∈ [k + 1],237

and —via intricate term rearrangement and bounding—reduce to proving the local concavity of a238

special transformation (Equation 20) that turns out to hold by our dual-validity assumption.239

4 Example: Bregman α-decoding240

We now consider, as an illustration, a single-parameter family of Bregman decoding strategies, which241

arises via the generators of the Havrda-Charvát-Tsallis α-entropies [8, 29, 45, 51, 52]:242

ϕα(x) = xα/[α(α− 1)], x ∈ [0, 1], for α ∈ J := (−∞, 0) ∪ (0, 1) ∪ (1,∞).

When α < 0 and x = 0, we set xα := +∞ so that ϕα(0) = ∞. For α = 1, one defines243

ϕ1(x) = x log(x), which corresponds to the Shannon entropy, arising in the limit5 as α → 1.244

Observe that ϕα is primal valid for all α ̸= 0, as ϕ′′α(x) = xα−2. This yields the following primal245

family of renormalizations, which we will index by α rather than ϕ:246

Definition 4.1 (Primal Bregman α-decoding). Fix α∈J, k∈ [V ]. The renormalization map Tα is247

given for p∈∆sub,k as: [Tα(p)]i=(pα−1i + ν)
1

α−1 for i∈[k], with ν∈R chosen so that
∑
i∈[k]

[Tα(p)]i=1.248

Note that for α = 1, we have ϕ′1(x) = log x+ 1. Hence, (4) implies eν
∑k

i=1 pi = 1, and we obtain249

the “standard” renormalization: [T1(p)]i = pi/(
∑k

j=1 pj), for i ∈ [k]. Therefore, primal Bregman250

1-decoding is top-k decoding, showing how one recovers top-k in our framework. It turns out that251

some further values of α also lead to renormalization maps of special interest. For any fixed p, we let252

T−∞(p) = lim inf
α→−∞

Tα(p) and T∞(p) = lim inf
α→∞

Tα(p), where the limits are entrywise.253

Proposition 4.2 (Special primal α-renormalization maps). We have the following special instances6254

of the primal Bregman α-renormalization map, defined for all i ∈ [k] as follows:255

[T−∞(p)]i = pi + 1[i = i∗] ·
(
1−

∑k
j=1 pj

)
, assuming that argmaxi pi = {i∗}.256

[T1.5(p)]i =
(√

pi +
[√

r2 + k
(
1− s

)
− r
]
/k
)2

, where r =
∑k

j=1

√
pj and s =

∑k
j=1 pj .257

[T2(p)]i = pi + (1−
∑k

j=1 pj)/k.258

[T∞(p)]i = max{pi, ν}, where ν ∈ R is the “water level” for which
∑k

i=1[T∞(p)]i = 1.259

Along with the primal family, the dual α-decoding family can also be defined based on ϕα. Unlike260

α-decoding, the dual Bregman sparse decoding Problem 2 can be non-convex, as displayed in Figure 1261

above. Figure 5 in Appendix H.4 further demonstrates the nonconvexity of Dϕα on the unit square for262

some α. Yet, we can still show that any dual α-decoding with α > 1 is valid, greedy and k-convex:263

Lemma 4.3. All generator functions ϕα, α > 1, are dual-valid and satisfy Assumption (A2).264

We give an illustration contrasting primal and dual α-decoding for various α > 1 in Appendix H.3.265

5 Experiments266

We now illustrate some of the decoding schemes described in our paper in the context of LLMs.267

Since our goal is to develop the theoretical foundations of top-k decoding, our aim in this section268

is simply to illustrate that the performance of our novel decoding schemes can be competitive with269

standard top-k decoding. In particular, we do not aim to compare or compete with other popular and270

established decoding methods, which is beyond the scope of our theory-focused paper.271

5.1 Experimental Setup272

Method. In addition to standard top-k decoding, which coincides with the α = 1 case of our primal273

α-decoding family described in Section 4, we illustrate primal α-decoding strategies for α = 1.5 and274

α = 2. These have closed-form renormalization maps that are as fast as standard renormalization.275

5One conventionally defines the entropies via (xα − x)/[α(α− 1)], in which case the Shannon entropy is
obtained in the limit as α → 1. In our case, we use the definition ϕα(x) = xα/[α(α−1)] so that some technical
conditions (such as ϕ′

α(0) = 0) hold in the proofs. Both definitions lead to the same decoding strategies in (4).
6In particular, T−∞(p), T1.5(p), T2(p) do not require solving for ν in Definition 4.1, enabling a fast

implementation just like in the case of the canonical top-k renormalization.
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Figure 3: Perplexity and repetition frequency differences between generated and human-written text for GPT2-
large (left two panels) and LLaMA 3.1 8B (right two panels), for various k values. We show top-k decoding and
primal decoding with α ∈ {1.5, 2.0}. Standard deviations are estimated using 1000 bootstrap resamples.

Table 1: Accuracy on GSM8K for LLaMA 3.1 8B using Bregman primal decoding (λ ∈ {0.01, 0.0001},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, λ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.01 Top-k (λ = 0.01) λ = 0.0001 Top-k (λ = 0.0001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 85.14±0.80 84.38±1.00 83.62±1.02 84.69±0.99 84.69±0.99 84.46±1.00 85.14±0.98 83.62±1.02

0.7 83.24±1.02 81.73±1.06 83.78±1.02 84.69±0.99 82.03±1.06 82.03±1.06 82.11±1.06 83.78±1.02

1.0 81.20±1.08 80.97±1.08 81.20±1.08 81.20±1.08 77.41±1.15 77.26±1.15 79.23±1.12 78.54±1.13

1.5 79.00±1.12 80.06±1.10 75.97±1.18 75.97±1.18 57.24±1.36 64.97±1.31 43.21±1.36 58.53±1.36

Full and partial evaluation. Further, we perform two types of experiments: (1) For the evaluation of276

our full decoding strategy, we decode by adaptively selecting the optimal sparsity parameter k∗ by277

optimizing our sparse Bregman objective. Since practical choices of k∗ are always upper bounded,278

we set a maximum k∗ ⩽ kmax := 50. (2) In the partial evaluation approach, we instead directly279

evaluate—for each fixed choice of k in the grid k ∈ {5, 10, . . . , 50}.280

Models and benchmarks. We conduct experiments using the GPT-2 Large [43] and Llama 3.1 8B281

[25] models. We evaluate on two benchmarks: (1) open-ended text generation using the WebText282

test set from the GPT-2 output dataset [40], and (2) grade school math reasoning using the GSM8K283

Chain-of-Thought benchmark [13].284

Evaluation metrics. For open-ended text generation, following Chen et al. [12], we use the first285

35 tokens of each WebText test sample as a prompt and generate up to 256 tokens. We evaluate the286

following standard metrics [see e.g., 12, 32, 38, etc]:287

(1) Perplexity difference, which measures the perplexity (according to base model pbase ) of human288

text compared to that obtained from a decoding strategy pdecoding derived from the base model lower is289

better. This equals EX∼D[EY∼D(·|X )(pbase(Y | X)−1/|Y |)− EY∼pdecoding(·|X)(pbase(Y | X)−1/|Y |)],290

whereX ∼ D is a prompt drawn from the dataset, Y ∼ D(·|X ) denotes a human-written continuation291

drawn from the dataset, and Y ∼ pdecoding (· | X) denotes a model-generated continuation.292

(2) Repetition difference: EX∼D
[
PY∼pdecoding (·|X) (rep(Y ))− PY∼D(·|X)(rep(Y ))

]
, where rep(Y )293

is the event that Y contains two contiguous and identical token spans of length ⩾ 2; lower is better.294

5.2 Results295

Open-ended text generation. Using the partial evaluation setup with temperature fixed at 1.0,296

Figure 3 reports the differences in perplexity and repetition frequency between model-generated and297

human-written text across a range of k values. Primal decoding strategies are competitive with top-k298

in terms of both metrics. In particular α = 2.0 has the smallest gaps in perplexity.299

GSM8K dataset. Using the full decoding strategy, we evaluate the LLaMA 3.1 8B model using300

8-shot CoT prompting. We test various temperatures, regularization strengths λ ∈ {0.01, 0.0001}301

and primal decoding parameters α ∈ {1.5, 2.0}. Results for other settings are in Appendix I. To302

ensure a matched comparison, we run top-k with k = k∗ for the Bregman decoding run with the same303

temperature, λ, and α, rounded to the nearest integer, see Table 11 in Appendix I. As seen in Table 1,304

across all temperature settings, primal decoding with adaptive k∗ achieves accuracy comparable305

to top-k. At higher temperatures (such as 1.5), the performance of top-k decoding degrades more306

rapidly than that of primal decoding.307
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A Related work481

Bregman projection. Michelot [37] considered the Brier score projection problem and derived482

an efficient algorithm. Later, Shalev-Shwartz et al. [48] revisited the properties of optimal Brier483

projection, and Duchi et al. [17] gave and analyzed the explicit algorithm that we discuss in what484

follows. Wang and Carreira-Perpinán [53] simplified and distilled the proof. [35] further studied the485

projection as a method for generating sparse probability predictions in multiclass prediction problems.486

[33, 34] developed methods for efficient Bregman projections to the simplex; for a fixed support,487

these results characterize our primal decoding. [44, 46] developed differentiable variants of top-k488

decoding. In contrast to these works, we: (1) consider Bregman projections under ℓ0 regularization,489

and (2) offer, to the best of our knowledge, novel analyses of dual Bregman projections.490

ℓ0 regularization. Regularization via the ℓ0-pseudonorm has been studied widely, with various491

approximate algorithms (based on surrogates, integer programming, branch-and-bound methods,492

etc.) developed for problems ranging from linear regression to more general learning tasks [see e.g.,493

2, 6, 9, 15, 18–20, 30, 41, 49, 50, 58, 61, etc]. In contrast, the algorithms we propose are exact within494

numerical precision for the specific class of problems we consider.495

Bregman divergences. The properties of Bregman divergences [10] have been widely studied; see,496

e.g., [1, 3, 5, 8, 27, 39, 47, 55, 57], etc. In particular, there are a number of relations between Bregman497

divergences and their versions with reversed arguments, motivated by the fact that convexity in the498

first parameter allows for minimization, making it useful to switch the order of the variables, see e.g.,499

[1, 26] etc. We both leverage some of these results in our work, and contribute some, to the best of500

our knowledge, novel proof techniques and insights into the (primal and dual) Bregman geometry.501

LLM decoding. There is a vast range of work on LLM sampling (or decoding), see e.g., [54] and502

references therein. Classical methods include greedy sampling and beam search. Sparse sampling503

methods such as top-k sampling [21] are motivated by intuition that the “unreliable tail” of low-504

probability tokens is mis-estimated [32]. In particular, [32] propose top-p sampling, and [38] propose505

min-p sampling. Other sampling methods were proposed in [4, 22, 31, 36]. [12] propose the decoding506

game, a two-player game between a generator/LLM and an adversary that distorts the true distribution.507

They show that certain sparse truncated sampling methods are approximately minimax optimal. There508

have also been various approaches to explicitly make language model output probabilities sparse, see509

e.g., [14, 59, 60]. In contrast, our goal is to develop a deeper theoretical understanding of the popular510

top-k decoding method, placing it into a broader framework.511

General motivation. The motivation for our general approach is two-fold: (1) Without sparsity512

considerations, Bregman divergences are known to have a close correspondence to proper scoring513

rules, and are minimized at the true probability distribution, see e.g., [10, 24]. This property is highly514

desirable in probabilistic forecasting and prediction, ensuring that the forecaster is incentivized to515

predict the true distribution in order to minimize their loss. (2) The ℓ0-“norm”, i.e., the number of516

nonzero entries of a sparse vector, has been widely argued to both be a reasonable measure of sparsity,517

and to have good properties as a regularizer in certain sparse estimation problems such as sparse518
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regression [see e.g., 7, 16, 23, 28, etc]. Combining these two lines of thought provides the motivation519

for studying ℓ0-regularized Bregman divergence minimization.520

B Existence and uniqueness of dual Bregman decoding521

Theorem B.1 (Uniqueness and formula for dual Bregman renormalization). Fix a dual valid potential522

ϕ. Then, for any x ∈ ∆sub,k with
∑

i xi > 0, the renormalization map T ∗
ϕ is uniquely defined by:523

[T ∗
ϕ (x)]i = xi+ν

∗/f ′([T ∗
ϕ (x)]i) for all i ∈ [k], where ν∗ ∈ R is chosen so that

k∑
i=1

[T ∗
ϕ (x)]i = 1.

Proof. First, assume without loss of generality that 0 <
∑

i∈[k] xi < 1. Otherwise, if
∑

i∈[k] xi = 1524

then x ∈ ∆k, so the unique unconstrained optimum, which is at x by the standard property of525

Bregman divergences, is also the unique optimum of our constrained projection problem.526

Note that Slater’s condition is satisfied for this projection problem as we are optimizing over the527

simplex (whose relative interior is nonempty). Therefore, in this differentiable problem, its optimal528

solutions can be characterized via its KKT conditions.529

Introduce a Lagrange multiplier ν ∈ R for the simplex constraint, and Lagrange multipliers (λi)i∈[k]530

for the nonnegativity constraints. Then, the Lagrangian is as follows:531

L(p̂, ν) =
k∑

i=1

[
ϕ(xi)− ϕ(p̂i)− ϕ′(p̂i) (xi − p̂i)

]
− ν
( k∑
i=1

p̂i − 1
)
−

k∑
i=1

λip̂i.

Here, λi ⩾ 0 for all i, and by complementary slackness, at optimality λi = 0 whenever p̂i > 0.532

For each i ∈ [k], the stationarity condition reads (except possibly when p̂i = 0, where the second533

derivative could be infinite):534

0 =
∂L
∂p̂i

= −ϕ′′(p̂i) (xi − p̂i)− ν − λi ⇐⇒ ϕ′′(p̂i)(p̂i − xi) = ν + λi.

In particular, for each coordinate i for which the optimal p̂i ∈ (0, 1), the stationarity condition is:535

ϕ′′(p̂i)(p̂i − xi) = ν =⇒ p̂i = xi +
ν

ϕ′′(p̂i)
= xi +

ν

f ′(p̂i)
. (7)

Now, we show that ν > 0. Indeed, observe that there must be at least one index i for which p̂i > xi.536

If that was not the case, we would get
∑

i∈[k] p̂i ⩽
∑

i∈[k] xi < 1 by our assumption, contradicting537

that p̂ ∈ ∆k. In particular, then, p̂i > xi ⩾ 0, and therefore we have ϕ′′(p̂i)(p̂i − xi) = ν. Since538

ϕ′′(p̂i) > 0 and p̂i − xi > 0, we thus conclude that ν > 0.539

Having shown that ν > 0, we now proceed to show that all p̂i > 0 at optimality. Note that540
∂
∂ydϕ(x, y) = ϕ′′(y) (y − x) for y > 0. We will now consider two cases:541

1. ϕ′′(0) is finite;542

2. limy→0 ϕ
′′(y) = +∞.543

If ϕ′′(0) is finite, p̂i > 0 for all i. Indeed, suppose that was not the case, and p̂i = 0 for some i. Then544

we would have: ϕ′′(0)(0− xi) = ν + λi, or equivalently, ϕ′′(0) · xi + ν + λi = 0. Each of the three545

terms is nonnegative, and ν > 0, so we arrive at a contradiction.546

Next, consider the case in which limy→0 ϕ
′′(y) = +∞. Then, limy→0

∂
∂ydϕ(x, y) = −∞ for all547

x ∈ (0, 1]. Then, since limy→0
∂
∂ydϕ(x, y) = −∞ for all x ∈ (0, 1], for any i such that xi > 0,548

setting p̂i = 0 would lead to ν = −∞, hence necessarily p̂i > 0. On the other hand, for any549

i for which xi = 0, since limy→0 yϕ
′′(y) = 0, setting p̂i = 0 would lead to ν = 0, which is a550

contradiction.551

In all cases, the optimal p̂ is in the strict interior of the simplex, so it suffices to solve (7) over this552

range. To show that the solution exists and is unique, we collect together the following information553

about Ψ from (13) with Ψ(x, y, ν) := ϕ′′(y)(y − x) − ν for all x, y, ν. Then, for a fixed ν, (7) is554

equivalent to solving Ψ(xi, p̂i, ν) = 0. First, consider x > 0. Then, we have the following:555
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1. Since the map y 7→ dϕ(x, y) is strictly convex for y ∈ [x, 1], it follows that ∂
∂ydϕ(x, y) =556

Ψ(x, y, 0) is strictly increasing for y ∈ [x, 1], and so is Ψ(x, y, ν).557

2. We have Ψ(x, x, ν) = −ν ⩽ 0. Further, Ψ(x, 1, ν) = ϕ′′(1)(1 − x) − ν ⩾ 0, whenever558

ν ⩽ ϕ′′(1)(1− x).559

Hence, the map y 7→ Ψ(x, y, ν) has a unique zero on the interval [x, 1], as long as 0 < ν ⩽560

ϕ′′(1)(1− x).561

Next, consider x = 0, in which case we need to solve the equation ϕ′′(y)y = ν. Then, we have the562

following:563

1. Since the map y 7→ dϕ(0, y) is strictly convex for y ∈ (0, 1], it follows that ∂
∂ydϕ(0, y) =564

Ψ(0, y, 0) = ϕ′′(y)y is strictly increasing for y ∈ (0, 1], and so is Ψ(0, y, ν).565

2. By assumption, limy→0+ yϕ
′′(y) = 0, hence we have limy→0+ Ψ(x, x, ν) = −ν ⩽ 0.566

Further, Ψ(0, 1, ν) = ϕ′′(1)(1− x)− ν ⩾ 0, whenever ν ⩽ ϕ′′(1).567

Hence, the map y 7→ Ψ(0, y, ν) has a unique zero on the interval (0, 1], as long as 0 < ν ⩽ ϕ′′(1).568

Now define M := mini ϕ
′′(1)(1− xi) = ϕ′′(1)(1−maxi xi). Since by assumption

∑
i xi < 1, it569

follows that M > 0. From the above analysis, it follows that, as long as ν ∈ (0,M ], for each i, the570

equation ϕ′′(yi)(yi − xi) = ν. has a unique solution yi(ν) ∈ (xi, 1].571

Furthermore, as we establish in Lemma D.2, the map ν 7→ yi(ν) is strictly increasing for ν > 0, also572

owing to the assumed second-argument convexity of dϕ. In particular, define G(ν) =
∑k

i=1 yi(ν)573

for ν > 0; then G is continuous and strictly increasing, and satisfies limν→0G(ν) =
∑

i xi < 1 and574

G(M) ⩾ yi∗(M) = 1, where i∗ is any index achieving the maximum among the coordinates of x.575

Hence there is a unique ν∗ ∈ (0,M ] with G(ν∗) = 1. Setting p̂i = yi(ν
∗) yields a vector in ∆k that576

satisfies the KKT stationarity.577

Finally, note that the solution p̂ that we just identified is unique. Indeed, we have earlier excluded578

boundary solutions from consideration, and then further excluded any solutions in which p̂i < xi for579

any i ∈ [k]; thus, it suffices to recall that the Bregman objective is assumed to be strictly convex in580

the interior of the region of the simplex given by {p̂ ∈ ∆k : p̂i ⩾ xi for all i ∈ [k]}, thus concluding581

the proof.582

C Proof of the primal greedy property in Theorem 3.2583

We will first fix some notations. Henceforth, we will assume that the vector p has been sorted, i.e.,584

p1 ⩾ p2 ⩾ . . . ⩾ pV . For any subset Q = {i1, . . . , ik} ⊆ [V ] of size k, let Qc = [V ]\Q. Let pQ585

denote the sub-probability vector with the entries of p whose indices are in Q. We define the loss586

L(Q) as587

L(Q) = min
p̂∈∆k

Dϕ((p̂, 0V−k), (pQ, pQc)) = min
p̂∈∆k

k∑
j=1

dϕ(p̂j , pij ) + SQc . (8)

Here, SQc =
∑

j /∈Q dϕ(0, pj). To prove Theorem 3.2, we will show that L(S′) ⩾ L(S) for any588

S′ ⊆ [V ] of size k, where S = [k] consists of the top-k indices. We will further show that strict589

inequality always holds if pS′ ̸= pS . To do this, we proceed in three steps: (1) We first simplify the590

form of the loss function L(Q) in Lemma C.1, (2) For any two subsets S, S′, we decompose the loss591

difference L(S′) − L(S) into three terms in Lemma C.2, (3) We individually analyze each of the592

terms in this decomposition and prove they are non-negative.593
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C.1 Decomposing the Bregman cost function on subsets594

Lemma C.1. For anyQ = {i1, i2, . . . ik} ⊆ [V ] of size k, the loss function as defined in (8) simplifies595

to:596

L(Q) =

k∑
j=1

[ϕ([TQ(p)]j)− ϕ′(pij )[TQ(p)]j ] + S[V ] − |Q|ϕ(0). (9)

Proof. Observe that:597

L(Q) = Dϕ((p̂Q, 0V−k), (pQ, pQc)) =

k∑
j=1

d([TQ(p)]j , pij ) + SQc

=

k∑
j=1

[ϕ([TQ(p)]j)− ϕ(pij )− ϕ′(pij )([TQ(p)]j − pij )] + SQc

=
k∑

j=1

[ϕ([TQ(p)]j)− ϕ′(pij )[TQ(p)]j ] +
k∑

j=1

[−ϕ(pij ) + f(pij )pij ] + SQc .

This further equals598

k∑
j=1

[ϕ([TQ(p)]j)− ϕ′(pij )[TQ(p)]j ] +
∑
j∈Q

dϕ(0, pj) + SQc − |Q|ϕ(0)

=

k∑
j=1

[ϕ([TQ(p)]j)− ϕ′(pij )[TQ(p)]j ] + SQ + SQc − |Q|ϕ(0)

=

k∑
j=1

[ϕ([TQ(p)]j)− ϕ′(pij )[TQ(p)]j ] + S[V ] − |Q|ϕ(0).

This finishes the proof.599

Let TQ(p) denote a minimizer of the above loss L(Q), i.e.,600

TQ(p) ∈ arg min
p̂∈∆k

Dϕ((p̂, 0V−k), (pQ, pQc))
(a)
= arg min

p̂∈∆k

k∑
j=1

dϕ(p̂j , pij ).

Note that (a) holds above as the term SQc does not play any role in the location of the minimizer.601

However, it does contribute to the final loss L(Q). Also, as the divergence is separable, once we have602

selected a subset Q, the ordering of its elements does not matter for the calculation of the above loss603

and minimizer. Thus, without loss of generality, we may assume i1 < i2 < . . . < ik for k ∈ [V ]. By604

forming the Lagrangian and differentiating it, we obtain the primal thresholding from (4):605

ϕ′([TQ(p)]j) = ϕ′(pij ) + νQ ∀ j ∈ [k]. (10)

Here, νQ is chosen such that
∑k

j=1[TQ(p)]j = 1.606

Lemma C.2. Let S = {i1, . . . , ik}, S′ = {i′1, . . . , i′k} ⊆ [V ] and TS(p) and TS′(p) be the607

corresponding minimizers. Then, the following decomposition holds:608

L(S′)− L(S) = Dϕ(TS′(p), TS(p)) +

k∑
j=1

([TS′(p)]j − [TS(p)]j)
(
ϕ′([TS(p)]j)− ϕ′(pij )

)
+

k∑
j=1

[TS′(p)]j

(
ϕ′(pij )− ϕ′(pi′j )

)
. (11)
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Proof. We have from Lemma C.1 that609

L(S′)− L(S) =
k∑

j=1

[ϕ([TS′(p)]j)− ϕ′(pi′j )[TS′(p)]j ]−
k∑

j=1

[ϕ([TS(p)]j)− ϕ′(pij )[TS(p)]j ]

=

k∑
j=1

[ϕ([TS′(p)]j)− ϕ([TS(p)]j)] + ϕ′(pij )[TS(p)]j − ϕ′(pi′j )[TS′(p)]j .

This further equals610

k∑
j=1

[ϕ([TS′(p)]j)− ϕ([TS(p)]j)− ϕ′([TS(p)]j)([TS′(p)]j − [TS(p)]j)]

+

k∑
j=1

(
[TS′(p)]j

[
ϕ′([TS(p)]j)− ϕ′(pi′j )

]
− [TS(p)]j

[
ϕ′([TS(p)]j)− ϕ′(pij )

])

= Dϕ(TS′(p), TS(p)) +

k∑
j=1

([TS′(p)]j − [TS(p)]j)
(
ϕ′([TS(p)]j)− ϕ′(pij )

)
+

k∑
j=1

[TS′(p)]j

(
ϕ′(pij )− ϕ′(pi′j )

)
.

611

Now, returning to our proof, suppose S = [k] and S′ = {i′1, . . . i′k}. We know from Lemma C.2 that612

L(S′)− L(S) = Dϕ(TS′(p), TS(p))︸ ︷︷ ︸
I

+

k∑
j=1

([TS′(p)]j − [TS(p)]j)
(
ϕ′([TS(p)]j)− ϕ′(pij )

)
︸ ︷︷ ︸

II

+

k∑
j=1

[TS′(p)]j

(
ϕ′(pij )− ϕ′(pi′j )

)
︸ ︷︷ ︸

III

.

Now, consider the term II. Using (10), we can simplify this further as follows:613

II =
k∑

j=1

([TS′(p)]j − [TS(p)]j) νS = νS

 k∑
j=1

[TS′(p)]j −
k∑

j=1

[TS(p)]j

 (a)
= 0,

where (a) follows as
∑k

j=1[TS′(p)]j =
∑k

j=1[TS(p)]j = 1. Also, I ⩾ 0 as Dϕ is a divergence614

measure.615

Finally, to conclude our proof, we show that III ⩾ 0. Since the entries of p are sorted in a non-616

decreasing order and as the indices in S = [k] and S′ are sorted in ascending order, we have617

∀ j ∈ [k], j = ij ⩽ i′j ⇒∀ j ∈ [k], p(ij) ⩾ p(i′j)

⇒
k∑

j=1

[TS′(p)]j

(
ϕ′(pij )− ϕ′(pi′j )

)
= III ⩾ 0.

Strict inequality holds as long as some pi′j is not among the top-k indices of p.618

D Proof of the dual greedy property in Theorem 3.3619

To prove the greedy property for the two alternate conditions in Theorem 3.3, we will provide two620

distinct proof techniques for the two cases (A1) and (A2). The first one uses duality and the second621
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one uses a saddle point argument. We will now recall the definition of the Legendre dual of a convex622

function—in this case, of the generator function ϕ—and its defining property that will help us. Below,623

f([0, 1]) denotes the image of [0, 1] under f .624

Lemma D.1 (Classical). For a valid ϕ, let ϕ∗(x) = supp⩾0{px − ϕ(p)} be the Legendre dual of625

ϕ, defined for all x ∈ f([0, 1]). Then, we have for every x ∈ f([0, 1]) the identity: ϕ(f−1(x)) =626

xf−1(x)− ϕ∗(x). Moreover (ϕ∗)′ = f−1, and ϕ∗ is strictly increasing.627

Proof. Since the map p 7→ R(p) := px− ϕ(p) is continuous, it achieves a maximum on [0, 1]. From628

the first order condition of the defining equation for ϕ∗, if the maximum is achieved in (0, 1), we629

have:630
∂R

∂p
= x− ϕ′(p) = x− f(p) = 0,

so for the maximizer pmax we have f(pmax) = x ⇒ pmax = f−1(x). Now, since f is increasing631

and x ∈ f([0, 1]), we have R′(0) = x − f(0) ⩾ 0, with equality if x = f(0). Similarly, R′(1) =632

x− f(1) ⩽ 0, with equality if x = f(1). Hence, it follows that the above characterization for the633

maximizer pmax also applies on the boundaries of [0, 1]. To conclude the proof of the identity, it634

suffices to observe that ϕ∗(x) = pmaxx − ϕ(pmax) = xf−1(x) − ϕ(f−1(x)). The expression for635

(ϕ∗)′ follows by direct calculation.636

D.1 Proof under Assumption (A1)637

With the dual convex conjugate ϕ∗ as per Lemma D.1, the divergence measure satisfies:638

dϕ(p, q) = dϕ∗(ϕ′(q), ϕ′(p)). (12)

Let the loss for the dual problem be denoted as L∗, (the divergence measure with the arguments639

swapped), and let T ∗
Q be the dual renormalization map from Lemma B.1 applied to pQ, i.e.,640

L∗(Q) = min
p̂∈∆k

Dϕ((pQ, pQc), (p̂, 0V−k)) = min
p̂∈∆k

k∑
j=1

dϕ(pij , p̂j) + S∗
Qc , where S∗

Qc =
∑
j /∈Q

dϕ(pj , 0)

=

k∑
j=1

dϕ(pij , [T
∗
Q(p)]j) + S∗

Qc .

D.1.1 Decomposition of the loss difference641

Using the form of the loss difference in Lemma (C.2) and (12), we can compute the loss difference642

for the dual problem as follows:643

L∗(S′)− L∗(S) =

V∑
j=1

dϕ(pi′j , [T
∗
S′(p)]j)−

V∑
j=1

dϕ(pij , [T
∗
S(p)]j)

(due to (12))
=

V∑
i=1

dϕ∗(ϕ′([T ∗
S′(p)]j), ϕ

′(pi′j ))−
V∑
i=1

dϕ∗(ϕ′([T ∗
S(p)]j), ϕ

′(pij ))

Indeed, changing the potential ϕ to ϕ∗, and changing all the arguments pij , pi′j , T
∗
S , T

∗
S′ to644

ϕ′(pij ), ϕ
′(pi′j ), ϕ

′(T ∗
S), ϕ

′(T ∗
S′) respectively in Lemma (C.2) suffices. Thus, under the same setup645

of the two subsets S = [k] and S′ and denoting ϕ′ = f , we obtain:646

L∗(S′)− L∗(S) = Dϕ∗ (f(T ∗
S′(p)), f(T ∗

S(p)))

+

k∑
j=1

(f([T ∗
S′(p)]j)− f([T ∗

S(p)]j))
(
(ϕ∗)′ (f([T ∗

S(p)]j))− (ϕ∗)′
(
f(pij )

))
+

k∑
j=1

f ([T ∗
S′(p)]j)

(
(ϕ∗)′(f(pij ))− (ϕ∗)′(f(pi′j ))

)
.
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Since (ϕ∗)′ = f−1, this further equals647

Divϕ∗ (f(T ∗
S′(p)), f(T ∗

S(p)))︸ ︷︷ ︸
I′

+

k∑
j=1

(f([T ∗
S′(p)]j)− f([T ∗

S(p)]j))
(
[T ∗

S(p)]j − pij
)

︸ ︷︷ ︸
II′

+

k∑
j=1

f ([T ∗
S′(p)]j)

(
pij − pi′j

)
︸ ︷︷ ︸

III′

.

D.1.2 Analysis of terms based on the dual solution648

Similar to the proof for the primal case, the term I′ ⩾ 0, as Dϕ∗ is a divergence, and III′ ⩾ 0 as649

ϕ′ = f ⩾ 0, as f(0) = 0 and f is increasing. Moreover, as f is strictly increasing, if any of the pi′j650

are not among the top-k entries, then strict inequality holds.651

To analyze II, we have652

II =
k∑

j=1

(f([T ∗
S′(p)]j)− f([T ∗

S(p)]j))
(
[T ∗

S(p)]j − pij
)

from Lemma B.1
=

k∑
j=1

(f([T ∗
S′(p)]j)− f([T ∗

S(p)]j))
ν∗S

f ′ ([T ∗
S(p)]j)

.

Since f is convex,653

(f([T ∗
S′(p)]j)− f([T ∗

S(p)]j)) ⩾ f ′ ([T ∗
S(p)]j) ([T

∗
S′(p)]j − [T ∗

S(p)]j)

(a)⇒ 1

f ′ ([T ∗
S(p)]j)

· (f([T ∗
S′(p)]j)− f([T ∗

S(p)]j)) ⩾ [T ∗
S′(p)]j − [T ∗

S(p)]j

(b)⇒
k∑

j=1

1

f ′ ([T ∗
S(p)]j)

· (f([T ∗
S′(p)]j)− f([T ∗

S(p)]j)) ⩾
k∑

j=1

([T ∗
S′(p)]j − [T ∗

S(p)]j) = 0.

In the above steps, (a) follows as f ′ > 0 as f is strictly increasing and (b) follows as654 ∑k
j=1[T

∗
S′(p)]j =

∑k
j=1[T

∗
S(p)]j = 1. This implies II′ ⩾ 0, finishing the proof.655

D.2 Proof under Assumption (A2)656

D.2.1 Extra notation657

Since ∂
∂ydϕ(x, y) = ϕ′′(y) (y−x) for y > 0, we define for (x, y, ν) ∈ D := [0, 1]× (0, 1]× (0,∞),658

Ψ(x, y, ν) := ϕ′′(y)(y − x)− ν. (13)

Define the mapping derived from solving Ψ(x, y, ν) = 0 over y by:659

ξ(x, ν) : [0, 1]× (0,∞)→ (0, 1], such that [T (p)]i = ξ(pi, ν) for all i, and for optimal ν.

It follows from the proof of Lemma B.1 that the solution ξ is well-defined. Define two auxiliary660

functions ψ, h that will be used in the computation of the Bregman costs below, such that for all661

(x, y, ν) ∈ D:662

ψ(x, y) := ϕ(y)− ϕ′(y)(y − x), and h(x, ν) := ψ(x, ξ(x, ν)).

D.2.2 Properties of the auxiliary functions663

Lemma D.2 (Derivatives ∂ξ
∂x , ∂ξ

∂ν ). Define v : [0, 1] × (0, 1] → [0,∞) as v(x, y) = ϕ′′(y) +664

ϕ′′′(y)(y − x). We have for all (x, ν) ∈ [0, 1]× (0,∞):665

∂ξ

∂ν
(x, ν) =

1

v(x, ξ(x, ν))
, and

∂ξ

∂x
(x, ν) =

ϕ′′(ξ(x, ν))

v(x, ξ(x, ν))
. (14)
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Proof. The proof of either identity follows by applying implicit differentiation to the function Ψ. Fix666

x∈ [0, 1] and consider667

F (y, ν) = Ψ(x, y, ν) = ϕ′′(y)(y − x)− ν for (y, ν) ∈ (0, 1]× (0,∞).

Because ϕ is C3 on (0, 1], F is continuously differentiable, and668

∂F

∂y
(y, ν) = ϕ′′′(y)(y − x) + ϕ′′(y) = v(x, y) > 0

by Assumption 3.2. Hence, by the implicit function theorem, the map ν 7→ ξ(x, ν) is C1 with669

∂ξ

∂ν
(x, ν) = −∂F/∂ν

∂F/∂y
=

1

v(x, ξ(x, ν))
.

For the latter identity, fix ν > 0 and define670

G(x, y) := Ψ(x, y, ν) = ϕ′′(y)(y − x)− ν, (x, y) ∈ [0, 1]× (0, 1].

For each x0 ∈ (0, 1] let y0 := ξ(x0, ν) ∈ (0, 1] satisfy G(x0, y0) = 0. We have ∂G
∂y (x, y) = v(x, y).671

Assumption 3.2 gives v(x, y) > 0 for all 0 < y ⩽ 1 and 0 ⩽ x ⩽ y. Hence ∂G/∂y(x0, y0) ̸= 0.672

Since G is continuously differentiable and ∂G/∂y ̸= 0 at (x0, y0), the implicit-function theorem673

guarantees a C1 map x 7→ ξ(x, ν) in a neighborhood of x0 with G
(
x, ξ(x, ν)

)
= 0.674

Differentiating G
(
x, ξ(x, ν)

)
≡ 0 with respect to x and using ∂G/∂x = −ϕ′′(y) gives675

0 =
∂G

∂x
+
∂G

∂y

∂ξ

∂x
= −ϕ′′

(
ξ(x, ν)

)
+ v
(
x, ξ(x, ν)

) ∂ξ
∂x
,

so676

∂ξ

∂x
(x, ν) =

ϕ′′
(
ξ(x, ν)

)
v
(
x, ξ(x, ν)

) .
When x = 0, the same argument applies, because ∂G

∂y (0, y) = v(0, y) > 0 and ∂G/∂x|(0,y) =677

−ϕ′′(y) is finite (the solution y = ξ(0, ν) is strictly positive, so ϕ′′(y) is finite even if ϕ′′(y)→∞ as678

y ↓ 0). Thus ∂ξ/∂x|(0,ν) exists and the same formula holds. This completes the proof.679

Lemma D.3 (Derivative ∂h
∂ν ). Under the condition that x 7→ u(x) := xϕ′′(x)/ϕ′(x) is non-680

decreasing from Assumption (A2), we have ∂h
∂ν (x, ν) ⩽ 0 for all x ∈ [0, 1] and ν > 0.681

Proof. For the derivative with respect to ν, observe first that682

∂ψ

∂y
(x, y) = ϕ′(y)−

[
ϕ′′(y) y + ϕ′(y)

]
+ xϕ′′(y) = ϕ′′(y) (x− y).

Hence, by the chain rule,683

∂

∂ν
ψ
(
x, ξ(x, ν)

)
=
∂ψ

∂y

(
x, ξ(x, ν)

) ∂ξ
∂ν

(x, ν) = ϕ′′
(
ξ(x, ν)

)
[x− ξ(x, ν)] ∂ξ

∂ν
(x, ν).

Due to the defining equation ϕ′′(ξ) (ξ − x) = ν, this simplifies to684

∂h

∂ν
(x, ν) =

∂

∂ν
ψ
(
x, ξ(x, ν)

)
= −ν ∂ξ

∂ν
(x, ν) = − ν

v
(
x, ξ(x, ν)

) ⩽ 0,

where the last equality uses
∂ξ

∂ν
(x, ν) =

1

v
(
x, ξ(x, ν)

) and ν > 0.685

Lemma D.4 (Derivative ∂h
∂x ). Assumption (A2) implies ∂h

∂x (x, ν) ⩾ 0 for all x ∈ [0, 1] and ν > 0.686
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Proof. First recall that687

ψ(x, y) = ϕ(y)− ϕ′(y) (y − x) =⇒ ∂ψ

∂x
(x, y) = ϕ′(y),

∂ψ

∂y
(x, y) = ϕ′′(y) (x− y).

Hence, with y = ξ(x, ν),688

∂h

∂x
(x, ν) =

∂ψ

∂x

(
x, ξ
)
+
∂ψ

∂y

(
x, ξ
) ∂ξ
∂x

(x, ν) = ϕ′(ξ) + ϕ′′(ξ) [x− ξ] ∂ξ
∂x

(x, ν).

Because ξ = ξ(x, ν) satisfies ϕ′′(ξ) (ξ − x) = ν, we have689

∂h

∂x
(x, ν) = ϕ′(ξ)− ν ∂ξ

∂x
(x, ν) = ϕ′(ξ)− ν ϕ′′(ξ)

v
(
x, ξ
) .

Write690

N(x, ν) = ϕ′(ξ)ϕ′′(ξ) + (ξ − x)
[
ϕ′(ξ)ϕ′′′(ξ)− ϕ′′(ξ)2

]
= ϕ′(ξ)ϕ′′(ξ) + (ξ − x)A(ξ),

where A(t) := ϕ′(t)ϕ′′′(t)− ϕ′′(t)2.691

Case 1: A(ξ) ⩾ 0. Because ξ ⩾ x from Lemma B.1, the second term is non-negative; with ϕ′, ϕ′′ ⩾ 0692

the first term is also non-negative, so N ⩾ 0.693

Case 2: A(ξ) < 0. Since ξ ⩾ x, we have694

N(x, ν) ⩾ ϕ′(ξ)ϕ′′(ξ) + ξ A(ξ) = ϕ′(ξ)2 u′(ξ),

where u(t) := t ϕ′′(t)/ϕ′(t). Indeed,695

u′(t)ϕ′(t)2 = ϕ′(t)
[
ϕ′′(t) + t ϕ′′′(t)

]
− t ϕ′′(t)2 = ϕ′(t)ϕ′′(t) + t

[
ϕ′(t)ϕ′′′(t)− ϕ′′(t)2

]
.

By Assumption (A2), u is non-decreasing, so u′(ξ) ⩾ 0; hence N(x, ν) ⩾ 0 in this case as well.696

Because v(x, ξ) > 0 and N(x, ν) ⩾ 0 in both cases, we conclude ∂h(x, ν)/∂x ⩾ 0 for all x ∈ [0, 1]697

and ν > 0, thereby proving the lemma.698

D.2.3 Proving the dual greedy property699

Denote an arbitrary subset of the indices by: S ⊆ [J ]. Let νS be the corresponding Lagrange700

multiplier. Below, for a vector x ∈ RV and a set S ⊂ [V ], we denote by x[S] the sub-vector of x701

restricted to the coordinates in S. Since ϕ′(0) = 0 by the assumptions of Theorem 3.3, denoting702

Γ =
∑J

m=1 dϕ(pm, 0) + ϕ(0)|S| we can write for every S:703

Dϕ(p, p̂[S]) =
∑
m∈S

ϕ(pm)− ϕ([T (p)]m)− ϕ′([T (p)]m) · (pm − [T (p)]m) +
∑

m∈[J]\S

dϕ(pm, 0)

=
∑
m∈S

− (ϕ([T (p)]m)− ϕ′([T (p)]m) · ([T (p)]m − pm)) + Γ

=
∑
m∈S

−ψ(pm, [T (p)]m) + Γ =
∑
m∈S

−h(pm, νS) + Γ.

Now, let us prove that the greedy property holds. Suppose S is optimal among all subsets of indices704

of size k but does not consist of some of the top k probability tokens. Then there exist some i ̸= j705

such that i ∈ S, j ̸∈ S, and pj > pi. Denote S′ = S \ {i} ∪ {j}.706

Let νS , νS′ denote the choice of ν that makes the projected probabilities sum to unity. Now since S′707

only differs from S in that it includes the larger pj > pi, we can conclude that νS > νS′ .708

Then, using the above formula for the value of the objective function on an arbitrary subset, we have:709

Dϕ(p, p̂[S])−Dϕ(p, p̂[S
′]) = h(pj , νS′)− h(pi, νS) +

∑
m∈S\{i}

(h(pm, νS′)− h(pm, νS)) .

Now, since h decreases in ν by Lemma D.3, we have that the sum is nonnegative since νS′ < νS . As710

for the remaining term, we have:711

h(pj , νS′) ⩾ h(pj , νS) ⩾ h(pi, νS),

where the first inequality is by the fact that νS′ < νS and Lemma D.3, and the second inequality is712

by the fact that pj > pi and Lemma D.4. This concludes the proof of the dual greedy property under713

Assumption (A2).714
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E Proof of discrete convexity for primal Bregman projection715

We follow the notations that were introduced in the beginning of the proof in Section C. To show that716

the cost function is discretely convex in k for the primal, it suffices to show that717

L([k]) := min
p̂∈∆k

Dϕ((p̂, 0V−k), p) = Dϕ((T[k](p), 0V−k), p)

is discretely convex in k. Indeed, the difference cost(k)− L([k]) = λk is linear in k.718

To simplify notation, let us denote L([k]) by L(k) and T[k] by Tk. From Lemma (C.1) we know that719

with S̃V := S[V ] − kϕ(0)720

L(k) =

k∑
j=1

{ϕ([Tk(p)]j)− ϕ′(pj)[Tk(p)]j}+ S̃V .

Using (10), we know that f([Tk(p)]j) = f(pj) + ν[k] ∀ j ∈ [k]. Again, we simply denote ν[k] as νk.721

For j ∈ [k], letting x = f(pj) + νk in Lemma D.1, we have:722

ϕ([Tk(p)]j)− ϕ′(pj)[Tk(p)]j = ϕ(f−1(f(pj) + νk))− f(pj)f−1(f(pj) + νk)

= ϕ(f−1(x))− f(pj)f−1(x) = xf−1(x)− ϕ∗(x)− f(pj)f−1(x)

= (x− f(pj))f−1(x)− ϕ∗(x) = νk[Tk(p)]j − ϕ∗(f(pj) + νk).

But now, using that the nonzero entries of Tk(p) must sum to unity, we find the following723

simplification:724

L(k) =

k∑
j=1

{νk[Tk(p)]j − ϕ∗(f(pj) + νk)}+ S̃V

= νk

k∑
j=1

[Tk(p)]j −
k∑

j=1

ϕ∗(f(pj) + νk) + S̃V = νk −
k∑

j=1

ϕ∗(f(pj) + νk) + S̃V . (15)

Now, define the auxiliary function W for all j, ν for which the expression below is well defined:725

W (k, ν) := ν −
k∑

j=1

ϕ∗(f(pj) + ν), (16)

where p is implicitly kept fixed. From the above calculation, we thus obtain after canceling out terms:726

L(k + 1)− 2L(k) + L(k − 1) =W (k + 1, νk+1)− 2W (k, νk) +W (k − 1, νk−1).

To prove that this is nonnegative, we leverage that W (k, ·) is strictly concave in ν for each k, which727

follows as the Legendre dual mapping ϕ∗ is strictly convex since so is ϕ. Then, observe that for every728

j,729

∂

∂ν
W (k, ν) = 1−

k∑
j=1

(ϕ∗)′(f(pi) + ν) = 1−
k∑

j=1

f−1(f(pj) + ν). (17)

Thus,730

∂

∂ν
W (k, ν) |ν=νk

= 1−
k∑

j=1

f−1(f(pj) + νk) = 1−
k∑

j=1

[Tk(p)]j = 0.

AsW (k, ·) is strictly concave in ν,W (k, ·) is maximized at νk. Thus, we have: (1)W (k+1, νk+1) ⩾731

W (k + 1, νk), and (2) W (k − 1, νk−1) ⩾W (k − 1, νk). With these in hand, we have:732

L(k + 1)− 2L(k) + L(k − 1) =W (k + 1, νk+1)− 2W (k, νk) +W (k − 1, νk−1) (18)
⩾ [W (k + 1, νk)−W (k, νk)]− [W (k, νk)−W (k − 1, νk)].

Now, due to the definition of W , the last display equals733

−ϕ∗(f(pk+1) + νk) + ϕ∗(f(pk) + νk) ⩾ 0, (19)

the inequality holding as pk ⩾ pk+1, and as the mapping p 7→ ϕ∗(f(p) + νk) is increasing in p since734

so are ϕ∗ and f . This concludes the proof.735
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F Proof of discrete convexity for dual Bregman projection736

We denote θx(y) = ϕ′′(y)(y − x). As observed before, we have for all admissible x, y that737

∂

∂y
dϕ(x, y) = θx(y),

and the convexity condition for the second argument of dϕ of Assumption 3.2 is given by:738

∂

∂y
θx(y) ⩾ 0⇔ ϕ′′(y) + ϕ′′′(y)(y − x) ⩾ 0 for all y ⩾ x ⩾ 0.

The dual projection for any 1 ⩽ i ⩽ j ⩽ V is given (for optimal Lagrange multiplier νj) by:739

θpi
([T ∗

j (p)]i) = νj ⇔ ϕ′′([T ∗
j (p)]i)([T

∗
j (p)]i − pi) = νj .

Denote the dual Bregman objective, as a function of the selected sparsity k, as:740

cost∗(k) = Dϕ (p, (T
∗
k (p), 0V−k)) + λk.

We now demonstrate that cost∗(k) is discretely convex in k. For this, we will directly show that the741

second-order differences of this function are nonnegative at every k ∈ {2, . . . , V − 1}. Specifically,742

we can write:743

∆∗,2(k) := cost∗(k + 1)− 2cost∗(k) + cost∗(k − 1)

= Dϕ

(
p,
(
T ∗
k+1(p), 0V−k−1

))
− 2Dϕ (p, (T

∗
k (p), 0V−k)) + Dϕ

(
p,
(
T ∗
k−1(p), 0V−k+1

))
We now decompose this quantity into three terms corresponding to three ranges of index i ∈ [V ],744

namely i ∈ [k − 1], i ∈ {k, k + 1}, and i ∈ {k + 2, . . . , V }. We obtain:745

∆∗,2(k) =

k−1∑
i=1

{{
dϕ(pi, [T

∗
k+1(p)]i)− dϕ(pi, [T

∗
k (p)]i)

}
+
{
dϕ(pi, [T

∗
k−1(p)]i)− dϕ(pi, [T

∗
k (p)]i)

}}
+
{
(ϕ(pk)− ϕ(0)− ϕ′(0) · pk)− 2 (ϕ(pk)− ϕ([T ∗

k (p)]k)− ϕ′([T ∗
k (p)]k) · (pk − [T ∗

k (p)]k))

+
(
ϕ(pk)− ϕ([T ∗

k+1(p)]k)− ϕ′([T ∗
k+1(p)]k) · (pk − [T ∗

k+1(p)]k)
)

+ (ϕ(pk+1)− ϕ(0)− ϕ′(0) · pk+1)− 2 (ϕ(pk+1)− ϕ(0)− ϕ′(0) · pk+1)

+
(
ϕ(pk+1)− ϕ([T ∗

k+1(p)]k+1)− ϕ′([T ∗
k+1(p)]k+1) · (pk+1 − [T ∗

k+1(p)]k+1)
)}

−
V∑

i=k+2

{dϕ(pi, 0)− 2dϕ(pi, 0) + dϕ(pi, 0)}.

The last sum is identically zero, so we engage with the other two ranges of indices.746

Range 1: i ∈ [k − 1]. For Range 1, recall that for any convex function ψ, it holds for any two747

points x, y in its domain that ψ(x)− ψ(y) ⩾ ψ′(y)(x− y). Now, notice that for each i in Range 1,748

each of the two terms in figure brackets can be bounded via the convexity of dϕ(x, ·) in its second749

argument as:750

dϕ(pi, [T
∗
k+1(p)]i)− dϕ(pi, [T

∗
k (p)]i) ⩾

(
∂

∂y
dϕ(pi, y)

) ∣∣∣
y=[T∗

k (p)]i
·
(
[T ∗

k+1(p)]i − [T ∗
k (p)]i

)
= θpi

([T ∗
k (p)]i) ·

(
[T ∗

k+1(p)]i − [T ∗
k (p)]i

)
= νk ·

(
[T ∗

k+1(p)]i − [T ∗
k (p)]i

)
and:751

dϕ(pi, [T
∗
k−1(p)]i)− dϕ(pi, [T

∗
k (p)]i) ⩾

(
∂

∂y
dϕ(pi, y)

) ∣∣∣
y=[T∗

k (p)]i
·
(
[T ∗

k−1(p)]i − [T ∗
k (p)]i

)
= θpi

([T ∗
k (p)]i) ·

(
[T ∗

k−1(p)]i − [T ∗
k (p)]i

)
= νk ·

(
[T ∗

k−1(p)]i − [T ∗
k (p)]i

)
.
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As a result, we may simplify the Range 1 sum as follows, using that by definition, the first j terms in752

the projection T ∗
j for each j ∈ {k − 1, k, k + 1} sum to unity:753

Range 1 Sum ⩾
k−1∑
i=1

νk ·
({

[T ∗
k+1(p)]i − [T ∗

k (p)]i
}
+
{
[T ∗

k−1(p)]i − [T ∗
k (p)]i

})
= νk

(
k−1∑
i=1

[T ∗
k+1(p)]i − 2

k−1∑
i=1

[T ∗
k (p)]i +

k−1∑
i=1

[T ∗
k−1(p)]i

)
= νk

((
1− [T ∗

k+1(p)]k − [T ∗
k+1(p)]k+1

)
− 2(1− [T ∗

k (p)]k) + 1
)

= νk
(
2[T ∗

k (p)]k − [T ∗
k+1(p)]k − [T ∗

k+1(p)]k+1

)
.

Range 2: i ∈ {k, k + 1}. For Range 2, we first note that the following three types of terms cancel754

out: ϕ(0), ϕ(pk), ϕ(pk+1). Furthermore, terms involving ϕ′(0) vanish by assumption.755

The remaining terms in the Range 2 sum can then be written as:756

Range 2 Sum ⩾
{
− 2 (−ϕ([T ∗

k (p)]k)− ϕ′([T ∗
k (p)]k) · (pk − [T ∗

k (p)]k))

+
(
−ϕ([T ∗

k+1(p)]k)− ϕ′([T ∗
k+1(p)]k) · (pk − [T ∗

k+1(p)]k)
)}

+
{
− ϕ([T ∗

k+1(p)]k+1)− ϕ′([T ∗
k+1(p)]k+1) · (pk+1 − [T ∗

k+1(p)]k+1)
}
.

Now, we can bound757

−ϕ′([T ∗
k+1(p)]k+1) · pk+1 ⩾ −ϕ′([T ∗

k+1(p)]k+1) · pk,

using that pk ⩾ pk+1 and the strict convexity of ϕ. We find the lower bound758

Range 2 Sum ⩾ −2
{
− ϕ([T ∗

k (p)]k)− ϕ′([T ∗
k (p)]k) · (pk − [T ∗

k (p)]k)
}

+
{
− ϕ([T ∗

k+1(p)]k)− ϕ′([T ∗
k+1(p)]k) · (pk − [T ∗

k+1(p)]k)
}

+
{
− ϕ([T ∗

k+1(p)]k+1)− ϕ′([T ∗
k+1(p)]k+1) · (pk − [T ∗

k+1(p)]k+1)
}
.

By adding and subtracting the term ϕ(pk) twice, we have the following equivalent bound:759

Range 2 Sum ⩾ −2
{
ϕ(pk)− ϕ([T ∗

k (p)]k)− ϕ′([T ∗
k (p)]k) · (pk − [T ∗

k (p)]k)
}

+
{
ϕ(pk)− ϕ([T ∗

k+1(p)]k)− ϕ′([T ∗
k+1(p)]k) · (pk − [T ∗

k+1(p)]k)
}

+
{
ϕ(pk)− ϕ([T ∗

k+1(p)]k+1)− ϕ′([T ∗
k+1(p)]k+1) · (pk − [T ∗

k+1(p)]k+1)
}

= −2dϕ (pk, [T ∗
k (p)]k) + dϕ

(
pk, [T

∗
k+1(p)]k

)
+ dϕ

(
pk, [T

∗
k+1(p)]k+1

)
.

Returning to the main bound We can now merge the cases, resulting in the following tight lower760

bound of the second differential of the cost function:761

∆∗,2(k) ⩾ νk
(
2[T ∗

k (p)]k − [T ∗
k+1(p)]k − [T ∗

k+1(p)]k+1

)
− 2dϕ (pk, [T

∗
k (p)]k) + dϕ

(
pk, [T

∗
k+1(p)]k

)
+ dϕ

(
pk, [T

∗
k+1(p)]k+1

)
.

Now, define the following key auxiliary function ψk : [0, 1]→ R, such that for all x ∈ [0, 1]:762

ψk(x) = νk · x− dϕ(pk, x).

This lets us rewrite our lower bound equivalently as:763

∆∗,2(k) ⩾ 2ψ ([T ∗
k (p)]k)− ψ

(
[T ∗

k+1(p)]k
)
− ψ

(
[T ∗

k+1(p)]k+1

)
. (20)

We now establish a monotonicity property for ψk.764
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Lemma F.1. For every k ∈ [V ] the function ψk(x) is increasing on x ∈ [0, [T ∗
k (p)]k].765

Proof. We consider the derivative of the function ψk:766

∂

∂x
ψk(x) = νk −

∂

∂x
dϕ(pk, x) = νk − θpk

(x) = θpk
([T ∗

k (p)]k)− θpk
(x),

where we have used the connection between θx(y) and νk (see Lemma B.1).767

Now, recalling that by assumption, ∂
∂y θx(y) ⩾ 0 for all y ⩾ x ⩾ 0, and using that [T ∗

k (p)]k ⩾ pk by768

the properties of the dual projection method (see Lemma B.1), we have that:769

∂

∂x
ψk(x) = θpk

([T ∗
k (p)]k)− θpk

(x) ⩾ 0,

so long as 0 ⩽ x ⩽ [T ∗
k (p)]k.770

Continuing, by the properties of the dual projection, we have:771

[T ∗
k (p)]k ⩾ [T ∗

k+1(p)]k ⩾ [T ∗
k+1(p)]k+1.

In view of Lemma F.1, (20) implies that772

∆∗,2(k) ⩾
[
ψ ([T ∗

k (p)]k)− ψ
(
[T ∗

k+1(p)]k
)]

+
[
ψ ([T ∗

k (p)]k)− ψ
(
[T ∗

k+1(p)]k+1

)]
⩾ 0 + 0 = 0.

This concludes the proof of dual discrete convexity of the Bregman cost function.773

G Algorithmic details774

G.1 Computing the dual renormalization map775

Recall that when ϕ is dual valid, the renormalization map T ∗
ϕ is uniquely defined for x ∈ ∆sub,k with776 ∑

i xi > 0 by the fixed point equation (see Lemma B.1)777

[T ∗
ϕ (x)]i = xi+ν

∗/f ′([T ∗
ϕ (x)]i) for all i ∈ [k], where ν∗ ∈ R is chosen so that

k∑
i=1

[T ∗
ϕ (x)]i = 1.

To compute T ∗
ϕ , recall from Section D.2.1 the function Ψ from (13) with Ψ(x, y, ν) := ϕ′′(y)(y −778

x)−ν for all x, y, ν. Then, for a fixed ν, [T (x)]i satisfying the equation [T (x)]i = xi+ν/f
′([T (x)]i)779

is equivalent to solving Ψ(xi, yi, ν) = 0 for yi = [T (x)]i. The monotonicity properties from Lemma780

B.1 then suggest the following algorithm, consisting of a binary search over ν ∈ (0,M ], and then781

over each coordinate of T solving ϕ′′([T (x)]i)([T (x)]i − xi) = ν.782
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Algorithm 1 Dual Renormalization Map T ∗
ϕ (x) via Nested Binary Search

Require: Convex generator ϕ with derivatives f = ϕ′, f ′′ = ϕ′′; input vector x ∈ ∆sub,k with∑
xi < 1; tolerance ε > 0

Ensure: Renormalized vector p̂ = T ∗
ϕ (x) ∈ ∆k

1: function DUALRENORMALIZE(x, ϕ, ε)
2: k ← length of x
3: f ′′ ← ϕ′′

4: M ← ϕ′′(1) · (1−maxi xi) ▷ Upper bound on feasible ν
5: Initialize νlow ← 0, νhigh ←M
6: while νhigh − νlow > ε do
7: ν ← (νlow + νhigh)/2
8: for i = 1 to k do
9: xi ← x[i]

10: y[i]← SOLVEROOT(xi, ν, f ′′, ε)
11: end for
12: G←

∑k
i=1 y[i]

13: if G < 1 then
14: νlow ← ν
15: else
16: νhigh ← ν
17: end if
18: end while
19: return y
20: end function
21: function SOLVEROOT(xi, ν, f ′′, ε)
22: a← xi, b← 1
23: while b− a > ε do
24: m← (a+ b)/2
25: Ψ← f ′′(m) · (m− xi)− ν
26: if Ψ < 0 then
27: a← m
28: else
29: b← m
30: end if
31: end while
32: return (a+ b)/2
33: end function

G.2 Pseudocode for algorithms783

See Algorithm 3 and Algorithm 4 for pseudocode for sparse primal (resp. dual) Bregman decoding.784
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Algorithm 2 Discrete Binary Search for Unimodal Cost Minimization

Require: Callable function COMPUTECOST, maximum support size V
Ensure: Optimal support size k∗ minimizing COMPUTECOST(k)

1: function BINARYSEARCH(COMPUTECOST, V )
2: c1 ← COMPUTECOST(1)
3: c2 ← COMPUTECOST(2)
4: if c2 − c1 ⩾ 0 then
5: return 1
6: end if
7: cV−1 ← COMPUTECOST(V − 1)
8: cV ← COMPUTECOST(V )
9: if cV − cV−1 ⩽ 0 then

10: return V
11: end if
12: Initialize L← 1, R← V
13: while R− L > 1 do
14: m← ⌊(L+R)/2⌋
15: cm ← COMPUTECOST(m)
16: cm+1 ← COMPUTECOST(m+ 1)
17: if cm+1 − cm ⩾ 0 then
18: R← m
19: else
20: L← m
21: end if
22: end while
23: return R
24: end function

Algorithm 3 Regularized Sparse Primal Bregman Decoding

Require: Probability vector p ∈ ∆V , valid convex generator ϕ, sparsity penalty λ ⩾ 0
Ensure: Sparse decoded distribution p̂ ∈ ∆V

1: function SPARSEPRIMALBREGMANDECODE(p, ϕ, λ)
2: Sort p in descending order: p(1) ⩾ p(2) ⩾ · · · ⩾ p(V )

3: Define f = ϕ′

4: function COMPUTERENORMALIZATION(x ∈ Rk)
5: Solve for ν ∈ R such that

∑k
i=1 f

−1(f(xi) + ν) = 1

6: return p̂(k) with [p̂(k)]i = f−1(f(xi) + ν) for i ∈ [k]
7: end function
8: function COMPUTECOST(k)
9: Let x = p[1:k]

10: p̂(k) ← COMPUTERENORMALIZATION(x)
11: Pad with zeros: p̂(k) ← (p̂

(k)
1 , . . . , p̂

(k)
k , 0, . . . , 0)

12: Compute Dϕ(p̂
(k), p) =

∑V
i=1

[
ϕ(p̂

(k)
i )− ϕ(pi)− f(pi)(p̂(k)i − pi)

]
13: return cost(k) = Dϕ(p̂

(k), p) + λk
14: end function
15: k∗ ← BINARYSEARCH(ComputeCost, V )
16: Recompute p̂(k

∗) using COMPUTERENORMALIZATION(p[1:k∗])
17: Pad with zeros to full length V
18: return p̂(k

∗)

19: end function
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Algorithm 4 Regularized Sparse Dual Bregman Decoding

Require: Probability vector p ∈ ∆V , valid convex generator ϕ, sparsity penalty λ ⩾ 0
Ensure: Sparse decoded distribution p̂ ∈ ∆V

1: function SPARSEDUALBREGMANDECODE(p, ϕ, λ)
2: Sort p in descending order: p(1) ⩾ p(2) ⩾ · · · ⩾ p(V )

3: Define f = ϕ′, f ′ = ϕ′′

4: function COMPUTEDUALRENORMALIZATION(x ∈ Rk)
5: Solve for ν ∈ R such that:

∑k
i=1[T

∗
ϕ (x)]i = 1, where [T ∗

ϕ (x)]i satisfies the fixed-point
equation: [T ∗

ϕ (x)]i = xi + ν/f ′([T ∗
ϕ (x)]i).

6: return p̂(k) = T ∗
ϕ (x)

7: end function
8: function COMPUTEDUALCOST(k)
9: Let x = p[1:k]

10: p̂(k) ← COMPUTEDUALRENORMALIZATION(x)
11: Pad with zeros: p̂(k) ← (p̂

(k)
1 , . . . , p̂

(k)
k , 0, . . . , 0)

12: Compute Dϕ(p, p̂
(k)) =

∑V
i=1

[
ϕ(pi)− ϕ(p̂(k)i )− f(p̂(k)i )(pi − p̂(k)i )

]
13: return cost(k) = Dϕ(p, p̂

(k)) + λk
14: end function
15: k∗ ← BINARYSEARCH(ComputeDualCost, V )
16: Recompute p̂(k

∗) using COMPUTEDUALRENORMALIZATION(p[1:k∗])
17: Pad with zeros to full length V
18: return p̂(k

∗)

19: end function

H Example: α-Bregman decoding785

H.1 Proof of Lemma 4.3786

We first restate the lemma.787

Lemma H.1. All generator functions ϕα, α > 1, are dual-valid and satisfy Assumption (A2).788

Proof. For Assumption 3.2, we can explicitly write:789

dϕ(x, y) =
xα

α(α− 1)
− yα

α(α− 1)
− yα−1

α− 1
(x− y) = yα

α
− x

α− 1
yα−1 +

xα

α(α− 1)
.

Therefore, the second derivative in y of this expression is790

(α− 1)yα−2 − (α− 2)xyα−3 = yα−3(y(α− 1)− x(α− 2)) = yα−3 (y(α− 1) + x(2− α)) .
Now, if y ⩾ x, then using α− 1 ⩾ 0 we have that the above expression is791

⩾ yα−3(x(α− 1) + x(2− α)) = yα−3x ⩾ 0,

confirming the convexity in y. Now for the condition that x 7→ u(x) := xϕ′′(x)/ϕ′(x) is non-792

decreasing from Assumption (A2), we can observe that793

ϕ′(x)ϕ′′′(x)− ϕ′′(x)2 =
xα−1

α− 1
· (α− 2)xα−3 − (xα−2)2 = −x

2α−4

α− 1
.

Therefore, we identically have:794

ϕ′(x)ϕ′′(x) + x(ϕ′(x)ϕ′′′(x)− ϕ′′(x)2) = x2α−3

α− 1
− xx

2α−4

α− 1
= 0,

thus concluding the proof.795

H.2 Proof of Proposition 4.2796

Recall the α–renormalization map [Tα(p)]i =
(
pα−1
i + ν

) 1
α−1 , i ∈ [k], where the shift parameter797

ν = ν(α, p) is chosen so that
∑k

i=1[Tα(p)]i = 1. We treat each value (or limit) of α in turn.798
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The limit α→ −∞. Define799

Fβ(ν) :=

k∑
i=1

(
pβi + ν

)1/β
, β := α− 1 < 0.

Because x 7→ x1/β is strictly decreasing and convex on (0,∞) for β < 0, Fβ is strictly800

decreasing and continuous on the interval
(
−mini p

β
i ,∞

)
. Moreover, limν↓−mini p

β
i
Fβ(ν) = ∞801

and limν↑∞ Fβ(ν) = 0, so a unique root νβ with Fβ(νβ) = 1 exists. Because Fβ(0) = S :=802 ∑k
i=1 pi ⩽ 1 and Fβ is decreasing, we have νβ ⩽ 0.803

Let q(α)i = [Tα(p)]i =
(
pβi + νβ

)1/β
, and i∗ be the index where pi is largest. Using the constraint804 ∑

i q
(α)
i = 1,805

q
(α)
i⋆ = 1−

∑
i ̸=i⋆

q
(α)
i = δ + pi⋆ +

∑
i̸=i⋆

(
pi − q(α)i

)
⩾ pi⋆ + δ.

Raising q(α)i⋆ =
(
pβi⋆ + νβ

)1/β
to the power β < 0 yields806

νβ =
(
pi⋆ + δ +Rβ

)β − pβi⋆ , Rβ :=
∑
i̸=i⋆

(
pi − q(α)i

)
∈ [0, δ]. (21)

For i ̸= i⋆, we have νβ/p
β
i → 0. Indeed, (21) implies |νβ | ⩽ pβi⋆(c

β−1) with c := (pi⋆+δ)/pi⋆ > 1.807

Because β → −∞, cβ → 0, we have |νβ | = O
(
pβi⋆
)
= o
(
pβi
)
. Then,808

q
(α)
i = pi

(
1 +

νβ

pβi

)1/β
→ pi, i ̸= i⋆. (22)

Summing (22) over i ̸= i⋆ and using
∑

i q
(α)
i = 1 gives809

q
(α)
i⋆ = 1−

∑
i ̸=i⋆

q
(α)
i → 1−

∑
i ̸=i⋆

pi = pi⋆ + δ. (23)

Equations (22) and (23) establish q(α) → T−∞(p) component-wise, completing the proof.810

The case α = 3
2 . Now α − 1 = 1

2 , hence [T1.5(p)]i =
(√
pi + ν

)2
, i ∈ [k]. Set s :=811 ∑k

j=1

√
pj and A :=

∑k
j=1 pj . The normalization condition becomes812

1 =

k∑
i=1

(
√
pi + ν)2 = A+ 2sν + kν2.

Solving kν2 + 2sν + (A − 1) = 0 for the root that yields non–negative probabilities gives ν =813

−s+
√

s2+k (1−A)

k . Hence814

[T1.5(p)]i =

(
√
pi +

√
s2 + k (1−A)− s

k

)2

, i ∈ [k].

The case α = 2. Here α − 1 = 1, so Definition 4.1 yields [T2(p)]i = pi + ν, i ∈ [k]. The815

normalization condition gives 1 =
∑k

i=1(pi + ν) =
∑k

i=1 pi + kν, hence ν =
1−

∑k
j=1 pj

k .816

Substituting yields817

[T2(p)]i = pi +
1−

∑k
j=1 pj

k
, i ∈ [k].

The limit α→ +∞. Write β := α− 1→ +∞. Let ν = cβ with c ∈ [0, 1]. Then818

[Tα(p)]i =
(
pβi + cβ

)1/β
= exp

{
1
β log

(
pβi + cβ

)}
.

Using 1
β log(aβ + bβ) → log(max{a, b}) as β → ∞ gives limα→∞[Tα(p)]i = max{pi, c}.819

Choose the water level c so that
∑k

i=1 max{pi, c} = 1. This furnishes the claimed water–filling820

rule.821

The four cases above prove Proposition 4.2.822
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H.3 Illustrating primal and dual renormalization823

We consider the peaked vector v = [0.1, 0.001, 0.001, 0.001, 0.001], and plot how both of its distinct824

constituent values get transformed by the primal and dual Bregman α-renormalization (by symmetry,825

all copies of 0.001 are guaranteed to get mapped to the same value by any of our renormalizations).826

The resulting plots are in Figure 4. As predicted by our theory, both renormalization families coincide827

at three values of the parameter, namely at α ∈ {1, 2,∞}. Furthermore, the primal family evolves828

more gradually than the dual family between the endpoints of the parameter interval α ∈ (1, 2], while829

the reverse behavior occurs for α ∈ (2,∞) (where both renormalizations gradually converge to the830

water-filling limit which, in this case, is the uniform distribution).831

Figure 4: Comparison of primal and dual renormalization maps: The transformation of the larger
value (0.1, left) and of the smaller value (0.001, right).

H.4 Illustrating general nonconvexity of dual renormalization832

Figure 5 illustrates that the dual Bregman objective can in general be non-convex for large α.833

Figure 5: Nonconvexity of the Bregman dual landscape on the square (x, y) ∈ [0, 1]2.

H.5 Illustrating discrete convexity834

Figure 6 illustrates that the loss function cost(·) defined in (6) is discretely convex for both the primal835

and dual decoding strategies. Here, we have chosen V = 80 and the regularization parameter λ as836

1/80. When k is close to V , the renormalization maps are all close to the true vector p, regardless of837

the value of α, and hence the loss primarily depends on the regularization term λk, which here equals838

λk = 1 for k = 80. Thus, all curves (corresponding to different values of α) for both the primal and839

dual plots, asymptote to linearity and converge to this value at k = 80.840
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Figure 6: Discrete convexity of the function k 7→ cost(k) for primal and dual Bregman α-decoding.

H.6 The simultaneous effects of Bregman decoding and temperature scaling841

Figure 7: Comparison with changing the temperature.
Here, we provide a plot to help compare the simultaneous effects of Bregman decoding and842

temperature scaling. We use the same simulation setting and plotting style as in our figure from843

the introduction (Section 1); except we only plot the nonzero probabilities (i.e., the top k = 10844

probabilities), and we plot the relative sizes of the probabilities compared to the standard top-k845

decoding. Further, we use the same α and temperature hyperparameters used in our experiments in846

Table 1. The results are shown in Figure 7. Standard top-k decoding corresponds to α = 1 and T = 1.847

From the figure, it appears that the effect of α > 1 is to moderate/regularize the amount by which848

the small probabilities are pushed to zero; which could potentially be one reason why α-Bregman849

decoding with α > 1 can perform better at high temperatures.850

I Supplementary experimental details851

I.1 Compute resources852

The experiments were conducted on a system running Rocky Linux 8.10, with 64 CPU cores of853

Intel(R) Xeon(R) Gold 6448Y processors at 2.10 GHz, 1 TB of RAM, and 8 NVIDIA L40S GPUs854

with 46 GB of memory each. All experiments can be done with only one GPU and multiple GPUs855
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Figure 8: MAUVE scores results between generated and human-written text for GPT2-large (left
panel) and LLaMA 3.1 8B (right panel), for various k values. We show top-k decoding and primal
decoding with α ∈ {1.5, 2.0}. Standard deviations are estimated using 50 bootstrap resamples

were used only to parallelize experiments. The software environment used Python 3.11.11, PyTorch856

2.5.1, and CUDA 12.4.857

I.2 Supplementary experimental results858

In this section, we provide additional experimental results to supplement those from Section 5.859

Table 2 shows results analogous to those in Table 1 for λ ∈ {0.1, 0.001}.860

Table 2: Accuracy on GSM8K for LLaMA 3.1 8B using Bregman primal decoding (λ ∈ {0.1, 0.001},
α ∈ {1.5, 2.0}) and top-k decoding, across different temperature settings. For top-k, k equals the
averaged optimal k∗ from the corresponding primal decoding run (matching temperature, λ, and α).
Standard deviations are estimated using 1000 bootstrap resamples.

Temp λ = 0.1 Top-k (λ = 0.1) λ = 0.001 Top-k (λ = 0.001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 83.93±1.01 84.46±1.00 84.69±0.99 84.69±0.99 83.93±1.01 85.29±0.98 83.62±1.02 83.62±1.02

0.7 83.47±1.02 85.29±0.98 84.69±0.99 84.69±0.99 82.18±1.05 82.41±1.05 83.78±1.02 83.78±1.02

1.0 84.46±1.00 84.38±1.00 84.69±0.99 84.69±0.99 78.92±1.12 80.89±1.08 78.54±1.13 81.20±1.08

1.5 83.78±1.02 84.38±1.00 84.69±0.99 84.69±0.99 69.22±1.23 73.92±1.21 64.67±1.32 75.97±1.18

Figure 8 presents the MAUVE scores comparing generated and human-written text under different861

decoding strategies. While primal decoding shows a slight advantage over top-k decoding, the862

differences are not statistically significant. We report standard deviations estimated from 50 bootstrap863

resamples; a higher number of resamples was not used due to the high computational cost of MAUVE864

score evaluation.865

I.3 Experiments for Larger models: Qwen and Phi866

We implement our experiments for Qwen2.5-14B-Instruct and Phi-3-medium-4k-instruct.867

Figure 9 shows analogous results to Figure 3. Table 3 and 4 show the accuracy on GSM8K analogous868

to Table 1 and 2. Table 5 and 6 show analogous results for Phi-3-medium-4k-instruct model.869
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Figure 9: Perplexity and repetition frequency differences between generated and human-written text for Phi-3-
medium-4k-instruct (left two panels) and Qwen2.5-14B-Instruct (right two panels), for various k values. We
show top-k decoding and primal decoding with α ∈ {1.5, 2.0}. Standard deviations are estimated using 1000
bootstrap resamples.

Table 3: Accuracy on GSM8K for Qwen2.5-14B-Instruct using Bregman primal decoding (λ ∈ {0.1, 0.01},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, λ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.1 Top-k (λ = 0.1) λ = 0.01 Top-k (λ = 0.01)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 82.71±1.04 82.26±1.05 81.42±1.07 81.43±1.07 82.64±1.04 82.18±1.05 81.43±1.07 81.43±1.07

0.7 81.73±1.06 81.05±1.08 81.43±1.07 81.43±1.07 79.53±1.11 80.21±1.10 80.21±1.10 81.43±1.07

1.0 80.59±1.09 81.50±1.07 81.43±1.07 81.43±1.07 78.85±1.12 80.29±1.10 79.30±1.12 81.43±1.07

1.5 80.89±1.08 81.73±1.06 81.43±1.07 81.43±1.07 77.18±1.16 78.99±1.12 77.48±1.15 81.43±1.07

Table 4: Accuracy on GSM8K for Qwen2.5-14B-Instruct using Bregman primal decoding (λ ∈
{0.001, 0.0001}, α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k∗ from primal decoding with matching temperature, λ, and α. Standard deviations are over 1000
bootstrap resamples.

Temp λ = 0.001 Top-k (λ = 0.001) λ = 0.0001 Top-k (λ = 0.0001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 82.11±1.06 82.49±1.05 82.41±1.05 82.56±1.05 81.88±1.06 82.26±1.05 82.03±1.06 82.41±1.05

0.7 80.21±1.10 79.76±1.11 80.06±1.10 80.21±1.10 79.61±1.11 79.76±1.11 79.98±1.10 80.06±1.10

1.0 78.92±1.12 78.32±1.14 79.38±1.11 79.30±1.12 78.47±1.13 79.30±1.12 78.77±1.13 79.38±1.11

1.5 76.72±1.16 78.01±1.14 75.89±1.18 77.48±1.15 74.91±1.19 74.91±1.19 71.19±1.25 75.89±1.18

Table 5: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding (λ ∈ {0.1, 0.01},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, µ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.1 Top-k (λ = 0.1) λ = 0.01 Top-k (λ = 0.01)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 86.81±0.93 87.87±0.90 85.97±0.96 85.97±0.96 87.41±0.91 87.04±0.93 87.26±0.92 87.26±0.92

0.7 86.96±0.93 88.17±0.89 85.97±0.96 85.97±0.96 85.67±0.97 86.88±0.93 88.10±0.89 88.10±0.89

1.0 86.35±0.95 87.11±0.92 85.97±0.96 85.97±0.96 84.99±0.98 83.93±1.01 85.44±0.97 85.44±0.97

1.5 87.19±0.92 86.58±0.94 85.97±0.96 85.97±0.96 82.94±1.04 83.70±1.02 80.14±1.10 80.14±1.10

Table 6: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding (λ ∈
{0.001, 0.0001}, α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k∗ from primal decoding with matching temperature, µ, and α. Standard deviations are over 1000
bootstrap resamples.

Temp λ = 0.001 Top-k (λ = 0.001) λ = 0.0001 Top-k (λ = 0.0001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 87.11±0.92 86.88±0.93 86.50±0.94 86.81±0.93 87.49±0.91 87.49±0.91 86.20±0.95 86.50±0.94

0.7 86.81±0.93 86.50±0.94 85.29±0.98 85.67±0.97 84.99±0.98 84.91±0.99 85.60±0.97 85.29±0.98

1.0 83.62±1.02 82.34±1.05 82.71±1.04 82.79±1.04 82.71±1.04 82.11±1.06 81.35±1.07 82.71±1.04

1.5 76.95±1.16 78.92±1.12 69.75±1.27 73.84±1.21 72.25±1.23 76.04±1.18 62.62±1.33 65.81±1.31
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I.4 Experiments for TriviaQA870

Table 7 and 8 show accuracy on TriviaQA for LLaMA3.1-8B model. Here we choose 10% (≈ 1800871

questions) proportion of TriviQA validation dataset for evaluation.872

Table 7: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding (λ ∈ {0.1, 0.01},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, λ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.1 Top-k (λ = 0.1) λ = 0.01 Top-k (λ = 0.01)
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 67.80±1.10 67.47±1.11 67.58±1.11 67.58±1.11 66.57±1.11 66.69±1.11 66.74±1.11 66.74±1.11

0.7 65.68±1.12 66.35±1.12 67.58±1.11 67.58±1.11 64.23±1.13 63.84±1.13 65.01±1.13 65.01±1.13

1.0 65.63±1.12 66.69±1.11 67.58±1.11 67.58±1.11 61.06±1.15 61.17±1.15 62.67±1.14 62.67±1.14

1.5 64.85±1.13 66.96±1.11 67.58±1.11 67.58±1.11 59.78±1.16 60.84±1.15 60.84±1.15 60.84±1.15

Table 8: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding (λ ∈ {0.001, 0.0001},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, λ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.001 Top-k (λ = 0.001) λ = 0.0001 Top-k (λ = 0.0001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 66.85±1.11 67.58±1.11 67.13±1.11 67.13±1.11 66.69±1.11 67.08±1.11 67.19±1.11 67.58±1.11

0.7 63.40±1.14 63.18±1.14 64.68±1.13 64.79±1.13 62.73±1.14 62.73±1.14 63.79±1.13 63.68±1.14

1.0 59.00±1.16 59.00±1.16 60.17±1.16 62.23±1.14 57.99±1.17 59.11±1.16 58.55±1.16 60.11±1.16

1.5 55.04±1.17 55.71±1.17 52.81±1.18 56.38±1.17 49.19±1.18 52.59±1.18 50.19±1.18 51.31±1.18

Table 9 and 10 show analogous accuracy results for Phi3-medium-4k-instruct on TriviaQA.873

Table 9: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding (λ ∈ {0.1, 0.01},
α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k∗ from primal
decoding with matching temperature, λ, and α. Standard deviations are over 1000 bootstrap resamples.

Temp λ = 0.1 Top-k (λ = 0.1) λ = 0.01 Top-k (λ = 0.01)
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 58.44±1.16 59.67±1.16 59.05±1.16 60.50±1.15 59.33±1.16 59.22±1.16 59.11±1.16 59.39±1.16

0.7 57.44±1.17 58.22±1.16 56.77±1.17 60.50±1.15 55.21±1.17 55.88±1.17 55.54±1.17 56.77±1.17

1.0 56.60±1.17 56.94±1.17 54.54±1.18 60.50±1.15 52.09±1.18 51.75±1.18 50.31±1.18 52.37±1.18

1.5 57.16±1.17 58.22±1.16 50.14±1.18 60.50±1.15 49.47±1.18 50.19±1.18 43.57±1.17 45.29±1.18

Table 10: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding (λ ∈
{0.001, 0.0001}, α ∈ {1.5, 2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k∗ from primal decoding with matching temperature, λ, and α. Standard deviations are over 1000
bootstrap resamples.

Temp λ = 0.001 Top-k (λ = 0.001) λ = 0.0001 Top-k (λ = 0.0001)
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 59.72±1.16 58.61±1.16 59.44±1.16 59.22±1.16 59.83±1.16 59.39±1.16 59.44±1.16 59.44±1.16

0.7 54.82±1.17 54.04±1.18 53.70±1.18 54.60±1.18 54.54±1.18 54.43±1.18 56.21±1.17 54.71±1.18

1.0 48.13±1.18 49.19±1.18 49.58±1.18 50.64±1.18 48.69±1.18 48.58±1.18 48.64±1.18 48.64±1.18

1.5 42.51±1.17 44.18±1.17 39.55±1.15 42.67±1.17 38.22±1.15 39.94±1.16 36.04±1.13 37.72±1.14

I.5 Adaptivity874

In this section, we consider the adaptivity of primal decoding by presenting the mean, standard875

deviation and entropy of the k∗ chosen by our method during evaluation on GSM8K and TriviaQA876

datasets.877

In Table 11, we show the average k∗ values (and their values rounded to the nearest integer) selected878

by primal Bregman decoding on GSM8K with LLaMA 3.1 8B for various temperatures, α, and λ.879

Table 12 shows corresponding standard deviation and entropy.880
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Table 11: Mean (and rounded) average k∗ values on GSM8K with LLaMA 3.1 8B for various
temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 1.2231(1) 1.1537 (1) 1.6201 (2) 1.4453 (1) 2.1274 (2) 1.7964 (2) 2.8578 (3) 2.2112 (2)
0.7 1.2295 (1) 1.1554 (1) 1.6689 (2) 1.4794 (1) 2.3193 (2) 1.9048 (2) 3.2554 (3) 2.4974 (2)
1.0 1.2287 (1) 1.1594 (1) 1.7519 (2) 1.5048 (2) 2.7231 (3) 2.0234 (2) 4.6926 (5) 3.0924 (3)
1.5 1.2331 (1) 1.1566 (1) 1.8106 (2) 1.5189 (2) 4.1842 (4) 2.4067 (2) 14.2539 (14) 5.6002 (6)

Table 12: Standard deviation (and entropy) of average k∗ values on GSM8K with LLaMA 3.1 8B for
various temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 0.46 (0.82) 0.36 (0.62) 1.07 (1.55) 0.77 (1.28) 1.89 (2.08) 1.31 (1.77) 3.11 (2.58) 2.00 (2.16)
0.7 0.47 (0.84) 0.36 (0.62) 1.12 (1.62) 0.80 (1.34) 2.21 (2.24) 1.47 (1.89) 3.98 (2.78) 2.53 (2.37)
1.0 0.47 (0.84) 0.37 (0.63) 1.23 (1.72) 0.83 (1.38) 3.03 (2.49) 1.65 (2.00) 7.31 (3.21) 3.69 (2.69)
1.5 0.47 (0.85) 0.36 (0.63) 1.30 (1.79) 0.84 (1.40) 5.37 (3.13) 2.19 (2.32) 18.01 (4.04) 7.77 (3.51)

Table 13-14 show analougous adaptivity results for Qwen2.5-14B-Instruct. (Here, we only show881

results for λ = 0.0001, which is more important for adaptivity evidence, due to time limit, will882

complete afer rebuttal)883

Table 13: Mean (and rounded) average k∗ values on GSM8K with Qwen2.5-14B-Instruct for various
temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 1.0973(1) 1.0660(1) 1.4899(1) 1.3425(1) 2.7614(3) 1.9317(2) 5.4537(5) 3.1726(3)
0.7 1.1010(1) 1.0672(1) 1.5043(2) 1.3534(1) 2.7778(3) 1.9522(2) 5.5047(6) 3.1911(3)
1.0 1.1000(1) 1.0666(1) 1.5171(2) 1.3591(1) 2.7985(3) 1.9723(2) 5.5603(6) 3.2493(3)
1.5 1.1008(1) 1.0662(1) 1.5211(2) 1.3628(1) 2.8761(3) 2.0028(2) 5.7831(6) 3.3285(3)

Table 14: Standard deviation (and entropy) of average k∗ values on GSM8K with Qwen2.5-14B-
Instruct under λ = 0.0001 and varying temperatures.

Temp α = 1.5 α = 2.0

0.3 10.75 (2.81) 4.88 (2.26)
0.7 10.71 (2.86) 4.85 (2.29)
1.0 10.70 (2.90) 4.88 (2.34)
1.5 10.75 (3.03) 4.90 (2.42)

Table 15-16 show analougous adaptivity results for Phi-3-medium-4k-instruct.

Table 15: Mean (and rounded) average k∗ values on GSM8K with Phi-3-medium-4k-instruct for
various temperatures, α, and µ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 1.4048(1) 1.2609(1) 2.4123(2) 1.9287(2) 4.7186(5) 3.1299(3) 8.6473(9) 5.2889(5)
0.7 1.4074(1) 1.2601(1) 2.4337(2) 1.9409(2) 4.6706(5) 3.1307(3) 8.6958(9) 5.3697(5)
1.0 1.4073(1) 1.2603(1) 2.4541(2) 1.9364(2) 4.7772(5) 3.1792(3) 8.8501(9) 5.4394(5)
1.5 1.4098(1) 1.2575(1) 2.4667(2) 1.9498(2) 4.9289(5) 3.2335(3) 9.4782(9) 5.6113(6)

884

In Table 17, we show the average k∗ values (and their values rounded to the nearest integer) selected885

by primal Bregman decoding on TriviaQA with LLaMA 3.1 8B for various temperatures, α, and λ.886

Table 18 shows corresponding standard deviation and entropy.887
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Table 16: Standard deviation (and entropy) of average k∗ values on GSM8K with Phi-3-medium-4k-
instruct under λ = 0.0001 for varying temperatures and α.

Temp α = 1.5 α = 2.0

0.3 12.09 (3.83) 6.77 (3.32)
0.7 12.01 (3.89) 7.23 (3.61)
1.0 11.98 (3.98) 6.74 (3.45)
1.5 11.79 (4.24) 7.29 (3.79)

Table 17: Mean (and rounded) average k∗ values on TriviaQA with LLaMA 3.1 8B for various
temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 1.1536(1) 1.1452(1) 1.9135(2) 1.5291(2) 3.4193(3) 2.5753(3) 6.9406(7) 4.5149(5)
0.7 1.2265(1) 1.1275(1) 2.0109(2) 1.6265(2) 3.8877(4) 2.7593(3) 8.8845(9) 5.1892(5)
1.0 1.2138(1) 1.1324(1) 2.0273(2) 1.6818(2) 3.9715(4) 2.9759(3) 8.4552(8) 5.7381(6)
1.5 1.2013(1) 1.1384(1) 2.0289(2) 1.7032(2) 4.1749(4) 2.9398(3) 8.4399(8) 5.5166(6)

Table 18: Standard deviation (and entropy) of average k∗ values on TriviaQA with LLaMA 3.1 8B
for various temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 0.41 (0.65) 0.35 (0.60) 1.37 (1.90) 0.86 (1.42) 3.65 (2.85) 2.09 (2.42) 10.36 (3.63) 5.35 (3.28)
0.7 0.48 (0.83) 0.33 (0.55) 1.44 (2.00) 0.93 (1.56) 4.24 (3.09) 2.20 (2.53) 12.18 (4.10) 5.98 (3.56)
1.0 0.47 (0.81) 0.34 (0.56) 1.42 (2.01) 0.98 (1.63) 4.42 (3.03) 2.43 (2.68) 12.07 (3.77) 6.54 (3.68)
1.5 0.46 (0.78) 0.35 (0.58) 1.42 (2.01) 1.00 (1.66) 5.07 (3.02) 2.46 (2.62) 12.90 (3.34) 7.18 (3.35)

Table 19-20 show analougous adaptivity results for Phi-3-medium-4k-instruct on TriviaQA.888

Table 19: Mean (and rounded) average k∗ values on TriviaQA with Phi-3-medium-4k-instruct for
various temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 1.7393(2) 1.4142(1) 3.6184(4) 2.8184(3) 9.2976(9) 5.2226(5) 18.7026(19) 10.4901(10)
0.7 1.7148(2) 1.4288(1) 3.6134(4) 2.6381(3) 8.4512(8) 4.8061(5) 16.8627(17) 9.3718(9)
1.0 1.7348(2) 1.4216(1) 3.6840(4) 2.6050(3) 8.3500(8) 4.8924(5) 16.7567(17) 9.6411(10)
1.5 1.6687(2) 1.4378(1) 3.6081(4) 2.6601(3) 8.6007(9) 5.1906(5) 18.2735(18) 9.7162(10)

Table 20: Standard deviation (and entropy) of average k∗ values on TriviaQA with Phi-3-medium-4k-
instruct for various temperatures, α, and λ.

Temp λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0 α = 1.5 α = 2.0

0.3 0.87 (1.43) 0.49 (0.98) 2.84 (2.65) 1.76 (2.26) 8.19 (4.18) 3.99 (3.32) 16.54 (5.06) 8.88 (4.33)
0.7 0.87 (1.41) 0.49 (0.99) 2.69 (2.76) 1.70 (2.22) 7.50 (4.16) 3.78 (3.28) 15.26 (5.16) 8.38 (4.31)
1.0 0.87 (1.43) 0.49 (0.98) 2.68 (2.82) 1.65 (2.24) 7.04 (4.22) 3.62 (3.37) 13.81 (5.27) 7.75 (4.46)
1.5 0.84 (1.40) 0.50 (0.99) 2.58 (2.84) 1.63 (2.27) 6.60 (4.30) 3.58 (3.45) 13.94 (5.37) 7.51 (4.51)
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