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Abstract. The increasing volume of complex 3D biomedical imaging
data highlights the need for accurate and efficient analysis methods.
Segmentation of such data is essential for diagnosis, anatomical analysis,
disease monitoring, and treatment planning. However, existing segmen-
tation algorithms often struggle with the variability of object structures
and the diversity of imaging modalities. To address these challenges, we
introduce iMedSTAM, a promptable foundation model for 3D image and
video segmentation. The model is also capable of progressively improving
segmentation quality based on user interactions. iMedSTAM was devel-
oped by fine-tuning EfficientTAM on a large-scale dataset comprising
over 270,000 3D image–mask pairs and 4,000 video–mask pairs, cover-
ing five different medical imaging modalities. In addition, we extend the
EfficientTAM architecture with a bidirectional inference and memory
mechanism that enables the processing of volumetric data. iMedSTAM
significantly outperforms all previous models on the publicly available
validation set in the coreset track and achieves state-of-the-art results
in the all-data track. On the test set, our model reaches an average fi-
nal DSC and NSD of 0.805 and 0.842, respectively. For DSC_AUC and
NSD_AUC, which measure the cumulative improvement through addi-
tional user interactions, iMedSTAM achieves scores of 3.129 and 3.258.
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1 Introduction

The segmentation of medical images is an essential component in clinical prac-
tice. It supports accurate diagnosis [25], facilitates the analysis of anatomical
structures [37], enables disease monitoring [28], and assists in treatment planning
[22]. By precisely delineating organs, lesions, and other anatomical structures in
medical imaging, clinicians can gain critical insights to provide targeted patient
care. Deep learning approaches have revolutionized the field by achieving not
only human-level accuracy but also a high degree of automation [1,32,38].

To date, most models in this domain have been developed with a focus on
specific organs or lesions, which makes them less effective at handling previously
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unseen types of structures and domains. Similar to the developments in natu-
ral language processing, where advanced network architectures and large-scale
datasets have led to the rise of large language models [30], a shift is also occurring
in medical image segmentation. There is a growing trend away from specialized
task-specific models toward general-purpose models. Notable examples include
the Segment Anything Model (SAM) [12] and its adaptation for medical imaging,
MedSAM [17]. These models are capable of segmenting arbitrary objects in 2D
images using user-provided spatial prompts that guide the model in identifying
the target object.

Although MedSAM has demonstrated strong performance in segmenting var-
ious medical structures and across different imaging modalities, it is not well-
suited for processing 3D images such as computed tomography (CT) scans, as
SAM was originally designed for 2D images. To address this limitation, Gong
et al. [6] extended SAM with a 3D adapter, and SAM-Med3D [31] introduced a
3D image encoder. Other interactive segmentation approaches that aim to cap-
ture the three-dimensional spatial relationships in volumetric medical images
include VISTA3D [7] and SegVol [3]. VISTA3D is trained on CT images and
processes them as voxel cubic patches using a sliding window inference strategy.
In contrast, SegVol employs a zoom-out–zoom-in mechanism to simplify user
interaction with large 3D images.

For interactive segmentation of natural videos, SAM2 [23] has emerged as
a state-of-the-art method, and its more efficient variant, EfficientTAM [34], has
also demonstrated strong performance. It has been demonstrated that SAM2-
like architectures have the potential for application in the medical domain, as
shown by Shen et al. [26], Zhu et al. [39], and more recently in MedSAM2 [19].

Although several approaches have already been explored, there remains a
lack of general models capable of segmenting both 3D medical images and videos
within an interactive process. Most existing models have been trained on only
one or a few imaging modalities. Furthermore, the types of prompts supported
and the ability to refine segmentations interactively are limited. For example,
VISTA3D can only process point prompts, while SegVol exclusively supports
box inputs. As a result, iterative refinement through additional user prompts is
not possible with SegVol. Only the recently proposed nnInteractive [4], which
builds on the nnU-Net framework [10], offers six distinct interaction channels
and natively supports a refinement approach.

The “Foundation Models for Interactive 3D Biomedical Image Segmentation”
challenge aims to develop universal 3D biomedical image segmentation models
that can not only adapt to a wide range of anatomical structures and imaging
conditions but also iteratively improve segmentation quality based on user in-
teractions. The challenge provides a large-scale training dataset comprising over
270,000 3D image–mask pairs and 4,000 video–mask pairs, covering five different
medical imaging modalities.

To address this challenge, we propose an architecture based on EfficientTAM,
as it has already demonstrated strong results on natural videos while offering
efficient inference times. Furthermore, since it employs the same prompt encoder
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as SAM2, it is capable of processing both box and point prompts. To enable
processing of 3D images, we extend the inference pipeline and adapt memory
handling across individual slices accordingly. Similar to the approaches of Shen
et al. [27] and MedSAM2 [19], we propagate spatial prompts in both directions
starting from the central slice. Finally, we fine-tune the model on the large
biomedical development set provided by the challenge. Our main contributions
can be summarized as follows:
1. We introduce iMedSTAM, a foundation model for interactive segmentation of

both 3D medical images and videos, supporting both box and point prompts,
as well as iterative refinement.

2. We extend the EfficientTAM architecture with a bidirectional inference and
memory mechanism that enables the processing of volumetric data, and fine-
tune it on a large-scale medical dataset.

3. We implement an efficient post-processing step that resolves potential over-
laps between predicted masks of different classes based on the model’s con-
fidence in each prediction.

2 Method

2.1 Interactive 3D and Video Segmentation Pipeline

For interactive segmentation of volumetric data, we adopt a video-based ap-
proach similar to MedSAM2 [19] and Shen et al. [27]. We first slice the 3D
image along its third dimension, creating 2D slices that we treat analogously
to video frames. This allows us to handle even large 3D input images. Fig. 1
provides an overview of the interactive segmentation pipeline. The model starts
from an initial user prompt, which can be either a bounding box or a positive
point click at the center of the target object. This prompt always refers to the 2D
space of the middle slice. Starting from this middle slice, the model sequentially
predicts segmentation masks in both directions. To preserve spatial consistency
across slices, the model integrates a memory module that incorporates informa-
tion from previous slices into the current prediction.

Finally, the individual 2D masks are aggregated into a 3D segmentation
mask and presented to the user. The user can review the result and refine it
by adding additional points to any slice — positive points in under-segmented
regions and negative points in over-segmented areas. With this additional in-
put, the model repeats the segmentation process, enabling iterative refinement.
Videos are treated the same as 3D images and follow the same pipeline.

2.2 Model

iMedSTAM (Fig. 2) extracts features from individual slices or frames using an
image encoder. Instead of passing these features directly to the mask decoder,
the model first conditions them on the user input prompts and the embeddings
from previous slices. The mask decoder then generates the corresponding 2D
segmentation masks.
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Fig. 1. Interactive segmentation pipeline with iMedSTAM. The 3D medical image or
video is divided into individual slices or frames. The user initially marks the desired
object in the middle slice using a bounding box or a positive point click. Based on this
initial prompt, the model sequentially predicts the masks for all slices in both directions
from the middle. In subsequent iterative steps, the user can refine the segmentation by
adding additional positive or negative refinement points.

The model is based on the EfficientTAM architecture [34], which itself is a
more efficient variant of SAM2 [23]. The improved efficiency results from replac-
ing the Hiera [24] image encoder in SAM2 with a lightweight, non-hierarchical
ViT [29], and from using a more efficient memory module that approximates
spatial memory tokens. Additionally, EfficientTAM includes a pretrained ver-
sion that operates at an input resolution of 512 × 512 instead of 1024 × 1024,
further reducing computational cost. In our experiments, we observed that Effi-
cientTAM, when used without transfer learning, results in a performance drop
of approximately 9% in 3D medical image segmentation compared to SAM2.
However, it achieves a twofold reduction in runtime per case (see Table 6 in the
appendix). Given that interactive segmentation requires online inference with
reasonably fast user feedback, this trade-off is acceptable.
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Fig. 2. iMedSTAM architecture. The model processes slices or frames sequentially. A
lightweight ViT image encoder first extracts features from the current slice. These
image embeddings are then corss-attended to memory representations from previous
slices. The mask decoder incorporates user input prompts and predicts the segmenta-
tion mask for the current slice. Finally, a memory encoder transforms the prediction
and image embeddings and stores them in a memory bank for subsequent slices.

Image Encoder For the lightweight ViT image encoder, we use a patch size
of 16 × 16 and a non-overlapping 14 × 14 windowed attention mechanism. To
efficiently extract features, we employ 6 global attention blocks. The output of
the image encoder is a 16× downsampled embedding of the input image. Given
an input resolution of 512 × 512, the image embedding is therefore 32 × 32.

Memory Module Since the image encoder processes slices independently, a
memory module is required to re-establish a connection along the third dimen-
sion (spatial or temporal), enabling consistent object tracking. In the first pass,
which is always the middle slice, the memory encoder downsamples the output
mask and sums it element-wise with the image features from the image encoder
to create spatial embeddings. These spatial embeddings are stored in a memory
bank, implemented as a FIFO list that retains information from the last seven
slices. In addition to spatial embeddings, a set of lightweight object pointer vec-
tors is stored to represent the current object location.

In subsequent passes, the model conditions the image embeddings of the cur-
rent slice via cross-attention with both the spatial embeddings and object point-
ers from previous slices. To reduce computational cost, the model approximates
the spatial embeddings with average pooling before applying cross-attention.

Unlike the default implementation of EfficientTAM, we start in the mid-
dle and perform both a forward and a backward pass. During memory cross-
attention, we therefore only consider entries in the memory bank originating
from the current direction. For example, when processing from the middle to-
ward the bottom, the model ignores spatial embeddings and object pointers from
the earlier pass from middle to top. This design prevents confusion and ensures
that the model maintains strong attention to the initial prompt.
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Prompt Encoder and Interaction Simulation iMedSTAM supports both
box- and point-based prompts. The prompt encoder maps each point to a 256-
dimensional embedding by summing its positional encoding with a learned em-
bedding that specifies the prompt type (positive or negative). A box is repre-
sented by two points, corresponding to its top-left and bottom-right corners.
During training, user prompts are simulated. For the initial prompt, we first
identify the middle slice of the target object and generate a bounding box based
on the ground truth mask. To improve model robustness, we apply random shifts
to the box prompt. In cases where a bounding box is not suitable due to the
structure of the object, such as with vessels or myocardium, we use a positive
click at the center of the object as the initial prompt instead.

To simulate additional refinement points, we locate the center of the largest
error region from the previous prediction. If this region corresponds to an under-
segmentation, we place a positive click. Otherwise, we place a negative click. This
refinement process is repeated three times per sample during training. Combined
with the initial forward pass, this results in a batch size of four per training
iteration.

Mask Decoder Within the mask decoder, the memory-conditioned image em-
beddings and prompt embeddings are mapped to a segmentation mask. The
mask decoder consists of stacked two-way transformer blocks, followed by an
upsampling layer and an MLP that maps the tokens to a linear classifier. This
classifier outputs the probability of the object being present at each location.
Unlike EfficientTAM, we always condition on all prompts, including refinement
points that may refer to future slices or originate from earlier ones. Similar to
the memory attention mechanism, we include only prompts associated with slices
belonging to the current pass direction.

2.3 Coreset selection strategy

To select a reduced development set, we replicate the distribution of the different
3D modalities present in the validation set. Since the training dataset originates
from several distinct subsets, we randomly sample from each according to their
respective proportions. We ensure that at least one sample is picked from each
subset. This strategy guarantees that the model is still exposed to a broad variety
of inputs during training.

2.4 Post-processing

In a post-processing step, we resize the model output back to the original di-
mensions of the input image. In cases where multiple objects within a 3D image
need to be segmented, we additionally apply a non-overlapping mechanism. This
ensures that, in the event of potential mask overlaps, the selected label is not
determined by processing order, but rather by the model’s confidence in the
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presence of each object. This is possible because the model outputs mask logits
rather than directly producing binarized masks.

To avoid memory issues, especially in large 3D images or long videos with
many objects, we retain only the mask logits of slices still needed for comparison
in the non-overlapping mechanism. This is achieved by processing objects in
ascending order based on the starting slice of their bounding box. Furthermore,
we cache the model state between refinement iterations, which helps to speed
up the overall inference process.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [18], including more 3D cases from public datasets1 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [11] and
MedSAM2 [19]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

For each iterative segmentation, the evaluation metrics include Dice Simi-
larity Coefficient (DSC) and Normalized Surface Distance (NSD) to evaluate
the segmentation region overlap and boundary distance, respectively. The final
metrics used for the ranking are:

– DSC_AUC and NSD_AUC Scores: AUC (Area Under the Curve) for DSC
and NSD is used to measure cumulative improvement with interactions. The
AUC quantifies the cumulative performance improvement over the five click
predictions, providing a holistic view of the segmentation refinement process.
It is computed only over the click predictions without considering the initial
bounding box prediction as it is optional.

– Final DSC and NSD Scores after all refinements, indicating the model’s final
segmentation performance.

In addition, the algorithm runtime will be limited to 90 seconds per class. Ex-
ceeding this limit will lead to all DSC and NSD metrics being set to 0 for that
test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [17], all images were pro-
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT
1 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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images, we initially normalized the Hounsfield units using typical window width
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled
to the range of [0, 255]. For other images, we clipped the intensity values to the
range between the 0.5th and 99.5th percentiles before rescaling them to the range
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing
was applied.

During training and inference, we first convert the grayscale images of the
development set to RGB by duplicating the intensity values along the channel
axis. We then resize the input images to a resolution of 512 × 512 without
padding, and apply channel-wise RGB normalization to ensure consistency with
the pretraining configuration of EfficientTAM.

Environment settings The development environments and requirements are
presented in Table 1. Compared to the training on the 10% coreset, we use twice
as many GPUs and the more powerful NVIDIA H100 for training on the full
training dataset in order to accelerate the process.

Table 1. Development environments and requirements.

coreset all-data
System Debian 12.11 LTS
CPU AMD EPYC 7543 32-Core @ 2.79 GHz
RAM 50G 80G
GPU 4 × NVIDIA L40 48G 8 × NVIDIA H100 80G
CUDA version 12.6
Programming language Python 3.11
Deep learning framework torch 2.6, torchvision 0.21

Training protocols We fine-tune the pretrained EfficientTAM-S on the devel-
opment set of the challenge, training all model components to maximize per-
formance. As described in section 2.3, we selected a development set with a
distribution of 3D imaging modalities similar to that of the validation set. For
training on the full dataset, we oversample the underrepresented modalities MR,
PET, and ultrasound by factors of 2, 3, and 3, respectively.

For each epoch, we randomly select one object per case. Starting from the
middle slice, the model predicts with equal probability either from the middle
toward the top or from the middle toward the bottom. If this segment spans more
than 25 slices, a shorter subsection is randomly selected to prevent running out
of memory. As described in section 2.2, we then simulate three correction clicks
per object half in an iterative manner, resulting in a total batch size of four. We
apply data augmentation to the training samples, including random horizontal
flips and random affine transformations. The random affine transformations are
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performed with a rotation angle in the range of [−25, 25] and a shear angle in
the range of [−20, 20].

To supervise the model’s predictions, we use a linear combination of focal loss
and dice loss for the mask prediction, with a weighting ratio of 20:1. Compound
loss functions have been shown to be robust in various medical image segmen-
tation tasks [16]. We use the AdamW optimizer [15] with β1 = 0.9, β2 = 0.999,
and a weight decay of 0.1. For the image encoder, we select a lower learning
rate (3.0× 10−6) compared to the other components (5.0× 10−6), which require
greater adaptation to the medical domain. Table 2 details the training protocols
used for fine-tuning both the coreset and the all-data model.

Since evaluation on the validation set takes approximately 24 hours, we em-
ployed a binary search strategy to select the optimal model checkpoints. Assum-
ing that performance improves with each epoch and only degrades in later stages
due to overfitting, this approach allowed us to significantly reduce the number
of required evaluation runs.

Table 2. Training protocols.

coreset all-data
Pre-trained Model EfficientTAM-S
Data augmentation Horizontal Flipping and Random Affine
Batch size 4
Input size 512 × 512 × 3
Optimizer AdamW with weight decay set to 0.1
Initial learning rate (lr) Img. enc.: 5e-6, other: 3.0e-6
Lr decay schedule Cosine with an end value of 10% of the initial lr
Loss function 20 × focal loss + 1 × dice loss
Number of model parameters 34.1M
Total epochs 100 15
Training time 131 hours 174 hours
Number of flops 413.7P 848.9P

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 compares the performance of the proposed model for the coreset track
(iMedSTAM) with the baseline models on the public validation set. iMedSTAM
consistently outperforms all baselines across most modalities and metrics. It
achieves the highest average DSC_AUC (3.022), NSD_AUC (3.270), Final DSC
(0.782), and Final NSD (0.847), indicating strong interactive segmentation per-
formance and boundary accuracy. Even in the first iteration without correction
clicks (DSC_1), it achieves the highest score of 0.684.
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Table 3. Quantitative evaluation results of the validation set on the coreset track.
DSC_AUC and NSD_AUC measure the cumulative improvement across interactions.
Final DSC and NSD represent the scores after all refinements, while DSC_1 denotes
the score obtained using only the initial prompt.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final DSC 1

CT

SAM-Med3D 2.218 2.192 0.554 0.549 0.564
VISTA3D 2.797 2.816 0.715 0.724 0.649
SegVol 2.899 3.037 0.725 0.759 0.733
iMedSTAM 3.227 3.327 0.828 0.856 0.730

MRI

SAM-Med3D 1.493 1.490 0.383 0.387 0.332
VISTA3D 2.290 2.578 0.578 0.648 0.544
SegVol 1.113 1.314 0.278 0.328 0.279
iMedSTAM 2.771 3.209 0.724 0.837 0.629

Microscopy

SAM-Med3D 0.118 0.000 0.030 0.000 0.029
VISTA3D 1.730 2.737 0.442 0.696 0.400
SegVol 1.053 1.857 0.263 0.464 0.265
iMedSTAM 1.731 2.197 0.474 0.604 0.334

PET

SAM-Med3D 2.104 1.789 0.528 0.449 0.525
VISTA3D 2.388 2.098 0.612 0.543 0.561
SegVol 2.968 2.856 0.742 0.714 0.739
iMedSTAM 3.077 2.988 0.814 0.796 0.595

Ultrasound

SAM-Med3D 1.277 1.882 0.361 0.531 0.168
VISTA3D 2.580 2.589 0.707 0.717 0.494
SegVol 1.232 1.788 0.308 0.447 0.307
iMedSTAM 3.623 3.595 0.912 0.908 0.888

Average

SAM-Med3D 1.813 1.822 0.460 0.466 0.430
VISTA3D 2.529 2.667 0.645 0.682 0.587
SegVol 1.963 2.147 0.491 0.537 0.494
iMedSTAM 3.022 3.270 0.782 0.847 0.684

iMedSTAM ranks first in both DSC and NSD for CT, MRI, PET, and ultra-
sound. The model performs particularly well on ultrasound, achieving a Final
DSC of 0.912, with a 21% margin over the second-best model, significantly out-
performing all other methods. Only for the challenging microscopy images does
VISTA3D surpass iMedSTAM in NSD_AUC and Final NSD. It is also notewor-
thy that while SegVol achieves impressive DSC values for CT and PET with just
a single prompt, it shows little improvement with additional correction clicks.

Table 4 shows the performance on the validation set of the all-data track,
where our model, iMedSTAM, demonstrates strong and consistent results. By
exposing the models to the full development set, all models achieve a perfor-
mance improvement. iMedSTAM achieves the best scores across all metrics for
the MRI and ultrasound modalities. In contrast, nnInteractive performs better
on CT and PET 3D medical images. Similar to the coreset track, iMedSTAM
shows weaknesses in segmenting microscopy images. In this category, VISTA3D
achieves high NSD scores, while nnInteractive yields better DSC values. Overall,
iMedSTAM attains the highest average NSD_AUC (3.323) and DSC_1 (0.702)
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across all modalities. For DSC_AUC, Final DSC, and Final NSD, nnInteractive
leads slightly, with margins of 0.002, 0.12, and 0.007, respectively. These results
indicate that nnInteractive is more effective in incorporating refinement clicks.

Table 4. Quantitative evaluation results of the validation set on the all-data track.
DSC_AUC and NSD_AUC measure the cumulative improvement across interactions.
Final DSC and NSD represent the scores after all refinements, while DSC_1 denotes
the score obtained using only the initial prompt.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final DSC 1

CT
VISTA3D 3.169 3.265 0.804 0.834 0.751
nnInteractive 3.434 3.574 0.876 0.916 0.767
iMedSTAM 3.277 3.389 0.838 0.869 0.751

MRI
VISTA3D 2.589 2.968 0.654 0.749 0.619
nnInteractive 2.698 3.029 0.730 0.823 0.541
iMedSTAM 2.824 3.265 0.735 0.848 0.646

Microscopy
VISTA3D 2.120 3.226 0.548 0.824 0.486
nnInteractive 2.331 3.111 0.594 0.789 0.480
iMedSTAM 1.690 2.347 0.467 0.658 0.354

PET
VISTA3D 2.640 2.400 0.678 0.623 0.608
nnInteractive 3.348 3.324 0.855 0.849 0.719
iMedSTAM 3.001 2.895 0.789 0.766 0.592

Ultrasound
VISTA3D 2.866 2.844 0.810 0.808 0.509
nnInteractive 3.348 3.324 0.855 0.849 0.580
iMedSTAM 3.641 3.633 0.915 0.916 0.896

Average
VISTA3D 2.858 3.074 0.729 0.786 0.670
nnInteractive 3.069 3.285 0.803 0.864 0.647
iMedSTAM 3.067 3.323 0.791 0.857 0.702

To better understand how the AUC values are derived, Fig. 3 illustrates the
performance progression of all models with respect to the number of correction
clicks. For all models, segmentation accuracy improves incrementally with each
additional correction click. The only exception is SegVol, which processes only
bounding boxes as input and therefore cannot benefit from correction clicks.
Both the all-data and coreset versions of iMedSTAM achieve the highest average
DSC and NSD with only a single initial user prompt and no correction clicks.
It is only after the second refinement click for DSC and the third for NSD that
nnInteractive surpasses iMedSTAM.

Overall, we observe that the initial correction clicks contribute the most
to performance gains, while subsequent clicks yield diminishing improvements.
Furthermore, the coreset version of iMedSTAM initially performs slightly worse
than the all-data version but gradually closes the gap with additional clicks,
eventually achieving nearly comparable performance. This suggests that fine-
tuning with more data enables faster initial object recognition. However, the
coreset is sufficient for the model to learn how to handle and interpret correction
clicks.
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Fig. 4. Qualitative results for CT on the validation set. We illustrate one well-
segmented case (a) and one challenging case (b). The model achieves a DSC of 90% in
case (a) and 56 % in case (b).
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4.2 Qualitative results on validation set

Fig. 4 and 5 illustrate CT and MRI examples where iMedSTAM performs well,
along with one example for each modality where its performance is poor. For
each case, we visualize the ground truth and the model’s predicted masks.

In the CT example (a), iMedSTAM accurately segments and differentiates
various abdominal organs throughout the entire volume. As seen in the middle
slice, the model handles the segmentation of the liver (light green), even when
it consists of several separate regions in that plane. It also successfully identifies
the inferior vena cava (yellow), which is partially encircled by the liver. Overall,
a DSC of 90% is achieved across all segmented objects. In contrast, iMedSTAM
struggles in the CT case (b). The 3D view clearly shows that only the lower
portion of the brainstem (cyan) is detected, while the structure is lost toward
the middle and upper slices. A likely reason is the very narrow diameter of the
brainstem in the middle, which may be misinterpreted as the end of the object.
Additionally, many of the predicted objects exhibit non-smooth surfaces, with
visible edges arising from the model’s slice-by-slice processing. A further negative
factor is the greater physical distance between slices compared to case (a). As
a result, the objects exhibit more pronounced discontinuities in their location
from one slice to the next.
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Fig. 5. Qualitative results for MRI on the validation set. We illustrate one well-
segmented case (c) and one challenging case (d). The model achieves a DSC of 96% in
case (c) and 37% in case (d).
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iMedSTAM is able to segment all four visible abdominal organs in the MRI of
case (c) with high accuracy, achieving an above-average DSC of 96%. In contrast,
the model reaches only a DSC of 37% in case (d). While the surrounding non-
enhancing FLAIR hyperintensity (cyan) is segmented reasonably well despite
its complex structure, the mask for the non-enhancing tumor core (brown) is
significantly oversegmented. One contributing factor is that, in this case, only a
single point prompt was provided instead of an initial bounding box. This means
the model lacked clear spatial boundaries across slices and had to infer them on
its own. Additionally, the original resolution of the image is quite low at 218 ×
182 pixels. When resized, the image becomes slightly blurry, further obscuring
the color boundaries between different structures.

Fig. 6 shows one PET example where the model performs well and another
where it encounters difficulties. Compared to CT and MRI, PET images use a
different color scale and tend to appear more point-based than continuous. In
case (e), this does not pose a problem, as the various lesions are relatively small.
In contrast, in case (f), iMedSTAM significantly oversegments the brown lesion
in the lower slice, leading to a reduced overall performance. Even though the
other lesions are segmented accurately, the model achieves only a DSC of 53%
in this case.
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Fig. 6. Qualitative results for PET on the validation set. We illustrate one well-
segmented case (e) and one challenging case (f). The model achieves a DSC of 89% in
case (e) and 53% in case (f).
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Examples of the microscopy and ultrasound modalities are shown in Fig. 7.
In the microscopy case (g), iMedSTAM successfully tracks a total of 90 distinct
Alzheimer’s disease plaques in the brain across 122 slices, achieving a DSC of
72%. In case (h), brain vessels are observed under the microscope. In the ground
truth, two large vascular networks are each grouped into a single class. Since
these classes consist of many disjoint areas, it is challenging for the model to
establish coherent segmentations. Additionally, similar to the MRI case (d), no
bounding box was provided, and only a single positive point click was used as
the initial prompt, making the segmentation task even more difficult.

In case (i), ultrasound recordings of the heart are shown. The model success-
fully tracks and segments the left ventricle, myocardium, and left atrium almost
perfectly throughout the entire sequence. In case (j), a lower leg is depicted.
The model struggles only with the musculus gastrocnemius (purple) in the ini-
tial frames, where it fails to shrink the segmentation quickly enough before the
structure moves out of the frame. As already observed in the quantitative eval-
uation, iMedSTAM performs very well on the ultrasound modality, achieving a
DSC of 83% even in the worst case.
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Fig. 7. Qualitative results for microscopy and ultrasound on the validation set. For
each modality, we illustrate one well-segmented case (g/i) and one challenging case
(h/j). The model achieves a DSC of 72% in case (g), 22% in case (h), 95% in case (i),
and 83% in case (j).
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Table 5. Results and ranking of the top five teams on the final testing set.

Team Rank DSC AUC NSD AUC DSC Final NSD Final Track
aim (ours) 1 3.129 3.258 0.805 0.842 all-data
yiooo [36] 2 2.981 3.009 0.767 0.779 all-data
norateam [20] 3 2.911 2.970 0.754 0.775 coreset
sjtu-426lab [8] 4 2.552 2.645 0.640 0.664 all-data
lexor [2] 5 2.501 2.572 0.625 0.643 coreset

4.3 Results on final testing set

On the final testing set, our team aim achieved the highest ranking in both
the all-data and coreset tracks. As shown in Table 5, iMedSTAM attained fi-
nal DSC and NSC scores of 0.805 and 0.842, respectively. For DSC_AUC and
NSD_AUC, we obtained scores of 3.129 and 3.258, demonstrating significant
superiority across all four evaluation metrics. The second-best performing team,
yiooo, proposed a dual-expert architecture integrating both global and local
Region-of-Interest strategies [36], while the third-ranked team employed a fine-
tuned nnInteractive model [20].

4.4 Limitation and future work

iMedSTAM has demonstrated significant improvements, particularly when com-
pared to the baseline models in the coreset track. However, certain limitations
remain. One notable challenge lies in the microscopy modality. Since the valida-
tion set includes generally difficult cases, none of the evaluated models achieve
outstanding results in this modality. Nevertheless, iMedSTAM lags slightly be-
hind VISTA3D and nnInteractive. This performance gap, compared to the other
modalities, may be attributed to the fact that microscopy is substantially un-
derrepresented in the development set, accounting for only 0.39%. Future work
could address this by collecting additional microscopy cases and incorporating
them into the training process.

Another limitation is iMedSTAM’s performance on 3D medical images with
relatively large physical spacing between slices. In such cases, the model may en-
counter more abrupt changes in object position from slice to slice than typically
occur in video data, which the model was originally pre-trained on. As a result,
this can lead to non-smooth surface segmentations. True 3D native models gen-
erally do not face this issue, as they are better at capturing spatial continuity
in these scenarios. A potential approach to mitigate anisotropy in 3D medical
images is to integrate an ASRGAN for inter-slice recovery [5] or to apply slice
imputation with a synthesis model [33]. While such methods can restore spatial
continuity, they substantially increase execution time due to the processing of
artificially generated slices.

Furthermore, a modality-aware approach could be explored, where separate
models are fine-tuned for each imaging modality rather than using a single
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general-purpose model. In real-world applications, users often know the modal-
ity of the input data in advance, and leveraging this information could enhance
segmentation performance.

Expanding the training data to include additional publicly available datasets
such as CAMUS [14], EMIDEC [13], SpineMets [21], and AortaSeg24 [9], which
were not included due to redistribution and licensing constraints, could further
improve generalization and robustness across modalities. Moreover, optimizing
the inference pipeline by implementing intelligent caching of image embeddings
across interaction iterations and object-level passes could reduce computational
redundancy and further improve efficiency.

5 Conclusion

In this work, we presented iMedSTAM, based on the EfficientTAM architec-
ture. iMedSTAM is capable of interactively segmenting not only medical videos
but also delivering accurate segmentations across multiple slices in 3D imaging
modalities such as CT, MRI, and PET. On the coreset track, our model signif-
icantly outperforms baseline models across all modalities, and on the all-data
track, it performs nearly on par with the recent nnInteractive model. Further-
more, through iterative correction clicks, users can progressively refine segmen-
tation quality using iMedSTAM. Our best-performing model achieves an average
final DSC and NSD of 0.791 and 0.857, respectively. This performance suggests
that it could also be utilized in the construction of additional 3D medical im-
age and video datasets, similar to the approaches in [23] and [19], in order to
significantly accelerate the annotation process.
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Appendix

Table 6. Quantitative evaluation results of different SAM2 and EfficientTAM versions
on the validation set. All models were not fine-tuned on the development set and thus
reflect their default performance. We demonstrate how the number of parameters and
input resolution affect the average runtime per object and segmentation quality.

Model Input
Resolution Parameters Running

Time (s)
DSC
AUC

NSD
AUC

DSC
Final

NSD
Final

SAM 2.1 Tiny 1024 × 1024 38.9M 5.017 2.281 2.364 0.594 0.617
SAM 2.1 B+ 1024 × 1024 80.8M 5.673 2.251 2.348 0.585 0.612
EfficientTAM S 1024 × 1024 34.1M 4.705 2.157 2.259 0.556 0.584
EfficientTAM S 512 × 512 34.1M 2.248 2.082 2.162 0.538 0.555

Table 7. Incremental performance improvement by adding each component step by
step, evaluated on the public validation set. The baseline is an EfficientTAM-S model
with an input resolution of 512 × 512, which receives the initial prompt in the first
slice/frame where the object appears and propagates the mask in one direction only.
All subsequent variants receive the initial prompt in the middle slice and propagate
the mask bidirectionally. Fine-tuning was performed on the full development set.

Model Variant DSC
AUC

NSD
AUC

DSC
Final

NSD
Final

EfficientTAM S (512 × 512) 1.687 1.702 0.324 0.299
+ Bidirectional mask propagation 2.082 2.162 0.538 0.555
+ Conditioning on all correction slices/frames 2.175 2.413 0.577 0.642
+ Restricting conditioning to the same direction 2.241 2.432 0.596 0.648
+ Non-overlapping post-processing step 2.423 2.550 0.634 0.673
+ Fine-tuning on the development set 3.067 3.323 0.791 0.857


