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Abstract

Top-k decoding is a widely used method for sampling from LLMs: at each token,
only the largest k£ next-token-probabilities are kept, and the next token is sampled
after re-normalizing them to sum to unity. Top-k and other sampling methods
are motivated by the intuition that true next-token distributions are sparse, and
the noisy LLM probabilities need to be truncated. However, to our knowledge,
a precise theoretical motivation for the use of top-k decoding is missing. In this
work, we develop a theoretical framework that both explains and generalizes top-k
decoding. We view decoding at a fixed token as the recovery of a sparse probability
distribution. We consider Bregman decoders obtained by minimizing a separable
Bregman divergence (for both the primal and dual cases) with a sparsity-inducing
{y regularization. Despite the combinatorial nature of the objective, we show how
to optimize it efficiently for a large class of divergences. We show that the optimal
decoding strategies are greedy, and further that the loss function is discretely convex
in k, so that binary search provably and efficiently finds the optimal k. We show
that top-k decoding arises as a special case for the KL divergence, and identify new
decoding strategies that have distinct behaviors (e.g., non-linearly up-weighting
larger probabilities after re-normalization).

1 Introduction

Large language models (LLMs) are powerful generative Al tools for producing text. When pre-trained
on large text corpora and aligned according to human preferences, they can be used for a wide range
of tasks. On a technical level, they are probability distributions over text: given any user text prompt
x, an LLM samples an answer Y ~ 7 (-|x) from a probability distribution 7(+|z) over text. However,
even after obtaining a pre-trained, fine-tuned, and human preference-aligned model 7, it is rare to
directly sample from the model. Instead, several sampling/decoding methods are commonly used,
including top-k [21]] or top-p sampling [32]]. These are widely used either by default or as an option
in many popular LLMs, including the GPT series, Gemini, and Claude. In addition to other decoding
methods such as beam search, temperature scaling, best-of- N, etc., top-k, top-p and related methods
are known to improve performance in a broad range of settings compared to direct sampling, see e.g.,
(12,21} 32].

In this paper, we focus on decoding methods that modify each next-token-probability distribution
to induce sparsity, i.e., to keep only a small number of tokens with a nonzero probability. This
includes the widely used top-k [21]] and top-p [32] sampling methods, among others. These methods
are motivated by the intuition that the noisy LLMs probabilities need to be truncated to denoise the
“unreliable tail” [32]. In particular, we focus on the popular top-k decoding method, which keeps only
the largest k next-token-probabilities at each decoding step. These are re-normalized—via dividing
by their sum—to a probability distribution from which the next token is sampled.

Despite the wide use and rich intuition behind top-%k decoding, to our knowledge, a precise theoretical
understanding of top-k decoding is not available—see Section [A]for a discussion of related work.
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In this work, we develop a theoretical framework that enables a flexible range of generalizations of
top-k decoding. For a fixed token, we view decoding as recovering a sparse probability distribution.
We consider denoisers obtained by minimizing a Bregman divergence (such as a KL divergence or
Brier score) with a sparsity-inducing ¢ regularization. This approach is motivated by a rich literature
of both Bregman divergences and sparsity, see Section [A]for details.

. Original distribution Our approach leads to new decoding methods. As
z —— Top-10 decoding an example, we consider Bregman divergences
20.2 — Bregman-a decoding (¢=0.25) | generated by the a-entropies  — 2 /[a(a — 1)]
S — - Bregman-a decoding (a=2.3) | 19| [5]]]. Top-k decoding arises as an instance
= W of this class for a — 1, corresponding (o the

20 30 20 5o KL divergence. We also identify new decoding
Token index strategies with distinct behavior. The figure on the

left shows an example of a distribution over 100
tokens, the result of top-10 decoding, and results for our Bregman-« decoding with & = 10: for
a = 1/4, Bregman decoding places relatively more mass on larger probabilities, while for o = 2.5,
the situation is reversed. In various applications, either behavior may be desired.

1.1 A roadmap of our contributions

We start by laying the foundation for out theoretical framework, including presenting a view of
decoding strategies that decomposes them into two steps: selecting a number of tokens, and re-
normalizing their entries to a probability distribution (Section[2.T)). We present decoding strategies
obtained by sparsity-regularized Bregman divergence-minimization (Section[2.2)). We consider both
primal and dual decoding methods, minimizing the Bregman divergence with respect to its first and
second arguments, respectively, as both are widely studied in optimization and statistical learning
[see e.g., 1} 110} 124] 156, etc].

In general, {y-regularization leads to combinatorial optimization problems, for which there are no
known polynomial-time algorithms [[11} |42]]. Our main contribution is to show that, despite this,
sparse Bregman decoding can be optimized efficiently for a large class of divergences. Specifically,
we show two properties: (1) greedy selection—choosing some number k of the largest probabilities—
is optimal (Theorems [3.2]and [3.3]in Section [3.2); and (2) the loss function is discretely convex in
k, so that an efficient binary search can be used to find the optimal k&* (Theorem [3.4]in Section 3.3).
Showing these properties is non-trivial, and requires us to develop and combine a range of novel
structural insights into the sparse Bregman objective that could be of independent interest.

As an example, we discuss a-Bregman decoding strategies, generated by Tsallis a-entropies  —
x®/la(a — 1)], for which we show that primal renormalization can be solved exactly in several cases
of interest and converges to water-filling as @ — oo (Section[d). Finally, we illustrate some of the
decoding schemes described in the paper on open-ended text generation and mathematical problem
solving tasks with LLMs, where they perform competitively with top-k decoding (Section [5).

2 Regularized sparse Bregman decoding

2.1 Top-k decoding preliminaries

Top-k decoding. Given a probability distribution p = (p1, ..., py ) (where V stands for “vocabulary
size”), and some 1 < k < V, top-k decoding first selects the indices Sy, = (41, . .., i) of the largest
k probabilities, breaking ties arbitrarily. Setting all other coordinates to zero in p, one obtains the
vector p[1 : k| of the k largest entries. Then, it re-normalizes this vector by dividing it by its sum.
Letting (p(1),P(2), - - -»P(k)) = (Pis, - - - » Pi;,) be the largest k entries of p,

k
top-k(p) = pll - k]/(zpm). M

One then draws a sample from the distribution top-k(p).

Decoding strategies. Next, we aim to generalize top-k decoding. We will refer to any operator
Dec on probability distributions as a decoding strategy; formally Dec : Ay — Ay, where Ay =

{z [0,V : ZYZI x; = 1} is the simplex of V-dimensional probability distributions. Observe that
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top-k decoding consists of two steps: selecting the largest coordinates and re-normalizing them. The
second step can be viewed as “re-distributing” the probability mass that has been thresholded away
by selection among the remaining indices. This step can be performed in a lot of other meaningful
ways besides division by the sum. For instance, we may put a larger weight on the larger remaining
probabilities, if we consider them more reliable.

Renormalization. Motivated by this, we define the notion of a renormalization mapping, which
takes as input a thresholded probability vector with k nonzero entries remaining. We consider
renormalization maps that are permutation-equivariant, i.e., when their input is permuted, their
output is permuted accordingly; which clearly holds for the sum-division used in top-k. Therefore,
since the sum of probabilities after selection can be less then unity, we can define them as maps from

the sub-probability simplex Agup 1. = {2 € [0,1]% : Zle x; < 1} to the simplex Ay.

Definition 2.1 (Renormalization). For a positive integer k, we call a permutation-equivariant map
T : Agub,; = Ay a renormalization map.

A renormalization map can be extended to the full simplex Ay, by applying it only on the nonzero
coordinatesﬂ We can now define generalized top-k decoding as re-normalizing the top-k entries via a
general re-normalization map.

Definition 2.2 (Generalized top-k decoding). For a fixed k, a generalized top-k decoding strategy
Deci,1r : Ay — Ay, parameterized by the choice of k and renormalization map T, takes as input
any V-class probability vector p, thresholds it to the sub-vector p[l : k| consisting of its top-k
elements, and renormalizes it to T (p[1 : k]) € Ay.

Adaptivity. A natural extension is to choose k adaptively based on p. For this, we consider a k-selector

mapl% : Ay — [V]:={1,...,V}, and a collection of renormalization maps T}, : Agup x — Ak,

k=1,...,V. We define an adaptive generalized top-k decoding strategy Decr : Ay — Ay via
T k(p)]). Below, we will design specific renormalizers T' and ways to choose k.

2.2 Regularized sparse Bregman decoding

Decoding via sparse divergence minimization. Consider a divergence Div(+,-) : Ay X Ay — R
between two distributions. Classical examples include the squared error Div(p, ¢) = ||p — ¢||3 and

the KL divergence Div(p, q) = Z;;l p;In(p;/g;). We define the decoding strategy Decpy,, via
sparsity-regularized divergence minimizatio under divergence Div, for any probability vector p as:

Decpiv(p) € argmin {Div(ﬁ7 p) + XDl } (sparsity-regularized decoding). 2)
PEAY

Here, the £y-pseudonorm ||p||, is the number of nonzero entries of p, and A > 0 is a sparsity cost
hyperparameter. As A increases, the optimal solution p = p* gets increasingly more sparse.

Separable Bregman divergences. In this work, we shall instantiate Div in Problem [2] with separable
Bregman divergences [} [10]. We will see that this class is expressive enough to induce top-k
decoding and many fruitful generalizations of it. For a convex domain Dom C R and a convex
differentiable function ¢ : Dom — R, the one-dimensional Bregman ¢-divergence d, is defined as:
de(z,y) = ¢(z) — é(y) — ¢'(y)(z — y), for x,y € Dom. The separable V-dimensional Bregman

¢-divergence Dy, : Dom" — R is then defined as:

Dy(z,y) = Z dg(zi,yi), forx = (z1,...,2v),y = (y1,.-.,yv) € Dom".
i€[V]

A well-known property of Bregman divergences is that D (z,y) > 0 for all x, y, with equality if
x = y; when ¢ is strictly convex, x = y in fact becomes the unique minimum.

"Formally, for a vector p € RV and S C [V], let ps be the restriction of p to the coordinates in S. Given a
vector p € Ay such that pse = 0 outside of a set j € S, a renormalization map T'(p) can be extended to Ay
by embedding it into the original coordinates: [T'(p)]; = [T'(ps)]; for j € S, and [T'(p)]; = 0 otherwise.

*In our examples of interest, we will show that this optimization problem is well-defined. When there are
multiple minimizers, we assume that one is selected in an arbitrary measurable way.
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Figure 1: Illustration of the landscape of the sparse Bregman objective for the primal (left) and dual (right)
cases. We choose a V' = 3 dimensional example where the target vector is p = (0.1,0.01,0.001)/0.111. We
show an a-Bregman divergence (see SectionEI) with « = 10 and A = 0.01.

Primal and dual Bregman decoding. Since Bregman divergences are generally non-symmetric in
their arguments, we may instantiate the sparse Bregman decoding Problem [2]in two substantially
distinct ways: by placing the estimand p in the first (primal) or second (dual) argument:

Div(p,p) :==Dg(p,p) (primal decoding), Div(p,p) :== Dy(p,p) (dual decoding). (3)

Both formulations possess a sound theoretical motivation. Bregman projections are commonly defined
as minimization in the first argument, while Bregman-based proper scoring rules for mean elicitation
correspond to minimization in the second argument [see e.g., 24, 39, etc].

The landscapes of primal and dual decoding are illustrated in Figure[T] The dual objective can be
non-convex even in the interior of the simplex. However, crucially, the objectives are discontinuous
at the edges of the simplex due to the ¢ penalty. While in general these decoding objectives could
be combinatorial problems that may be hard to solve, we will show in Section 3] that for separable
Bregman divergences, both the primal and dual problems can be solved efficiently.

In both the primal and the dual Bregman case, when A = 0, the corresponding sparse decoding
Problem 2]is solved at p = p (and uniquely so if ¢ is strictly convex), with the intuition that absent
sparsity requirements the best guess is to preserve the original distribution p. Henceforth, we will
focus on the sparse regime A > 0, thus forcing some entries of p to be zeroed out at optimality. Our
main results in Section |§| establish, for both primal and dual decoding, that under mild technical
requirements on D, the optimal sparsity in fact zeroes out all but top-£* coordinates of p, for the
optimal k = k*(p), thus leading to a principled and broad generalization of top-k decoding.

3 The algorithmic structure of primal and dual Bregman decoding

We now proceed to investigate the properties of primal and dual Bregman decoding. Our goal is to
show that under mild technical assumptions on the divergence Dy, both decoding strategies result
in adaptive generalized top-k decoding in the sense of Definition Explicitly, in Section [3.2] we
will demonstrate for any p € Ay that out of the (a-priori) 2" possible sparsity patterns S C [V], the
optimal one must consist of the top-% entries of p for some &k € [V].

Next, in Section we will establish that finding the optimal k* = k*(p) is in fact a (discretely)
convex optimization problem in k € [V], which critically enables both strategies to have O(V log V')
oracle computational complexity under oracle invocations of arbitrary monotone scalar root finding.
Without this convex structure, the oracle complexity could rise to (V?2), which would be prohibitive
in language-model-relevant settings in which vocabulary sizes upwards of V' ~ 10° are common.

3.1 Renormalization for a fixed sparsity pattern

We first investigate the renormalization component of a Bregman decoding strategy. Once the optimal
sparsity pattern S C [V] (of some size |S| = k) has been identified, the vector 2 — which denotes the
sub-vector of p restricted to indices in S — needs to be projected onto the simplex Ag. Since the ¢
regularization term becomes fixed to Ak, Problem (2)) becomes equivalent to: arg minge 5, Div(p, z).
This is a k-dimensional Bregman projection problem to the simplex (without sparsity regularization).

Primal renormalization We impose the following mild condition on the Bregman generator ¢.
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Figure 2: Comparison of primal (left) and dual (right) Bregman a-renormalization maps (see Sectionlé-_ll) on

input vector x = 22'67 < [ , %, RN ﬂ € Agup i With £ = 100. We plot the renormalized values against

i=1 k

the original coordinate values of x.

Assumption 3.1 (Primal validity). The map ¢ is convex and continuously differentiable on [0, 1] as
well as strictly convex on (0,1).

Existing results [33}[34]] then imply that for a primal valid potential ¢, denoting f = ¢’ (and extending
its inverse f ! so that f~1(x) = Oforz < f(0) and f~!(z) = 1 forz > f(1), making it continuous
and non-decreasing on all of R), the primal renormalization map 7T}, is given for x € Agyp, 1 by:

k
[Ty(x)]; = f~(f(z;)+v) foralli€ [k], where v € R is chosen so that Z[T¢($)]z =1. 4
i=1
Since v +— fTL(f(x;) + v) is non—decreasingﬂ in v, the solution can be found efficiently using
off-the-shelf root-finding algorithms such as Brent’s method.

Dual renormalization While primal projections are well-studied in prior work [33}[34]], we are not
aware of a direct derivation of dual Bregman projections. Indeed, Bregman divergences are convex in
the first [3]] but generally not the second argument, which can interfere with the uniqueness of dual
projections. To pave the road towards dual Bregman projections, we will therefore rely on additional
structure in ¢ and d, expressed as the following dual validity condition.

Assumption 3.2 (Dual validity). The map ¢ is thrice differentiable on (0, 1] with lin(r)l+ x¢" (x) = 0.
rT—r
For x€(0,1],y > dg(z,y) is strictly convex for y €[x,1],and y > dy(0,y) is strictly convex for y €(0,1].

We establish in Theorem[B.1] (see Appendix [B)) that subject to dual validity, the dual renormalization
map 77 is uniquely defined for any x € Agyp, i With  # Oy by the following implicit equations:

E
[T (x)]s = i + v/ f/ ([T} (x)];) for i € [k], with v* € R chosen so that Z[T;(x)]z =1. (5
i=1

Assumption[3.2] short of requiring global convexity of dg (=, -) on [0, 1], only enforces it for y € [, 1].

To enable this relaxation, the proof of Theorem [B.T|carefully excludes optimal solutions belonging

to the region y < z or to the simplex boundary. Rather than a mere curiosity, this refinement

substantially expands the scope of dual decoding. In particular, in our later specialization, it is

essential for ensuring that dual a-decoding is uniquely defined for all & > 1, not just « € (1, 2]: as
plots in Appendix [H.4]demonstrate, a-Bregman divergences are nonconvex for y < z for o > 2.

See Section [G] for algorithmic details on computing the dual map, as well as pseudocode for our
algorithms. Figure 2]illustrates the primal and dual renormalization maps for c-Bregman divergences
(introduced in Section(4)). In this concrete example, T3 and T; appear similar; however, for different,
e.g. more “peaked”, inputs z € Agyp k, they are more distinct, as we illustrate in Appendix@

3.2 Greedy property: Justifying top-% selection

The viewpoint that lower-probability tokens can be considered as noisy [32] suggests that it would be
natural and indeed desirable for a decoding strategy to be “greedy”’—dictating that it is optimal to
renormalize over the top-k-probability tokens, for some k € [V]. We formalize this as follows.

31t is strictly increasing for v € [—f(z;), 1 — f(z:)], but the required v may lie outside this range.



192
193

194
195
196
197
198

199

201
202

203
204
205
206

207

209
210

211
212
213
214
215
216
217

218

219
220
221

222
223

224

225
226

227
228
229

230

231
232

234
235

Definition 3.1 (Greedy decoding). A decoding strategy Dec : AV — Ay is called greedy zf for
every p € Ay, the set of nonzero entries of Dec(p) is a set of top- k entries of p, for some k= k( ).

While many popular decoding methods are greedy [[12, 211132, 38]], some are not [22}|36]; justifications
for non-greediness, i.e., the ability to occasionally throw out some of the top-k tokens, include that
this can e.g. help generate more “typical” text. As such, our assertion that the primal and dual
Bregman decoding strategies are greedy is nontrivial and requires proof. First, we state our result for
primal Bregman decoding.

Theorem 3.2 (Primal Bregman decoding is greedy). The primal Bregman decoding strategy from (2))
is greedy for any primal valid potential ¢.

The proof is provided in Appendix [C] It proceeds by decomposing the Bregman objective into several
terms, see Lemma|[C.2] and bounding them with the help of the primal renormalization equations ().

The dual case, owing i.a. to the implicit form of the dual renormalization formulas @, is
correspondingly more complex to handle. Unlike in Theorem [3.2] our next result requires further
conditions, which we state as a menu of two options. The relationship between the extra assumptions
is intricate; Assumption is implied by, but is strictly weaker than, log-convexity of ¢'.

Theorem 3.3 (Dual Bregman decoding is greedy). The dual Bregman decoding strategy from @) is
greedy for any dual-valid ¢ with ¢'(0) = 0 that further satisfies either of the following conditions:
(Al) ¢’ is convex;

(A2) The maps'|u defined as u(x) := x¢" (x)/¢' (x) for x € (0,1] and ¢ are nondecreasing.

The proof is provided in Appendix |D| In it, we use two different proof techniques for both conditions:
For Condition [(AT)] our proof in Appendix [D.T]leverages the decomposition from the primal case
along with the change of variables dy(x, y) = dg~ (¢ (), ¢’(z)), where ¢* is the convex conjugate
of ¢. For Condition we develop a saddle-point proof approach in Appendix For that, we
perform a sensitivity analysis of both the renormalized values [T(;,k (p)]; and of the per-coordinate
Bregman loss terms, relative to hypothetical changes in the dual Lagrange multiplier v* and in the
entries p; of p; we carry this out via implicit differentiation of the defining equations (3).

3.3 Discrete convexity of cost function: Speeding up the search for optimal adaptive &

Next, we show that when restricted to the greedy (top-k) selection, the primal and dual decoding
objectives both enjoy discrete convexity with respect to the sparsity parameter k. First, for a general
divergence Div, denote the {y-regularized cost of each greedy (top-k) choice by cost(k):

cost(K) = min {Div ((5.0v),p) + M}. ©
PEAL
Recall that a function h : [V] — R is discretely convex if for all k € [V — 1] — {1}, its discrete

second derivative A%h(k) := Ah(k+1) — Ah(k) := {h(k+1) — h(k)} — {h( )—h(k—1)} >0.
Theorem 3.4 (Discrete primal and dual cost convexity). cost(:) is discretely convex in k € [V for:
1. Div(p, p) = Dy (D, p), if ¢ is primal valid; 2. Div(p, p) = Dy(p, p), if ¢ is dual valid.

In Figure @ (see Appendix [H.5), we illustrate the result of Theorem by plotting the cost(-)
functions for primal and dual Bregman a-decoding (defined in Section 4] below) for assorted a.

Provable binary search over k: As a direct consequence of Theorem the cost increments
Acost(k) = cost(k + 1) — cost(k) increase with k, so binary search over k& will efficiently identify
an optimal sparsity parameter £* — as one for which Acost(k*) < 0 and Acost(k* + 1) > 0.

The proof of Theorem [3.4]requires very distinct techniques in the primal and dual cases.

Primal k-convexity. The proof is developed in Appendix [E} As its cornerstone, we use the Legendre
dual mapping ¢* of the generator ¢ to establish and leverage the following cost structure: for any k,

cost(k), up to additional terms, can be represented as max, > [u - Zle o (¢ (pi) + u)} , where

the objective is concave in v and has vy, the optimal Lagrange multiplier for renormalizing the top k
probabilities of p from (@), as it unique optimizer. From here, we are able to establish A2cost(k) > 0.

*In the economics literature, u(x) = x¢"” (x) /¢’ (x) is referred to as the elasticity of the function ¢'.
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Dual k-convexity. The proof is in Appendix [F} The above dualization strategy does not directly apply.
Instead, we lower bound AZcost* (k) by regrouping the loss contributions of the indices i € [k + 1],
and —via intricate term rearrangement and bounding—reduce to proving the local concavity of a
special transformation (Equation[20) that turns out to hold by our dual-validity assumption.

4 Example: Bregman o-decoding

We now consider, as an illustration, a single-parameter family of Bregman decoding strategies, which
arises via the generators of the Havrda-Charvat-Tsallis a-entropies [8, 29, 145] 511 [52]:

¢o(x) =2%/[a(a—1)],2 € [0,1], fora € J:=(—o00,0)U(0,1)U (1,00).

When o« < 0 and x = 0, we set % := +o0 so that ¢,(0) = oco. For @ = 1, one defines
¢1(x) = xlog(x), which corresponds to the Shannon entropy, arising in the limilE] as a — 1.
Observe that ¢, is primal valid for all o # 0, as ¢ (z) = x*~2. This yields the following primal
family of renormalizations, which we will index by « rather than ¢:

Definition 4.1 (Primal Bregman a-decoding). Fix a € J, k € [V]. The renormalization map T, is
givenfor p€ Agup i as: [To(p)]i= (p 4 v) o1 fori €[k, with v €R chosen so that Y [To(p)]; =1.
i€[k]

Note that for & = 1, we have ¢ (z) = logz + 1. Hence, (@) implies e” Zle p; = 1, and we obtain
the “standard” renormalization: [T1(p)]; = pi/(>_;_, p;), for i € [k]. Therefore, primal Bregman
1-decoding is top-k decoding, showing how one recovers top-k in our framework. It turns out that
some further values of « also lead to renormalization maps of special interest. For any fixed p, we let
T_oo(p) = Lu_r} irgg To(p) and T (p) = halrri> ioréf T, (p), where the limits are entrywise.

Proposition 4.2 (Special primal a-renormalization maps). We have the following special instancesﬂ
of the primal Bregman «a-renormalization map, defined for all i € [k] as follows:

[T-o(p)i =pi + 1[i =4*] - (1 - Z?Zl pj), assuming that arg max; p; = {i*}.

2
[T1.5(p)): = <\/pﬁ+ {, 2+ k(1—s) — r] /k) , where r = Z?:l V/Dj and s = 25:1 Dj-
[T2(p)]i = pi + (1 — Z?;l pi)/k.
[Too (p)]: = max{p;, v}, where v € R is the “water level” for which Zle[Too () = 1.

Along with the primal family, the dual a-decoding family can also be defined based on ¢,,. Unlike
a-decoding, the dual Bregman sparse decoding Problem 2]can be non-convex, as displayed in Figure|T]
above. Figure@in Appendixfurther demonstrates the nonconvexity of D, on the unit square for
some «. Yet, we can still show that any dual a-decoding with o > 1 is valid, greedy and k-convex:

Lemma 4.3. All generator functions ¢, o > 1, are dual-valid and satisfy Assumption|(A2)

We give an illustration contrasting primal and dual a-decoding for various o > 1 in Appendix

5 Experiments

We now illustrate some of the decoding schemes described in our paper in the context of LLMs.
Since our goal is to develop the theoretical foundations of top-k decoding, our aim in this section
is simply to illustrate that the performance of our novel decoding schemes can be competitive with
standard top-k decoding. In particular, we do not aim to compare or compete with other popular and
established decoding methods, which is beyond the scope of our theory-focused paper.

5.1 Experimental Setup

Method. In addition to standard top-%k decoding, which coincides with the & = 1 case of our primal
a-decoding family described in Section[d] we illustrate primal a-decoding strategies for v = 1.5 and
o = 2. These have closed-form renormalization maps that are as fast as standard renormalization.

>One conventionally defines the entropies via (2 — x)/[a(« — 1)], in which case the Shannon entropy is
obtained in the limit as & — 1. In our case, we use the definition ¢ () = 2®/[ae(a — 1)] so that some technical
conditions (such as ¢, (0) = 0) hold in the proofs. Both definitions lead to the same decoding strategies in @).

®In particular, T oo (p), T1.5(p), T2(p) do not require solving for v in Definition enabling a fast
implementation just like in the case of the canonical top-k renormalization.
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Figure 3: Perplexity and repetition frequency differences between generated and human-written text for GPT2-
large (left two panels) and LLaMA 3.1 8B (right two panels), for various k values. We show top-k decoding and
primal decoding with o € {1.5,2.0}. Standard deviations are estimated using 1000 bootstrap resamples.

Table 1: Accuracy on GSM8K for LLaMA 3.1 8B using Bregman primal decoding (A € {0.01,0.0001},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, A, and «. Standard deviations are over 1000 bootstrap resamples.

\ = 0.0l B \ = 0.0001
a=15 a=20| PPkA=001) 1 =""9)

0.3 |85.14+0.80 84.38+1.00{83.62+1.02 84.69+0.99|84.69+0.99 84.46+1.00{85.14+0.98 83.62+1.02
0.7 |83.24+1.02 81.73+£1.06{83.78+1.02 84.69+0.99|82.03+1.06 82.03+£1.06{82.11+1.06 83.78+1.02
1.0 [81.20+1.08 80.97+1.08/81.20+1.08 81.20+1.08|77.41+1.15 77.26+1.15(79.23+1.12 78.54+1.13
1.5 |79.00+1.12 80.06+1.10{75.97+1.18 75.97+1.18|157.24 +136 64.97+£131{43.21+1.36 58.53+1.36

Temp Top-k (A = 0.0001)

Full and partial evaluation. Further, we perform two types of experiments: (1) For the evaluation of
our full decoding strategy, we decode by adaptively selecting the optimal sparsity parameter £* by
optimizing our sparse Bregman objective. Since practical choices of £* are always upper bounded,
we set a maximum k¥ < kpax = 50. (2) In the partial evaluation approach, we instead directly
evaluate—for each fixed choice of k in the grid k& € {5,10,...,50}.

Models and benchmarks. We conduct experiments using the GPT-2 Large [43] and Llama 3.1 8B
[25] models. We evaluate on two benchmarks: (1) open-ended text generation using the WebText
test set from the GPT-2 output dataset [40], and (2) grade school math reasoning using the GSM8K
Chain-of-Thought benchmark [[13]].

Evaluation metrics. For open-ended text generation, following Chen et al. [12]], we use the first
35 tokens of each WebText test sample as a prompt and generate up to 256 tokens. We evaluate the
following standard metrics [see e.g., 12,132} |38l etc]:

(1) Perplexity difference, which measures the perplexity (according to base model py,s ) of human
text compared to that obtained from a decoding strategy pgecoding derived from the base model lower is
better. This equals Ex p[Ey ~p(.| ) (Prase(Y | X)) — By~ paecoding (1) (Poase (Y | X))~V
where X ~ D is a prompt drawn from the dataset, Y ~ D(-|X’) denotes a human-written continuation
drawn from the dataset, and ¥ ~ Pdecoding (- | X) denotes a model-generated continuation.

(2) Repetition difference: Ex.p [PY~pdmmg (1x) (rep(Y)) — IPYND(.‘X)(rep(Y))] , where rep(Y")
is the event that Y contains two contiguous and identical token spans of length > 2; lower is better.

5.2 Results

Open-ended text generation. Using the partial evaluation setup with temperature fixed at 1.0,
Figure 3] reports the differences in perplexity and repetition frequency between model-generated and
human-written text across a range of k values. Primal decoding strategies are competitive with top-k
in terms of both metrics. In particular o = 2.0 has the smallest gaps in perplexity.

GSMBSK dataset. Using the full decoding strategy, we evaluate the LLaMA 3.1 8B model using
8-shot CoT prompting. We test various temperatures, regularization strengths A € {0.01,0.0001}
and primal decoding parameters o € {1.5,2.0}. Results for other settings are in Appendix [Il To
ensure a matched comparison, we run top-k with k = k* for the Bregman decoding run with the same
temperature, A, and «, rounded to the nearest integer, see Table |l I|in Appendix [} As seen in Table
across all temperature settings, primal decoding with adaptive k* achieves accuracy comparable
to top-k. At higher temperatures (such as 1.5), the performance of top-k decoding degrades more
rapidly than that of primal decoding.
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A Related work

Bregman projection. Michelot [37]] considered the Brier score projection problem and derived
an efficient algorithm. Later, Shalev-Shwartz et al. [48] revisited the properties of optimal Brier
projection, and Duchi et al. [17] gave and analyzed the explicit algorithm that we discuss in what
follows. Wang and Carreira-Perpinan [53]] simplified and distilled the proof. [35]] further studied the
projection as a method for generating sparse probability predictions in multiclass prediction problems.
[33 34] developed methods for efficient Bregman projections to the simplex; for a fixed support,
these results characterize our primal decoding. [44,46] developed differentiable variants of top-k
decoding. In contrast to these works, we: (1) consider Bregman projections under ¢ regularization,
and (2) offer, to the best of our knowledge, novel analyses of dual Bregman projections.

{y regularization. Regularization via the ¢y-pseudonorm has been studied widely, with various
approximate algorithms (based on surrogates, integer programming, branch-and-bound methods,
etc.) developed for problems ranging from linear regression to more general learning tasks [see e.g.,
21619 1511184201130, 1411149, 1501 [58L 161 etc]. In contrast, the algorithms we propose are exact within
numerical precision for the specific class of problems we consider.

Bregman divergences. The properties of Bregman divergences [[10] have been widely studied; see,
e.g., [1L 13150181127, 139L 147, 1551571, etc. In particular, there are a number of relations between Bregman
divergences and their versions with reversed arguments, motivated by the fact that convexity in the
first parameter allows for minimization, making it useful to switch the order of the variables, see e.g.,
[L, 126]] etc. We both leverage some of these results in our work, and contribute some, to the best of
our knowledge, novel proof techniques and insights into the (primal and dual) Bregman geometry.

LLM decoding. There is a vast range of work on LLM sampling (or decoding), see e.g., [54] and
references therein. Classical methods include greedy sampling and beam search. Sparse sampling
methods such as top-k sampling [21] are motivated by intuition that the “unreliable tail” of low-
probability tokens is mis-estimated [32]. In particular, [32] propose top-p sampling, and [38] propose
min-p sampling. Other sampling methods were proposed in [4,[22, 131, 136]. [12]] propose the decoding
game, a two-player game between a generator/LLM and an adversary that distorts the true distribution.
They show that certain sparse truncated sampling methods are approximately minimax optimal. There
have also been various approaches to explicitly make language model output probabilities sparse, see
e.g., [141 1591 160]. In contrast, our goal is to develop a deeper theoretical understanding of the popular
top-k decoding method, placing it into a broader framework.

General motivation. The motivation for our general approach is two-fold: (1) Without sparsity
considerations, Bregman divergences are known to have a close correspondence to proper scoring
rules, and are minimized at the true probability distribution, see e.g., [10} 24]. This property is highly
desirable in probabilistic forecasting and prediction, ensuring that the forecaster is incentivized to
predict the true distribution in order to minimize their loss. (2) The ¢y-“norm”, i.e., the number of
nonzero entries of a sparse vector, has been widely argued to both be a reasonable measure of sparsity,
and to have good properties as a regularizer in certain sparse estimation problems such as sparse
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regression [see e.g.,[7,[16] 23| 28| etc]. Combining these two lines of thought provides the motivation
for studying ¢y-regularized Bregman divergence minimization.

B Existence and uniqueness of dual Bregman decoding

Theorem B.1 (Uniqueness and formula for dual Bregman renormalization). Fix a dual valid potential
¢. Then, for any © € Ay, ), with Y, x; > 0, the renormalization map T'; is uniquely defined by:
k
[T (x))i = witv™ [ f'([Ty(x)]:)  foralli€ [k], where v* € R is chosen so that Z[Tg (x)]; = 1.
i=1

Proof. First, assume without loss of generality that 0 < 3,3y 2; < 1. Otherwise, if 3,y 25 = 1
then x € Ay, so the unique unconstrained optimum, which is at = by the standard property of
Bregman divergences, is also the unique optimum of our constrained projection problem.

Note that Slater’s condition is satisfied for this projection problem as we are optimizing over the
simplex (whose relative interior is nonempty). Therefore, in this differentiable problem, its optimal
solutions can be characterized via its KKT conditions.

Introduce a Lagrange multiplier v € R for the simplex constraint, and Lagrange multipliers (\;);e[x]
for the nonnegativity constraints. Then, the Lagrangian is as follows:
k k E
£(p,v) = > [0w:) = 0(6:) = &' (00) (2 — p)] — v (DB = 1) = > N
i=1 i=1 i=1
Here, A; > 0 for all 7, and by complementary slackness, at optimality \; = 0 whenever p; > 0.
For each i € [k], the stationarity condition reads (except possibly when p; = 0, where the second
derivative could be infinite):
oL

0= 0p;

=—¢"(pi) (@i —pi) —v =N = ¢"(Di)(Pi — i) = v+ i

In particular, for each coordinate 4 for which the optimal p; € (0, 1), the stationarity condition is:

v v
=it (7)
o) " (D)

Now, we show that v > 0. Indeed, observe that there must be at least one index ¢ for which p; > x;.
If that was not the case, we would get ;. Pi < -4 @i < 1 by our assumption, contradicting

that p € Ay. In particular, then, p; > z; > 0, and therefore we have ¢ (p;)(p; — z;) = v. Since
¢"(p;) > 0 and p; — x; > 0, we thus conclude that v > 0.

&" () (pi — i) =v = Pi=w; +

Having shown that v > 0, we now proceed to show that all p; > 0 at optimality. Note that
%dd,(% y) = ¢"(y) (y — x) for y > 0. We will now consider two cases:

1. ¢”(0) is finite;
2. limy,0 ¢ (y) = +o0.
If ¢”(0) is finite, p; > O for all 7. Indeed, suppose that was not the case, and p; = 0 for some i. Then

we would have: ¢”(0)(0 — z;) = v + A;, or equivalently, ¢”'(0) - x; + v + A; = 0. Each of the three
terms is nonnegative, and v > 0, so we arrive at a contradiction.

Next, consider the case in which lim,_,¢ ¢’ (y) = +occ. Then, lim,_,o %d¢ (z,y) = —oo for all
x € (0,1]. Then, since lim, o a%d¢>(:1c,y) = —oo for all z € (0, 1], for any ¢ such that z; > 0,
setting p; = 0 would lead to v = —o0, hence necessarily p; > 0. On the other hand, for any

i for which x; = 0, since lim,_,¢ y¢” (y) = 0, setting p; = 0 would lead to v = 0, which is a
contradiction.

In all cases, the optimal p is in the strict interior of the simplex, so it suffices to solve over this
range. To show that the solution exists and is unique, we collect together the following information
about ¥ from (13) with ¥(x,y,v) := ¢ (y)(y — x) — v for all 2, y, v. Then, for a fixed v, ({7) is
equivalent to solving ¥(z;, p;, v) = 0. First, consider = > 0. Then, we have the following:
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1. Since the map y — dy(x, y) is strictly convex for y € [z, 1], it follows that a%d¢,(x, y) =
U(z,y,0) is strictly increasing for y € [z, 1], and so is ¥ (z,y, v).

2. We have ¥(z,z,v) = —v < 0. Further, U(z,1,v) = ¢”(1)(1 — ) — v > 0, whenever
v < ¢"(1)(1 - ).

Hence, the map y — ¥(z,y,v) has a unique zero on the interval [z, 1], as long as 0 < v <
¢" (D1 — ).

Next, consider 2z = 0, in which case we need to solve the equation ¢ (y)y = v. Then, we have the
following:

1. Since the map y — dg(0,y) is strictly convex for y € (0, 1], it follows that a%dfﬁ(ov y) =
U (0,y,0) = ¢"(y)y is strictly increasing for y € (0, 1], and so is ¥ (0, y, v).

2. By assumption, lim,_,o+ y¢”(y) = 0, hence we have lim,_,o+ ¥(z,z,v) = —v < 0.
Further, ¥(0,1,v) = ¢"(1)(1 — z) — v > 0, whenever v < ¢"'(1).

Hence, the map y — ¥(0,y, v) has a unique zero on the interval (0, 1], as long as 0 < v < ¢ (1).

Now define M := min; ¢"(1)(1 — z;) = ¢"(1)(1 — max; x;). Since by assumption ) . x; < 1, it
follows that M > 0. From the above analysis, it follows that, as long as v € (0, M], for each i, the
equation ¢ (y;)(y; — x;) = v. has a unique solution y;(v) € (x;,1].

Furthermore, as we establish in Lernma the map v — y;(v) is strictly increasing for v > 0, also

owing to the assumed second-argument convexity of dg. In particular, define G(v) = Zf:l yi(v)
for v > 0; then G is continuous and strictly increasing, and satisfies lim, o G(v) = Zi z; < 1and
G(M) = y;« (M) = 1, where * is any index achieving the maximum among the coordinates of .
Hence there is a unique v* € (0, M| with G(v*) = 1. Setting p; = y;(v*) yields a vector in Ay, that
satisfies the KKT stationarity.

Finally, note that the solution p that we just identified is unique. Indeed, we have earlier excluded
boundary solutions from consideration, and then further excluded any solutions in which p; < x; for
any i € [k]; thus, it suffices to recall that the Bregman objective is assumed to be strictly convex in
the interior of the region of the simplex given by {p € Ay : p; > x; for all ¢ € [k]}, thus concluding
the proof. O

C Proof of the primal greedy property in Theorem [3.2]

We will first fix some notations. Henceforth, we will assume that the vector p has been sorted, i.e.,
p1 2> p2 = ... = py. Forany subset Q = {i1,..., it} C [V] of size k, let Q° = [V]\Q. Let pg
denote the sub-probability vector with the entries of p whose indices are in ). We define the loss

L(Q) as

k

L(Q) = ;ﬁrglAIi D¢((p7 vak)v (anch)) = ﬁrggi ;d¢(pjvpij) + SQC' (8)

Here, Sge = ;4 ds(0,p;). To prove Theorem we will show that L(S") > L(S) for any
S’ C [V] of size k, where S = [k] consists of the top-k indices. We will further show that strict
inequality always holds if pg # pg. To do this, we proceed in three steps: (1) We first simplify the
form of the loss function L(Q) in Lemma|C.1] (2) For any two subsets S, S’, we decompose the loss
difference L(S”) — L(S) into three terms in Lemma|C.2] (3) We individually analyze each of the
terms in this decomposition and prove they are non-negative.
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C.1 Decomposing the Bregman cost function on subsets

Lemma C.1. Forany Q = {i1,i2,...ix} C [V] of size k, the loss function as defined in (8) simplifies
to:

k
L(Q) =) [¢([To0)];) — &' (0:,)[Te®)];] + Sy — |Q16(0). ©)

j=1

Proof. Observe that:

k
L(Q) = Dg((q: Ov—i), (g, Pq<)) = Z d([Tq(p)ls, pi;) + Sqe
k
= Z[¢([TQ(p)]j) = o(pi;) — &' (pi, ) ([Tq(p)]; — pi;)] + Sqe
k k
= Z[¢([TQ(p)]j) — ¢’ (pi;)[To(p)];] + Z[—¢(m]) + f(pi,)pi,] + Sqe.

This further equals

k
> 6T ®));) — &' (pi ) [To@)];] + > ds(0,p;) + Sq — 1Q1(0)

Jj=1 jeaq

= > 18([To@)]y) — @' (pi,)[To(P)j] + Sq + Sa: — |Q16(0)

j=

—

k
= > 18([To@)]y) — &' (0i,)[To®)j] + Siv) — 1Ql6(0).

<.
Il
—

This finishes the proof. O

Let T (p) denote a minimizer of the above loss L(Q), i.e.,
k
TQ(p) € arg min Dti’((ﬁa 0V—k)7 (anch)) (;) arg min Zd(b(ﬁ]vpl)
PEAL PEAL = Y

Note that (a) holds above as the term S¢. does not play any role in the location of the minimizer.
However, it does contribute to the final loss L(Q). Also, as the divergence is separable, once we have
selected a subset (), the ordering of its elements does not matter for the calculation of the above loss
and minimizer. Thus, without loss of generality, we may assume i; < i < ... < i, for k € [V]. By
forming the Lagrangian and differentiating it, we obtain the primal thresholding from (@):

¢'([To(p)l;) = ¢'(pi;) +vq V j € [K]. (10)
Here, v is chosen such that Z§=1 To(p)]; = 1.

Lemma C.2. Let S = {i1,...,it}, S = {¢,...,i.} C [V] and Ts(p) and Ts/(p) be the
corresponding minimizers. Then, the following decomposition holds:

L(S") = L(S) = Dy(Ts (p). Ts(p)) + > _ ([Ts:(p)); — [Ts(p);) (¢'([Ts(p)];) — &' (p3,))

+

M- 1

Ts ()3 (¢'(pi,) — ¢'(0y)) - (an

Jj=1

16



609 Proof. We have from Lemma[C.T|that
k

k
L(S") = L(S) = Y _[¢([Ts:(p)];) — &' (pir)[Ts: (0)];] = D _[6([Ts(p)];) — &' (0s,) [T (p));]

j=1 j=1

o([Ts(p)];) — ¢([Ts(p)];)] + &' (pi, ) [Ts (p)]; — ¢ (pir ) [Ts (p)];-

k
=1

J

610 This further equals

k
> 6T (0)];) — ([ Ts(p);) — &' ([Ts )] ([T (0)]; — [Ts(p)])]

k
+ 32 (1T 0l [ (T 0)) ~ o )] ~ T, [0(T500)) — 90,
" k
=Dy(Ts:(p )+ > ([Ts )], — [Ts)y) (¢ ([Ts(p)y) — ¢ (03,))
j=1
k
+ Z Ts(p ( o' (pi;) — ¢I(pi;)> -
611 O

612 Now, returning to our proof, suppose S = [k] and S’ = {i{, ... i}, }. We know from Lemma [C.2]that

k
L(S') = L(8) = Do(Ts: (), Ts(p) + 3~ (T ()]s = [Ts(p));) (¢ (Ts()]y) = & (0,)

1
613 Now, consider the term II. Using (I0), we can simplify this further as follows:
k k k @
Z [Ts: (p)]; — [Ts(P)];) vs = vs | Y _[Ts(p)]; = D> _[Ts@)l; | =0,
j=1 j=1 j=1

614 where (a) follows as E?Zl[TS/ P); = Zle[TS(p)]j = 1. Also, I > 0 as Dy is a divergence
615 measure.

616 Finally, to conclude our proof, we show that III > 0. Since the entries of p are sorted in a non-
617 decreasing order and as the indices in S = [k] and S’ are sorted in ascending order, we have

Vjelk], j=1i; <4 éVj € [k], p(iz) = p(d})
- Z Ty (p)]; (¢/(0i,) = ¢/ (piy)) =T > 0.
618  Strict inequality holds as long as some Py, is not among the top-k indices of p.

sts D Proof of the dual greedy property in Theorem 3.3

620 To prove the greedy property for the two alternate conditions in Theorem [3.3] we will provide two
621 distinct proof techniques for the two cases (A1) and (A2). The first one uses duality and the second
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one uses a saddle point argument. We will now recall the definition of the Legendre dual of a convex
function—in this case, of the generator function ¢p—and its defining property that will help us. Below,
£([0,1]) denotes the image of [0, 1] under f.

Lemma D.1 (Classical). For a valid ¢, let $*(x) = sup,>o{pr — ¢(p)} be the Legendre dual of

¢, defined for all x € f([0,1]). Then, we have for every x € f([0,1]) the identity: ¢(f~1(x)) =
xf () — ¢*(x). Moreover (¢*)' = f~1, and ¢* is strictly increasing.

Proof. Since the map p — R(p) := px — ¢(p) is continuous, it achieves a maximum on [0, 1]. From
the first order condition of the defining equation for ¢*, if the maximum is achieved in (0, 1), we
have: oR
?pzx—ab’(p):w—f(p):O,

so for the maximizer pyax We have f(Pmax) = T = Pmax = f (). Now, since f is increasing
and x € f([0,1]), we have R'(0) = x — f(0) > 0, with equality if z = f(0). Similarly, R'(1) =
x — f(1) < 0, with equality if z = f(1). Hence, it follows that the above characterization for the
maximizer py,.x also applies on the boundaries of [0, 1]. To conclude the proof of the identity, it
suffices to observe that ¢*(2) = Pmax® — (Pmax) = f ~1(x) — ¢(f~*(x)). The expression for
(¢*) follows by direct calculation. O

D.1 Proof under Assumption[(AT)|

With the dual convex conjugate ¢* as per Lemma|D.1] the divergence measure satisfies:

dg(p, q) = dg-(4'(q), ¢’ (p))- (12)

Let the loss for the dual problem be denoted as L*, (the divergence measure with the arguments
swapped), and let T¢ be the dual renormalization map from Lemma@ applied to pg, i.e.,

k

L*(Q) - prélll’l D¢((PQ pQ“) (p7 OV k)) - Igll’l de) pzjap]) + SQC» where SQC Z dd)(pjvo)
= JEQ

k
Z s, [T5(P)]) + Stye-

D.1.1 Decomposition of the loss difference

Using the form of the loss difference in Lemma (C.2)) and (I2), we can compute the loss difference
for the dual problem as follows:

1%
L( L*( Zd¢pivTS’ Z p117TS ])
e @ Zd¢ (T3 (p));) Zd¢=« ))& (i,)

Indeed, changing the potential ¢ to ¢*, and changing all the arguments p;,, piQ,Tg,Tg, to
¢ (pi; ) ¢/(p¢/j ), &' (T§), ¢ (T§) respectively in Lemma (C.2) suffices. Thus, under the same setup
of the two subsets S = [k] and S’ and denoting ¢’ = f, we obtain:

L*(S") — L*(S) = D¢* (F(T% (D)), F(T5(p)))
+ Z (T3 ()];) — FATE@))) (™) (FUTE)])) — (0 (F(pi,)))

+ Z P50 (607 (i) = (67 (i) -
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Since (¢*)’ = f~1, this further equals
Divg- (f(T5 (p)), f(T5(p)))

I/
k k

+ 3 T W)) — FTEL) (TN~ p) + 30 £ (T80 (b1, —ps)

Jj=1 Jj=1

1 r’

D.1.2 Analysis of terms based on the dual solution

Similar to the proof for the primal case, the term I >0, as Dy~ is a divergence, and I’ > 0 as
¢’ = f>0,as f(0) = 0and f is increasing. Moreover, as f is strictly increasing, if any of the i,
are not among the top-k entries, then strict inequality holds.

To analyze II, we have

k
=" (F(T5 W) — FUT5@)])) (T5@)] - i)
j=1
k *
fombenmBIS™ (¢(112 (0);) — FUTE D)) 5

F([Ts);)

j=1

Since f is convex,

(f([Ts ))y) = £(Ts5()];) = (T (Ts ()] — [T5(p)];)

(a) 1 . N i} ‘
= L) (f(Ts (p)]y) = f([T5P);)) = [Ts (p)); — [Ts(p)];

®) < 1 . ! i
éém-(ﬂﬂ’s/(?)]])— ; [T% (p)); — [T5(p)];) = 0.

In the above steps, (a) follows as f’ > 0 as f is strictly increasing and (b) follows as
ijl[TS*/ (p)); = Z?=1[T§ (p)]; = 1. This implies I > 0, finishing the proof.

D.2 Proof under Assumption [(A2)|
D.2.1 Extra notation
Since a%d¢(:1:,y) = ¢"(y) (y — ) for y > 0, we define for (x,y,v) € D :=[0,1] x (0,1] x (0, 00),
U(x,y,v) =" (y)ly —z) —v. (13)
Define the mapping derived from solving ¥(z,y,v) = 0 over y by:
&(z,v) 1 0,1] x (0,00) — (0, 1], such that [T'(p)]; = &(p;,v) for all ¢, and for optimal v.

It follows from the proof of Lemma that the solution ¢ is well-defined. Define two auxiliary
functions 1, h that will be used in the computation of the Bregman costs below, such that for all
(z,y,v) € D:

¢($7 y) = (b(y) - ¢/(y)(y - 37), and h(l‘, V) = w(l‘, f(x7 V))
D.2.2 Properties of the auxiliary functions

Lemma D.2 (Derivatives 25, %), Define v : [0,1] x (0,1] — [0,00) as v(z,y) = ¢"(y) +
@" (y)(y — ). We have for all (x v) €[0,1] x (0,00):

3 1 RS ¢"(&(x,v))

" ey M e T ) .
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Proof. The proof of either identity follows by applying implicit differentiation to the function ¥. Fix
x €0, 1] and consider

F(y,v) = ¥(z,y,v) = ¢"(y)(y—=x) —v for(y,v) € (0,1] x (0,00).
Because ¢ is C? on (0, 1], F is continuously differentiable, and
oFr
W) = ")y —2)+¢"(y) = v(z,y) > 0
by Assumption Hence, by the implicit function theorem, the map v +— &(z, v) is C! with

%(xy)__aF/ay_ 1
o' OF/oy  v(x(x,v))

For the latter identity, fix v > 0 and define
G(Ia y) = \I/(l‘,y, V) = ¢N(y)(y - 1‘) -V, (l‘7y) S [03 1] X (07 1]

For each z € (0, 1] let yo := &(xo,v) € (0, 1] satisfy G(zo, yo) = 0. We have %—f(m,y) =v(z,y).
Assumptiongives v(z,y) >0forall0 < y < 1and 0 < = < y. Hence 0G/9y(xo, yo) # 0.

Since G is continuously differentiable and 0G/dy # 0 at (xg, yo), the implicit-function theorem
guarantees a C' map = — £(x,v) in a neighborhood of z with G(z, £(z,v)) = 0.

Differentiating G (z, £(z,v)) = 0 with respect to « and using 9G/dx = —¢" (y) gives

oG  0G 9 7 0
0= % "oy a*f; = —¢"(¢(@,v)) +v(%€<%”>>a*§’
SO
¢ _ (&)
90" = o€ )

When z = 0, the same argument applies, because %(O,y) = v(0,y) > 0 and 0G/0x|(o,y) =

—¢" (y) is finite (the solution y = £(0, v) is strictly positive, so ¢ (y) is finite even if ¢’ (y) — oo as
y } 0). Thus 9¢/0x| o, exists and the same formula holds. This completes the proof. O

Lemma D.3 (Derivative %). Under the condition that x — u(x) := z¢"(x)/¢' () is non-

decreasing from Assumption|(A2)| we have %(L v) <0 forallz € [0,1] and v > 0.

Proof. For the derivative with respect to v, observe first that

%}(I, y) =0~ [¢"Wy+ W] +x¢"(y) =" ) (z—y).

Hence, by the chain rule,

B oy o€ _ 9¢
5,0 (@&, v)) = 8—y(x,£(% V) 5, (@) = ¢"(E(x,v) [0 = &(a,v)] 2> (2, v).

Due to the defining equation ¢" (£) (£ — ) = v, this simplifies to

oh 0 ¢ v
- = — =y - - <
8V (Z,l/) ayd’(%ﬁ(%”)} v ay(xﬂy) U(x7§(x,y)) X 07
where the last equality uses %(x V)= _ and v > 0 O
quatty v T v(a:,f(x,l/)) ’

Lemma D.4 (Derivative %). Assumption|(A2)|implies %(x, v) 20 forallz € [0,1] and v > 0.
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Proof. First recall that
Yy =o(y) ='Wy —2) = Z-(@y)=¢W),

Hence, with y = £(z, v),

oh o o ¢ , p 9
a?(“"’”):ax< §)+37( 5)%(x,v)=¢(€)+d> (E)[w—«ilafx(x,V)-

Because £ = £(x, v) satisfies ¢” (§) (£ — x) = v, we have

N SN 115
@) = (O —v (@) = ¢(€) —v o

Write

N(z,v) = ¢'(£)¢"(€) + (€ —=z)[¢'(§) ¢" (&) — " ()] = ¢'(€) ¢"(&) + (£ — z) A(),
where A(t) := ¢/(t)¢" (t) — ¢ (t)*.
Case 1: A(€) > 0. Because £ > x from Lemma the second term is non-negative; with ¢, ¢” > 0
the first term is also non-negative, so N > 0.
Case 2: A(&) < 0. Since £ > x, we have

N(z,v) = ¢'(£)¢" (&) +EAE) = ¢'(£)*/(€),
where u(t) :=t¢"(t)/¢'(t). Indeed,
W' () ¢ ()7 = ¢' (1) [0 (1) + 10" ()] — 18" (£)* = &' ()" (1) + t[&' ()" (t) — &" (1)?].

By Assumption u is non-decreasing, so u'(§) > 0; hence N (z,v) > 0 in this case as well.

Because v(x,€&) > 0 and N(x,v) > 0 in both cases, we conclude Oh(z,v)/0x > 0 forall z € [0,1]
and v > 0, thereby proving the lemma. O

D.2.3 Proving the dual greedy property

Denote an arbitrary subset of the indices by: S C [J]. Let vg be the corresponding Lagrange
multiplier. Below, for a vector € RY and a set S C [V], we denote by z[S] the sub-vector of =
restricted to the coordinates in S. Since ¢’(0) = 0 by the assumptions of Theorem denoting

= 27{1 1 d¢(pm, 0) + ¢(0 )|S| we can write for every S:

D¢' p,D Z (b pm - ( )]m) - ¢/([T(p)]m> : (pm - Z d¢ DPm,;, 0
meS me[J\S
=Y —@(TPm) = ¢(TP)m) - (T(@)lm = pm)) +T
mesS
= 3 s L)) +T = S ~hpm,vs) + T
mesS meS

Now, let us prove that the greedy property holds. Suppose S is optimal among all subsets of indices
of size k but does not consist of some of the top k probability tokens. Then there exist some 7 # j
suchthati € S, j ¢ S, and p; > p;. Denote S’ = S\ {i} U {j}.

Let vg, vs: denote the choice of v that makes the projected probabilities sum to unity. Now since S’
only differs from S in that it includes the larger p; > p;, we can conclude that vg > vg/.

Then, using the above formula for the value of the objective function on an arbitrary subset, we have:

Dy (p, p[S]) — Dy (p, DIS"]) = hpj vs) — hpisvs) + D (Mpm,vs) = h(pm, vs)) -
meS\{i}

Now, since h decreases in v by Lemma|[D.3] we have that the sum is nonnegative since vg: < vg. As
for the remaining term, we have:

h(pjvys’) h(p]7l/s) h(pmVS)
where the first inequality is by the fact that vss < vg and Lemma[D.3] and the second inequality is
by the fact that p; > p; and Lemma@ This concludes the proof of the dual greedy property under
Assumption @
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E Proof of discrete convexity for primal Bregman projection

We follow the notations that were introduced in the beginning of the proof in Section[C| To show that
the cost function is discretely convex in & for the primal, it suffices to show that

LK) i= min Do((p:0v—1). ) = Dol(Tiy () Ov 1))

is discretely convex in k. Indeed, the difference cost(k) — L([k]) = Ak is linear in k.

To simplify notation, let us denote L([k]) by L(k) and T by T}. From Lemma (C.T)) we know that
with Sy == Sy — ke (0)

k
Z — &' () [Ti(p)];} + Sv.

Using (10), we know that f([T%(p)];) = f(p;) + v V j € [k]. Again, we simply denote v} as .
For j € [k], letting © = f(p;) + vx in Lemma[D.1} we have:

([T (p)];) — &' (0j)[T(p)l; = S(F " (F(pj) + vi)) — Fpi) f~ (f(pi) + )
=o(f (@) — fp)f N x) = 2f M) — ¢*(x) — fpj)f ()
=(z— f(p)f Hx) — ¢"(z) = vk [T (p)]; — & (f (ps) + i)

But now, using that the nonzero entries of Ty (p) must sum to unity, we find the following
simplification:

k
L(k) = Z {vilTe(0)]; — &*(F(pj) +vi)} + Sv

k k
= v Y _[Te(p)l; — Y ¢"(f(p;) +Vk)+SV—Vk—Z¢ (pj) +vi) +Sv.  (15)
j=1 j=1 j=1
Now, define the auxiliary function W for all j, v for which the expression below is well defined:

k
W (k,v) = V—Z¢*(f(pj)+u), (16)

where p is implicitly kept fixed. From the above calculation, we thus obtain after canceling out terms:
Lk+1)—2L(k)+ Lk —1) =W(k+ 1,vg41) = 2W(k,vi) + W(k — 1, v5-1).

To prove that this is nonnegative, we leverage that W (k, -) is strictly concave in v for each k, which
follows as the Legendre dual mapping ¢* is strictly convex since so is ¢. Then, observe that for every

j9

k k
W) = 1= 3 (6" () +0) =1 = D2 (s) + ). (1)
Thus, " ”
k k
W(k,v) |yer=1— Zf Yf o) +ve) =1=> [Th(p)]; =0.

j=1
As W (k, -) is strictly concave in v, W(k;, ) is maximized at vy. Thus, we have: (1) W(k+1,v511) >
W(k+1,v),and Q) W(k — 1,v5-1) > W(k — 1, vy). With these in hand, we have:

Lk+1)—2Lk)+ Lk —1)=W(k+ 1,vgp41) —2W(k,v) + W(k — 1,v5-1) (18)
> [W(k+1,v,) —W(k,vg)] — [W(k,vg) = W(k —1,uv)].
Now, due to the definition of W, the last display equals
=" (f (Pe+1) + i) + &7 (f(pr) +vi) 2 0, (19)

the inequality holding as pi > pr+1, and as the mapping p — ¢*(f(p) + v ) is increasing in p since
so are ¢* and f. This concludes the proof.
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F Proof of discrete convexity for dual Bregman projection

We denote 6, (y) = ¢”(y)(y — x). As observed before, we have for all admissible x, y that

0

and the convexity condition for the second argument of d of Assumption is given by:

D 0u) >0 6() + 6" W)y — ) 20 forall y > >0
Y

The dual projection for any 1 < ¢ < j < V is given (for optimal Lagrange multiplier v/;) by:
Op: ([T5 (0))i) = v5 & &" ([T P)])(TF (P))i — pi) = v

Denote the dual Bregman objective, as a function of the selected sparsity k, as:

cost” (k) = Dy (p, (Ti: (), Ov—k)) + Ak

We now demonstrate that cost* (k) is discretely convex in k. For this, we will directly show that the
second-order differences of this function are nonnegative at every k € {2, ...,V — 1}. Specifically,
we can write:

A*2(k) := cost*(k 4+ 1) — 2cost* (k) 4 cost*(k — 1)
=Dy (p, (T331(), Ov—k—1)) — 2D (p, (T3 (p), Ov—&)) + D¢ (p, (T _1(p), Ov —k41))

We now decompose this quantity into three terms corresponding to three ranges of index i € [V],
namely i € [k —1],i € {k,k+1},andi € {k+ 2,...,V}. We obtain:

k—1

A%2(k) = {mwmnﬂun A (01, [T (P)]0)} + {do i, T2 0))e) — o [T (0)1)} ]

+{(¢ 0) = ¢'(0) - px) — 2(d(px) — ([T (P)]k) — &' ([T (P)k) - (P& — (T3 (P)]k))
+ (o(pk) — T;m( k) = &' (T (P)]k) - (or — [T (P)]e)
+
+

.
Il

(P(Pr+1) — ¢(0) = ¢"(0) - pry1) — 2 (¢(Pry1) — #(0) — ¢'(0) - pry1)
(Pprt1) = O[Ty 1 (@)kr1) = ' ([ Ty (0)kr1) - (Prrr — [Tria (p )}kﬂ))}

- Z {dy(pi, 0) — 2d4(pi, 0) + dg(p;, 0)}.
1=k+2

The last sum is identically zero, so we engage with the other two ranges of indices.

Range 1: i € [k — 1]. For Range 1, recall that for any convex function v, it holds for any two
points z, y in its domain that ¢)(x) — ¥ (y) = ¢¥'(y)(z — y). Now, notice that for each 7 in Range 1,
each of the two terms in figure brackets can be bounded via the convexity of d,(z, -) in its second
argument as:

Ao T ) = o 201 > (o)) | (a0 - 0
= Op, ([Ti (P)]:) - ([Tk+1( i — [T (p )]) =V ([TI:H( i = [T (p)]i )

and:

Qo i (T2 (0))) — ol [T} S| (0 - T

®)l:) =
= Oy, (T (@) - ([T @) — [T P)):) = v - ([T ()]s — [T (P):) -



752 As a result, we may simplify the Range 1 sum as follows, using that by definition, the first j terms in
753 the projection 7' for each j € {k —1,k, k + 1} sum to unity:

k—1
Range 1 Sum > vy - ({[Tia (o)) — [Ti ()i} + {[Tios 0 — (T3 ()i })
i=1

k—1 k—1
( [Tria(p)]i —2 Z T (p)]i + Z[TZ1(PH2>
i1

=1

=V ( Tk+1 - [Tk+1( )]k+1) —2(1 = [T (p)]k) + 1)
= v (2[T5( Tk+1( Nk = [T (P)k41) -

754 Range 2: i € {k,k + 1}. For Range 2, we first note that the following three types of terms cancel
755 out: ¢(0), &(pr), ¢(pr+1). Furthermore, terms involving ¢'(0) vanish by assumption.

756 The remaining terms in the Range 2 sum can then be written as:
Range 2 Sum > { — 2 (—((T (n)]x) — &' (T (D)) - (s — [T (9)]1))
+ (=0T @) = & (T ) - (or =~ [T (0)1e) |
+{ = ST O)ert) = & (TEa D) - i — [T 0)len)

757 Now, we can bound

=" ([Tr 1 (D)kt1) - Prrr = =9 ([T (0)]k41) - Prs

758 using that py > pj_1 and the strict convexity of ¢. We find the lower bound
Range 2 Sum > ~2{ — o((T5:(p))x) — &' (T (0)]&) - (px ~ [T (p))e) |
+{ = ST ) = & (T ) - (0 — [T (0)]e) }
+{ = 6T a D) = ¢ (Ta Plasn) - (o = [T ()i }-
759 By adding and subtracting the term ¢(py,) twice, we have the following equivalent bound:
Range 2 Sum > ~2{ 6(p) — $((T5 ()]k) — &' (17 ()i - (o — [T (D))}
+{00) = ST ) — 9 (T D) - (r — [T (0)))}

+{60) = ST )ks) = & (T )s) - (o — [Tea (i) |
= —2dy (. [T D)Ik) + o (s [T (9))8) + g (s [T ()1

760 Returning to the main bound We can now merge the cases, resulting in the following tight lower
761 bound of the second differential of the cost function:

A*72(k) = U (2[le )k — [Tl:+1(p)]k - [TZ+1(p)]k+1>
— 2y (pr, [T (0)k) + dg (o1 [Ti 1 (0)]k) + dg (Pres (T2 ()] k1) -

762 Now, define the following key auxiliary function v, : [0, 1] — R, such that for all z € [0, 1]:
Yi(x) = v - — dg(pr, ).

763 This lets us rewrite our lower bound equivalently as:
A2 (k) = 29 (T ) — ¥ (T k) — ¢ (T 0)ir) - (20)

764 We now establish a monotonicity property for .
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Lemma F.1. For every k € [V] the function 1y (z) is increasing on x € [0, [T} (p)]x]-

Proof. We consider the derivative of the function :

SEUN(E) = i = (k) = i~ O, () = By (T 0)]) — O (0),

where we have used the connection between 6, (y) and vy, (see Lemma .

Now, recalling that by assumption, 8%096 (y) > 0forally > « > 0, and using that [T} (p)]x > px by
the properties of the dual projection method (see Lemma[B.T)), we have that:

5y V(@) = Op, ([T (P)]k) = Op () = 0,

solongas 0 < z < [T} (p)]k. O

Continuing, by the properties of the dual projection, we have:

[Ty (p)]k = [Tl:-&-l(p)]k > [le-x-l(p)]k—s-y

In view of Lemma[FI] (20) implies that

A2 (k) = [v ([Tr (k) = ¢ ([T 0)]e)] + [ (TE@)) = ¥ (L (P)ke)] = 0+0=0.

This concludes the proof of dual discrete convexity of the Bregman cost function.

G Algorithmic details

G.1 Computing the dual renormalization map

Recall that when ¢ is dual valid, the renormalization map Tq’; is uniquely defined for z € Agyp, 1 With
>; i > 0 by the fixed point equation (see Lemma|B.1})

k
[T (x))i = xi4v™/f/([Tj(x)];) foralli € [k], where v* € R is chosen so that Z[T;(x)]l =1
i=1

To compute T}, recall from Sectionthe function ¥ from (13) with ¥ (z,y,v) := ¢"(y)(y —
x)—v forall z,y,v. Then, for a fixed v, [T (x)]; satisfying the equation [T'(x)]; = xz;+v/f'([T(x)];)
is equivalent to solving ¥ (z;, y;,v) = 0 for y; = [T'(x)];. The monotonicity properties from Lemma
then suggest the following algorithm, consisting of a binary search over v € (0, M], and then
over each coordinate of T solving ¢ ([T'(x)];) ([T (x)]; — ;) = v.
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Algorithm 1 Dual Renormalization Map 77; () via Nested Binary Search

Require: Convex generator ¢ with derivatives f = ¢/, f” = ¢"; input vector z € Agyp, x With
> x; < 1;tolerance e > 0
Ensure: Renormalized vector p = T};(z) € Ay
1: function DUALRENORMALIZE(x, ¢, €)

2 k < length of x

3 f// « ¢//

4 M+ ¢"(1)- (1 —max;z;) > Upper bound on feasible v
5: Initialize viow < 0, thigh < M

6: while Vhigh — Vow > € do

7 V< (Vlow + Vhigh)/2

8 fori =1to k do

9: x; < ]

10: y[i] + SOLVEROOT(z;, v, ", €)
11: end for

12: G >0yl

13: if G < 1 then

14: Viow < V

15: else

16: Vhigh < V

17: end if

18: end while

19: return y

20: end function
21: function SOLVEROOT(z;, v, f", €)

22: a4z, b1

23: while b — a > £ do

24: m ¢+ (a+b)/2

25: U f"(m) - (m—x;) —v
26: if U < 0 then

27: a<—m

28: else

29: b+ m

30: end if

31: end while
32: return (a + b)/2
33: end function

783 G.2 Pseudocode for algorithms

784 See Algorithm [3|and Algorithm [ for pseudocode for sparse primal (resp. dual) Bregman decoding.
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Algorithm 2 Discrete Binary Search for Unimodal Cost Minimization

Require: Callable function COMPUTECOST, maximum support size V'
Ensure: Optimal support size k* minimizing COMPUTECOST(k)
1: function BINARYSEARCH(COMPUTECOST, V)

2: c1 < COMPUTECOST(1)

3: co < COMPUTECOST(2)

4: if Cy —C1 > 0 then

5: return 1

6: end if

7: cy_1 < COMPUTECOST(V — 1)
8: cy ¢ COMPUTECOST(V)

9: if cy — cy_1 < 0 then

10: return V'

11: end if

12: Initialize L < 1, R+ V
13: while R — L > 1do

14: m <+ [(L+ R)/2]

15: Cm < COMPUTECOST(m)

16: Cm+1 < COMPUTECOST(m + 1)
17: if ¢;41 — ¢ = 0 then

18: R+ m

19: else

20: L+ m

21: end if

22: end while
23: return R
24: end function

Algorithm 3 Regularized Sparse Primal Bregman Decoding

Require: Probability vector p € Ay, valid convex generator ¢, sparsity penalty A > 0
Ensure: Sparse decoded distribution p € Ay

1: function SPARSEPRIMALBREGMANDECODE(p, ¢, \)
Sort p in descending order: p(1y = p2y = -+ = pv)
3 Define f = ¢/
4 function COMPUTERENORMALIZATION(z € R¥)
5: Solve for v € R such that Zle Y f()+v)=1
6: return p*) with [pF)]; = £ (f(2;) + v) fori € [k]
7.
8
9

end function
function COMPUTECOST(k)

: Let x = p[1:k]
10: p*) < COMPUTERENORMALIZATION()
11: Pad with zeros: p(*) (ﬁ(lk), e ,ﬁék), 0,...,0)
12 Compute Dy(p,p) = X1, [0(6") - 60) — F:) (") — i)
13: return cost(k) = Dy,(5®), p) + Mk
14: end function
15: k* < BINARYSEARCH(ComputeCost, V')
16:  Recompute p(**) using COMPUTERENORMALIZATION(p[1:k*])
17: Pad with zeros to full length V'
18: return p(*")

19: end function
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Algorithm 4 Regularized Sparse Dual Bregman Decoding

Require: Probability vector p € Ay, valid convex generator ¢, sparsity penalty A > 0
Ensure: Sparse decoded distribution p € Ay,

1: function SPARSEDUALBREGMANDECODE(p, ¢, \)

2: Sort p in descending order: p(1y 2 p2) = -+ 2 pv)

3 Define f = ¢/, f'=¢"

4: function COMPUTEDUALRENORMALIZATION(z € RF)

5 Solve for v € R such that: Zle [T (x)]; = 1, where [T} (x)]; satisfies the fixed-point

equation: [T} (x)]; = z; + v/ /([T (2)]:).

6 return p(*) = T (z)

7: end function

8 function COMPUTEDUALCOST(k)
9

: Let x = p[1:k]
10: %) <~ COMPUTEDUALRENORMALIZATION(z)
11: Pad with zeros: p(*) (]3(1]6), - ,ﬁék), 0,...,0)

. (k (k (k

12: Compute Dy (p, M) = 31, {fb(pi) — o) — F) (pi — B ))}
13: return cost(k) = Dy (p, p*)) + Mk
14: end function
15: k* < BINARYSEARCH(ComputeDualCost, V')
16:  Recompute p(*") using COMPUTEDUALRENORMALIZATION(p[1:k*])
17: Pad with zeros to full length V'
18: return p(¢")

19: end function

H Example: a-Bregman decoding

H.1 Proof of Lemmald.3|

We first restate the lemma.
Lemma H.1. All generator functions ¢, o > 1, are dual-valid and satisfy Assumption|(A2)

Proof. For Assumption[3.2] we can explicitly write:
el a a—1 (e
x Y y T a1 x
dy(x,y) = - - =L o
+(7,9) ala—1) ala—1) a—l(x v) a a—17 +a(a—1)
Therefore, the second derivative in y of this expression is
(@ =1y = (a=2)ay* 7 =y (yla—1) —z(a = 2)) =y* > (yla = 1) + (2 — a)).
Now, if y > z, then using o« — 1 > 0 we have that the above expression is
>y Pa(a—1) +2(2-a) =y* Pz >0,
confirming the convexity in y. Now for the condition that z — wu(z) := z¢”(x)/¢'(x) is non-
decreasing from Assumption|(A2), we can observe that

(e

/ n " 2 xa_l 3 2\2 x2o¢—4
_ - . _ 2 o— _ a— — _ .
#(2)9" () = ¢ (@) = T (0= 2)a2 0 — (22 = - T —
Therefore, we identically have:
) m?a—3 $2a_4
/ /1 / /1 /!
— = — = 0
# ()¢ () + 2(¢/ ()" (@) — 6" (1)) = T — 2" =0,
thus concluding the proof. O
H.2 Proof of Proposition[4.2]
1
Recall the a-renormalization map [T, (p)]; = (p{~ ' +v)*,i € [k], where the shift parameter

v = v(a, p) is chosen so that Zle [Tw(p)]; = 1. We treat each value (or limit) of « in turn.
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The limit o« — —oo. Define

k
Fs(v) = Z(prrv)l/ﬂ, B:=a—-1<0.

i=1
Because © — x!/7 is strictly decreasing and convex on (0,00) for § < 0, Fp is strictly
decreasing and continuous on the interval (f min; piﬁ , oo). Moreover, lim,, 4~ min; p? Fs(v) = o0
and lim, 1o F3(v) = 0, so a unique root vz with Fg(rg) = 1 exists. Because Fg(0) = S :=
Zle p; < 1and Fjg is decreasing, we have vg < 0.

a 1
Letg\™ = [T.(0)li = (07 +vp) /P

> qz(a) =1

, and ¢* be the index where p; is largest. Using the constraint

' —1—qua)—6—|—p +> (p pi—q™) = pi- +46.
1F£T* 1F£T*

Raising ¢ = (p. + ug)l/B to the power 3 < 0 yields

vi=(pi+6+Rs)" —pl,  Ro:=3 (ni—4q) € [0,0]. 1)
i;ﬁi*
Fori # i*, we have v3/p’ — 0. Indeed, @)nnphes lvg| < pP (P —1) with ¢ := (pix +6) /pir > 1.
Because 3 — —o0, ¢® — 0, we have |vg| = ( ) = o(pi ) Then,
(o) _ 1P
@ =p(1+ ) o iA (22)
pz

Summing (22) over ¢ # i* and using ), qia = 1 gives

¢ =1->" ¢ 1= pi=pi +4 (23)
itix iix

Equations 22)) and (23)) establish ¢*) — T (p) component-wise, completing the proof.

The case « = 3. Now a — 1 = 1, hence [T15(p); = (VPi + 1/)2, i € [k]. Set s :=

Z?:l /Dj and A := Z?Zl p;. The normalization condition becomes

(\/]97+u) = A+ 2sv+ k2.

HM»

Solving kv? + 2sv + (A — 1) = f or the root that yields non—negative probabilities gives v =

—s++/82+k (1—-A)
k

. Hence

2
Tos()]; = <\/@+ ; +k(;“4)‘3> -

The case o = 2. Here o — 1 = 1, so Definition[d.1]yields [T2(p)]; = p; + v, i € [k]. The

o .o . 1->F_ . p;
normalization condition gives 1 = Zle(pi +v) = Zle p; + kv, hence v = #.

Substituting yields
E

k )

T2(p)li = pi + i € [k].

The limit o — +o00. Write 8 := a — 1 — +00. Let v = ¢? with ¢ € [0, 1]. Then

[Ta(p)li = (pf—l—cﬁ)l/ﬂ = exp{%log@iﬂ-&-cﬁ)}.

Using 5 log(a” + b7) — log(max{a,b}) as f — oo gives lima—o0[Ta(p)]; = max{p;,c}.
Choose the water level c so that Zle max{p;,c} = 1. This furnishes the claimed water—filling
rule.

The four cases above prove Proposition[4.2] O
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H.3 Illustrating primal and dual renormalization

We consider the peaked vector v = [0.1, 0.001, 0.001, 0.001, 0.001], and plot how both of its distinct
constituent values get transformed by the primal and dual Bregman «a-renormalization (by symmetry,
all copies of 0.001 are guaranteed to get mapped to the same value by any of our renormalizations).
The resulting plots are in Figure[d] As predicted by our theory, both renormalization families coincide
at three values of the parameter, namely at « € {1, 2, co}. Furthermore, the primal family evolves
more gradually than the dual family between the endpoints of the parameter interval o € (1, 2], while
the reverse behavior occurs for « € (2, 00) (where both renormalizations gradually converge to the
water-filling limit which, in this case, is the uniform distribution).

Renormalization of Top Coordinate vs a Renormalization of Second Coordinate vs a
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Figure 4: Comparison of primal and dual renormalization maps: The transformation of the larger
value (0.1, left) and of the smaller value (0.001, right).

H.4 TIllustrating general nonconvexity of dual renormalization

Figure[3]illustrates that the dual Bregman objective can in general be non-convex for large cv.

Plot of Dg(x, y) for x, y € [0, 1] for different a
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Figure 5: Nonconvexity of the Bregman dual landscape on the square (x,%) € [0, 1]°.

H.5 Illustrating discrete convexity

Figure@illustrates that the loss function cost(-) defined in (6] is discretely convex for both the primal
and dual decoding strategies. Here, we have chosen V' = 80 and the regularization parameter \ as
1/80. When k is close to V/, the renormalization maps are all close to the true vector p, regardless of
the value of a, and hence the loss primarily depends on the regularization term Ak, which here equals
Ak =1 for k = 80. Thus, all curves (corresponding to different values of «) for both the primal and
dual plots, asymptote to linearity and converge to this value at k = 80.
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Figure 6: Discrete convexity of the function & — cost(k) for primal and dual Bregman «-decoding.

H.6 The simultaneous effects of Bregman decoding and temperature scaling
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Figure 7: Comparison with changing the temperature.

Here, we provide a plot to help compare the simultaneous effects of Bregman decoding and
temperature scaling. We use the same simulation setting and plotting style as in our figure from
the introduction (Section [I); except we only plot the nonzero probabilities (i.e., the top & = 10
probabilities), and we plot the relative sizes of the probabilities compared to the standard top-%
decoding. Further, we use the same « and temperature hyperparameters used in our experiments in
Table[T} The results are shown in Figure[7} Standard top-k decoding corresponds to o« = 1 and T’ = 1.
From the figure, it appears that the effect of & > 1 is to moderate/regularize the amount by which
the small probabilities are pushed to zero; which could potentially be one reason why a-Bregman
decoding with o > 1 can perform better at high temperatures.

I Supplementary experimental details

I.1 Compute resources
The experiments were conducted on a system running Rocky Linux 8.10, with 64 CPU cores of

Intel(R) Xeon(R) Gold 6448Y processors at 2.10 GHz, 1 TB of RAM, and 8 NVIDIA L40S GPUs
with 46 GB of memory each. All experiments can be done with only one GPU and multiple GPUs
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Figure 8: MAUVE scores results between generated and human-written text for GPT2-large (left
panel) and LLaMA 3.1 8B (right panel), for various k values. We show top-k decoding and primal
decoding with « € {1.5,2.0}. Standard deviations are estimated using 50 bootstrap resamples

were used only to parallelize experiments. The software environment used Python 3.11.11, PyTorch
2.5.1, and CUDA 12.4.

.2 Supplementary experimental results

In this section, we provide additional experimental results to supplement those from Section 3}

Table shows results analogous to those in Tablefor A € {0.1,0.001}.

Table 2: Accuracy on GSMS8K for LLaMA 3.1 8B using Bregman primal decoding (A € {0.1,0.001},
a € {1.5,2.0}) and top-k decoding, across different temperature settings. For top-k, k equals the
averaged optimal k* from the corresponding primal decoding run (matching temperature, A, and «).
Standard deviations are estimated using 1000 bootstrap resamples.

A=0.1 A =0.001
a=15 a=20 a=15 a=20

0.3 [83.93+1.01 84.46+1.00{84.69+0.99 84.69+0.99/83.93+1.01 85.29+0.9883.62+1.02 83.62+1.02
0.7 |83.47+1.02 85.2940.98/84.69+0.99 84.69+0.9982.18+1.05 82.41+1.05/83.78+1.02 83.78+1.02
1.0 [84.46+1.00 84.38+1.00/84.69+0.99 84.69+0.9978.92+1.12 80.89+1.08|78.54+1.13 81.20+1.08
1.5 [83.78+1.02 84.38+1.00/84.69+0.99 84.69+0.99(69.22+123 73.92+121|64.67+1.32 75.97+1.18

Temp Top-k (A =0.1) Top-k (A = 0.001)

Figure 8] presents the MAUVE scores comparing generated and human-written text under different
decoding strategies. While primal decoding shows a slight advantage over top-k decoding, the
differences are not statistically significant. We report standard deviations estimated from 50 bootstrap
resamples; a higher number of resamples was not used due to the high computational cost of MAUVE
score evaluation.

L3 Experiments for Larger models: Qwen and Phi

We implement our experiments for Qwen2.5-14B-Instruct and Phi-3-medium-4k-instruct.

Figure 0] shows analogous results to Figure 3] Table [3]and[d]show the accuracy on GSMS8K analogous
to Table [T|and [2] Table [5]and[6]show analogous results for Phi-3-medium-4k-instruct model.
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Figure 9: Perplexity and repetition frequency differences between generated and human-written text for Phi-3-
medium-4k-instruct (left two panels) and Qwen2.5-14B-Instruct (right two panels), for various k values. We
show top-k decoding and primal decoding with o € {1.5,2.0}. Standard deviations are estimated using 1000
bootstrap resamples.

Table 3: Accuracy on GSMS8K for Qwen?2.5-14B-Instruct using Bregman primal decoding (A € {0.1,0.01},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, A, and «. Standard deviations are over 1000 bootstrap resamples.

A=0.1 B A =0.01
a=15 a=20]| TPEkA=01 | 75 99

0.3 |82.71+1.04 82.26+1.05(81.42+1.07 81.43+£1.07|82.64+1.04 82.18+1.05|81.43+1.07 81.43+1.07
0.7 |81.73+1.06 81.05+1.08(81.43+1.07 81.43+£1.07[79.53+1.11 80.21+1.10{80.21+1.10 81.43+1.07
1.0 [80.59+1.09 81.50+1.07|81.43+1.07 81.43+1.07|78.85+1.12 80.29+1.10{79.30+1.12 81.43+1.07
1.5 |80.89+1.08 81.73+1.06/81.43+1.07 81.43+£1.07|77.18+1.16 78.99+1.12|77.48+1.15 81.43+1.07

Temp Top-k (A = 0.01)

Table 4: Accuracy on GSM8K for Qwen2.5-14B-Instruct using Bregman primal decoding (A €
{0.001,0.0001}, o € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k™ from primal decoding with matching temperature, A, and «.. Standard deviations are over 1000
bootstrap resamples.

A = 0.001 B A = 0.0001
a=15 a=20|ToPkA=0.00D) | = "9y

0.3 |82.11+1.06 82.49+1.05(82.41+1.05 82.56+£1.05[81.88+1.06 82.26+1.05{82.03+1.06 82.41+1.05
0.7 [80.21+1.10 79.76+1.11{80.06+1.10 80.21+1.10{79.61+1.11 79.76+£1.11|79.98 +1.10 80.06+1.10
1.0 |78.92+1.12 78.32+1.14/79.38+1.11 79.30+1.12{78.47+1.13 79.30+£1.12|78.77+1.13 79.38+1.11
1.5 |76.72+1.16 78.01+1.14|75.89+1.18 77.48+£1.15{74.91+1.19 74.91+1.19|71.19+1.25 75.89+1.18

Temp Top-k (A = 0.0001)

Table 5: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding (A € {0.1,0.01},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, u, and «.. Standard deviations are over 1000 bootstrap resamples.

A=0.1 B A =0.01
a=15 a=20| TPkGA=0D | 75 4920

0.3 |86.81+0.93 87.87+0.90/85.97+0.96 85.97+0.96|87.41+0.91 87.04+0.93|87.26-+0.92 87.26+0.92
0.7 |86.96+0.93 88.17+0.89/85.97+0.96 85.97+0.96/85.67+0.97 86.88+0.93|88.10-+0.89 88.10-+0.89
1.0 [86.35+095 87.11+0.92|85.97+0.96 85.97+0.96/84.99+0.98 83.93+1.01{85.44+0.97 85.44+0.97
1.5 [87.19+0.92 86.58+0.9485.97+0.96 85.97+0.96/82.94+1.04 83.70+1.02|80.14+1.10 80.14+1.10

Temp Top-k (A = 0.01)

Table 6: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding (A €
{0.001,0.0001}, o € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k™ from primal decoding with matching temperature, y, and «. Standard deviations are over 1000
bootstrap resamples.

A = 0.001 B A = 0.0001
a=15 a=20| PPkGA=000L1 7" " 9p

0.3 |87.11+0.92 86.88+0.93/86.50+0.94 86.81+0.93|87.49+0.91 87.49+0.91|86.20+0.95 86.50+0.94
0.7 |86.81+0.93 86.50+0.94/85.29+0.98 85.67+0.97[84.99+0.98 84.91+0.99|85.60-+0.97 85.29-+0.98
1.0 [83.62+1.02 82.34+1.05(82.71+1.04 82.79+1.04/82.71+1.04 82.11+1.06/81.35+1.07 82.71+1.04
1.5 [76.95+1.16 78.92+1.12(69.75+1.27 73.84+1.21|72.25+1.23 76.04+1.18/62.62+133 65.81+131

Temp Top-k (A = 0.0001)
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1.4 Experiments for TriviaQA

Table[7]and [§] show accuracy on TriviaQA for LLaMA3.1-8B model. Here we choose 10% (=~ 1800
questions) proportion of TriviQA validation dataset for evaluation.

Table 7: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding (A € {0.1,0.01},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, A, and «.. Standard deviations are over 1000 bootstrap resamples.

A=0.1 Top-k (A =0.1) =0.01 Top-k (A = 0.01)
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 |67.80+1.10 67.47+1.11(67.58+1.11 67.58+1.11166.57+1.11 66.69+1.11|166.74+1.11 66.74+1.11
0.7 [65.68+1.12 66.35+1.12{67.58+1.11 67.58+1.11(64.23+1.13 63.84+1.13/65.01+1.13 65.01+1.13
1.0 |65.63+1.12 66.69+1.11|67.58+1.11 67.58+1.11[61.06+1.15 61.17+1.15{62.67 +£1.14 62.67+1.14
1.5 |64.85+1.13 66.96+1.11|67.58+1.11 67.58+1.11{59.78+1.16 60.84+1.15|60.84+1.15 60.84+1.15

Temp

Table 8: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding (A € {0.001,0.0001},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, A, and «. Standard deviations are over 1000 bootstrap resamples.

A =0.001 Top-k (A = 0.001) A = 0.0001 Top-k (A = 0.0001)
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 |66.85+1.11 67.58+1.11(67.13+1.11 67.13£1.11/66.69+1.11 67.08+1.11|/67.19+1.11 67.58+1.11
0.7 163.40+1.14 63.18+1.14/64.68+1.13 64.79+£1.13]62.73+1.14 62.73+1.14|63.79+1.13 63.68+1.14
1.0 {59.00+1.16 59.00+1.16/60.17+1.16 62.23+£1.14[57.99+1.17 59.11+1.16|58.55+1.16 60.11+1.16
1.5 [55.04+1.17 55.71+1.17|52.81+1.18 56.38+1.17|/49.19+1.18 52.59+1.18|50.19+1.18 51.31+1.18

Temp

Table 9] and [I0] show analogous accuracy results for Phi3-medium-4k-instruct on TriviaQA.

Table 9: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding (A € {0.1,0.01},
a € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the averaged k™ from primal
decoding with matching temperature, A, and «.. Standard deviations are over 1000 bootstrap resamples.

A=0.1 Top-k (A =0.1) A=0.01 Top-k (A = 0.01)
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 |58.44+1.16 59.67+1.16/59.05+1.16 60.50+£1.15{59.33+1.16 59.22+1.16|59.11+1.16 59.39+1.16
0.7 [57.44+1.17 58.22+1.16{56.77+1.17 60.50+1.15(55.21 +1.17 55.88+£1.17|55.54 +1.17 56.77 +1.17
1.0 |56.60+1.17 56.94+1.17|54.54+1.18 60.50+£1.15[52.09+1.18 51.75+1.18{50.31+£1.18 52.37+1.18
1.5 |57.16+1.17 58.22+1.16/50.14+1.18 60.50+£1.15[49.47 +1.18 50.19+1.18|43.57+1.17 45.29+1.18

Temp

Table 10: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding (A €
{0.001,0.0001}, o € {1.5,2.0}) and top-k decoding, for various temperatures. For top-k, k equals the
averaged k™ from primal decoding with matching temperature, A, and «.. Standard deviations are over 1000
bootstrap resamples.

A =0.001 Top-k (A = 0.001) A = 0.0001 Top-k (A = 0.0001)
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 |59.72+1.16 58.61+1.16|59.44+1.16 59.22+1.16]59.83+1.16 59.39+1.16|159.44 +1.16 59.44+1.16
0.7 |54.82+1.17 54.04+1.1853.70+1.18 54.60+£1.18{54.54 +1.18 54.43+1.18|56.21+£1.17 54.71+1.18
1.0 |48.13+1.18 49.19+1.18/49.58+1.18 50.64+£1.18{48.69+1.18 48.58+1.18|48.64+1.18 48.64+1.18
1.5 |42.51+1.17 44.18+1.17|39.55+1.15 42.67+£1.17|38.22+1.15 39.94+1.16|36.04 £1.13 37.72+1.14

Temp

L5 Adaptivity

In this section, we consider the adaptivity of primal decoding by presenting the mean, standard
deviation and entropy of the £* chosen by our method during evaluation on GSM8K and TriviaQA
datasets.

In Table we show the average k* values (and their values rounded to the nearest integer) selected
by primal Bregman decoding on GSM8K with LLaMA 3.1 8B for various temperatures, a, and A.
Table |12|shows corresponding standard deviation and entropy.
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Table 11: Mean (and rounded) average k* values on GSM8K with LLaMA 3.1 8B for various
temperatures, o, and .

A=0.1 A=0.01 A =0.001 A =0.0001
a=15 a=20|a=15 a=20|a=15 a=20 a=1.5 a=2.0

0.3 |1.2231(1) 1.1537 (1)|1.6201 (2) 1.4453 (1)[2.1274 (2) 1.7964 (2)| 2.8578 3) 2.2112 (2)
0.7 1.2295 (1) 1.1554 (1)|1.6689 (2) 1.4794 (1)[2.3193 (2) 1.9048 (2)| 3.2554 (3) 2.4974 (2)
1.0 |1.2287 (1) 1.1594 (1)[1.7519 (2) 1.5048 (2)(2.7231 (3) 2.0234 (2)| 4.6926 (5) 3.0924 (3)
1.5 [1.2331 (1) 1.1566 (1)|1.8106 (2) 1.5189 (2)|4.1842 (4) 2.4067 (2)|14.2539 (14) 5.6002 (6)

Temp

Table 12: Standard deviation (and entropy) of average k£* values on GSM8K with LLaMA 3.1 8B for
various temperatures, «, and A.
A=0.1 A=0.01 A =0.001 A =0.0001
a=15 a=20| a=15 a=20| a=15 a=20 a=15 a=20
0.3 ]0.46 (0.82) 0.36 (0.62)|1.07 (1.55) 0.77 (1.28)|1.89 (2.08) 1.31 (1.77)| 3.11 (2.58) 2.00 (2.16)
0.7 0.47 (0.84) 0.36 (0.62)[1.12 (1.62) 0.80 (1.34)|2.21 (2.24) 1.47 (1.89)| 3.98 (2.78) 2.53 (2.37)
1.0 0.47 (0.84) 0.37 (0.63)|1.23 (1.72) 0.83 (1.38)|3.03 (2.49) 1.65 (2.00)| 7.31 (3.21) 3.69 (2.69)
1.5 |0.47 (0.85) 0.36 (0.63)[1.30 (1.79) 0.84 (1.40)|5.37 (3.13) 2.19 (2.32)|18.01 (4.04) 7.77 (3.51)

Temp

Table [I3HT4] show analougous adaptivity results for Qwen2.5-14B-Instruct. (Here, we only show
results for A = 0.0001, which is more important for adaptivity evidence, due to time limit, will
complete afer rebuttal)

Table 13: Mean (and rounded) average k* values on GSM8K with Qwen?2.5-14B-Instruct for various
temperatures, «, and .

A=0.1 A=0.01 A =0.001 A = 0.0001
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 [1.0973(1) 1.0660(1)1.4899(1) 1.3425(1)[2.7614(3) 1.9317(2)|5.4537(5) 3.1726(3)
0.7 |1.1010(1) 1.0672(1)[1.5043(2) 1.3534(1)|2.7778(3) 1.9522(2)|5.5047(6) 3.1911(3)
1.0 |1.1000(1) 1.0666(1)|1.5171(2) 1.3591(1)[2.7985(3) 1.9723(2)|5.5603(6) 3.2493(3)
1.5 |1.1008(1) 1.0662(1)|1.5211(2) 1.3628(1)[2.8761(3) 2.0028(2)|5.7831(6) 3.3285(3)

Temp

Table 14: Standard deviation (and entropy) of average k£* values on GSM8K with Qwen2.5-14B-
Instruct under A = 0.0001 and varying temperatures.

Temp| a=1.5 a=20

0.3 |10.75(2.81) 4.88(2.26)
0.7 | 10.71 (2.86) 4.85(2.29)
1.0 | 10.70 (2.90) 4.88 (2.34)
1.5 | 10.75 (3.03) 4.90 (2.42)

Table [T5HT6] show analougous adaptivity results for Phi-3-medium-4k-instruct.

Table 15: Mean (and rounded) average k* values on GSM8K with Phi-3-medium-4k-instruct for
various temperatures, «, and .

A=0.1 A=0.01 A =0.001 A =0.0001 \
a=15 a=20|a=15 a=20|a=15 a=20|a=15 a=20

0.3 |1.4048(1) 1.2609(1)|2.4123(2) 1.9287(2)|4.7186(5) 3.1299(3)|8.6473(9) 5.2889(5)
0.7 |1.4074(1) 1.2601(1)|2.4337(2) 1.9409(2)|4.6706(5) 3.1307(3)|8.6958(9) 5.3697(5)
1.0 |1.4073(1) 1.2603(1)|2.4541(2) 1.9364(2)(4.7772(5) 3.1792(3)|8.8501(9) 5.4394(5)
1.5 |1.4098(1) 1.2575(1)|2.4667(2) 1.9498(2)|4.9289(5) 3.2335(3)|9.4782(9) 5.6113(6)

Temp

In Table[I7] we show the average k* values (and their values rounded to the nearest integer) selected
by primal Bregman decoding on TriviaQA with LLaMA 3.1 8B for various temperatures, «, and \.
Table [T8]shows corresponding standard deviation and entropy.
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Table 16: Standard deviation (and entropy) of average k£* values on GSM8K with Phi-3-medium-4k-
instruct under A = 0.0001 for varying temperatures and a.

Temp| a=1.5 a=20

0.3 |12.09 (3.83) 6.77 (3.32)
0.7 | 12.01 (3.89) 7.23 (3.61)
1.0 | 11.98(3.98) 6.74 (3.45)
1.5 | 11.79 (4.24) 7.29 (3.79)

Table 17: Mean (and rounded) average k* values on TriviaQA with LLaMA 3.1 8B for various
temperatures, «, and \.

A=0.1 A=0.01 A =0.001 A =0.0001 \
a=15 a=20|a=15 a=20la=15 a=20|a=15 a=20

0.3 [1.1536(1) 1.1452(1)|1.9135(2) 1.5291(2)|3.4193(3) 2.5753(3)|6.9406(7) 4.5149(5)
0.7 [1.2265(1) 1.1275(1)(2.0109(2) 1.6265(2)(3.8877(4) 2.7593(3)|8.8845(9) 5.1892(5)
1.0 |1.2138(1) 1.1324(1)[2.0273(2) 1.6818(2)[3.9715(4) 2.9759(3)|8.4552(8) 5.7381(6)
1.5 [1.2013(1) 1.1384(1)|2.0289(2) 1.7032(2)|4.1749(4) 2.9398(3)|8.4399(8) 5.5166(6)

Temp

Table 18: Standard deviation (and entropy) of average k* values on TriviaQA with LLaMA 3.1 8B
for various temperatures, «, and \.

A=0.1 A=0.01 A =0.001 A = 0.0001
a=15 a=20 | a=15 a=20| a=15 «a=20 a=1.5 a=2.0

0.3 0.41 (0.65) 0.35 (0.60)[1.37 (1.90) 0.86 (1.42)|3.65 (2.85) 2.09 (2.42)|10.36 (3.63) 5.35 (3.28)
0.7 |0.48 (0.83) 0.33 (0.55)[1.44 (2.00) 0.93 (1.56)|4.24 (3.09) 2.20 (2.53)|12.18 (4.10) 5.98 (3.56)
1.0 0.47 (0.81) 0.34 (0.56)|1.42 (2.01) 0.98 (1.63)|4.42 (3.03) 2.43 (2.68)(12.07 (3.77) 6.54 (3.68)
1.5 0.46 (0.78) 0.35 (0.58)[1.42 (2.01) 1.00 (1.66)|5.07 (3.02) 2.46 (2.62)|12.90 (3.34) 7.18 (3.35)

Temp

Table [T9H20] show analougous adaptivity results for Phi-3-medium-4k-instruct on TriviaQA.

Table 19: Mean (and rounded) average k* values on TriviaQA with Phi-3-medium-4k-instruct for
various temperatures, o, and .

A=0.1 A=0.01 A =0.001 A =0.0001 \
a=15 a=20|a=15 a=20|a=15 a=20| a=15 a=2.0

0.3 |1.7393(2) 1.4142(1)|3.6184(4) 2.8184(3)|9.2976(9) 5.2226(5)|18.7026(19) 10.4901(10)
0.7 |1.7148(2) 1.4288(1)|3.6134(4) 2.6381(3)|8.4512(8) 4.8061(5)|16.8627(17) 9.3718(9)

1.0 |1.7348(2) 1.4216(1)|3.6840(4) 2.6050(3)|8.3500(8) 4.8924(5)|16.7567(17) 9.6411(10)
1.5 |1.6687(2) 1.4378(1)|3.6081(4) 2.6601(3)|8.6007(9) 5.1906(5)|18.2735(18) 9.7162(10)

Temp

Table 20: Standard deviation (and entropy) of average k* values on TriviaQA with Phi-3-medium-4k-
instruct for various temperatures, o, and \.
A=0.1 A=0.01 A =0.001 A =0.0001
a=15 a=20|a=15 a=20|a=15 a=20 a=15 a=20
0.3 10.87 (1.43) 0.49 (0.98)|2.84 (2.65) 1.76 (2.26)|8.19 (4.18) 3.99 (3.32)|16.54 (5.06) 8.88 (4.33)
0.7 0.87 (1.41) 0.49 (0.99)[2.69 (2.76) 1.70 (2.22)[7.50 (4.16) 3.78 (3.28)|15.26 (5.16) 8.38 (4.31)

1.0 |0.87 (1.43) 0.49 (0.98)|2.68 (2.82) 1.65 (2.24)|7.04 (4.22) 3.62 (3.37)|13.81 (5.27) 7.75 (4.46)
1.5 |0.84 (1.40) 0.50 (0.99)|2.58 (2.84) 1.63 (2.27)|6.60 (4.30) 3.58 (3.45)|13.94 (5.37) 7.51 (4.51)

Temp
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