
Language-Driven Interactive Traffic Trajectory
Generation

Junkai Xia1,3∗ Chenxin Xu1,3∗ Qingyao Xu1,3 Yanfeng Wang1,2 Siheng Chen1,2,3†

1Shanghai Jiao Tong University 2Shanghai AI Laboratory
3 Multi-Agent Governance & Intelligence Crew (MAGIC)

Abstract

Realistic trajectory generation with natural language control is pivotal for advancing
autonomous vehicle technology. However, previous methods focus on individual
traffic participant trajectory generation, thus failing to account for the complexity
of interactive traffic dynamics. In this work, we propose InteractTraj, the first
language-driven traffic trajectory generator that can generate interactive traffic
trajectories. InteractTraj interprets abstract trajectory descriptions into concrete
formatted interaction-aware numerical codes and learns a mapping between these
formatted codes and the final interactive trajectories. To interpret language
descriptions, we propose a language-to-code encoder with a novel interaction-aware
encoding strategy. To produce interactive traffic trajectories, we propose a code-
to-trajectory decoder with interaction-aware feature aggregation that synergizes
vehicle interactions with the environmental map and the vehicle moves. Extensive
experiments show our method demonstrates superior performance over previous
SoTA methods, offering a more realistic generation of interactive traffic trajectories
with high controllability via diverse natural language commands. Our code is
available at https://github.com/X1a-jk/InteractTraj

1 Introduction
Driving simulations are increasingly vital in the development of autonomous driving [1, 2, 3, 4, 5]. By
projecting real-world scenarios into virtual environments, driving simulation enables the generation of
driving data in diverse conditions at a significantly reduced cost, especially in safety-critical scenarios.
Trajectory data, representing the driving behaviors of traffic vehicles, serves as a key part of the
driving simulation. This paper focuses on the generation of traffic trajectories.

One of the most critical aspects of trajectory generation is controllability, which involves generating
highly realistic trajectory data tailored to specific user needs. Several works have been proposed to
prompt a controllable traffic trajectory generation. TrafficGen [4] enables the generation of traffic
scenarios conditioned on a blank map with controllable vehicle numbers. CTG [6] allows users to
control desired properties of trajectories using signal temporal logic at test time like reaching a goal
or following a speed limit by a guide sampling in the diffusion process. However, given that these
control signals are pre-defined, their flexibility is inherently limited.

With the rise of large language models, researchers have begun to use human natural language to
achieve a more flexible and user-friendly control. A representative work is LCTGen [7], which
leverages a large language model to transform text descriptions into structured representations,
followed by a transformer-based decoder to generate corresponding scenarios. However, this work
exclusively focuses on individual traffic participant trajectory generation, disregarding the interactions
between multiple trajectories. Such interactions, crucial for replicating the dynamic, involve the

*These authors contributed equally to this work.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/X1a-jk/InteractTraj

Figure 1: Overview of InteractTraj. InteractTraj uses a series of semantic interaction-aware numerical codes to
depict interactive trajectories. An LLM-based language-to-code encoder converts language descriptions into
numerical codes, which are then transformed into interactive trajectories by a code-to-trajectory decoder.

complex interplay between various participants’ movements and decisions. The absence of interaction
modeling causes limited controllability in trajectory generation. For instance, traffic jams, involving
many vehicles, cannot be accurately generated. Yet, generating these scenarios is essential as they
highlight the vehicles’ capabilities to respond to real-world challenges.

To achieve more realistic and controllable trajectory generations, in this work, we propose InteractTraj,
a novel generator that generates interactive traffic trajectories from natural language descriptions.
The key design rationale of InteractTraj is to interpret abstract trajectory descriptions into concrete
formatted interaction-aware numerical codes and to learn a mapping between these formatted codes
and the final interactive trajectories. Specifically, InteractTraj consists of two modules: an LLM-
based language-to-code encoder and a code-to-trajectory decoder. 1) To interpret user language
commands, the language-to-code encoder utilizes a novel interaction-aware encoding strategy, which
uses an LLM with interaction-aware prompts to convert language commands into three types of
numerical codes, including interaction, vehicle and map codes. As the core to model interactive
relationships of vehicles, the interaction codes consist of key factors, including relative position
and relative distance. These factors are designed to be discrete to have semantic meanings that
correspond to LLM and are formed in series to model the temporal continuity of interactions. 2)
To produce interactive traffic trajectories, the code-to-trajectory decoder employs a novel two-step
interaction-aware aggregation strategy that integrates code information. This approach synergizes
vehicle interactions with environmental map data, thereby using these interactions to enrich the
realism and coherence of vehicle trajectories. Compared to previous work [7], which generates
independent traffic trajectories, InteractTraj is capable of generating realistic and interactive traffic
trajectories with enhanced controllability through language commands.

We conduct extensive experiments on the Waymo Open Motion Dataset(WOMD) and nuPlan and
show that InteractTraj can generate realistic interactive traffic trajectories with high controllability
through various natural languages. Our method achieves SoTA performance with an improvement
of 15.4%/18.7% on average ADE/FDE over previous methods on WOMD, and 17.1%/20.4% on
average ADE/FDE on nuPlan. Our method also achieves a more realistic generation under different
user commands including vehicle interactive actions of overtaking, merging, yielding and following.
We conduct user studies showing our method has 47.5% higher average user preference compared to
the baseline method. We summarize our contributions as follows:
• We propose InteractTraj, the first language-driven traffic trajectory generator that can generate
interactive traffic trajectories. The core idea of InteractTraj is to bridge abstract trajectory descriptions
and generated trajectories with formatted interaction-aware numerical codes.
• We design a novel interaction interpretation mechanism with LLM in the language-to-code encoder
and a two-step feature aggregation to fuse interaction information for more coherent generation in the
code-to-trajectory decoder.
• We conduct extensive experiments and show that InteractTraj is capable of generating realistic
interactive traffic trajectories with high controllability through various natural languages.

2 Related Work
2.1 Traffic Trajectory Generation
Traffic trajectory generation is crucial in intelligent transportation systems, producing all agents’
trajectories in a scene from provided maps or historical data. Traditionally, rule-based methods [8, 1,
9, 2, 10, 3, 11] employed heuristic models to encode traffic rules like lane-keeping and following the
leading vehicle but lack diversity and realism due to fixed rule patterns. Recently, learning-based
methods [12, 13, 14, 15] have emerged to generate more realistic traffic trajectories by learning from

2

real-world data. However, these methods usually face challenges with controllability, unable to fulfill
specific requirements like instructing a vehicle to turn left, and they rely on past trajectories that are
expensive and difficult to obtain. There is growing interest in controllable trajectory generation [4,
6, 16, 7], focusing on customizing trajectories to meet diverse user requirements. TrafficGen [4]
generates a specific number of vehicles and their trajectories on a blank map. CTG [6] uses a loss
function to guide trajectory generation according to user controls. influenced by LLMs, language-
driven traffic scenario generation is emerging. CTG++ [16] employs LLM to convert user queries
into a loss function for realistic, controllable generation. While CTG and CTG++ require costly
past trajectories, limiting their practical deployment, LCTGen [7] generates scenarios purely from
language descriptions using an LLM-based interpreter and a transformer-based generator. However,
these methods lack interaction awareness and struggle with complex text descriptions. Our approach
addresses these issues with interaction-aware code representation and refined vehicle behavior control.

2.2 Motion Prediction
Motion prediction and trajectory generation are closely related concepts in the field of autonomous
systems and robotics since both approaches aim to anticipate the future state of agents. Motion
prediction models are often used as backbones to convert latent states into agent trajectories as
part of the generated scenarios, allowing for the simulation of realistic traffic scenarios. Early
methods [17, 18, 19] utilize various physics-based kinematic models for modeling agent behaviors
and predicting trajectories. With the development of deep learning and neural networks, RNN
and LSTM-based structures are applied for trajectory prediction [20, 21, 22, 23, 24] due to their
proficiency in processing sequential data. To handle more complex trajectory prediction tasks where
multiple agents are involved, models in recent years have also incorporated methods such as diffusion
or transformer [25, 26, 27, 28] to achieve more accurate results. [29, 30, 31, 32, 33] achieve better
results on multi-agent motion prediction tasks by focusing on interaction and relational reasoning.
Trajectory generation facilitates the creation of realistic scenarios, acting as supplementary data for
the development and evaluation of prediction models.

2.3 Large Language Models and Their Multimodal Applications

Recent years have seen dramatic advancement in the development of Large Language Models
(LLMs) [34, 35, 36, 37, 38, 39, 40] such as ChatGPT [41] and GPT-4 [38]. The success of LLMs
triggers a boom in multimodal tasks that require comprehensive understanding across multiple
modalities, including text [42, 43, 44, 45, 46], audio [47, 48, 49, 50], motion [51, 52, 53, 54, 55] and
so on. Notable examples including DALL-E [56] and Sora [57]. DALL-E [56] treats text and image
tokens as a unified data stream, generating realistic images from text input. Sora [57] demonstrates
the ability to create long, realistic, and imaginative videos from text descriptions. In this work, we
focus on language-driven trajectory generation. Inspired by [7], our method uses GPT-4 [38] as
the language encoder to leverage the deep traffic scene understanding and reasoning capabilities of
LLMs. We design an interaction-aware code and prompt GPT-4 to convert language input into these
codes, which contain detailed information about interactions, vehicles and map.

3 Problem Statement
Language-driven traffic trajectory generation aims to create realistic trajectories of traffic participants
over a period of time according to language descriptions. Given a language description L, our goal is
to propose a scenario generation model G(·) so that the generated corresponding traffic trajectories
S = G(L) are realistic and match with the language description. Here S = [S1,S2, . . . ,SN] ∈
RN×T×2 represents the trajectory of N vehicles over T timesteps, where Si = [s1i , s

2
i , · · · , sTi] ∈

RT×2,∀i ∈ {1, . . . , N}, and sti ∈ R2 denotes the 2D positions of vehicle i at the t-th timestep.

4 Methodology
4.1 Architecture Overview

InteractTraj is a language-guided interactive traffic trajectory generation framework that generates
realistic vehicle trajectories based on natural language descriptions. The core idea of InteractTraj is to
use a series of semantic numerical codes to depict interactive trajectories and learn a transformation
between these codes and the interactive trajectories, see Figure 1 for a sketch. InteractTraj consists of
two parts: an LLM-based language-to-code encoder and a code-to-trajectory decoder. The language-
to-code encoder is designed to interpret language commands and turn the commands into three types

3

LLM

Task & Role
You are a very faithful format converter ...Answer with a list of codes describing ...

Interaction prompt
[Meaning] of the Interaction code attributes:
- Each code has a lenth of 5, representing the relative distance and direction ...
[Rules] the Interaction Code following the rules below:
- Interpreting the relative position of a vector as a trajectory over a future period ...
[Event explanation]
- overtake: When another vehicle directly in front of the vehicle is moving too slowly ...

Vehicle prompt
[Meaning] of the Vehicle Code attribute:
- dim 0: 'pos' : [-1,5] - The relative position of the vehicle with respect to ...
[Rules] Transform the query sentence to the Vehicle Code strictly following the rules:
- Ensure the code of each vehicle has a lenth of 8 ...

Map prompt
[Meaning] of the Map Code attributes:
- dim 0-1: 'parallel_lane_cnt': 2-dim. The first dim is the number of parallel ...
[Rules] Generate the Map Codefollowing the rules below:
- If there is vehicle turning left or right, there must be an intersection ahead

Summary: In this scenario, an emergency vehicle (V2) overtakes
the ego vehicle (V1) on a 6-lane two-way...

Explanation:
Interaction:
- I1 (ego car) is all zero since it's ego car.
- I2: V2 is in the back at the...
Vehicle:
- V1 (ego vehicle) is in the center and moves forward ...
- V2 (emergency vehicle) is initially ...
Map: Because the scenario involves overtaking, this occurs in ...

Output:
Interaction Code:
- 'I1': [0, 0, 0, 0, 0] | [0, 0, 0, 0, 0]
- 'I2': [0, 0, 0, 0, 0] | [3, 2, 1, 1, 0]
Vehicle Code:
- 'V1': [-1, 0, 0, 4, 4, 4, 4, 4, 4, 1]
- 'V2': [3, 0, 0, 8, 8, 8, 8, 8, 8, 5]
Map Code:
- 'Map': [3, 3, 0, 0, -1, 3]

Query:
The emergency
vehicle overtakes
other vehicles

Figure 2: Sketch of interaction-aware prompt and numerical codes.

of numerical codes, including interaction codes, vehicle codes and map codes. The code-to-trajectory
decoder then transforms these codes to produce interactive traffic trajectories.

Mathematically, given the language description L, InteractTraj generates the traffic trajectories Ŝ by
m,V, I = E(L), Ŝ = D(m,V, I), (1)

where E(·) represents the language-to-code encoder and D(·) represents the code-to-trajectory
decoder. m is the map codes representing the environment map information, V is the vehicle codes
representing the vehicle’s individual driving information and I is the interaction codes representing the
vehicle interaction information. We illustrate the detailed structures of these codes in the following.

4.2 Language-to-Code Encoder
The language-to-code module, E(·), distills essential information from input natural language
descriptions and transforms this information into interaction-aware numerical codes. This
transformation leverages large language models, such as GPT-4 [38]. The whole language-to-
code encoder incorporates two key designs: the structure of the interaction-aware numerical codes
and the tailored prompts for the large language model. The numerical codes are comprised of
three components: interaction codes, vehicle codes, and map codes. To depict vehicle interactions
concretely, we design the format of the interaction codes with the relative factors modeling. To
interpret the abstract interaction-aware descriptions into the code format, we design prompts with
interaction descriptions to assist the LLM.

Interaction codes I. Interaction codes encapsulate vehicle interactive relationships. The core idea
is that spatial relationships and changes between vehicles significantly affect their perception and
reactions, revealing their interactions. To capture high-level actions and interaction tendencies,
we resample the vehicle attributes at regular intervals across T timesteps. We denote T as the
set of timesteps of the resampling process. To effectively model these interactive relationships,
the designed interaction codes consist of two key factors, relative distance and relative direction,
motivated by the representation of polar coordinates. Formally, the interaction codes are denoted
by I = [(ptj , d

t
j)]j∈{1,...,N},t∈T , where ptj /dtj is the relative direction/distance of jth vehicle with the

ego interacted vehicle at the t-th sampling timestep. To enrich the interaction code with semantic
meanings, we discretize the relative direction/distance. Specifically, we divide the surrounding space
centered by ego vehicle into six regions: front, rear, left front, left rear, right front and right rear. The
relative direction ptj of agent j can thus be represented by the index of the region in which agent j is
located at time t. The relative distance dtj is also discretized by dividing with a fixed interval and then
rounding down. This discrete code representation with semantic meanings facilitates the use of LLM
to link code values with corresponding language commands.

Vehicle codes V. The vehicle codes contain the information of vehicle individual driving states. To
describe the vehicle driving states, the vehicle codes consist of two components on different trajectory
scales: the global trend and the detailed movement. Formally, the vehicle codes are denoted by
V = [ri;ai]i∈{1,...,N}, where ri is the trajectory type of agent i modeling trajectory global trend
and ai is the vehicle states of agent i modeling detailed movement. Specifically, we categorize the
trajectory type into stop, straight ahead, left turn, right turn, left change lane, and right change lane. ri
is the category index. Trajectory states ai = [oi, qi, [v

t
i]t∈T], contain the initial orientation oi, initial

position qi, and the discrete speeds [vti]t∈T of agent i at sampled timesteps.

Map codes m. The map codes contain the information on key map features. We adopt the
representation m ∈ Z6 similar to [7], which represents the number of lanes in each of the four

4

Cross
Attention

Cross
Attention

Feature Extraction

Retrival MCG Cross
Attention

Feature Aggregation Generation Head

Interaction Codes

Map Codes

Vehicle Codes

Interaction
Feature

Map Lane
Feature

Vehicle
Feature

Retrived Map

Interaction
Feature

Vehicle
Feature

Generated
Trajectory

Vehicle
Feature

Trajectory Type

Figure 3: The architecture of code-to-trajectory decoder. The decoder generates vehicle trajectories by fusing
and decoding information between vehicles and interactions.

directions, the distance between ego vehicle and the intersection, and the lane index of the ego vehicle,
respectively.

LLM prompts. Given a language description L, we utilize carefully designed interaction-aware
prompts to help the large language model analyze the descriptions and extract interact-related
information, enabling it to generate corresponding interaction-aware numerical codes that align with
the language description. The prompt mainly incorporates three key components: 1) [interaction
prompt] interaction prompt defines the format of interaction code, explains some key interaction
events to help with the better understanding of the scenarios and informs LLM to interpret the possible
interaction behaviors inferred in the descriptions and output the corresponding interaction codes I of
all the vehicles involved by analyzing the vehicles’ relative distance and position relationships. 2)
[vehicle prompt] vehicle prompt defines the format of vehicle code and explains driving rules
to make the generated scenarios more realistic, such as the need to slow down when turning, etc.
3) [map prompt] map prompt defines the format of map code and make LLM analyze whether
intersections or roundabouts are involved and decides the number of lanes of all directions according
to the number of vehicles and their orientations to fill out the map codes. Figure 2 presents a sketch
of LLM prompts and an example of numerical codes and see the appendix for a full prompt.

4.3 Code-to-Trajectory Decoder
With the interaction-aware codes from the encoder, the code-to-trajectory decoder D(·) generates
vehicle trajectories by aggregating and decoding information between vehicles and interactions.
In the decoder, we propose a key design of two-step interaction-aware feature aggregation, which
synergizes vehicle interactions with environmental map data, thereby using these interactions to
enrich the realism and coherence of vehicle trajectories.

Given the map codes m, the vehicle codes V and interaction codes I from the encoder, the overall
decoding process can be formulated as

EM,EV,EI = Fext(m,V, I), ÊV = Fagg(EM,EV,EI), Ŝ = Fhead(ÊV), (2)
where Fext(·) denotes a feature extraction module, Fagg(·) denotes an attention-based feature
aggregation module, Fhead(·) denotes the generation head module for obtaining vehicle attributes and
trajectories, and EM,EV,EI are the map lane features, vehicle features and the interaction features,
respectively. ÊV denotes the fused features for vehicles and Ŝ is the generated trajectory.

Feature extraction Fext(·). The feature extraction module Fext(·) transforms the numerical codes
into initial embeddings for subsequent calculation. For map codes, we retrieve a map M that best fits
map code m from the pre-defined map dataset, which is the same as [7]. The map M ∈ RNL×NA

consisting of NL lanes with their NA attributes, is then passed to the multi-context gating(MCG)
blocks [58] obtaining map features EM ∈ RNL×DL by aggregating neighboring lane information,
where DL is the dimension of each lane feature. For the vehicle codes and interaction codes, we apply
MLPs with a position encoding layer for each to obtain their higher-dimensional latent features, that
is, EV = MLPV(PE(V)) ∈ RN×DV , EI = MLPI(PE(I)) ∈ RN×DI , where PE(·) is the position
encoding function, DV and DI are the dimensions of extracted vehicle and interaction features.

Feature aggregation Fagg(·). The feature aggregation module aims to fuse the map features and
interaction features into vehicle features for subsequent trajectory generation. Based on the intuition
that the vehicle interactions are constrained by the road structure and the vehicle states are affected by
both the road structure and vehicle interactions, we apply a two-step feature aggregation strategy. First,

5

we fuse the map feature into the interaction feature and the vehicle feature respectively by multi-head
cross-attention operations, that is, E′

I = MHATTI(EI,EM,EM), E′
V = MHATTV(EV,EM,EM),

where MHATT(q, k, v) denotes the multi-head cross-attention functions with query q, key k, value
v, E′

I and E′
V are the interaction features and the vehicle features after aggregation. Second,

we fuse the interaction feature into the vehicle feature to obtain the final vehicle feature, that is,
ÊV = MHATTV(E

′
V,E

′
I,E

′
I). The final vehicle feature contains both the interaction and map

information, which can be manipulated for further trajectory generation.
Generation head Fhead(·). The generation head aims to generate vehicle’ states and trajectories
based on vehicle features. For agent i with agent feature ÊV,i and the trajectory type ri in the vehicle
codes, we generate its trajectory positions Si through a series of MLP heads. For different trajectory
types, we assign different MLP heads. Formally, the generation process is formulated as

Ŝi = MLPhead,ri(ÊV,i), (3)
where MLPhead,ri denotes the assigned rith heading MLP. We finally assemble all the trajectories
Ŝ = [Ŝ1, Ŝ2, . . . , ŜN] together with the map M as output for the scenario generation.

4.4 Training

Generating training samples. Due to the lack of data directly matching linguistic descriptions with
traffic scenarios, we cannot directly optimize the model under ground-truth trajectory supervision
using language inputs. As an alternative, we extract map, vehicle, and interaction codes directly
from ground-truth trajectories to train the decoder’s scenario reduction capability, During the training
process, for a ground-truth scenario S derived from real-world datasets, we re-generate the scene by

m,V, I = Ψ(S), Ŝ = D(m,V, I), (4)
where Ψ(·) extracts information from the ground-truth vehicle trajectories to fulfill the codes,
including the obtainment and discretization of vehicle speeds, their positions and distances relative to
the ego vehicle, and the classification of their trajectory types. The specific computational rules will
be mentioned in the appendix. We thus train the decoder D(·) by minimizing the gap between S and
Ŝ.

Loss. We apply a MSE loss Ltraj(·) to minimize differences between generated and ground-truth
vehicle trajectories. Furthermore, to enhance the network’s sensitivity to trajectory interactions, we
additionally supervise the relative distances with the ego vehicle among vehicle trajectories with
another MSE loss Lrela(·). For the ith vehicle, the relative distance at last timestep is di = sTi − sT1 .
Formally, the final loss of InteractTraj is presented as

L =
1

N

(
N∑
i=1

Ltraj(Si, Ŝi) +

N∑
i=1

Lrela(di, d̂i)

)
. (5)

4.5 Discussion

Compared to previous representative traffic trajectory generation method, including CTG [6], CTG++
[16], TrafficGen [4] and LCTGen [7], our method is the first language-conditioned interactive
trajectory generation method. (1) At the task level, CTG and CTG++ generate traffic trajectories
within the need of vehicles’ past trajectory observations. The necessity of collecting past trajectories
significantly increases the data generation costs, imposing an extra burden. TrafficGen generates
traffic trajectories by only taking a map as input to produce a scenario, resulting in a lack of
controllability over the generated trajectories. LCTGen and our methods are specifically designed to
generate traffic trajectories based on language conditions, which not only achieves high controllability
but also reduces dependency on extensive data sets. (2) Under the same task, compared to LCTGen,
our technical novelty comes from two aspects. First and foremost, we propose the interaction codes,
corresponding LLM prompts, and interaction-aware feature aggregation which serve as the key to
generating interaction-aware traffic trajectories. In contrast, LCTGen does not account for vehicle
interactions during trajectory generation. Second, within the vehicle codes, we incorporate a mixed-
scale design that both addresses the global type and the detailed movement of vehicle trajectory,
which allows the generated trajectories to align with high-level intentions as well as precise positional
changes. Conversely, LCTGen only considers the local detailed movement, leading to potential
discrepancies between the language descriptions and generation at the high-level trend, such as
receiving descriptions to turn left but generating a right turn.

6

Table 1: Evaluation on trajectory generation realism under WOMD and nuPlan datasets. ↓ indicates lower is
better. InteractTraj significantly improves trajectory realism.

Dataset Method mADE ↓ minADE ↓ mFDE ↓ minFDE ↓ SCR ↓ HD ↓

WOMD

TrafficGen 9.531 1.440 20.106 3.690 0.086 5.733
LCTGen 1.262 0.224 2.696 0.463 0.072 1.295

InteractTraj(w/o I) 1.205 0.207 2.479 0.346 0.090 1.210
InteractTraj 1.067 0.181 2.190 0.320 0.070 1.076

nuPlan

TrafficGen 9.418 1.416 19.686 3.627 0.082 5.874
LCTGen 1.161 0.218 2.497 0.448 0.074 1.301

InteractTraj(w/o I) 1.108 0.181 2.277 0.323 0.070 1.150
InteractTraj 0.962 0.160 1.987 0.321 0.067 1.129

(a) Performances under various interaction
types.

(b) Performances under various trajectory
types.

Figure 4: Comparison of model performances under different settings on WOMD. Lower is better. InteractTraj
generates more realistic interactive trajectories for different types. ST: straight forward, LT: left turn, RT: right
turn, LC: left lane change, RC: right lane change and AVG: average performance.

5 Experiments
5.1 Dataset and Baseline
We use two datasets, Waymo Open Motion Dataset (WOMD) [59, 60] and nuPlan [61], which both
provide real-world vehicle trajectories and corresponding lane maps. We compare our method against
two state-of-the-art controllable trajectory generation baselines, TrafficGen [4] and LCTGen [7].
Please refer to the appendix for details on the datasets and the choice of baselines.
5.2 Experimental Setup
In the language-to-code encoder, we sample the vehicles’ trajectories at 1-second (10 timesteps)
intervals to get a |T | = 5 timesteps set. In the code-to-trajectory decoder, the vehicle features DV

and interaction features DI are set to 256. During the training process, we train the decoder using the
AdamW optimizer [62] with an initial learning rate of 3e−4. See more details in the appendix.
5.3 Evaluation Metric
Given ground-truth trajectories, we quantify the realism of generated trajectories with 6 metrics: 1)
mean average displacement error(mADE); 2) minimum average displacement error(minADE); 3)
mean final displacement error(mFDE); 4) minimum final displacement error(minFDE); 5) scenario
collision rate(SCR); 6) Hausdorff distance(HD). Detailed formulations of these metrics are provided
in the appendix.
5.4 Reconstruction-based Evaluation
Since the dataset contains only trajectories and not language-trajectory pairs, we evaluate our methods
and baselines quantitatively through a reconstruction approach. For all methods, we generate
conditional codes or inputs directly from the ground-truth trajectory instead of the LLM, and then
reconstruct the trajectories to assess alignment with the input conditions.

Quantitative results on all scenarios. We first evaluate our generated trajectories by comparing them
to ground-truth trajectories on the whole dataset. Table 1 compares the performance of InteractTraj
with two baseline methods on reconstruction. Since previous methods lack interaction-aware input
design, we add one more ablated version of InteractTraj without the interaction code, to have a
comparison with the same input information, noted as InteractTraj(w/o I). We see that i) our method
significantly outperforms previous methods across all the metrics, indicating it generates more realistic

7

Overtaking
The school bus initiates
a lane change to merge
into the line of traffic.

Merging
One car turned right at the
intersection, followed by
another.

Yielding
The cyclist yields to the
cars turning at the
intersection.

Following

LCTGen

Ours

The sedan accelerates,
overtaking the slower-moving
truck on the right, as it
navigates the curvy highway.

Figure 5: Comparison of model performances under different interaction types. InteractTraj generates
trajectories that better align with language descriptions by performing the right vehicle interactions.

(a) Percentage of users’ preference of generated trajectories
description of different methods.

(b) Percentage of users considering the
generated scenarios fit the interaction
types.

Figure 6: Results of the user study for overall and interaction performances.
scenarios with vehicle interactions. Specifically, our method reduces the mADE/mFDE/HD by
15.4%/18.7%/16.9% compared to SoTA methods; ii) The ablated InteractTraj(w/o I) still outperforms
previous models, showing the effectiveness of our vehicle code design.
Quantitative results on scenarios on different interaction types. To evaluate the performance of
model generation on scenarios with trajectory interaction, we test the model on the representative
interactive scenarios. The scenarios are mainly categorized into four types according to vehicle
interaction: overtaking, converging, yielding and following. Figure 4a shows the method comparison
on all types of interactive scenarios with LCTGen. We see that for all types of interactions, InteractTraj
significantly reduces the mADE and mFDE, showing a powerful capability to generate realistic
interactive trajectories by interaction-aware coding design.
Quantitative results on scenarios on different trajectory types. To evaluate the performance of
model generation on different individual driving trajectories, we categorize trajectories of the test set
into six types according to individual actions: straight, stop, turn left, turn right, left change lanes, left,
right change lanes, see detailed rules in the appendix. According to individual action types, we divide
the test set and report the average reconstruction performance on every set. Figure 4b shows that
InteractTraj’s generation results are closer to the ground truth than LCTGen, reflecting we generate
trajectories more aligned with language descriptions across different individual driving actions.

It is important to note that the ultimate goal of our method is to generate traffic trajectories from
language commands. Previous methods [7, 4] exhibit limitations in that they fail to address the
interaction information encoded within languages. Consequently, in the reconstruction-based
evaluation, these methods inherently lack interaction information in their inputs. In contrast, our
method is capable of incorporating interaction during the generation process, which represents a
significant advantage. As a result, our inputs for reconstruction-based evaluation contain more
comprehensive information, enabling more realistic and effective trajectory generation.
5.5 Language-Conditioned Evaluation
In this section, we compare end-to-end our method with previous methods by analyzing trajectories
generated from language descriptions. Given the absence of specific ground-truth trajectories for
certain language commands, we employ qualitative evaluation and user studies for assessment.
Qualitative results. We compare our model to LCTGen, which also transforms language input
into traffic scenarios. We evaluate our methods with that of baseline methods qualitatively given

8

(a) Three cars
drive parallel to
each other.

(b) Several cars
move in platoon
formation.

(c) Surrounding
vehicles pull
over as the
ambulance
approaches.

(d) Three cars
lined up. The car
behind makes a
right turn at the
intersection.

(e) Three cars
lined up. The
car behind ego
car makes a
right turn at the
intersection.

(f) A car is
turning left and
moving in a
straight line.

Figure 7: Visual analysis for model’s performance when dealing with less common interaction types
and language ambiguities.

language commands containing different interaction descriptions. Figure 5 provides visualizations
of representative user language commands including four types of interaction: vehicle overtaking,
vehicle merging, vehicle yielding, and vehicle following. We see that compared to previous work,
the scenarios generated by InteractTraj better align with language descriptions with the help of
interaction-aware code representation, while the previous method can not perform the corresponding
interactive action since it generates trajectories of each agent independently.

Generalisation capability analysis. Our model demonstrates the ability to generate compliant
scenarios even when handling less common or emergent interaction types as shown in the left part of
Figure 7. We test interaction scenarios not mentioned explicitly in the prompt, including uncommon
cases of parallel driving (Figure 7a), platooning (Figure 7b), and pulling over (Figure 7c). The results
show that our method can effectively interpret and translate these less common interaction types,
producing scenarios that align with expected behaviors without retraining. This is primarily due to
the robust generalization capacity of the LLM used in our encoding process. The decoding process is
also equipped with strong generalization abilities due to extensive training with massive numerical
codes, which would translate these codes into trajectories and generate compliant scenarios.
In addressing the potential ambiguities in language descriptions, our approach leverages the reasoning
capabilities of LLM without introducing additional prioritized proximity. Ambiguities typically arise
in two main forms: unclear references to objects and contradictions within the language instructions.
1) For cases where the object reference is ambiguous, the LLM interprets the linguistic input and
converts it into numerical codes that correspond to one of the plausible meanings. As illustrated in
Figure 7d, the LLM assigns the label “the car behind” to a randomly selected vehicle. However, when
the description is more specific, such as “the car behind ego car” (Figure 7e), the LLM accurately
resolves the reference and appropriately handles the description.
2) For cases where there are self-contradictory language requirements, the LLM generates scenarios
that partially align with the instructions. For instance, as shown in Figure 7f, the instruction presents
an inherent contradiction. The LLM resolves this by prioritizing one part of the instruction while
disregarding the other. To better tackle language ambiguity, a potential solution involves introducing
LLM-human interaction to iteratively verify language descriptions.
Controllability analysis. In Figure 8, it is evident that each generated scenario adheres to the
provided linguistic descriptions when there are variations in the details. This highlights the strong
controllability of InteractTraj in accurately manipulating vehicle behaviors, ensuring that the generated
scenarios align with user-specified control commands. The precision is achieved through the LLM’s
robustness in understanding and applying detailed instructions based on different linguistic inputs.
User study. We conduct two user studies on WOMD to qualitatively assess the language-conditioned
traffic scenario generation capabilities of InteractTraj from two perspectives: 1) overall generation
performance and 2) vehicle interaction performance. GPT-4 is used to generate descriptions of
different interaction types as input language descriptions, see appendix for the details.

In the first user study, each user is given forty language commands and corresponding trajectories
generated by models and is asked to choose the one trajectory that better fits the language description.
Figure 6a shows the results of users’ preferences for scenarios generated by LCTGen and InteractTraj.
We see that i) for each interaction type, significantly more users prefer scenarios generated by
InteractTraj over those produced by LCTGen; ii) on average, 73.7% responses are more favorable
to the scenarios generated by InteractTraj, and our model achieves at least 66.9% support on all

9

(a) Generate a more
complex scenario on a
two-way highway, while
ego car driving straight
forward.

(b) Generate a more
complex scenario on a
two-way highway, while
ego car making a left-
lane change..

(c) Generate a more
complex scenario on a
two-way highway, while
ego car is making a right-
lane change.

(d) Generate a more
complex scenario on a
two-way highway, while
ego car being overtaken.

Figure 8: Visualization results for model’s controllability

Table 2: Ablation study on proposed code and network
designs evaluated on WOMD. All designs are beneficial.
Model IC RD RP Lrd mADE ↓ mFDE ↓ SCR ↓

(a) ✓ ✓ ✓ 1.205 2.479 0.346
(b) ✓ ✓ ✓ 1.167 2.442 0.084
(c) ✓ ✓ ✓ 1.194 2.475 0.080
(d) ✓ ✓ ✓ 1.165 2.446 0.080

Ours ✓ ✓ ✓ ✓ 1.067 2.190 0.070

Table 3: Ablation study on the granularity of the
discretization of the interaction codes on WOMD.
Model Gap Areas mADE ↓ mFDE ↓ SCR ↓

(e) 10 6 1.087 2.228 0.074
(f) 20 6 1.117 2.299 0.070
(g) 15 4 1.237 2.810 0.071
(h) 15 8 1.069 2.190 0.071

Ours 15 6 1.067 2.190 0.070

sub-categories. This reflects that InteractTraj has a stronger capability at generating interactive
trajectories than LCTGen, and excels in representing interaction aspects of language descriptions.

The second user study contains fifty questions covering different interaction types, and users are
asked to answer whether the scenarios generated fulfill the corresponding textual descriptions.
The results are shown in Figure 6b. We see that i) for each interaction type, significantly more
users consider the scenarios generated by InteractTraj to fulfill the requirements given by language
descriptions; ii) on average, 72.4% positive responses consider that InteractTraj generates scenarios
with required interactions, while LCTGen only have 31.5% positive responses in average. This
reflects that InteractTraj effectively extracts the interaction information in the descriptions, and
generates sufficiently satisfying traffic scenarios.

5.6 Ablation Study
Effect of proposed code and network design. We conduct the ablation study based on the
reconstruction evaluation to evaluate the effectiveness of proposed designs, including a) the addition
of whole interaction codes (IC); b) the relative distance in interaction codes (RD); c) the relative
position in interaction codes (RP); d) the relative distance loss Lrd. Table 2 presents the results. We
see that all designs are beneficial to a more realistic trajectory generation.

Effect of the setting of hyper-parameters. We conduct an ablation study of the granularity of the
discretization of the relative distances and relative positions, specifically including e), f) the interval
gap used for discretizing relative distances; g), h) the number of areas used for discretizing relative
distances, as shown in Table 3. We see that our current parameter choices achieve the best results.

6 Conclusion
We propose InteractTraj, a novel interaction-aware language-guided traffic scenario generation model.
Our core idea is to convert language descriptions into multi-level codes and generate trajectories by
attention-based information aggregation. Experiments show that InteractTraj effectively reproduces
real-life scenario distribution and generates scenarios aligned with language description.
Limitations and future work. This work focuses on generating trajectories of only vehicles and the
generation of maps is limited by the map library. In the future, we plan to extend the work to more
types of traffic participants and more flexible map generation. We also plan to apply the generated
traffic scenarios to the training of autonomous driving systems by expanding the motion dataset.

7 Acknowledgment
This research is supported by NSFC under Grant 62171276 and the Science and Technology
Commission of Shanghai Municipal under Grant 21511100900, 22511106101, and 22DZ2229005.
Special thanks to Lightwheel AI for the support.

10

References
[1] Joaqun Maroto, Eduardo Delso, Jess Felez, and Jose Ma Cabanellas. Real-time traffic simulation

with a microscopic model. IEEE Transactions on Intelligent Transportation Systems, 7(4):513–
527, 2006.

[2] Jordi Casas, Jaime L Ferrer, David Garcia, Josep Perarnau, and Alex Torday. Traffic simulation
with aimsun. Fundamentals of traffic simulation, pages 173–232, 2010.

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[4] Lan Feng, Quanyi Li, Zhenghao Peng, Shuhan Tan, and Bolei Zhou. Trafficgen: Learning
to generate diverse and realistic traffic scenarios. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3567–3575. IEEE, 2023.

[5] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng Chen, and
Yanfeng Wang. Editable scene simulation for autonomous driving via collaborative llm-agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2024.

[6] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi
Ray, and Marco Pavone. Guided conditional diffusion for controllable traffic simulation. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 3560–3566.
IEEE, 2023.

[7] Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Kraehenbuehl.
Language conditioned traffic generation. arXiv preprint arXiv:2307.07947, 2023.

[8] Leontios G Papaleondiou and Marios D Dikaiakos. Trafficmodeler: A graphical tool for
programming microscopic traffic simulators through high-level abstractions. In VTC Spring
2009-IEEE 69th Vehicular Technology Conference, pages 1–5. IEEE, 2009.

[9] Jakob Erdmann. Sumo’s lane-changing model. In Modeling Mobility with Open Data: 2nd
SUMO Conference 2014 Berlin, Germany, May 15-16, 2014, pages 105–123. Springer, 2015.

[10] Martin Fellendorf and Peter Vortisch. Microscopic traffic flow simulator vissim. Fundamentals
of traffic simulation, pages 63–93, 2010.

[11] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang
Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie
Wießner. Microscopic traffic simulation using sumo. In 2018 21st international conference on
intelligent transportation systems (ITSC), pages 2575–2582. IEEE, 2018.

[12] Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Manivasagam, Mengye Ren, and Raquel
Urtasun. Scenegen: Learning to generate realistic traffic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 892–901, 2021.

[13] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. Trafficsim: Learning
to simulate realistic multi-agent behaviors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10400–10409, 2021.

[14] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Bits: Bi-level imitation for traffic
simulation. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
2929–2936. IEEE, 2023.

[15] Qiao Sun, Xin Huang, Brian C Williams, and Hang Zhao. Intersim: Interactive traffic simulation
via explicit relation modeling. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 11416–11423. IEEE, 2022.

[16] Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic, Yulong Cao, Danfei Xu, Marco
Pavone, and Baishakhi Ray. Language-guided traffic simulation via scene-level diffusion. arXiv
preprint arXiv:2306.06344, 2023.

11

[17] Alexander Barth and Uwe Franke. Where will the oncoming vehicle be the next second? In
2008 IEEE Intelligent Vehicles Symposium, pages 1068–1073. IEEE, 2008.

[18] Panagiotis Lytrivis, George Thomaidis, and Angelos Amditis. Cooperative path prediction
in vehicular environments. In 2008 11th International IEEE Conference on Intelligent
Transportation Systems, pages 803–808. IEEE, 2008.

[19] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

[20] Chaofan Tao, Qinhong Jiang, Lixin Duan, and Ping Luo. Dynamic and static context-aware
lstm for multi-agent motion prediction. In European Conference on Computer Vision, pages
547–563. Springer, 2020.

[21] Yonghwan Jeong, Seonwook Kim, and Kyongsu Yi. Surround vehicle motion prediction using
lstm-rnn for motion planning of autonomous vehicles at multi-lane turn intersections. IEEE
Open Journal of Intelligent Transportation Systems, 1:2–14, 2020.

[22] Florent Altché and Arnaud de La Fortelle. An lstm network for highway trajectory prediction,
2018.

[23] Julieta Martinez, Michael J. Black, and Javier Romero. On human motion prediction using
recurrent neural networks, 2017.

[24] Moritz Wolter and Angela Yao. Complex gated recurrent neural networks, 2018.

[25] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hivt: Hierarchical vector
transformer for multi-agent motion prediction. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8813–8823, 2022.

[26] Chiyu Max Jiang, Andre Cornman, Cheolho Park, Ben Sapp, Yin Zhou, and Dragomir Anguelov.
Motiondiffuser: Controllable multi-agent motion prediction using diffusion, 2023.

[27] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Multi-level motion attention
for human motion prediction, 2021.

[28] German Barquero, Sergio Escalera, and Cristina Palmero. Belfusion: Latent diffusion for
behavior-driven human motion prediction, 2023.

[29] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale
hypergraph neural networks for trajectory prediction with relational reasoning. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6488–6497, 2022.

[30] Chenxin Xu, Yuxi Wei, Bohan Tang, Sheng Yin, Ya Zhang, and Siheng Chen. Dynamic-group-
aware networks for multi-agent trajectory prediction with relational reasoning, 2022.

[31] Chenxin Xu, Robby T. Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and
Yanfeng Wang. Eqmotion: Equivariant multi-agent motion prediction with invariant interaction
reasoning, 2023.

[32] Qingyao Xu, Wei Mao, Jingze Gong, Chenxin Xu, Siheng Chen, Weidi Xie, Ya Zhang, and
Yanfeng Wang. Joint-relation transformer for multi-person motion prediction. 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 9782–9792, 2023.

[33] Sirui Xu, Yu-Xiong Wang, and Liang-Yan Gui. Stochastic multi-person 3d motion forecasting,
2023.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

12

[36] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[38] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[41] OpenAI. chatgpt (mar 14 version). https://chat.openai.com/chat/., 2023. 2023.

[42] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888–12900. PMLR, 2022.

[43] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[44] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[45] Nikita Pavlichenko and Dmitry Ustalov. Best prompts for text-to-image models and how to
find them. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2067–2071, 2023.

[46] Stephen Brade, Bryan Wang, Mauricio Sousa, Sageev Oore, and Tovi Grossman. Promptify:
Text-to-image generation through interactive prompt exploration with large language models. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology,
pages 1–14, 2023.

[47] Qingqing Huang, Daniel S Park, Tao Wang, Timo I Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, et al. Noise2music: Text-conditioned music
generation with diffusion models. arXiv preprint arXiv:2302.03917, 2023.

[48] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui
Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with
prompt-enhanced diffusion models. arXiv preprint arXiv:2301.12661, 2023.

[49] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-
audio generation using instruction-tuned llm and latent diffusion model. arXiv preprint
arXiv:2304.13731, 2023.

[50] Qian Chen, Yunfei Chu, Zhifu Gao, Zerui Li, Kai Hu, Xiaohuan Zhou, Jin Xu, Ziyang Ma, Wen
Wang, Siqi Zheng, et al. Lauragpt: Listen, attend, understand, and regenerate audio with gpt.
arXiv preprint arXiv:2310.04673, 2023.

[51] Nikos Athanasiou, Mathis Petrovich, Michael J Black, and Gül Varol. Sinc: Spatial composition
of 3d human motions for simultaneous action generation. arXiv preprint arXiv:2304.10417,
2023.

13

https://chat.openai.com/chat/.

[52] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion
as a foreign language. Advances in Neural Information Processing Systems, 36, 2024.

[53] Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu Chen, Lei Bai, Qi Chu, Nenghai Yu,
and Wanli Ouyang. Motiongpt: Finetuned llms are general-purpose motion generators. arXiv
preprint arXiv:2306.10900, 2023.

[54] Jinpeng Liu, Wenxun Dai, Chunyu Wang, Yiji Cheng, Yansong Tang, and Xin Tong.
Plan, posture and go: Towards open-world text-to-motion generation. arXiv preprint
arXiv:2312.14828, 2023.

[55] Takahide Yoshida, Atsushi Masumori, and Takashi Ikegami. From text to motion: Grounding
gpt-4 in a humanoid robot" alter3". arXiv preprint arXiv:2312.06571, 2023.

[56] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821–8831. PMLR, 2021.

[57] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024.

[58] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Nigamaa
Nayakanti, Andre Cornman, Kan Chen, Bertrand Douillard, Chi-Pang Lam, Dragomir Anguelov,
and Benjamin Sapp. Multipath++: Efficient information fusion and trajectory aggregation for
behavior prediction. CoRR, abs/2111.14973, 2021.

[59] Kan Chen, Runzhou Ge, Hang Qiu, Rami Ai-Rfou, Charles R. Qi, Xuanyu Zhou, Zoey
Yang, Scott Ettinger, Pei Sun, Zhaoqi Leng, Mustafa Mustafa, Ivan Bogun, Weiyue Wang,
Mingxing Tan, and Dragomir Anguelov. Womd-lidar: Raw sensor dataset benchmark for
motion forecasting. arXiv preprint arXiv:2304.03834, April 2023.

[60] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan,
Yuning Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aur’elien Chouard, Pei
Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir
Anguelov. Large scale interactive motion forecasting for autonomous driving: The waymo open
motion dataset. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9710–9719, October 2021.

[61] K. Tan et al. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. In CVPR ADP3 workshop, 2021.

[62] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017.

14

Appendix

In the appendix, we further explain the experiment settings, the definition of metrics used for
evaluation, complete prompts used to transform language input into codes, the design of the trajectory
analyzing module, and some examples and illustrations extracted from our user studies.

A Additional Experiment Settings

Dataset. We use WOMD and nuPlan as the datasets for our experiments. For WOMD, we adopt
68, 000 scenarios for training and 2500 scenarios for testing, and for nuPlan, we selected 82, 122
scenarios for training and 20, 756 scenarios for testing from the whole dataset. Following the setting
in previous works [7], for each scenario, we keep a maximum number of 384 lanes and 32 vehicles.
We generate a 5-second trajectory at 10 fps, that is, T=50 timesteps.

Baseline. We consider two existing controllable trajectory generation baselines, TrafficGen [4]
and LCTGen [7]. TrafficGen is the first approach that generates vehicle trajectories purely from
empty maps without relying on vehicle past states. LCTGen is the latest open-sourced language-
guided vehicle trajectory generation approach. Both models represent state-of-the-art performance in
trajectory generation. We make some adjustments to the baseline models to standardize the number of
vehicles compared in the scene and the length of the predicted trajectories, ensuring a fair comparison.

Experimental setup. In the language-to-code encoder, we discretize inter-vehicle distances at
15-meter intervals and discretize speeds at 2.5-meter-per-second intervals. We sample the vehicles’
trajectories at 1-second (10 timesteps) intervals to get a |T | = 5 timesteps. We use MCG blocks with
5 layers for lane feature extraction, a 2-layer transformer with 4 heads is used for decoding vehicle
and interaction queries, and a cross-attention module with 8 heads is used for fusing interaction
features into vehicle features. An MLP with a latent dimension of 512 is finally used for trajectory
generation. Only the code-to-trajectory decoder needs to be trained as the LLM in our model encoder
does not need training. It takes about 12 hours for 100 epochs on 4 NVIDIA GeForce RTX040 GPUs
for the decoder training process. During the inference phase, it takes about 30 seconds to generate a
scenario, which includes about mainly 30 seconds to receive the response from the LLM and about
0.2 seconds to generate corresponding trajectories.

B Evaluation Metric Details

For each trajectory prediction and the corresponding ground truth trajectory, we measure their
similarity using the following six metrics. Mean average displacement error(mADE), minimum
average displacement error(minADE), mean final displacement error, minimum final displacement
error(minFDE), and Hausdorff distance(HD) measure the gap between the projected paths and the
actual paths, while the collision rate reflects the rationalization of the generated scenarios. For all
metrics, smaller values mean that the generated trajectories are closer to the ground truth values, and
therefore the corresponding model can be considered to generate scenarios closer to the real-life data
distribution.

Symbol Definition

• Let N be the number of agents in the scenario.

• Let G be the set of scenarios used for testing, let NG = ∥G∥ be the number of scenarios
tested.

• Let T be the overall timesteps.

• Let Sg = [Sg1,Sg2, . . . ,SgN] ∈ RN×T×2 be the set of ground-truth trajectories contained
in a scenario g ∈ G, where Sgi = [s1gi, s

2
gi, · · · , sTgi] ∈ RT×2,∀i ∈ {1, . . . , N} denotes the

ground-truth trajectory of agent i over T th timesteps.

• Let Ŝg = [Ŝg1, Ŝg2, . . . , ŜgN] ∈ RN×T×2 be the set of predicted trajectories contained in

the scenario g ∈ G, where Ŝgi = [ŝ1gi, ŝ
2
gi, · · · , ŝTgi] ∈ RT×2,∀i ∈ {1, . . . , N} denotes the

predicted trajectory of agent i over T timesteps.

15

Mean Average Displacement Error(mADE): mADE refers to the average mean square error (MSE)
between all predicted points and the ground-truth points over all the trajectories in a scenario. Its
average value over the entire test set is defined as:

mADE(G) =
1

NG

NG∑
g=1

(
1

N

N∑
i=1

(
T∑

t=1

∥stgi − ŝtgi∥
2

))

Mean Final Displacement Error(mFDE): mFDE refers to the average distance between the
predicted final destination and the ground-true final destination over all the trajectories in a scenario.
Its average value over the entire test set is defined as:

mFDE(G) =
1

NG

NG∑
g=1

(
1

N

N∑
i=1

∥sTgi − ŝTgi∥
2

)

Minimum Average Displacement Error(minADE): minADE refers to the minimum mean square
error (MSE) between all predicted and ground-truth trajectories in a scenario. Its average value over
the entire test set is defined as:

minADE(G) =
1

NG

NG∑
g=1

(
min
i∈N

(
T∑

t=1

∥stgi − ŝtgi∥
2

))

Minimum Final Displacement Error(minFDE): minFDE refers to the minimum distance between
the predicted final destination and the ground-true final destination over all the trajectories in a
scenario. Its average value over the entire test set is defined as:

minFDE(G) =
1

NG

NG∑
g=1

(
min
i∈N

∥sTgi − ŝTgi∥
2

)

Hausdorff distance(HD): HD refers to the Hausdorff distance between all predicted and ground-truth
trajectories, which measures how far two trajectories of a metric space are from each other when
viewed as point sets in a scenario. Its average value over the entire test set is defined as:

HD(G) =
1

NG

NG∑
g=1

(
1

N

N∑
i=1

dH(Sgi, Ŝgi)

)
,

where the Hausdorff distance is defined as

dH(X,Y) = max{supx∈XMSE(x, Y), supy∈Y MSE(X, y)}

Scenario collision rate(SCR): Among the predicted trajectories, We note the bounding box of agent
i as boxt

i at time t. For a pre-defined threshold δ, agent i and agent j are considered to be collided
if ∀t ∈ T, IoU

(
boxt

i, boxtj
)
> δ, where IoU(·, ·) denotes the intersection over union between two

objects. We thus define scenario collision rate as

SCR(G) =
1

NG

NG∑
g=1

 2

N × (N − 1)

N∑
i=1

N∑
j>i

1(∀t ∈ T, IoU
(
boxt

i, boxt
j

)
> δ)

C LLM Prompt Details

Here we show our prompt used to generate vehicle codes, map codes, and interaction codes.

You are a faithful format converter that translates natural language descriptions to a fixed-form
format to appropriately describe the scenario with motion action. You also need to output
an appropriate map description that supports this scenario. Your ultimate goal is to generate

16

realistic traffic scenarios that faithfully represent natural language descriptions and normal
scenes that follow the traffic rules.
Answer with a list of codes describing the attributes of each of the vehicles and the interactions
within the events in the scenario.
Desired format:
Summary: summarize the scenario in short sentences, including the number of vehicles. Also,
explain the underlying map description.
Explanation: If there are interaction behaviors concluded in the requirements, first explain
the meaning of these terms such as the behaviors of the agent involved. Then explain for each
group of vehicles why they are put into the scenario and how they fulfill the requirement in
the description.
Vehicle Code: A list of codes of length ten, describing the attributes of each of the vehicles in
the scenario, only output the values without any text:
- ’V1’: [„„„„,]
- ’V2’: [„„„„,]
- ’V3’: [„„„„,]
Map Code: A code of length six describing the map attributes, only output the values without
any text:
- ’Map’: [„„,]
Interaction Code: For each agent, generate two codes, each of length five. The first code
represents the relative distance of the vehicle with respect to the ego car, and the second one
represents the relative position of the ego car. Only output the values without any text:
- ’I1’: [„„] | [„„]
- ’I2’: [„„] | [„„]
Meaning of the vehicle code attribute:
- dim 0: ’pos’: [-1,5] - The relative position of the vehicle with respect to ego car in the order
of [0 - ’front’, 1 - ’front right’, 2- ’back right’, 3 - ’back’, 4 - ’back left’, 5 - ’front left’]. -1 if
the vehicle is the ego vehicle.
- dim 1: ’distance’: [0,3] - the distance range index of the vehicle towards the ego vehicle; the
range is from 0 to 60 meters with 15 meters intervals. 0 if the vehicle is the ego vehicle. For
example, if the distance value is less than 15 meters, then the distance range index is 0.
- dim 2: ’direction’: [0, 3] - the direction of the vehicle relative to the ego vehicle, in the order
of 0-’parallel same’, 1-’parallel opposite’, 2-’perpendicular up’, 3-’perpendicular down’. 0 if
the vehicle is the ego vehicle.
- dim 3-8: ’speed trend’: [0,8] - speed of the agent in future 5 seconds(including initial
speed and final speed) with consecutive dimensions having a time interval of 1s. Velocity is
categorized into nine grades from 0-8, with smaller grades resulting in higher speeds. The
range is from 0 to 20 m/s with a 2.5 m/s interval. For example, 20m/s is in the range of 8,
therefore the speed value is 8.
- dim 9: ’action’: [0,5] - category of vehicle behavior during this time. The vehicle’s
action is divided into six types: [0 - ’stop’, 1 - ’straight’, 2 - ’left-turn’, 3 - ’right-turn’, 4 -
’left-change-lane’, 5 - ’right-change-lane’]
Meaning of the Map code attributes:
- dim 0-1: ’parallel lane count’: 2-dim. The first dim is the number of parallel same-direction
lanes of the ego lane, and the second dim is the number of parallel opposite-direction lanes of
the ego lane.
- dim 2-3: ’perpendicular lane count’: 2-dim. The first dim is the number of perpendicular
upstream-direction lanes, and the second dim is the number of perpendicular downstream-
direction lanes.
- dim 4: ’dist to intersection’: 1-dim. the distance range index of the ego vehicle to the
intersection center in the x direction, range is from 0 to 60 meters with 15 meters intervals. -1
if there is no intersection in the scenario.
- dim 5: ’lane id’: 1-dim. the lane ID of the ego vehicle, counting from the rightmost lane of
the same-direction lanes, starting from 1. For example, if the ego vehicle is in the rightmost
lane, then the lane id is 1; if the ego vehicle is in the leftmost lane, then the lane id is the
number of the same-direction lanes.
Meaning of the interaction code attributes:

17

- Each code has a length of 5, representing the relative distance and direction of the vehicle
with ego car respectively. Two neighboring values in each code have an interval of one second,
so it can be used to represent the tendency of the trajectory relative to the ego car.
- The values of the first code represents the distance of this car relative to the ego car. It is
divided into five bins from 0-5, with each bin has an interval of five meters. When the value
is 0, it means that the car is very close to the ego car. The farther away this vehicle is from
the ego car, the larger the value is. When the distance is more than 25 meters, the value is
always set to 5.
- The values of the second code pair indicates the distance of the car relative to the ego car.
For each dimension, 0 means that the vehicle is in front of the ego car directly, 1 represents
the right front, 2 represents the right rear, 3 represents the rear, 4 represents the left brear and
5 represents the left front.
Traffic rules that you should obey when creating representation for traffic scenes:
- When the car drives to an intersection, it should slow down whether it is turning or going
straight ahead.
- If another vehicle is close to the ego vehicle and passes in front of the ego vehicle, for
example, driving from the left front to the right front, the vehicle should stop and wait for the
other car’s passing by.
- When changing lanes, pay attention to whether there are other vehicles on the near left or
near right side of the car, and if there are, keep driving in the current direction.
- When the vehicle turns left, it should pay attention to the left rear and make sure that there
are no other vehicles, keep straight ahead otherwise.
- When the vehicle turns right, it should pay attention to the left rear and make sure that there
are no other vehicles, keep straight ahead otherwise.
- The car should not change lanes to the left when it is in the far left lane.
- The car should not change lanes to the right when it is in the far right lane.
Some nomenclature so you can better understand how vehicles interact with each other to
represent their trajectories and movement trends:
- overtake: When another vehicle directly in front of the vehicle is moving too slowly, ego
vehicle can overtake the vehicle in front of it by changing lanes to the left or right and
accelerating. Generally, that car is directly in front of the ego car at the beginning and drives
slower than the ego car. In the end, it will be on the rear side of the ego car.
- merge: There are more than two cars on the road. One vehicle is first selected as the ego car
and is kept in a straight line and keeps its speed throughout the process. The other cars are in
the lane adjacent to the ego car, keeping a relatively close distance at first. These cars in turn
merge into the ego car’s lane by changing lanes. For example, the vehicle to the left of the
ego car changes lanes to the right, and the vehicle to the right of the ego car changes lanes to
the left. If the car wants to change lanes to the left and there is another vehicle in the left lane,
it should decelerate and wait for that vehicle to pass before making the left lane change. The
same is true when a vehicle is changing lanes to the right. During the process, you should
keep a safe distance with other cars in order not to collide.
- rear-ending/rear-end collision: When the first car (for example, to avoid someone crossing
the street) makes a sudden deceleration, and the car behind collides with it. Generally, the
second car will be behind the ego car at the very beginning, some distance away and faster
than the ego car. But at the end, that car’s position will almost overlap with the ego car and
come to a stop.
Transform the query sentence to the vehicle codes strictly following the rules below:
- Ensure the code of each vehicle has a length of 10.
- Focus on the interactions between the vehicles in the scenario.
- Focus on realistic action generation of the motion to reconstruct the query scenario.
- First determine the action type of the agent to fill index 9.
- Pay particular attention to the type of trajectories generated, and the corresponding
trajectories are generated according to the inferred trajectory class.
- Follow traffic rules to form a fundamental principle in most road traffic systems to ensure
the safety and smooth operation of traffic. You should incorporate this rule into the behavior
of our virtual agents (vehicles).

18

- For speed and distance, convert the unit to m/s and meter, and then find the interval index in
the given range.
- Describe the initialization status of the scenario.
- During generation, the number of vehicles is within the range of [1, 32].
- The maximum distance should not exceed 60m (index 1).
- The maximum speed should not exceed 20m/s (index 3-8).
- Always generate the ego vehicle first (V1).
- Always assume the ego car is in the center of the scene and is driving in the positive x
direction.
- In the input descriptions, regard V1, Vehicle 1 as the ego vehicle. All the other vehicles are
the surrounding vehicles. For example, for "Vehicle 1 was traveling southbound", the ego car
is Vehicle 1.
- If the vehicle is stopping, its speed should be 0m/s (index 3-8). Also, if the first action is
’stop’, then the speed should be 0m/s (index 3-8).
- If vehicle move in slow speed, the speed should be less than 2.5m/s (index 1) or 5m/s (index
2).
- Try to increase the variation of the placement and motion of the vehicles under the constraints
of the description.
- Both turning and lane-changing processes need to reflect changes in speed. For example,
during turning and lane changing the vehicle needs to undergo a deceleration process to
ensure safety, and after the maneuver is completed the vehicle will reaccelerate. The change
in speed is reflected in the ’speed trend’ dimensions in the vehicle code.
Generate the map code following the rules below:
- If there is vehicle turning left or right, there must be an intersection ahead.
- If the car was going to change lanes to the left, he couldn’t have been in the far left lane. If
the car was going to change lanes to the right, he couldn’t have been in the far right lane.
- Should at least have one lane with the same direction as the ego lane; i.e., the first dim of
Map should be at least 1. For example, if this is a one-way two-lane road, then the first dim
of the Map should be 2.
- Regard the lane at the center of the scene as the ego lane.
- Consider the ego car’s direction as the positive x direction. For example, for "V1 was
traveling northbound in lane five of a five-lane controlled access roadway", there should be 5
lanes in the same direction as the ego lane.
- The generated map should strictly follow the map descriptions in the query text. For example,
for "Vehicle 1 was traveling southbound", the ego car should be in the southbound lane.
- If there is an intersection, there should be at least one lane in either the upstream or
downstream direction.
- If there is no intersection, the distance to the intersection should be -1.
- There should be a vehicle driving vertically to the ego vehicle in the scene only when there
is an intersection in the scene. For example, when the road is just two-way, there should not
be any vehicle driving vertically to the ego vehicle.
- If no intersection is mentioned, generate intersection scenario randomly with real-world
statistics.
Generate the interaction codes following the rules below:
- Ensure the interaction code has a length of 10.
- Generate an interaction code for each of the vehicles, with the first code remaining all zero
since the ego car always overlaps itself.
- Interpreting the relative position of a vehicle as a trajectory over a future period of time.
- Determine their mutual speed and direction from the relative positions of the cars.
- If the relative position crosses the vehicle, such as driving from the left rear to the right front
of the vehicle, or from the right rear to the left front, there is a possibility of a collision, and
vice versa.
- If another vehicle drives from the left front of the ego vehicle all the way to the right front,
or the right front to the left front, it is possible for the ego vehicle to remain stopped waiting
for the other vehicle to go first.

19

- Reasoning about the relative distance and position of two cars based on the information of
the map. For example, if there is only one lane, there are only other cars that may be in front
of and behind the car, and there cannot be any other cars on the left or right side.

D Trajectory Analyzing Module

During the training process, for a ground-truth scenario S derived from real-world datasets, we
re-generate the scene by

m,V, I = Ψ(S), Ŝ = D(m,V, I), (6)

where Ψ(·) denotes an analyzing module that discretizes ground-truth trajectories into vehicle, map
and interaction codes. The length of each code and the meaning of each dimension are the same as
the codes generated by the language-to-code module, as described in the previous sections and the
detailed prompts.

Map code: Ψ(·) calculates the number of lanes included in the map both vertically and horizontally,
the distance of the ego car from the intersection, and the lane on which the ego car is located on to fill
up the map code.

Interaction code: For each vehicle other than the ego car, Ψ(·) samples its ground-truth trajectory at
regular intervals, using these sampled time points to compute the relative position and relative distance
to represent its trend of movement relative to the ego vehicle. In practice, we sample the trajectory
points every second and remove outliers concluded. For each sampled point, Ψ(·) discretizes the
distance and position to fill the corresponding part of the interaction code. The relative distance is
divided by a fixed interval as the relative distance code; for the relative position, we use the ego car as
the origin and the heading of the ego car as the positive direction of the x-axis, and the whole space is
divided into several equal-partitioned regions. The relative position code can be thus represented by
the serial number of the grid in which the vehicle is located. For example, when we select the number
of areas to be 6, then the space is divided into six equal-partitioned parts, with code 0 representing the
area directly in front, code 1 representing the front-right area, code 2 representing the front-back area,
code 3 representing the rear area, code 4 representing the back-left area, and code 5 representing the
front-left area. The length of the interval and the number of areas chosen are discussed in the ablation
study.

Vehicle code: The computation of relative position and the discretization of speed are similar to
the previous parts, and we also sample at fixed intervals to represent the trend of the vehicle’s
speed change. In addition, we categorize vehicles into six types based on their trajectory: stop,
straight ahead, left turn, right turn, left lane change, and right lane change. Likewise, we note
Si = [s1i , s

2
i , · · · , sTi] ∈ RT×2,∀i ∈ {1, . . . , N} be the ground-truth trajectory of agent i over T

timesteps, Vi = [v1i , v
2
i , · · · , vTi] ∈ RT ,∀i ∈ {1, . . . , N} be the ground-truth velocity of agent i

over T timesteps and Hi = [h1
i , h

2
i , · · · , hT

i] ∈ RT×2,∀i ∈ {1, . . . , N} be the ground-truth heading
of agent i over T timesteps.

We categorize the trajectory types according to the following rules.

Stop: Given pre-defined distance threshold δd and velocity threshold δv , Agent i is considered to be
stopping if ∀(t, t′) ∈ T 2, ∥sti − st

′

i ∥ ≤ δd and ∀(t, t′) ∈ T 2, ∥vti − vt
′

i ∥ ≤ δv. In practice, δd is set
to be 1 meter, and δs is set to be 0.2 meters per second.

Left turn: Given pre-defined lane-width lw and angle threshold δa > 0, agent i is considered to
be making a left turn if it’s heading sharply towards its left and its displacement in the direction
perpendicular to its heading is greater than the lane-width:

∥∥(sTi − s0i)−
(
(sTi − s0i) · h0

i

)
h0
i

∥∥ ≥ lw,

∀(t, t′) ∈ T 2,
(
ht
i × ht

′

i

)
z
≥ 2× δa. In practice, δa is set to be π

12 .

Right turn: Given pre-defined lane-width lw and angle threshold δa > 0, agent i is considered to
be making a right turn if it’s heading sharply towards its right and its displacement in the direction
perpendicular to its heading is greater than the lane-width:

∥∥∥(sTi − s0i)−
(
(sTi − s0i)ḣ

0
i

)
h0
i

∥∥∥ ≥ lw,

∀(t, t′) ∈ T 2,
(
ht
i × ht

′

i

)
z
≥ 2× δa. In practice, δa is set to be π

12 .

20

Left lane change: Given pre-defined lane-width lw and angle threshold δa > 0, agent i is considered
to be making a left lane change if it’s heading slightly towards its left and its displacement
in the direction perpendicular to its heading is greater than a certain multiple of lane-width:∥∥∥(sTi − s0i)−

(
(sTi − s0i)ḣ

0
i

)
h0
i

∥∥∥ ≥ lw, ∀(t, t′) ∈ T 2,
(
ht
i × ht

′

i

)
z
∈ [δa, 2 × δa]. In practice,

δa is set to be π
12 .

Right lane changeL Given pre-defined lane-width lw and angle threshold δa > 0, agent i is
considered to be making a right lane change if it’s heading slightly towards its right and its
displacement in the direction perpendicular to its heading is within a certain multiple of lane-width:∥∥∥(sTi − s0i)−

(
(sTi − s0i)ḣ

0
i

)
h0
i

∥∥∥ ≥ lW , ∀(t, t′) ∈ T 2,
(
ht
i × ht

′

i

)
z
∈ [−2× δa,−δa]. In practice,

δa is set to be π
12 .

Straight Most of the remaining agent trajectories remain within the lane width, and the variation in
the direction of the agent is within a proper range, and thus these agents are considered to be driving
straight forward. There remains a small percentage of agents that have missing values or outliers
in their trajectories, which are given a default trajectory type and are masked out in the following
processes.

E Additional User Study Details

We use GPT-4 to generate a series of natural language descriptions of traffic scenes containing
vehicles, e.g., “The car speeds up to pass the vehicle ahead of it.”, on which later InteractTraj and
LCTGen are used to generate scenarios respectively. Users are invited to evaluate the generated
scenarios depend on different requirements. We balance the frequency of each type of interaction
event in these descriptions as much as possible.

The first user study contains forty language commands, and for each command, the two models
generate the corresponding trajectory. Each user is asked to choose the trajectory that better fits the
language description. A total of 31 interviewees participated in the research, with a total of 1240
samples. In the second user study, we have fifty language descriptions that cover and emphasize the
most representative interaction types. For each description, users are asked to answer whether the
scenarios generated fulfill the corresponding textual descriptions from their perspectives. The answer
can be simultaneously positive or negative for either of the questions. A total of 28 users participated
in the study, with a total of 1400 samples.

In this section, we give two examples for each user study as an illustration.

User study 1: overall generation performance The first user study contains forty language
commands, and for each command, LCTGen and InteractTraj are used to generate corresponding
trajectories respectively. Each user is asked to choose from either of them that better fits the language
description. Figures 9 and 10 illustrate two language descriptions and the corresponding scenarios
generated.

User study 2: vehicle interaction performance The second user study contains fifty language
commands and each command represents a representative type of interaction previously mentioned.
For each command, LCTGen and InteractTraj are used to generate corresponding trajectories
respectively and each user is asked to evaluate whether the scenarios fit the interaction behaviors given
by the linguistic description. 11 and 12 illustrate two language descriptions and the corresponding
scenarios generated.

21

(a) Option a. (b) Option b.

Figure 9: Description: The vehicle slows down and turns left at the intersection.

(a) Option a. (b) Option b.

Figure 10: Description: The lead vehicle signals a lane change, prompting the following cars to adjust
their speeds and positions accordingly

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present the main problem addressed by the article, its contributions, and
the current results in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

22

(a) Option a. (b) Option b.

Figure 11: Yielding: The sedan yields to the oncoming ambulance.

(a) Option a. (b) Option b.

Figure 12: Merging: As the car approached the intersection, it slowed down, allowing the motorcycle
to merge into the space.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included a discussion of the current limitations and directions for
future work in section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

23

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described the model structure as well as the training setup in section 5.2,
and we will release the codes afterward.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
descriptions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

24

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: we will release the codes afterward.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: We mentioned this part in section 5.2 and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We mentioned this part in section 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We don’t have such a problem in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

26

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: For now, this work does not have much social impact. Current work lies mainly
in the simulation phase, which is still far from practical application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

27

Answer: [Yes]

Justification: We cite the articles, models, and datasets mentioned in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We describe the experimental setup in section 5.4 and in the appendix.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

28

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The subjects in our experiment had no such risk.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Traffic Trajectory Generation
	Motion Prediction
	Large Language Models and Their Multimodal Applications

	Problem Statement
	Methodology
	Architecture Overview
	Language-to-Code Encoder
	Code-to-Trajectory Decoder
	Training
	Discussion

	Experiments
	Dataset and Baseline
	Experimental Setup
	Evaluation Metric
	Reconstruction-based Evaluation
	Language-Conditioned Evaluation
	Ablation Study

	Conclusion
	Acknowledgment
	Additional Experiment Settings
	Evaluation Metric Details
	LLM Prompt Details
	Trajectory Analyzing Module
	Additional User Study Details

