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Abstract

Large language models (LLMs) possess power-001
ful capabilities and play a crucial role in daily002
life. Instruction fine-tuning is essential for train-003
ing LLMs, enabling them to understand hu-004
man instructions and produce the desired out-005
put. Selecting appropriate data for instruction006
fine-tuning is essential but challenging, exist-007
ing data selection methods struggle to balance008
effectiveness and efficiency in real-world sce-009
narios. In this work, we propose a novel data010
selection framework that evaluates data from011
unknown sources based on its output. To guide012
the model in distinguishing instruction fine-013
tuning data, we train a discriminator that uses014
outputs from models of varying quality as su-015
pervision signals. We establish principles to016
evaluate model quality, asserting that a model’s017
quality is higher if it is a newer version, has018
more parameters, and achieves higher scores019
on well-known benchmarks. This way, the020
discriminator learns the differences between021
outputs from different models, enabling it to022
categorize unknown data into the most simi-023
lar model outputs. We conduct experiments to024
prove that our method is resource-efficient and025
model-independent.026

1 Introduction027

Large language models(LLMs) possess power-028

ful capabilities and play a crucial role in daily029

life (Achiam et al., 2023; Eloundou et al., 2023;030

Lehman et al., 2022; Touvron et al., 2023a,b;031

Brown et al., 2020). Instruction fine-tuning is032

crucial for training LLMs (Longpre et al., 2023).033

Through instruction fine-tuning, LLMs can under-034

stand human’s instruction and convey the desired035

output (Dubois et al.).036

Data selection is of paramount importance for in-037

struction fine-tuning. Previous works (Zhou et al.,038

2024; Li et al., 2023a; Cao et al.; Li et al., 2023c;039

Xia et al., 2024) show that a higher-quality but040

lower-quantity dataset can result in better fine-041

Figure 1: We conclude current instruction fine-tuning
data into three types according to the outputs.

tuning outcomes. However, the fine-tuning datasets 042

for models contain many low-quality data, includ- 043

ing incorrect information, irrelevant content, and 044

biased or inappropriate content as Figure 1 shows. 045

Low-quality training data can lead to a decrease 046

in model performance (Li et al., 2023a). Incorrect 047

or irrelevant information reduces model accuracy 048

by confusing the model (Zhang et al., 2023). This 049

results in the difficulty to learn correct knowledge 050

or distinguish useful information, and impairs the 051

generalization ability of the model (Chen et al., 052

2024). Moreover, low-quality data may cause the 053

model outputs to exhibit biases (Li et al., 2024a; 054

AlKhamissi et al., 2024), thereby impacting fair- 055

ness and justice. 056

However, existing data selection methods can- 057

not balance effectiveness and efficiency when deal- 058

ing with instruction fine-tuning data in the real 059

world scenarios. First, existing selection strate- 060

gies only pay attention to the data characteristics, 061

such as length, complexity (Xu et al., 2023) and 062

diversity (Chen et al., 2023a). But these simple 063

criteria are difficult to estimate the quality of data, 064
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for example, there are many short but insightful re-065

sponses. Second, existing data selection strategies066

are resource-intensive, some rely on more powerful067

language models (Chen et al., 2023b) to act as a068

judge, some require a large amount of model in-069

ferences (Li et al., 2023c) to evaluate the quality070

of the data. Third, existing selection strategies are071

model-dependent, overly emphasizing model speci-072

ficity (Li et al., 2023a). This results in the selected073

data only suitable for the selecting models.074

Since instruction fine-tuning requires the model075

to respond to a wide variety of questions, we fo-076

cus on output quality to measure the quality of077

instruction fine-tuning samples. The output of the078

data is crucial for evaluating the quality of the data.079

First, the quality of outputs affect the quality of080

data. Some works show that instruction fine-tuning081

with outputs from GPT-4 performs better than GPT-082

3.5 (Peng et al., 2023) under the same set of in-083

structions. Additionally, differentiating outputs084

of varying quality can improve training outcomes.085

Previews work assigns higher weights to higher-086

quality outputs during the instruction tuning pro-087

cess and enhances the model’s performance (Wang088

et al., 2023a).089

Selecting instruction fine-tuning data based on090

outputs is challenging. First, it is difficult to evalu-091

ate the quality of data from multiple sources. Cur-092

rent selection strategies based on data features are093

inadequate, necessitating more effective methods094

to achieve this goal. Second, it is hard to find a way095

that is resource-efficient. The method should avoid096

lengthy processing times, and minimize the need097

for extensive memory resources or requiring large098

language models. Third, the evaluation method099

should be model-independent so that the selected100

dataset can be used for other models to improve101

their quality.102

In this work, we propose a resource-efficient103

and model-independent data selection framework,104

which can evaluate data from unknown source105

based on its output and select high-scoring data106

for model fine-tuning. To guide the model in dis-107

tinguishing instruction fine-tuning data, we train a108

discriminator that uses the outputs from models of109

varying quality as supervision signals. We establish110

principles to evaluate model quality, asserting that111

a model’s quality is higher if it is a newer version,112

has more parameters, and achieves higher scores113

on well-known benchmarks. In this way, the dis-114

criminator learns the differences between different115

models’ outputs. Thus it can categorize unknown116

data into the most similar models’ outputs. To have 117

the selected data suitable for any language model, 118

we design a framework where fine-tuned models 119

are free from the process. 120

Our contributions are summarized as follows: 121

(1) We propose an output-centric instruction fine- 122

tuning data selection framework, which uses a dis- 123

criminator to evaluate data quality. Our method is 124

model-independent, demonstrating strong general- 125

ization ability. (2) We conduct extensive experi- 126

ments to prove the effectiveness and efficiency of 127

our method. 128

2 Related Work 129

2.1 Instruction Tuning 130

Existing instruction tuning work focuses on three 131

main directions. The first is data engineering. 132

This involves using automated methods to con- 133

struct large amounts of training data (Wang et al., 134

2023b), or designing existing data into more com- 135

plex forms (Xu et al., 2023; Mukherjee et al., 2023). 136

The second is data selection, whose goal is to re- 137

duce the number of training samples by selecting 138

high-quality data (Li et al., 2023a; Zhou et al., 139

2024). The third is prompt generation, which 140

uses automated methods to create prompts for fine- 141

tuning data to achieve better results (Petridis et al., 142

2024; Do et al., 2024). 143

In this paper, our method falls under the category 144

of data selection. We train a discriminator to assess 145

the quality level of each sample and select high- 146

quality data accordingly. 147

2.2 Instruction Data Selection 148

Current data selection methods can be divided into 149

three main categories, each with its own drawbacks. 150

The first category focuses on the quality and fea- 151

tures of the data itself (Chen et al., 2023a), attempt- 152

ing to find data that is longer, more diverse and 153

complex. However, these simple evaluation meth- 154

ods may not effectively reflect the quality of the 155

data. The second category relies on large models to 156

assist in directly outputting data quality (Chen et al., 157

2023b) or indirectly assessing it by calculating the 158

model’s logits scores for the inference samples (Li 159

et al., 2023c). These methods require significant 160

time and computational resources. The third cate- 161

gory is model-dependent (Li et al., 2023b,a), which 162

means that they are only effective for the models 163

used in the data selection process. 164

Compared to existing data selection methods, 165
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our approach has several advantages: effectiveness,166

resource efficiency and model-independent.167

3 Method168

Most instruction fine-tuning data consist of instruc-169

tions, inputs, and outputs. To better utilize the170

outputs, we design an output-based data filtering171

method. We identify high-scoring data segments172

as high-quality data for model fine-tuning.173

3.1 Output-Centric Evaluation Method174

To evaluate model’s quality, a common method175

is to calculate model’s outputs score on different176

benchmarks (Beeching et al., 2023). High-quality177

models are more likely to produce high-quality out-178

puts when given the same instructions. In other179

words, with large-scale instruction tests, the higher180

the model’s quality, the higher the quality of the181

generated responses. As shown in Table 9 at Ap-182

pendix A.1, given the same instruction, different183

models produce varying outputs. High-quality184

models are capable of accurately understanding185

the instruction requirements and providing clear186

completion steps, while others may respond based187

on misunderstanding. Therefore, we use the quality188

of the model to represent the quality of the output.189

To evaluate the quality of the instruction fine-190

tuning data, we train a discriminator to classify the191

most-likely source of the data. If the discriminator192

identifies that the data is similar to the outputs from193

a high-quality model, it signifies higher quality for194

the data. Detailed explanation is in Section 3.3.195

Overall, our data selection method consists of196

the following parts as Figure 2 shows: 1. Discrimi-197

nator Training: We collect training datasets gen-198

erated by different models. We use the sources of199

the data as labels to train a discriminator. 2. Data200

Scoring: Input the mixed and unknown source201

datasets into the discriminator. The discriminator202

judges which model source the data is closer to.203

We assign higher scores to data identified as from204

higher-quality models. We save the discriminator’s205

judgment results for data filtering. 3. High-Quality206

Data Selection: Based on the discriminator’s judg-207

ment results, we filter out the high-scoring data for208

model fine-tuning.209

3.2 Discriminator Training210

To be specific, we use the BERT model as a basis211

to train a discriminator F for a multi-class classifi-212

cation task.213

3.2.1 Data Construction 214

To evaluate the quality of models, we establish 215

three principles. 216

Principle 1: For models released by the same 217

manufacturer with the same framework and pa- 218

rameter size, newer versions generally have better 219

quality than older ones. For example, GPT-4 is 220

superior to GPT-3.5. 221

Principle 2: For models released by the same 222

manufacturer at the same time with the same frame- 223

work, larger parameter models generally have bet- 224

ter quality than lower parameter models. For exam- 225

ple, Llama2-13B-Chat is superior to Llama2-7B- 226

Chat. 227

Principle 3: To reflect the effectiveness of model 228

fine-tuning on general data, we select well known 229

benchmark to approximate human preferences. By 230

assessing the quality of different models’ open- 231

ended responses, we can label different models into 232

different levels. Models that achieve higher scores 233

on the benchmark are considered superior to those 234

with lower scores. For example, We choose MT- 235

Bench in our work, where OpenChat-3.5-0106 per- 236

forms between GPT-3.5 and Llama2-13B-Chat 1. 237

With the principles we declared, we select N 238

different models in different quality as Inference 239

Models IM. 240

IM = {IM1, IM2, · · · , IMN} 241

To create training data for discriminator F , we 242

randomly select M different prompts as instruc- 243

tions I: 244

I = {i1, i2, · · · , iM} 245

The instructions are then input into each of the N 246

models of different quality to obtain their respective 247

outputs: 248

O = {oji, j ∈ [1, N ], i ∈ [1,M ]} 249

where oji denotes the outputs to the ith instruction 250

from the jth model. This process results in the 251

creation of N ·M labeled data. 252

To standardize the format of the training data for 253

the discriminator F , we use the same chat template 254

to convert all dialogue data generated by different 255

models into the same format. Given the instructions 256

and outputs from different models, we combine 257

them into training dataset D: 258

1The results are gathered from LMSYS Chatbot Arena
LeaderboardLMSYS Chatbot Arena Leaderboard
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Figure 2: The Framework of our data selection method. Step1, we collecting instructions I to have Inference
Models IM generate outputs O . We use our predefined principles to classify different IM and corresponding O
into different quality. We combine the instructions and O to construct training data D, labeled with the index of
IM. We use D to train our discriminator F . Step2, we input the data to be selected into F , where F will output
the most likely classification result ŷ of each sample. We map the high-quality data category to high-score. Step3,
we use these high-score data to instruction fine-tune models.

D = {(I ⊕O, label)}259

We determine the index of model type as the260

label for each training data, thus we can clarify the261

equation as:262

D = {(it ⊕ okt, k), t ∈ [1,M ], k ∈ [1, N ]}263

where it denotes the tth instruction, okt denotes the264

outputs to the tth instruction from the kth model,265

thus the label of the data is k.266

3.3 Data Scoring267

After training discriminator F , we input the sam-268

ples to be scored D′ into discriminator F , then it269

will perform a multi-classification task on the in-270

put data. The output of discriminator F will be a271

predicted label ŷ, which indicates the most-likely272

source of the sample data according to the require-273

ments during training. The higher quality of the274

predicted source model, the higher score it will get.275

ŷ = F (D′), ŷ ∈ {1, 2, · · · , N}276

The workflow for the discriminator is as fol-277

lows. Firstly, the discriminator obtains raw scores278

for each class through a fully connected layer.279

Secondly, the discriminator computes the confi-280

dence(probability) for each class using the softmax281

function (Mikolov et al., 2011). Thirdly, the dis-282

criminator selects the class with the highest con-283

fidence as the classification result ŷ, which cor-284

responds to the index of the model type with the285

highest confidence.286

To map model type to data score, we define a287

mapping function. We assume that the inference288

Model
Fine-tuning
data size

Data characteristic
selection method

Model scoring
method

All data 90k ✓ ✗

Random 4.5k ✓ ✗

Kmeans 4.5k ✓ ✗

Cherry 4.5k ✗ ✓

Our 4.5k ✗ ✓

Table 1: Characteristics among different data selection
methods.

models are already sorted in ascending order of 289

model quality, where IM1 stands for the weakest 290

model in IM. We specify the mapping for each 291

model type: 292

S = Score(ŷ) =


1, if ŷ = index of IM1

2, if ŷ = index of IM2

· · ·
N, if ŷ = index of IMN

293

After scoring step, all the unknown data will get 294

a score from 1 to N . We assign higher scores to 295

the data identified as from higher-quality models 296

and save the discriminator’s judgment results for 297

data filtering section. 298

3.4 High-Quality Data Selection 299

After having the output score of all the instruction 300

fine-tuning data, we come to the final step. To 301

quantify our evaluation standards, we consider data 302

with the highest score as high-quality data. Thus 303

we select all the high-quality data, and fine-tuning 304

the models with these data. 305

4 Experiment Setup 306

We conduct experiments to verify the effectiveness 307

of our method. Using the pre-trained Llama2-7B 308
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model as the base model, we fine-tune it with the309

selected high-quality instruction fine-tuning data310

from different methods.311

4.1 Discriminator Training312

To train a discriminator, we select 5 models to con-313

struct training dataset. Based on the principles we314

declare in Section 3.2.1, we can conclude that the315

quality of our selected models, from high to low is316

as follows: GPT-4, GPT-3.5, OpenChat-3.5-0106,317

Llama2-13B-Chat, Llama2-7B-Chat.318

To create training data for discriminator, we ran-319

domly selected 2,000 identical ShareGPT human320

prompts as instructions. The instructions are input321

into each of the five models to obtain their respec-322

tive outputs. This process results in the creation of323

10,000 labeled training data.324

Following the chat template of Llama2, the in-325

struction and output are organized in the format326

below.327

<s>[INST] instruction [/INST] output </s>328

Considering that some ShareGPT data have too329

many dialogue turns, we only selected the first330

three rounds of dialogue when constructing the331

data. We retain the first two rounds of dialogue and332

concatenated them with the prompt part of the third333

round to form the overall instruction. This overall334

instruction is then input into five different models335

to obtain the models’ output results. Following the336

multi-turn dialogue format of Llama2, the train-337

ing sample is assembled into a complete segment.338

More training details are listed in Appendix 4.1.339

4.2 Mixed-Source Datasets340

To evaluate the effectiveness of different methods,341

we applied various data filtering techniques to the342

same mixed-source dataset and verified the impact343

of the filtered data on the Llama2-7B model. To344

ensure the coverage and humanity of the dataset,345

we introduce three sources: (1) Self-Instruct (Wang346

et al., 2023b) consists 175 manually written instruc-347

tions covering diverse topics to facilitate instruction348

generation for new tasks (2) Open Assistant Conver-349

sations Dataset Release 2 (OASST2) (Köpf et al.,350

2024) is a human-generated, human-annotated data351

consisting of assistant-style conversations. We352

transform the tree-like structure into dialogue data,353

ultimately generating over 132k multi-turn dia-354

logue instances. (3) ShareGPT is a collection of355

dialogue data between users and GPT-3.5 or GPT-356

42. After filtering, there are 83k dialogue instances 357

available for fine-tuning. 358

4.3 Baselines 359

There are currently numerous data selection meth- 360

ods aimed at achieving better fine-tuning results 361

with a small amount of fine-tuning data. To better 362

verify the effectiveness of our method, we select 363

four works to compare with as Table 1 shows: (1) 364

Random selection method play the role as a com- 365

parative experiment. (2) Kmeans (Krishna and 366

Murty, 1999) selection method shows how much 367

the distribution of fine-tuning data can affect model 368

performance. We use L1 regularization (Schmidt 369

et al., 2007) to divide all the data into 100 clus- 370

ters, then select the 45 pieces of data closest to 371

the center of each cluster. (3) Cherry (Li et al., 372

2023a) selection method introduce the concept of 373

Instruction-Following Difficulty (IFD) and subse- 374

quently demonstrate in later papers that smaller 375

models can also perform data filtering tasks(Li 376

et al., 2024b). To ensure fair comparison, BERT 377

will be used as the data filtering model in the com- 378

parative process. Training details are listed in Ap- 379

pendix B.2 380

4.4 Evaluation 381

To better assess the impact of general dataset on 382

the model, we focus on testing the model’s con- 383

versational abilities during the evaluation phase. 384

We select the following benchmarks, which reflect 385

the conversational capabilities of general models 386

and are widely recognized and easy to evaluate: 387

(1) IFEval (Zhou et al., 2023) focuses on evaluat- 388

ing the ability to follow natural language instruc- 389

tions. (2) LIMA (Zhou et al., 2024) suggests that 390

a small amount of high-quality data can lead to 391

better fine-tuning results and constructs a test set 392

to validate this hypothesis. (3) WizardLM test- 393

set (Xu et al., 2023) includes real-world human 394

instructions from diverse sources, identified dis- 395

tinct skills that represent the main requirements 396

of humanity. (4) Koala (Geng et al., 2023) con- 397

sists of queries that source from publicly available 398

user-written language model prompts. (5) MT- 399

Bench (Zheng et al., 2023) is a set of challenging 400

multi-turn open-ended questions for evaluating chat 401

assistants. (6) AlpacaEval2.0 (Dubois et al., 2024) 402

with length-controlled win-rates is currently the 403

2The ShareGPT dataset is collected from
https://sharegpt.com/.
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Model ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level P-level

All data 26.97 1.54 39.62 10.83 46.63 83.87 34.97 57.58 16.42 31.65 19.04
Random 15.73 3.08 37.74 12.74 39.26 54.84 37.06 57.58 10.45 28.18 16.45
Cherry 30.34 0.00 43.40 29.30 48.47 93.55 32.17 42.42 13.43 34.41 22.18
Kmeans 16.85 9.23 58.49 24.20 49.69 80.65 39.16 50.00 17.91 35.61 23.11
Our 22.47 6.15 60.38 35.03 57.06 100.0 40.56 53.03 28.36 41.61 27.36

Table 2: IFEval scores for different data selection methods based on Llama2-7B model. I-level denotes Instruction-
level, P-level denotes Prompt-level. The bold represent the first ranking among these models.

Model Coding Extraction Humanities Math Reasoning Roleplay STEM Writing First turn Second turn Average

Random 1.13 1.88 3.74 1.56 3.17 2.73 3.47 2.97 2.96 2.21 2.59
Cherry 1.62 3.09 7.00 1.39 3.32 5.85 6.50 5.62 5.08 3.77 4.42
Kmeans 1.67 3.07 8.82 2.03 3.81 5.56 7.14 6.85 5.66 4.04 4.90
All data 2.25 4.07 7.42 1.29 4.00 6.14 7.47 6.69 5.64 4.32 4.94
Our 1.74 3.82 8.31 1.61 3.41 7.03 8.05 7.01 5.74 4.33 5.05

Table 3: MT-Bench score of different data selection methods based on Llama2-7B model. The bold represent the
first ranking among all these models.

benchmark with the highest correlation with Chat-404

bot Arena, thus we use AlpacaEval2.0 to represent405

human preference.406

To better evaluate models’ conversational capa-407

bilities, we use GPT-4 as a judge. We design two408

different evaluation form: (1) Pairwise Compari-409

son, ask GPT-4 to compare between different mod-410

els’ responses, and give a judgement of win, tie411

or lose. (2) Single-Answer Grading, directly ask412

GPT-4 to give a score from 1 to 10. Prompts for413

GPT-4 are listed in Table 10 at Appendix A.2. We414

collect data from LIMA testset, WizardLM testset415

and Koala testset to complete Pairwise Compar-416

ison. We use the official methods from IFEval3,417

MT-Bench4 and AlpacaEval5 to complete Single-418

Answer Grading.419

5 Result420

5.1 Main Result421

5.1.1 Pairwise Comparison422

As the result shown on Figure 3, our model fine-423

tuned by data from our data selection method can424

have the highest win-rate among all the compar-425

ison models and testsets. This proves that using426

discriminator for data selection outperforms com-427

parison methods in real-world human instructions428

scenarios.429

5.1.2 Single-Answer Grading430

To ensure the coverage of our evaluation, we assess431

the experimental results on following benchmarks.432

3https://github.com/google-research/google-
research/tree/master/instruction_following_eval.

4https://github.com/lm-sys/FastChat/tree/main/fastchat.
5https://github.com/tatsu-lab/alpaca_eval.

IFEval Table 2 shows IFEval scores for different 433

data selection methods. The model fine-tuned by 434

our method achieves the highest score among all 435

the other data selection methods. In the criteria of 436

Keywords, Language, Length and Punctuation, our 437

model is higher than Llama2-7B-Chat. This proves 438

that our method can improve model’s instruction 439

following ability by selecting high-quality instruc- 440

tion fine-tuning data. 441

MT-Bench Table 3 shows the MT-Bench scores 442

for different data selection methods. Our model 443

achieves high score at Humanities, Roleplay and 444

STEM. This indicates that our model performs bet- 445

ter in handling interdisciplinary and contextual sim- 446

ulation tasks. Meanwhile, our model is not good 447

at logical tasks like Coding, Math and Reasoning 448

tasks. This suggests that our model has strong capa- 449

bilities in understanding and generating natural lan- 450

guage, but is lacking in performing precise calcula- 451

tions, programming, and logical reasoning. Since 452

the datasets to be selected are source from conversa- 453

tions and manually written instructions, we assume 454

that improving model’s capabilities in logical tasks 455

needs more reasoning data in the datasets. 456

AlpacaEval Table 6 shows the AlpacaEval 457

scores for different data selection methods. Our 458

method achieves the highest length-controlled win- 459

rate, which indicates that our model has the highest 460

human preference. 461

6



Model IFEval MT-Bench AlpacaEval

I-level C-level First turn Second turn Average winrateLC winrate

Random 20.74 9.98 2.49 1.72 2.11 0.56 0.27
Cherry 26.14 14.42 3.02 1.87 2.45 1.07 1.00
Kmeans 25.30 14.23 3.76 2.46 3.11 0.69 0.68
OUR 33.33 20.89 4.56 2.76 3.68 0.48 0.46

Table 4: Scores for Mistral-7B fine-tuned by different data selection methods. Evaluate on IFEval, MT-Bench and
AlpacaEval benchmarks. The bold for the first rankings among all the models.

[Instruction] If \"A dj at a public gathering with his equipment.\" does that mean that \"A dj is getting ready to perform for a large
crowd.\"?\nOptions:\n- yes\n- it is not possible to tell\n- no Step by step answer:

[Output] 1. The given statement states \"A DJ at a public gathering with his equipment.\"\n2. This implies that a DJ is present at a place
with a gathering of people and has brought his equipment with him. \n3. The equipment usually includes tools for playing,
mixing, and controlling music, which a DJ uses to entertain an audience.\n4. Combining these factors, it is reasonable to conclude
that the DJ is prepared or getting ready to perform for those gathered.\n\nSo, the answer is: yes, \"A DJ is getting ready to
perform for a large crowd\" can be inferred from the given statement.

[Score] 1

[Instruction] Tell me what should i do if i want to get into a good university?
[Output] You should study hard and get good grades. You should also participate in extracurricular activities, such as sports or clubs.
[Score] 2

[Instruction] Explain why does your country celebrate labor day?
[Output] Labor Day is a creation of the labor movement and is dedicated to the social and economic achievements of American workers. It

constitutes a yearly national tribute to the contributions workers have made to the strength, prosperity, and well-being of our
country.

[Score] 3

[Instruction] Can you write me a short paragraph about teenagers and their money habbits?
[Output] Sure! Here is a short paragraph about teenagers and their money habits:\n\nTeenagers often have limited experience managing

money, and may not always make the best financial decisions. They may be prone to impulse spending and may not think
carefully about the long-term consequences of their financial choices. It is important for teenagers to learn good money habits,
such as setting financial goals, budgeting, and saving for the future. These skills can help them make informed decisions about
how to use their money and set them up for financial success in the long run.

[Score] 4

[Instruction] I’m Afraid that AI will take over my job as a software developer
[Output] I completely understand your concerns, but I think it’s important to keep in mind that AI technology is still very much in its

infancy. While AI is rapidly advancing in areas like natural language processing and image recognition, it’s not quite at the point
where it can fully replace the creativity and critical thinking skills of human beings.\n\nIn fact, I think AI has the potential to
actually enhance the work that software developers do. For example, AI can be used to automate repetitive tasks like code reviews
or testing, freeing up developers to focus on more creative and complex work. Additionally, AI can help software developers
identify patterns and potential issues in their code, leading to better quality and more efficient development.\n\nOverall, I think
the key to staying relevant in the age of AI is to continue to develop your skills and stay up-to-date with the latest advancements
in the field. By doing so, you can ensure that you remain an asset to any organization, regardless of the technological tools being
used.

[Score] 5

Table 5: Real cases for the output data score of our methods.

winrateLC winrate std_error n_total avg_len

All data 2.13 0.96 0.31 805 310
Random 2.29 1.01 0.32 805 250
Cherry 2.72 1.35 0.35 805 420
Kmeans 2.76 1.69 0.42 805 577
Our 3.70 2.26 0.46 805 765

Table 6: AlpacaEval score of different data seletion
models based on Llama2-7B model. winrateLC de-
notes Length controlled winrate, std_error denotes stan-
dard_error, n_total denotes the number for available
testing cases, avg_len denotes the average length for
models’ outputs.

5.2 Case Study462

To have our data selection results more intuitive,463

we select some actual samples from the dataset and464

list the corresponding scores as Table 5 shows. The465

result shows that our method doesn’t affect by sim- 466

ple data characteristics including context length, 467

language and complexity. High-scoring answers 468

not only provide well-structured and insightful re- 469

sponses but also demonstrate emotional concern 470

and practical advice. 471

5.3 Generalization Ability 472

We conduct experiment to prove that the data se- 473

lected by our method can have a good performance 474

in other models. We fine-tune Mistral-7B model 475

with data selected by methods from Section 4.3, 476

and we evaluate the models with Single-Answer 477

Grading from Section 5.1.2. The results are shown 478

in Table 4, our method exhibits good performances 479

in Mistral-based evaluation. This indicates that our 480
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Model IFEval MT-Bench AlpacaEval

I-level C-level First turn Second turn Average winrateLC winrate

Bert-based 41.61 27.36 5.73 4.33 5.05 14.07 15.59
Llama3-based 33.69 19.22 5.15 4.21 4.68 11.79 12.85

Table 7: Score for Llama3-8B based discriminator and BERT-based discriminator. All the evaluation setups remain
the same as Section 4.4.

Figure 3: Pairwise Comparison results. Blue bars repre-
sent instances where our model performs better than the
comparison model, green bars indicate worse, and the
yellow bars represent tied.

methods has a strong generalization ability.481

5.4 Resource Consuming482

To demonstrate that our method is resource-483

efficient, we list the time consumption and GPU484

resources occupied by different data filtering meth-485

ods. All experiments are conducted on a single486

NVIDIA A800 80GB GPU. As Table 8 shows, our487

method has the highest speed (except for Random488

selection) and does not need to occupy large GPU489

resources.490

Method Time(second) Speed(token num/second) GPU-MEM(MiB)
Random 0 N/A 0
Kmeans 37080 699.78 2370
Cherry 2092.43 12400.88 1238

Our 1477.01 17567.91 2330

Table 8: Time and memory usage for different data se-
lection methods. We use kmeans_pytorch package to
accelerate Kmeans by GPU. N/A denotes the speed for
Random selection is unavailable. The bold represents
the fastest selection speed and the least memory occu-
pation.

5.5 Discriminator Design491

To investigate whether generative models or BERT492

perform better as discriminator, we fine-tune well-493

known Llama3-8B into a discriminator and com-494

pare the effectiveness of both in selecting instruc- 495

tion fine-tuning data. Details for the training pro- 496

cess are listed in the Appendix B.3. 497

We use three benchmarks: IFEval, MT-Bench 498

and AlpacaEval to evaluate the performance be- 499

tween model fine-tuned by data from Llama3-8B 500

based discriminator and data from BERT-based dis- 501

criminator. The results are shown in Table 7. Data 502

from BERT-based discriminator can be more bene- 503

ficial for fine-tuning model performance. 504

To understand why a 0.1B parameter model can 505

perform better than an 8B parameter model, we 506

delve into the internal framework of the models 507

to explore this issue. Llama and other generative 508

models follow a decoder-only framework, while 509

BERT is an encoder-only model. We hypothesize 510

that BERT performs better as a discriminator due 511

to differences in their frameworks. 512

As an encoder-only model, BERT is good at 513

capturing the features of different input texts and 514

focuses on encoding and classifying these in- 515

puts (Jawahar et al., 2019). Due to its design for 516

semantic encoding, BERT performs well in extract- 517

ing and representing both semantic and contextual 518

information from input data. This capability en- 519

ables BERT to effectively distinguish the distinc- 520

tive features among outputs from various models. 521

6 Conclusion 522

In this paper, we introduce an output-centric 523

method to select instruction fine-tuning data. Our 524

method evaluates data quality by using a discrimi- 525

nator to classify the most-likely source of the input 526

sample, then score the sample according to the pre- 527

dicted source. We conduct experiments to prove 528

that our method is effective and model-independent. 529

Our framework can select more useful data for im- 530

proving models’ general ability, especially in un- 531

derstanding and generating natural language. Addi- 532

tionally, we discuss the reason for choosing BERT 533

as discriminator. 534
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Limitation535

In this work, we propose a method for instruction536

fine-tuning data selection. While the method is sim-537

ple and efficient, it still has certain limitations. Be-538

fore using the discriminator to filter data, you need539

to first train an discriminator using the method we540

provide, which requires a certain amount of time541

and computational power. Once trained, this dis-542

criminator can be applied to filter any fine-tuning543

data, and the filtered data can be used for any544

model.545

Ethics Statement546

In the context of employing generative models, it547

is crucial to acknowledge the potential for biased548

statements to be generated during the construction549

of training data. While efforts can be made to550

mitigate bias through careful monitoring and val-551

idation processes, complete elimination of biased552

outputs may prove challenging. It is imperative553

for readers to remain vigilant and implement ethi-554

cal safeguards to minimize the impact of biases in555

generated content.556

Future Work557

In this work, we focus on the outputs of the in-558

struction fine-tuning data, while how to evaluate559

the quality of instructions remains unknown. Low-560

quality instructions including vague, contradictory,561

incomplete, ambiguous and inaccurate instructions562

do not necessarily indicate poor overall data qual-563

ity. Intuitively, combining low-quality instructions564

with high-quality output may lead to better fine-565

tuning effects, much like how a teacher identifies566

and corrects mistakes made by students.567
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A Appendix787

A.1 Different Outputs From Different Models788

Given the same instruction, different models will789

output different responses. As shown in Table 9,790

high-quality models can correctly understand the791

meaning of the question and provide detailed, step-792

by-step answers that are clear and easy to under-793

stand. In contrast, low-quality models fail to grasp794

the question’s meaning and thus provide incorrect795

answers.796

A.2 Prompt for GPT-4 Judgement797

We list the prompt we used for evaluation models798

with GPT-4 at Table 10. Both prompt templates799

we used are collected from the prompts for MT-800

Bench (Zheng et al., 2023).801

B Training Details 802

B.1 Discriminator Training 803

After data construction in Section 4.1, we collect 804

10000 data as training data for discriminator. At 805

the input layer, each data is labeled with its model 806

source. At the output layer, each neurons corre- 807

sponding to different model sources. Through 808

softmax activation, the discriminator will gener- 809

ate probabilities for each model source, and the 810

source with the highest probability is selected as 811

the predicted result. 812

Using BERT (Devlin et al., 2018) as the base 813

model. The Adam optimizer, with a learning rate 814

of 1e-5 and batch size of 64 (Sun et al., 2019). The 815

maximum input length was set to 512, training for 816

20 epochs, and selecting the classifier from the 14th 817

epoch. 818

B.2 Evaluation Models Training 819

After selecting data with different methods, we 820

conduct the training process. The selection will be 821

performed on the union of the ShareGPT, OAAST2, 822

and Self-Instruct datasets, and the resulting 4.5k 823

high-scoring data will be used for fine-tuning 824

Llama2-7B. Specifically, data with an Output score 825

of 5 will be considered high-scoring samples, sam- 826

ples with top IFD score will be used as compar- 827

isons. 828

To guarantee fairness as we fine-tuning differ- 829

ent models, all the other situation will stay the 830

same except the selected data. We use FastChat as 831

the training platform for fine-tuning all the mod- 832

els. During the fine-tuning of Llama2-7B, we use 833

AdamW optimizer, a learning rate set to 2× 10−5, 834

a maximum length of 2048 tokens, and train for 4 835

epochs. 836

B.3 Llama3-8B Training 837

B.3.1 Fine-tuning Llama3 838

To fine-tune Llama3-8B model into a discriminator, 839

we use the same 10,000 data samples as described 840

in Section 3.2.1. We format the data using the 841

llama3 chat template. We use the following sys- 842

tem prompt during the fine-tuning and inference 843

process. 844
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Instruction: How to run a LLM on a laptop?

Model: GPT4 Running a large language model (LLM) like OpenAI’s GPT-3 on a laptop can be challenging
due to the model’s size and resource requirements. However, you can still interact with LLMs
using API services provided by OpenAI or other providers. If you’re interested in running smaller
language models locally, you can follow these steps:\n\n1. Check system requirements: Make
sure your laptop has enough resources (RAM, storage, and a powerful GPU) to handle the model.
Smaller models like GPT-2 or DistilGPT might be more suitable for a laptop.\n2. Install Python:
Ensure you have Python 3.6 or later installed on your system. You can download Python from
the official website: \n3. Set up a virtual environment (optional): It’s a good practice to create
a virtual environment to manage dependencies for your project. You can use tools like ‘venv‘ or
‘conda‘. For example, to create a virtual environment using ‘venv‘, run:\n“‘bash\npython3 -m venv
myenv\nsource myenv/bin/activate

Evaluation Provide step by step guide with code and mention API services

Model: GPT3.5 To run LLM (Late Latin Manuscript) on your laptop, you would need to follow these steps:\n\n1.
Check System Requirements: Make sure that your laptop meets the minimum system requirements
for running LLM. This may include having a certain operating system, processor, memory, and
storage capacity.\n\n2. Download LLM: Find a reliable source from where you can download
LLM software. Visit the official website or trusted software repositories to download the application
installer.\n\n3. Install LLM: Once the download is complete, locate the installer file and double-
click on it to initiate the installation process. Follow the on-screen instructions to install the software
on your laptop.\n\n4. Launch LLM: After the installation is complete, you can launch LLM by
either finding its shortcut icon on the desktop or searching for it in the Start menu. Click on the
LLM icon or select its name to open the application.\n\n5. Explore LLM: ...

Evaluation Provide step by step guide

Model: OpenChat To run a large language model (LLM) on a laptop, you’ll need to meet certain hardware and software
requirements. The performance of your LLM will depend on the specific model and the resources
available on your laptop. Here are the general steps to run a LLM on a laptop:\n\n1. **Hardware
requirements:**\n\t* CPU: For best performance, an Intel Core i7 or i9 or AMD Ryzen 7 Series or
above is recommended.\n\t* RAM: At least 16GB of RAM is required for most LLMs, but more is
better.\n\t* GPU: A dedicated graphics card (GPU) is required, like NVIDIA GeForce GTX 1080
Ti or above or AMD Radeon RX Vega 64 or above.\n\t* Storage: A fast SSD is recommended for
storing the model and its input/output files.\n2. **Software requirements:**\n\t* **Operating
system:** Windows, macOS, or Linux.\n\t*

Evaluation Overemphasis on hardware and software requirements

Llama2-13B-Chat Hello! I’m happy to help you with your question. However, I would like to point out that running a
LLM (LL.M.) program on a laptop may not be the best approach, as LLM programs are typically
designed to be completed in a classroom setting with the guidance of a professor or instructor.
Additionally, LLM programs are graduate-level degrees that require a significant amount of time
and dedication to complete.\n\nIf you are looking to learn about the law, there are many online
resources and courses ...

Evaluation Provide step by step guide

Llama2-7B-Chat Hello! I’m here to help you with your question. However, I must inform you that running a Master
of Laws (LLM) program on a laptop is not possible, as it is a postgraduate degree that requires a
minimum of a bachelor’s degree in law or a related field, and involves intensive study and research.
...

Evaluation Misunderstand the word LLM

Table 9: Different outputs from different models. The instruction is collected from ShareGPT prompts, we generate
the output of each model respectively.

12



Pairwise comparison
[System]
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user question displayed below. You should choose the assistant that
follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity,
and level of detail of their responses. Begin your evaluation by comparing the two
responses and provide a short explanation. Avoid any position biases and ensure that the
order in which the responses were presented does not influence your decision. Do not allow
the length of the responses to influence your evaluation. Do not favor certain names of
the assistants. Be as objective as possible. After providing your explanation, output your
final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]"
if assistant B is better, and "[[C]]" for a tie.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Single answer grading
[System]
Please act as an impartial judge and evaluate the quality of the response provided by an
AI assistant to the user question displayed below. Your evaluation should consider factors
such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of
the response. Begin your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, please rate the response on a scale of 1 to 10
by strictly following this format: "[[rating]]", for example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

Table 10: Prompt for GPT-4 judgement
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System prompt for Llama3-8B

You are a powerful data classification model. Please
divide the dataset into 5 categories according to the
quality of the input data and output the classification
categories. The higher the category, the higher the
quality of the sample. You can generate your answer
from the 6 dimensions of Scope, Complexity, Clarity,
Depth, Simplicity, and Knowledge. The required out-
put format is: Class: n, where n is a specific category,
and n is an integer with a distribution from 1 to 5.

845

B.3.2 Scoring and Selecting Data846

After fine-tuning Llama3-8B, we use it to act as a847

discriminator to have dataset organized in different848

category. The higher the category, the higher the849

quality of the data, the higher score it will get. To850

compare with Bert-based discriminator, we select851

4.5k data from 5-score samples, and use them to852

fine-tune Llama2-7B model. All the training details853

are listed in Section B.2.854
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