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ABSTRACT

In this paper, we propose a new neural architecture search (NAS) problem of
Symmetric Positive Definite (SPD) manifold networks. Unlike the conventional
NAS problem, our problem requires to search for a unique computational cell
called the SPD cell. This SPD cell serves as a basic building block of SPD neural
architectures. An efficient solution to our problem is important to minimize the
extraneous manual effort in the SPD neural architecture design. To accomplish this
goal, we first introduce a geometrically rich and diverse SPD neural architecture
search space for an efficient SPD cell design. Further, we model our new NAS
problem using the supernet strategy, which models the architecture search problem
as a one-shot training process of a single supernet. Based on the supernet modeling,
we exploit a differentiable NAS algorithm on our relaxed continuous search space
for SPD neural architecture search. Statistical evaluation of our method on drone,
action, and emotion recognition tasks mostly provides better results than the state-
of-the-art SPD networks and NAS algorithms. Empirical results show that our
algorithm excels in discovering better SPD network design and providing models
that are more than 3 times lighter than searched by state-of-the-art NAS algorithms.

1 INTRODUCTION

Designing a favorable neural network architecture for a given application requires a lot of time, effort,
and domain expertise. To mitigate this issue, researchers in the recent years have started developing
algorithms to automate the design process of neural network architectures (Zoph & Le, 2016; Zoph
etal., 2018; Liu et al., 2017; 2018a; Real et al., 2019; Liu et al., 2018b; Tian et al., 2020). Although
these neural architecture search (NAS) algorithms have shown great potential to provide an optimal
architecture for a given application, it is limited to handle architectures with Euclidean operations and
representation. To deal with non-euclidean data representation and corresponding set of operations,
researchers have barely proposed any NAS algorithms —to the best of our knowledge.

It is well-known that manifold-valued data representation such as symmetric positive definite (SPD)
matrices have shown overwhelming accomplishments in many real-world applications such as
pedestrian detection (Tuzel et al., 2006; 2008), magnetic resonance imaging analysis (Pennec et al.,
2006), action recognition (Harandi et al., 2014), face recognition (Huang et al., 2014; 2015), brain-
computer interfaces (Barachant et al., 2011), structure from motion (Kumar et al., 2018; Kumar,
2019), etc. Also, in applications like diffusion tensor imaging of the brain, drone imaging, samples are
collected directly as SPD’s. As a result, neural network usage based on Euclidean data representation
becomes inefficient for those applications. Consequently, this has led to the development of the SPD
neural network (SPDNet) architectures for further improvements in these areas of research (Huang &
Van Gool, 2017; Brooks et al., 2019). However, these architectures are handcrafted, so the operations
or the parameters defined for these networks generally change as per the application. This motivated
us to propose a new NAS problem of SPD manifold networks. A solution to this problem can reduce
unwanted efforts in SPDNet design. Compared to the traditional NAS problem, our NAS problem
requires a new definition of computation cell and proposal for diverse SPD candidate operation set. In
particular, we model the basic architecture cell with a specific directed acyclic graph (DAG), where
each node is a latent SPD representation, and each edge corresponds to a SPD candidate operation.
Here, the intermediate transformations between nodes respect the geometry of the SPD manifolds.

For solving the suggested NAS problem, we exploit a supernet search strategy which models the
architecture search problem as a one-shot training process of a supernet that comprises of a mixture
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of SPD neural architectures. The supernet modeling enables us to perform a differential architecture
search on a continuous relaxation of SPD neural architecture search space, and therefore, can be
solved using a gradient descent approach. Our evaluation validates that the proposed method can build
a reliable SPD network from scratch. We show the results of our method on benchmark datasets that
clearly show results better than handcrafted SPDNet. Our work makes the following contributions:

e We introduce a NAS problem of SPD manifold networks that opens up a new direction of research
in automated machine learning and SPD manifold learning. Based on a supernet modeling, we
propose a novel differentiable NAS algorithm for SPD neural architecture search. Concretely, we
exploit a sparsemax-based Fréchet mixture of SPD operations to introduce sparsity that is essential
for an effective diffentiable search, and bi-level optimization with manifold-based update and
convexity-based update to jointly optimize architecture parameters and network kernel weights.

e Besides well-studied operations from exiting SPDNets (Huang & Van Gool, 2017; Brooks et al.,
2019; Chakraborty et al., 2020), we follow Liu et al. (2018b) to further introduce some new SPD
layers, i.e., skip connection, none operation, max pooling and averaging pooling. Our introduced
additional set of SPD operations make the search space more diverse for the neural architecture
search algorithm to obtain more generalized SPD neural network architectures.

e Evaluation on three benchmark datasets shows that our searched SPD neural architectures can
outperform the existing handcrafted SPDNets (Huang & Van Gool, 2017; Brooks et al., 2019;
Chakraborty et al., 2020) and the state-of-the-art NAS methods (Liu et al., 2018b; Chu et al.,
2020). Notably, our searched architecture is more than 3 times lighter than those searched by the
traditional NAS algorithms.

2 BACKGROUND

In recent years, plenty of research work has been published in the area of NAS (Gong et al., 2019;
Liu et al., 2019; Nayman et al., 2019; Guo et al., 2020). This is probably due to the success of deep
learning for several applications which has eventually led to the automation of neural architecture
design. Also, improvements in the processing capabilities of machines has influenced the researchers
to work out this computationally expensive yet an important problem. Computational cost for some of
the well-known NAS algorithms is in thousands of GPU days which has resulted in the development
of several computationally efficient methods (Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a;
2017; Baker et al., 2017; Brock et al., 2017; Bender, 2019; Elsken et al., 2017; Cai et al., 2018; Pham
et al., 2018; Negrinho & Gordon, 2017; Kandasamy et al., 2018; Chu et al., 2020). In this work, we
propose a new NAS problem of SPD networks. We solve this problem using a supernet modeling
methodology with a one-shot differentiable training process of an overparameterized supernet. Our
modeling is driven by the recent progress in supernet methodology. Supernet methodology has shown
a great potential than other NAS methodologies in terms of search efficiency. Since our work is
directed towards solving a new NAS problem, we confine our discussion to the work that have greatly
influenced our method i.e., one-shot NAS methods and SPD networks.

To the best of our knowledge, there are mainly two types of one-shot NAS methods based on the
architecture modeling (Elsken et al., 2018) (a) parameterized architecture (Liu et al., 2018b; Zheng
etal., 2019; Wu et al., 2019; Chu et al., 2020), and (b) sampled architecture (Deb et al., 2002; Chu
et al., 2019). In this paper, we adhere to the parametric modeling due to its promising results on
conventional neural architectures. A majority of the previous work on NAS with continuous search
space fine-tunes the explicit feature of specific architectures (Saxena & Verbeek, 2016; Veniat &
Denoyer, 2018; Ahmed & Torresani, 2017; Shin et al., 2018). On the contrary, Liu et al. (2018b);
Liang et al. (2019); Zhou et al. (2019); Zhang et al. (2020); Wu et al. (2020); Chu et al. (2020)
provides architectural diversity for NAS with highly competitive performances. The other part of our
work focuses on SPD network architectures. There exist algorithms to develop handcrafted SPDNet
(Huang & Van Gool, 2017; Brooks et al., 2019; Chakraborty et al., 2020). To automate the process of
SPD network design, in this work, we choose the most promising approaches from these fields (NAS
(Liu et al., 2018b), SPD networks (Huang & Van Gool, 2017)) and propose a NAS algorithm for
SPD inputs. Next, we summarize the essential notions of Riemannian geometry of SPD manifolds,
followed by an introduction of some basic SPDNet operations and layers. As some of the introduced
operations and layers have been well-studied by the existing literature, we applied them directly to
define our SPD neural architectures’ search space.
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Representation and Operation: We denote n x n real SPD as X € S7,. A real SPD matrix
X € 8%, satisfies the property that for any non-zero z € R", 2T X z > 0 (Harandi et al., 2017). We
denote Tx M as the tangent space of the manifold M at X € S, and log corresponds to matrix
logarithm. Let X, X, be any two points on the SPD manifold then the distance between them is
given by

1

_1
Sm(X1, X2) = 0.5 log(X, ? X2X, ?)||r Q)

There are other efficient methods to compute distance between two points on the SPD manifold (Gao
et al., 2019; Dong et al., 2017b), however, their discussion is beyond the scope of our work. Other
property of the Riemannian manifold of our interest is local diffeomorphism of geodesics which is a
one-to-one mapping from the point on the tangent space of the manifold to the manifold (Pennec,
2020; Lackenby, 2020). To define such notions, let X € Sﬁ . be the base pointand, Y € TXSQ 1
then Eq:(2) associates Y € TxS% , to a point on the manifold (Pennec, 2020).

expx(Y) = XZexp(X 2YX 2)X? €8T, VY € Tx 2)
Similarly, an inverse map is defined as logy (Z) = X% log(X 2ZX 2)X? € Tx, VZ € St

1) Basic operations of SPD Network: It is well-known that operations such as mean centralization,
normalization, and adding bias to a batch of data are inherent performance booster for most neural
networks. In the same spirit, existing works like Brooks et al. (2019); Chakraborty (2020) use the
notion of these operations for the SPD or general manifold data to define analogous operations on
manifolds. Below we introduce them following the work of Brooks et al. (2019).

e Batch mean, centering and bias: Given a batch of N SPD matrices {X;} ;, we can compute
its Riemannian barycenter (%) as # = argmin Zi\;l 6%34(X;, X,,). It is sometimes referred
X, EST,
as Fréchet mean (Moakher, 2005; Bhatia & Holbrook, 2006). This definition can be extended to
compute the weighted Riemannian Barycenter ! also known as weighted Fréchet Mean (WFM) .

N N
% = argmin Zwiéf\A(X“XM); s.t. w; > 0and Zwi =1 3)

X,esn, i i=1

Eq:(3) can be approximated using Karcher flow (Karcher, 1977; Bonnabel, 2013; Brooks et al.,
2019) or recursive geodesic mean (Cheng et al., 2016; Chakraborty et al., 2020).

2) Basic layers of SPD Network: Analogous to standard CNN, methods like Huang & Van Gool
(2017); Brooks et al. (2019); Chakraborty et al. (2020) designed SPD layers to perform operations
that respect SPD manifold constraints. Assuming X;_; € ST be the input SPD matix to the kth
layer, the SPD network layers are defined as follows:

e BiMap layer: This layer corresponds to a dense layer for SPD data. The BiMap layer reduces the
dimension of a input SPD matrix via a transformation matrix Wy, as X, = W X k_1WkT . To
ensure the matrix X to be an SPD matrix, the W), matrix must be of full row-rank.

e Batch normalization layer: To perform batch normalization after each BiMap layer, we first
compute the Riemannian barycenter of the batch of SPD matrices followed by a running mean
update step, which is Riemannian weighted average between the batch mean and the current
running mean, with the weights (1 — 6) and (@) respectively. Once mean is calculated, we
centralize and add bias to each SPD sample of the batch using Eq:(4) (Brooks et al., 2019), where
& is the notation used for parallel transport :

Batch centering : Centering the Z : X = Pog1(X;) = %_%Xiﬂ_% , I is the identity matrix
Bias the batch : Bias towards G : X! = 21 ,c(X{) = G2 X({G?,[isthe identity matrix

e ReFEig layer: The ReEig layer is analogous to ReL.U like layers present in the classical ConvNets.
It aims to introduce non-linearity to SPD network. The ReEig for the k" layer is defined as:
X = Up_1 max(el,Sy_1)UL | where, X1 = Up_15_1U} |, I is the identity matrix, and
€ > 0 is a rectification threshold value. Uy_1, X1 are the orthonormal matrix and singular-value
matrix respectively which are obtained via matrix factorization of X_.

1Following (Tuzel et al. (2006; 2008); Brooks et al. (2019)), we focus on the estimate of wFM with Karcher
flow, and the thorough study on the general wFM’s existence and uniqueness is beyond the focus of this paper.
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Figure 1: (a) A SPD cell structure composed of 4 SPD nodes, 2 input node and 1 output node. Initially the edges
are unknown (b) Mixture of candidate SPD operations between nodes (c) Optimal cell architecture obtained
after solving the relaxed continuous search space under a bi-level optimization formulation.

e LogEig layer: To map the manifold representation of SPD to flat space so that a Euclidean
operation can be performed, LogEig layer is introduced. The LogEig layer is defined as: X =
Ui_1 log(Ek_l)UkT_1 where, X1 = Uk_lEk_lUkT_l. The LogFEig layer is used with fully
connected layers to solve tasks with SPD representation.

e ExpEig layer: This layer maps the corresponding SPD representation from flat space back to SPD
manifold space. It is defined as X, = Uj,_1 exp(Z,_1)U}_, where, X},_1 = Up_1Z5_1UL_|.

o Weighted Riemannian pooling layer: It uses wFM definition to compute the output of the layer.
Recent method use recursive geodesic mean algorithm to calculate the mean (Chakraborty et al.,
2020), in contrast, we use Karcher flow algorithm to compute it (Karcher, 1977) as it is simple and
widely used in practice.

3 NEURAL ARCHITECTURE SEARCH OF SPD MANIFOLD NETWORK

As alluded before, to solve the suggested problem, there are a few key changes that must be introduced.
Firstly, a new definition of the computation cell is required. In contrast to the computational cells
designed by regular NAS algorithms like Liu et al. (2018b); Chu et al. (2020), our computational
cell —which we call as SPD cell, additionally incorporate the notion of SPD manifold geometry
so that SPD representations can be treated properly. On the other hand, like the regular NAS cell
design, our SPD cell can either be a normal cell that returns SPD feature maps of the same width and
height or, a reduction cell in which the SPD feature maps are reduced by a certain factor in width
and height. Secondly, to solve our new NAS problem will require an appropriate and diverse SPD
search space that can help NAS method to optimize for an effective SPD cell, which can then be
stacked and trained to build an efficient SPD neural network architecture.

Concretely, a SPD cell is modeled by a directed asyclic graph (DAG) which is composed of nodes
and edges. In our DAG each node is an latent representation of the SPD manifold valued data i.e. an
intermediate SPD feature map and, each edge corresponds to a valid candidate operation on SPD
manifold (see Fig.1(a)). Each edge of a SPD cell is associated with a set of candidate SPD manifold
operations (O ,,) that transforms the SPD valued latent representation from the source node (say

X J(Q) to the target node (say X ﬁél)). We define the intermediate transformation between the nodes in

i<i O (ﬁ’f&j H(x(, Xﬁ\ﬂ)), where d denotes the geodesic

our SPD cell as: X/(\J/l) = argmin y |

x )
distance Eq:(1). Generally, this transformation result corresponds to the unweighted Fréchet mean
of the operations based on the predecessors, such that the mixture of all operations still reside on
SPD manifolds. Note that our definition of SPD cell ensures that each computational graph preserves
the appropriate geometric structure of the SPD manifold. Equipped with the notion of SPD cell and
its intermediate transformation, we are prepared to propose our search space (§3.1) followed by the
solution to our SPDNet NAS problem (§3.2) and its results (§4).

3.1 SEARCH SPACE

Our search space consists of a set of valid SPD network operations which is defined for the supernet
search. First of all, the search space includes some existing SPD operations”, e.g., BiMap, batch
normalization, ReEig, LogEig, ExpEig and weighted Riemannian pooling layers, all of which are

2Our search space can include some other exiting SPD operations like manifoldnorm Chakraborty (2020). However, a comprehensive
study on them is out of our focus, which is on studying a NAS algorithm on a given promising search space.
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Table 1: Search space for the proposed SPD architecture search method.

Operation Definition Operation Definition

BiMap_0 {BiMap, Batch Normalization } WeightedReimannPooling_normal {WFM on SPD multiple times }

BiMap_1 {BiMap,Batch Normalization, ReEig } AveragePooling_reduced {LogEig, AveragePooling, ExpEig}

BiMap_2 {ReEig, BiMap, Batch Normalization} MaxPooling_reduced {LogEig, MaxPooling, ExpEig}
Skip-normal {Output same as input } Skip_reduced = {Ci, = BiMap(Xin), [Uin, Din, ~] = svd(Cin);in=1, 2},
None_normal {Return identity matrix } Cou = UpDyUZL, where, Uy, = diag(U;, Us) and Dy = diag(D;, D3)

introduced in Sec.2. Though those individual operations (e.g., BiMap, LogEig, ExpEig) have been
explored well by existing works, different aggregations on them are still understudied, which are
essential to enrich our search space. To be specific to enrich the search space, following Liu et al.
(2018b); Gong et al. (2019) traditional NAS methods, we apply the SPD batch normalization to every
SPD convolution operation (i.e., BiMap), and design three variants of convolution blocks including
the one without activation (i.e., ReEig), the one using post-activation and the one using pre-activation
(see Table 1). In addition, we introduce five new operations analogous to DARTS (Liu et al., 2018b)
to enrich the search space in the context of SPD networks. These are skip normal, none normal,
average pooling, max pooling and skip reduced. The effect of such diverse operation choices have
not been fully explored for SPD networks. All the candidate operations are illustrated in Table (1),
and the definitions of the new operations are detailed as follows:

(a) Skip normal: It preserves the input representation and is similar to skip connection. (b) None
normal: It corresponds to the operation that returns identity as the output i.e, the notion of zero in the
SPD space. (¢) Max pooling: Given a set of SPD matrices, max pooling operation first projects these
samples to a flat space via a LogEig operation, where a standard max pooling operation is performed.
Finally, an ExpEig operation is used to map the sample back to the SPD manifold. (d) Average
pooling: Similar to Max pooling, the average pooling operation first projects the samples to the flat
space using a LogFig operation, where a standard average pooling is employed. To map the sample
back to SPD manifold, an ExpEig operation is used. (e) SKkip reduced: It is similar to ‘skip_normal’
but in contrast, it decomposes the input into small matrices to reduces the inter-dependency between
channels. Our definition of reduce operation is in line with the work of Liu et al. (2018b).

The newly introduced operations allow us to generate a more diverse discrete search space. As
presented in Table 2, the randomly selected architecture (generally consisting of the newly introduced
SPD operations) shows some improvement over SPDNet and SPDNetBN, both of which only contain
conventional SPD operations. This establishes the effectiveness of the introduced rich search space.

3.2 SUPERNET SEARCH

To solve the suggested new NAS problem, one of the most promising NAS methodologies is supernet
modeling. While we can resort to some other NAS methods to solve the problem like reinforcement
learning based method (Zoph & Le, 2016) or evolution based algorithm (Real et al., 2019), in general,
the supernet method models the architecture search problem as a one-shot training process of a
single supernet that consists of all architectures. Based on the supernet modeling, we can search for
the optimal SPD neural architecture either using parameterization of architectures or sampling of
single-path architectures. In this paper, we focus on the parameterization approach that is based on the
continuous relaxation of the SPD neural architecture representation. Such an approach allows for an
efficient search of architecture using the gradient descent approach. Next, we introduce our supernet
search method, followed by a solution to our proposed bi-level optimization problem. Fig.1(b) and
Fig.1(c) illustrates an overview of our proposed method.

To search for an optimal SPD architecture («), we optimize the over parameterized supernet. In
essence, it stacks the basic computation cells with the parameterized candidate operations from our
search space in a one-shot search manner. The contribution of specific subnets to the supernet helps
in deriving the optimal architecture from the supernet. Since the proposed operation search space is
discrete in nature, we relax the explicit choice of an operation to make the search space continuous.
To do so, we use wFEM over all possible candidate operations. Mathematically,

Ne
Om(Xm) = argmindeéi,l (ﬁﬁ\ﬁ) (XM),Xj\‘A); subjectto: 17a =1, 0<a<1 5)
XN k=1
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Algorithm 1: The proposed Neural Architecture Search of SPD Manifold Nets (SPDNetNAS)

Require: Mixed Operation &', which is parameterized by o* for each edge k € N,;
while not converged do
Step1: Update « (architecture) using Eq:(8) solution by satisfying an additional strict convex constraint.
Note that updates on w and w (Eq:(9), Eq:(10)) should follow the gradient descent on SPD manifold;
Step2: Update w by solving V Etrqin (w, ); Ensure SPD manifold gradient to update w (Absil et al.,
2009; Huang & Van Gool, 2017; Brooks et al., 2019);

end

Ensure: Final architecture based on .. Decide the operation at an edge k using argmax{o/j}
0€ 0

where, ﬁfvl is the k" candidate operation between nodes, X, is the intermediate SPD manifold
mean (Eq.3) and, N, denotes number of edges. We can compute wFM solution either using Karcher
flow (Karcher, 1977) or recursive geodesic mean (Chakraborty et al., 2020) algorithm. Nonetheless,
we adhere to Karcher flow algorithm as it is widely used to calculate wFM>. To impose the explicit
convex constraint on &, we project the solution onto the probability simplex as

minimize [Jo — &||3; subjectto: 17a=1,0<a <1 (6)
«

Eq:(6) enforces the explicit constraint on the weights to supply « for our task and can easily be added
as a convex layer in the framework (Agrawal et al., 2019). This projection is likely to reach the
boundary of the simplex, in which case o becomes sparse (Martins & Astudillo, 2016). Optionally,
softmax, sigmoid and other regularization methods can be employed to satisfy the convex constraint.
However, Chu et al. (2020) has observed that the use of softmax can cause performance collapse
and may lead to aggregation of skip connections. While Chu et al. (2020) suggested sigmoid can
overcome the unfairness problem with softmax, it may output smoothly changed values which is hard
to threshold for dropping redundant operations with non-marginal contributions to the supernet. Also,
FairDARTS (Chu et al., 2020) regularization, may not preserve the summation equal to 1 constraint.
Besides, Chakraborty et al. (2020) proposes recursive statistical approach to solve wFM with convex
constraint, however, the definition proposed do not explicitly preserve the equality constraint and
it requires re-normalization of the solution. In contrast, our approach composes of the sparsemax
transformation for convex Fréchet mixture of SPD operations with the following two advantages: 1)
It can preserve most of the important properties of softmax such as, it is simple to evaluate, cheaper
to differentiate (Martins & Astudillo, 2016). 2) It is able to produce sparse distributions such that
the best operation associated with each edge is more likely to make more dominant contributions to
the supernet, and thus more optimal architecture can be derived (refer Figure 2(a),2(b) and §4).

From Eq:(5-6), the mixing of operations between nodes is determined by the weighted combination
of alpha’s (@*) and the set of operations. This relaxation makes the search space continuous and
therefore, architecture search can be achieved by learning a set of alpha (o = {a*, Yk € N.}). To
achieve our goal, we must simultaneously learn the contribution of several possible operation within
all the mixed operations (w) and the corresponding architecture ov. Consequently, for a given w, we
can find o and vice-versa resulting in the following bi-level optimization problem.

minimize B, (w" (), @); subject to: w* (o) = argmin El in(w, ) (7
=] w

The lower-level optimization EL,_, corresponds to the optimal weight variable learned for a given o

i.e., w°P! () using a training loss. The upper-level optimization Eﬁ;l solves for the variable o given
the optimal w using a validation loss. This bi-level search method gives optimal mixture of multiple
small architectures. To derive each node in the discrete architecture, we maintain top-k operations i.e,
with the k™ highest weight among all the candidate operations associated with all the previous nodes.

Bi-level Optimization: The bi-level optimization problem proposed in Eq:(7) is difficult to solve.
Following Liu et al. (2018b) work, we approximate w°P!(«) in the upper- optimization problem to
skip inner-optimization as follows:

vaE'zl;Jal (wopt(a)7 a) ~ VQEiljjal (’LU - UVwEthm (wa a)7 Oé) (8)

In Appendix, we provide some comparison between Karcher flow and recursive geodesic mean method. A comprehensive study on this
is actually beyond the scope of our paper.



Under review as a conference paper at ICLR 2021

Softmax Sparsemax

B

Edges

Edges
B N
Edges

01 2 3 4 01 2 3 45 01 2 3 435
Operatlons Operauons Operatlons (¢) Normal Cell learned on RADAR (d) Reduced Cell learned on RADAR
(a) Distribution of edge weights for operation selection (b) Derived architecture

Figure 2: (a) Distribution of edge weights for operation selection using softmax, sigmoid, and sparsemax on
Fréchet mixture of SPD operations. (b) Derived sparsemax architecture by the proposed SPDNetNAS. Better
sparsity leads to less skips and poolings compared to those of other NAS solutions shown in Appendix Fig.5.

Here, ) is the learning rate and V is the gradient operator. Note that the gradient based optimization
for w must follow the geometry of SPD manifold to update the structured connection weight, and its
corresponding SPD matrix data. Applying the chain rule to Eq:(8) gives

first term second term

vOtEgal (71), a) - nvi,wEtI;‘ain (wa a)v@EzlJ}al (QI}, Cl) (9)
where, W = ¥, (w — n@u,EL

L in(w, @)) denotes the weight update on the SPD manifold for the
forward model. V., ¥, symbolizes the Riemannian gradient and the retraction operator respectively.
The second term in the Eq:(9) involves second order differentials with very high computational

complexity, hence, using the finite approximation method the second term of Eq:(9) reduces to:
v?x,wEth/"ain (wv CM)V-J,EEM (?Dv Oé) = (v&Et]:;"ain(w+v CM) - vOéEtL;”ain(w77 O5))/26 (10)
where, w* = W, (w + 6V 4 EY (1, )) and § is a small number set to 0.01/||V4EY (1, a)||2.

Though the structure of bi—levei}%ptimization the same as the DARTS Liu et al. (201 86;} there are
some key differences. Firstly, the updates on the manifold-valued kernel weights are constrained on
manifolds, which ensures that the feature maps at every intermediate layer are SPDs. For concrete
derivations on back-propagation for SPD network layers, refer to Huang & Van Gool (2017) work.
Secondly, the update on the aggregation weights of the involved SPD operations needs to satisfy an
additional strict convex constraint, which is enforced as part of the optimization problem. The pseudo

code of our method is outlined in Algorithm(1).

4 EXPERIMENTS AND RESULTS

To keep the experimental evaluation consistent with the previously proposed SPD networks (Huang
& Van Gool, 2017; Brooks et al., 2019), we used RADAR (Chen et al., 2006), HDMOS5 (Miiller et al.,
2007), and AFEW (Dhall et al., 2014) datasets. For SPDNetNAS, we first optimize the supernet on
the training/validation sets, and then prune it with the best operation for each edge. Finally, we train
the optimized architecture from scratch to document the results. For both these stages, we consider
the same normal and reduction cells. A cell receives preprocessed inputs which is performed using
fixed BiMap_2 to make the input of same initial dimension. All architectures are trained with a batch
size of 30. Learning rate (1) for RADAR, HDMOS5, and AFEW dataset is set to 0.025, 0.025 and 0.05
respectively. Besides, we conducted experiments where we select architecture using a random search
path (SPDNetNAS (R)), to justify whether our search space with the introduced SPD operations
can derive meaningful architectures. We refer to SPDNet (Huang & Van Gool, 2017), SPDNetBN
(Brooks et al., 2019), and ManifoldNet (Chakraborty et al., 2020) for comparison against handcrafted
SPD networks. SPDNet and SPDNetBN are evaluated using their original implementations. We
follow the video classification setup of (Chakraborty et al., 2020) to evaluate ManifoldNet on AFEW.
It is non-trivial to adapt ManifoldNet to RADAR and HDMOS5, as ManifoldNet requires SPD features
with multiple channels and both of the two datasets can hardly obtain them. For comparing against
Euclidean NAS methods, we used DARTS (Liu et al., 2018b) and FairDARTS (Chu et al., 2020) by
treating SPD’s logarithm maps as Euclidean data in their official implementation with default setup.
We observed that using raw SPD’s as input to Euclidean NAS algorithms degrades its performance.

a) Drone Recognition: For this task, we used the RADAR dataset from (Chen et al., 2006). The
synthetic setting for this dataset is composed of radar signals, where each signal is split into windows
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of length 20 resulting in a 20x20 covariance matrix for each window (one radar data point). The
synthesized dataset consists of 1000 data points per class. Given 20 x 20 input covariance matrices,
our reduction cell reduces them to 10 x 10 matrices followed by normal cell to provide complexity to
our network. Following Brooks et al. (2019), we assign 50%, 25%, and 25% of the dataset for training,
validation, and test set respectively. The Euclidean NAS algorithms are evaluated on the euclidean
map of the input. For direct SPD input the performance of darts(95.86%) and fairdarts (92.26%) are
worse as expected. For this dataset, our algorithm takes 1 CPU day of search time to provide the SPD
architecture. Training and validation take 9 CPU hours for 200 epochs®. Test results on this dataset
are provided in Table (2) which clearly shows the benefit of our method. Statistical performance
show that our NAS algorithm provides an efficient architecture with much fewer parameters (more
than 140 times) than state-of-the-art Euclidean NAS on the SPD manifold valued data. The normal
and reduction cells obtained on this dataset are shown in Fig. 2(b).

b) Action Recognition: For this task, we used the HDMOS5 dataset (Miiller et al., 2007) which
contains 130 action classes, yet, for consistency with previous work (Brooks et al., 2019), we used
117 class for performance comparison. This dataset has 3D coordinates of 31 joints per frame.
Following the previous works (Harandi et al., 2017; Huang & Van Gool, 2017), we model an action
for a sequence using 93 x 93 joint covariance matrix. The dataset has 2083 SPD matrices distributed
among all 117 classes. Similar to the previous task, we split the dataset into 50%, 25%, and 25%
for training, validation, and testing. Here, our reduction cell is designed to reduce the matrices
dimensions from 93 to 30 for legitimate comparison against Brooks et al. (2019). To search for the
best architecture, we ran our algorithm for 50 epoch (3 CPU days). Figure 2(b) show the final cell
architecture that got selected based on the validation performance. The optimal architecture is trained
from scratch for 100 epochs which took approximately 16 CPU hours. The test accuracy achieved
on this dataset is provided in Table (2). Statistics clearly show that our models despite being lighter
performs better than the NAS models and the handcrafted SPDNets. The NAS models’ inferior results
show that the use of SPD layers for respecting SPD geometries is crucial for SPD data analysis.

Table 2: Performance comparison of our method against existing SPDNets and TraditionalNAS on drone and
action recognition. SPDNetNAS (R): randomly select architecure from our search space, DARTS/FairDARTS:
accepts logarithm forms of SPDs. The search time of our method on RADAR and HDMOS is noted to be 1 CPU
days and 3 CPU days respectively. And the search cost of DARTS and FairDARTS on RADAR and HDMO05
are about 8 GPU hours. #RADAR and #HDMO05 show model parameter comparison on the respective dataset.

Dataset DARTS FairDARTS SPDNet SPDNetBN SPDNEetNAS (R) SPDNetNAS
RADAR 98.21%+ 0.23 98.51% £ 0.09 | 9321% +0.39  92.13% £ 0.77 95.49% =+ 0.08 97.75% £ 0.30
#RADAR 2.6383 MB 2.6614 MB 0.0014 MB 0.0018 MB 0.0185 MB 0.0184 MB
HDMO5 53.93% £+ 142 47.71% + 1.46 61.60% + 135  65.20% £ 1.15 66.92% £ 0.72 69.87% + 0.31
#HDMO5 3.6800MB 5.1353 MB 0.1082 MB 0.1091 MB 1.0557 MB 1.064MB MB

¢) Emotion Recognition: We used AFEW dataset (Dhall et al., 2014) to evaluate the transferability of
our searched architecture for emotion recognition. This dataset has 1345 videos of facial expressions
classified into 7 distinct classes. To train on the video frames directly, we stack all the handcrafted
SPDNets and our searched SPDNet on top of a covolutional network Meng et al. (2019) with its
official implementation. For ManifoldNet, we compute a 64 x 64 spatial covariance matrix for each
frame on the intermediate CNN features of 64 x 56 x 56 (channels, height, width). We follow the
reported setup of Chakraborty et al. (2020) to first apply a single wFM layer with kernel size 5, stride 3
and 8 channels, followed by three temporal wFM layers of kernel size 3 and stride 2, with the channels
being 1, 4, 8 respectively. We closely follow the official implementation of ManifoldNet > for the
wEFM layers and adapt the code to our specific task. Since SPDNet, SPDNetBN and our SPDNetNAS
require a single channel SPD matrix as input, we use the final 512 dimensional vector extracted
from the covolutional network, project it using a dense layer to a 100 dimensional feature vector and
compute a 100 x 100 temporal covariance matrix. To study the transferability of our algorithm, we
evaluate its searched architecture on RADAR and HDMOS. In addition, we evaluate DARTS and
FairDARTS directly on the video frames of AFEW. Table (3) reports the evaluations results. As we
can observe, the transferred architectures can handle the new dataset quite convincingly, and their
test accuracies are better than those of the existing SPDNets and the Euclidean NAS algorithms.
In Appendix, we present results of competing methods and our searched models on the raw SPD
features of AFEW.

*For details on the choice of CPU rather than GPU, see appendix
>https://github.com/jjbouza/manifold-net-vision
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Table 3: Performance comparison of our transferred architectures on AFEW against handcrafted SPDNets and
Euclidean NAS. SPDNetNAS(RADAR/HDMOS): architectures searched on RADAR and HDMOS respectively.

DARTS  FairDARTS | ManifoldNet SPDNet  SPDNetBN | SPDNetNAS (RADAR)  SPDNetNAS (HDMO5)
26.88 % 2231% | 28.84% 34.06% 37.80% | 40.80% 40.64%

d) Ablation study:

Last.ly, we conducted some.a.blati.on study t0  Table 4: Ablations study on different solutions to our sug-
realize the effect of probability simplex con-  gested Fréchet mixture of SPD operations.

straint (sparsemax) on our suggested Fréchet Dataset softmax sigmoid sparsemax
mixture of SPD operations. Although in Fig. RADAR | 96.47% £ 0.10 | 97.70% 4+ 0.23 | 97.75% =+ 0.30
HDMO05 | 68.74% £ 0.93 | 68.64% £ 0.09 | 69.87% = 0.31

2(a) we show better probability weight distri-
bution with sparsemax, Table(4) shows that
it performs better empirically as well on both RADAR and HDMOS5 compared to the softmax and
sigmoid cases. Therefore, SPD architectures derived using the sparsemax is observed to be better.

e) Statistical comparison under same model complexity: We compare the statistical performance
of our method against the other competing methods under similar model sizes. Table 5 show the
results obtained on the RADAR dataset. One key point to note here is that when we increase the
number of parameters in SPDNet and SPDNetBN, we observe a very severe degradation in the
performance accuracy —mainly because the network starts overfitting rapidly. The performance
degradation is far more severe for the HDMO5 dataset with SPDNet (1.047MB) performing 0.7619%
and SPDNetBN (1.082MB) performing 1.45% and hence, is not reported in the table below. That
further indicates the ability of SPDNetNAS to generalize better and avoid overfitting despite the
larger model size.

Similarly, we experimented on the AFEW dataset. To have a fair comparison against the related
method like ManifoldNet, whose model size is about (76MB), we must reduce the model size
accordingly. ManifoldNet model size is large mainly due to multiple final dense fully connected
layers. Hence, to reduce the model size, we decreased the number of FC layers. The performance
result with comparable model sizes on the AFEW dataset is shown in Table 5. Again, we can infer
that our SPDNetNAS achieves a significant performance improvement over the others.

Table 5: Performance of our model against ManifoldNet, SPDNet and SPDNetBN with comparable model sizes
on the RADAR and AFEW datasets.

Dataset Manifoldnet SPDNet SPDNetBN SPDNetNAS
RADAR NA 73.066% 87.866% 97.75%
#RADAR NA 0.01838 MB | 0.01838 MB 0.01840 MB

AFEW 25.8% 34.06% 37.80% 40.64%
#AFEW 11.6476 MB 11.2626 MB 11.2651 MB 11.7601 MB

5 CONCLUSION AND FUTURE DIRECTION

In this work, we present a neural architecture search problem of SPD manifold networks. To solve
it, a SPD cell representation and corresponding candidate operation search space is introduced. A
parameterized supernet search method is employed to explore the relaxed continuous SPD search
space following a bi-level optimization problem with probability simplex constraint for effective
SPD network design. The solution to our proposed problem using back-propagation is carefully
crafted, so that, the weight updates follow the geometry of the SPD manifold. Quantitative results on
the benchmark dataset show a commendable performance gain over handcrafted SPD networks and
Euclidean NAS algorithms. Additionally, we demonstrate that the learned SPD architecture is much
lighter than other NAS based architecture and, it is transferable to other datasets as well.

Our work provides an architecture search methodology for the scenarios where the acquired input
data are SPD’s, for example, diffusion tensor imaging for medical applications, drone recognition,
etc. In addition, our method offers a paradigm to automate the neural architecture design for the
scenarios that require the second-order representations/poolings for robust visual recognition (e.g.,
Wang et al. (2017); Engin et al. (2018); Wang et al. (2019)). Accordingly, we encourage more future
works to pursue these two directions. Also, it is fairly interesting to extend our proposed method to
sequential manifold valued data (Zhen et al., 2019; Chakraborty et al., 2018).
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A ADDITIONAL EXPERIMENTAL ANALYSIS

A.1 EFFECT OF MODIFYING PREPROCESSING LAYERS FOR MULTIPLE DIMENSIONALITY
REDUCTION

Unlike Huang & Van Gool (2017) work on the SPD network, where multiple transformation matrices
are applied at multiple layers to reduce the dimension of the input data, our reduction cell presented
in the main paper is one step. For example: For HDMO5 dataset (Miiller et al., 2007), the author’s of
SPDNet (Huang & Van Gool, 2017) apply 93 x 70, 70 x 50, 50 x 30, transformation matrices to
reduce the dimension of the input matrix, on the contrary, we reduce the dimension in one step from
93 to 30 which is inline with Brooks et al. (2019) work.

To study the behaviour of our method under multiple dimesionality reduction pipeline on HDMOS,
we use the preprocessing layers to perform dimensionality reduction. To be precise, we consider
a preprocessing step to reduce the dimension from 93 to 70 to 50 and then, a reduction cell that
reduced the dimension from 50 to 24. This modification has the advantage that it reduces the search
time from 3 CPU days to 2.5 CPU days, and in addition, provides a performance gain (see Table (6)).
The normal and the reduction cells for the multiple dimension reduction are shown in Figure (3).

Table 6: Results of modifying preprocessing layers for multiple dimentionality reduction on HDMO05

Preprocess dim reduction ~ Cell dim reduction SPDNetNAS Search time
NA 93 — 30 68.74% =+ 0.93 3 CPU days
93—70—50 50—24 69.41 % + 0.13 2.5 CPU days

AvgPooling2_reduced

c_{k-2} MaxPooling_reduced An
AvgPooling2_reduced ‘*

c_{k-1} n
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(a) Normal cell (b) Reduction cell
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Figure 3: (a)-(b) Normal cell and Reduction cell for multiple dimensionality reduction respectively

A.2 EFFECT OF ADDING NODES TO THE CELL

Experiments presented in the main paper consists of N = 5 nodes per cell which includes two input
nodes, one output node, and two intermediate nodes. To do further analysis of our design choice,
we added nodes to the cell. Such analysis can help us study the critical behaviour of our cell design
i.e, whether adding an intermediate nodes can improve the performance or not?, and how it affects
the computational complexity of our algorithm? To perform this experimental analysis, we used
HDMO5 dataset (Miiller et al., 2007). We added one extra intermediate node (N = 6) to the cell
design. We observe that we converge towards an architecture design that is very much similar in
terms of operations (see Figure 4). The evaluation results shown in Table (7) help us to deduce that
adding more intermediate nodes increases the number of channels for output node, subsequently
leading to increased complexity and almost double the computation time.

Table 7: Results for multi-node experiments on HDMO05

Number of nodes SPDNetNAS Search time
5 68.74% + 0.93 3 CPU days
6 67.96% =+ 0.67 6 CPU days

A.3 EFFECT OF ADDING MULTIPLE CELLS

In our paper we stack 1 normal cell over 1 reduction cell for all the experiments. For more extensive
analysis of the proposed method, we conducted training experiments by stacking multiple cells which
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Figure 4: (a)-(b) Optimal Normal cell and Reduction cell with 6 nodes on the HDMO5 dataset

is in-line with the experiments conducted by Liu et al. (2018b). We then transfer the optimized
architectures from the singe cell search directly to the multi-cell architectures for training. Hence, the
search time for all our experiments is same as for a single cell search i.e. 3 CPU days. Results for this
experiment are provided in Table 8. The first row in the table shows the performance for single cell
model, while the second and third rows show the performance with multi-cell stacking. Remarkably,
by stacking multiple cells our proposed SPDNetNAS outperforms SPDNetBN Brooks et al. (2019) by
a large margin (about 8%, i.e., about 12% for the relative improvement).

Table 8: Results for multiple cell search and training experiments on HDMO5: reduction corresponds to
reduction cell and normal corresponds to the normal cell.

Dim reduction in cells Cell type sequence SPDNetNAS Search Time
single cell 93 — 46 reduction-normal 68.74% + 0.93 3 CPU days
multi-cell 93 — 46 normal-reduction-normal 71.48% £ 0.42 3 CPU days
multi-cell 93 — 46 — 22 reduction-normal-reduction-normal 73.59 % + 0.33 3 CPU days

A.4 AFEW PERFORMANCE COMPARISON ON RAW SPD FEATURES

In addition to the evaluation on CNN features in the major paper, we also use the raw SPD features
(extracted from gray video frames) from Huang & Van Gool (2017); Brooks et al. (2019) to compare
the competing methods. To be specific, each frame is normalized to 20 x 20 and then represent each
video using a 400 x 400 covariance matrix (Wang et al., 2012; Huang & Van Gool, 2017). Table 9
summarizes the results. As we can see, the transferred architecture can handle the new dataset quite
convincingly. The test accuracy is comparable to the best SPD network method for RADAR model
transfer. For HDMO05 model transfer, the test accuracy is much better than the existing SPD networks.

Table 9: Performance of transferred SPDNetNAS Network architecture in comparison to existing SPD Networks
on the AFEW dataset Dhall et al. (2014). RAND symbolizes random architecture from our search space.
DARTS/FairDARTS: accepts the logarithms of raw SPDs, and the other competing methods receive the SPD
features.

DARTS  FairDARTS | ManifoldNet — SPDNet  SPDNetBN | Ours(R)  Ours(RADAR)  Ours (HDMO5)
25.87 % 2534% | 23.98% 33.17% 35.22% | 32.88% 35.31 % 38.01%

A.5 DERIVED CELL ARCHITECTURE USING SIGMOID ON FRECHET MIXTURE OF SPD
OPERATION

Figure 5(a) and Figure 5(b) show the cell architecture obtained using the softmax and sigmoid
respectively on the Fréchet mixture of SPD operation. It can be observed that it has relatively more
skip and pooling operation than sparsemax ((see Figure 2(b))). In contrast to softmax and sigmoid,
the SPD cell obtained using sparsemax is composed of more convolution type operation in the
architecture, which in fact is important for better representation of the data.
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Figure 5: (a), (b) Derived architecture by using softmax and sigmoid on the Fréchet mixture of SPD operations.
These are the normal cell and reduced cell obtained on RADAR and HDMOS5 dataset.

A.6 COMPARISON BETWEEN KARCHER FLOW AND RECURSIVE APPORACH FOR WEIGHTED
FRECHET MEAN

The proposed NAS algorithm is based on Fréchet Mean computations. From the weighted mixture
of operations between nodes to the derivation of intermediate nodes, both compute the Fréchet
mean of a set of points on the SPD manifold. It is well known that there is no closed form solution
when the number of input samples is bigger than 2 (Brooks et al., 2019). We can only compute an
approximation using the famous Karcher flow algorithm (Brooks et al., 2019) or recursive geodesic
mean (Chakraborty et al., 2020). For comparison, we replace our used Karcher flow algorithm
with the recursive approach under our SPDNetNAS framework. Table 10 sumarizes the comparison
between these two algorithms. We observe considerable decrease in accuracy for both the training
and test set when using the recursive methods, showing that the Karcher flow algorithm favors our
proposed algorithm more.

Table 10: Test performance of the proposed SPDNetNAS using the Karcher flow algorithm and the recursive
algorithm to compute Fréchet means.

Dataset / Method Karcher flow Recursive algorithm
RADAR 96.47% + 0.08 68.13% =+ 0.64
HDMO05 68.74% + 0.93 56.85% =+ 0.17

A.7 CONVERGENCE CURVE ANALYSIS

Figure 6(a) shows the validation curve which almost saturates at 200 epoch demonstrating the stability
of our training process. First column bar of Figure (6(b)) show the test accuracy comparison when
only 10% of the data is used for training our architecture which demonstrate the effectiveness of our
algorithm. Further, we study this for our SPDNetNAS architecture by taking 10%, 33%, 80% of the
data for training. Figure 6(b)) clealy show our superiority of SPDNetNAS algorithm than handcrafted
SPD networks.

Figure (7(a)) and Figure (7(b)) show the convergence curve of our loss function on the RADAR
and HDMOS datasets respectively. For the RADAR dataset the validation and training losses follow
a similar trend and converges at 200 epochs. For the HDMOS5 dataset, we observe the training
curve plateaus after 60 epochs, where as the validation curve takes 100 epochs to provide a stable
performance. Additionally, we noticed a reasonable gap between the training loss and validation loss
for the HDMO5 dataset (Miiller et al., 2007). A similar pattern of convergence gap between validation
loss and training loss has been observed by Huang & Van Gool (2017) work.

A.8 WHY WE PREFERRED TO SIMULATE OUR EXPERIMENTS ON CPU RATHER THAN GPU?
When dealing with SPD matrices, we need to carry out complex computations. These computations

are performed to make sure that our transformed representation and corresponding operations respect
the underlying manifold structure. In our study, we analyzed SPD matrices with the Affine Invariant
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Figure 6: (a) Validation accuracy of our method in comparison to the SPDNet and SPDNetBN on RADAR
dataset. Clearly, our SPDNetNAS algorithm show a steeper validation accuracy curve. (b) Test accuracy on 10%,
33%, 80%, 100% of the total data sample. It can be observed that our method exhibit superior performance.
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Figure 7: (a) Loss function curve showing the values over 200 epochs for the RADAR dataset (b) Loss function
curve showing the values over 100 epochs on the HDMOS dataset.

Riemannian Metric (AIRM), this induces operations heavily dependent on singular value decom-
position (SVD) or eigendecomposition (EIG). Both decompositions suffer from weak support on
GPU platforms. Hence, our training did not benefit from GPU acceleration and we decided to train
on CPU. As a future work, we aim to speedup our implementation on GPU by optimizing the SVD
Householder bi-diagonalization process as studied in some existing works like Dong et al. (2017a);
Gates et al. (2018).

B DETAILED DESCRIPTION OF OUR PROPOSED OPERATIONS

In this section, we describe some of the major operations defined in the main paper from an intuitive
point of view. We particularly focus on some of the new operations that are defined for the input
SPDs, i.e., the Weighted Riemannian Pooling, the Average/Max Pooling, the Skip Reduced operation
and the Mixture of Operations.

B.1 WEIGHTED RIEMANNIAN POOLING

Figure 8 provides an intuition behind the Weighted Riemannian Pooling operation. Here, w_11, w_21,
etc., corresponds to the set of normalized weights for each channel (shown as two blue channels).
The next channel —shown in orange, is then computed as weighted Fréchet mean over these two
input channels. This procedure is repeated to achieve the desired number of output channels (here
two), and finally all the output channels are concatenated. The weights are learnt as a part of the
optimization procedure ensuring the explicit convex constraint is imposed.
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Figure 8: Weighted Riemannian Pooling: Performs multiple weighted Fréchet means on the channels of the
input SPD

B.2 AVERAGE AND MAX POOLING

In Figure 9 we show our average and max pooling operations. We first perform a LogEig map on the
SPD matrices to project them to the Euclidean space. Next, we perform average and max pooling on
these Euclidean matrices similar to classical convolutional neural networks. We further perform an
ExpEig map to project the Euclidean matrices back on the SPD manifold. The diagram shown in
Figure 9 is inspired by Huang & Van Gool (2017) work. The kernel size of AveragePooling_reduced
and MaxPooling_reduced is set to 2 or 4 for all experiments according to the specific dimensionality
reduction factors.

. Avg/Max ExpEig
LOgElg POO"ng .
SPD Euclidean SPD

Figure 9: Avg/Max Pooling: Maps the SPD matrix to Euclidean space using LogEig mapping, does avg/max
pooling followed by ExpEig map

B.3 SKIP REDUCED

Following Liu et al. (2018b), we defined an analogous of Skip operation on a single channel for the
reduced cell (Figure 10). We start by using a BiMap layer —equivalent to Conv in Liu et al. (2018b),
to map the input channel to an SPD whose space dimension is half of the input dimension. We further
perform an SVD decomposition on the two SPDs followed by concatenating the Us, Vs and Ds
obtained from SVD to block diagonal matrices. Finally, we compute the output by multiplying the
block diagonal U, V and D computed before.

BiMap Layer SVD Block Diagf)nal Reassemble
Computation Output

\;\39\ .\ Output=U_out * D_out * V_out
) '
U_out=diag(U1,U2)
U1,D1,v1 h
ut. I, D_out=diag(D1,02) —

[U2D2V2]  V_out=diag(V1,V2)
Figure 10: Skip Reduced:Maps input to two smaller matrices using BiMaps, followed by SVD decomposition
on them and then computes the output using a block diagonal form of U’s D’s and V’s

B.4 MIXED OPERATION ON SPDs

In Figure 11 we provide an intuition of the mixed operation we have proposed in the main paper.
We consider a very simple base case of three nodes, two input nodes (1 and 2) and one output
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node (node 3). The goal is to compute the output node 3 from input nodes 1 and 2. We perform a
candidate set of operations on the input node, which correspond to edges between the nodes (here
two for simplicity). Each operation has a weight «;_; where i corresponds to the node index and j
is the candidate operation identifier. In Figure 11 below i and j € {1,2} and a1 = {a1.1, 212} ,
az = {ag1, a2} . a’s are optimized as a part of the bi-level optimization procedure proposed in
the main paper. Using these alpha’s, we perform a channel-wise weighted Fréchet mean (WFM) as
depicted in the figure below. This effectively corresponds to a mixture of the candidate operations.
Note that the alpha’s corresponding to all channels of a single operation are assumed to be the same.
Once the weighted Fréchet means have been computed for nodes 1 and 2, we perform a channel-wise
concatenation on the outputs of the two nodes, effectively doubling the number of channels in node 3.

opl ,
.« @, wFMa,

o: . . wFMa.
op U,%W 1

%3

- wFMa,
° WFM(X,Z

Concat

I
XX
(98]

2 o
Opou/

Figure 11: Detailed overview of mixed operations. We simplify the example by taking 3 nodes (two input
nodes and one output node) and two candidate operations. Input nodes have two channels (SPD matrices), we
perform channelwise weighted Fréchet mean between the result of each operation (edge) where weights a’s
are optimized during bi-level architecture search optimization. Output node 3 is formed by concatenating both
mixed operation outputs, resulting in a four channel node.

C DIFFERENTIABLE CONVEX LAYER FOR SPARSEMAX OPTIMIZATION

import cvxpy as cp
from cvxpylayers.torch import CvxpyLayer

def sparsemax_convex_layer (x, n):
w_ = cp.Variable (n)

X_ = cp.Parameter (n)
# define the objective and constraint

objective = cp.Minimize (cp.sum(cp.multiply(w_, x_)))

constraint = [cp.sum(w_) == 1.0, 0.0 <= w_, w_<=1.0]

opt_problem = cp.Problem(objective, constraint)

layer = Cvxpylayer (opt_problem, parameters=[x_], variables=[w_])
w, = layer (x)

return w

Listing 1: Function to solve the sparsemax constraint optimization
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