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Abstract: Configuring links, joints, and their combinations is a critical skill for
robots to manipulate complex articulated objects. In this paper, we employ a
graph-based representation to model an articulated object, where the parts (i.e.,
links) are treated as nodes and the joints connecting them as edges. We train a
Graph Neural Network (GNN) to learn the language embedding of the individual
parts, determine the connectivity between different links, and predict the joint
state values and types. Our model demonstrates superior performance across four
key metrics, highlighting its applicability to robotic manipulation tasks. Then, we
conducted initial experiments on the effectiveness of using joint information that
our model can provide in learning the manipulation skills for articulated objects
and presented its results. This emphasizes the potential of our model to offer
significant advancements in reinforcement learning for robotic manipulation in
the near future.

Keywords: Articulated Objects Manipulation, Message Passing Neural Network,
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1 Introduction
Articulated objects are composed of multiple joints and links. Estimating the configuration of the
articulated object is crucial for precise robotic object manipulation. Most of the research focuses on
configuring articulated objects in a limited condition, such as a limited number of joints and links,
or supports only a single type of joint [1, 2]. This limitation can make it difficult to generalize their
model to real-world applications, which are filled with objects that have varying numbers and types
of links and joints. To address this issue, we formulate an articulated object in a graph structure.
Graph is one of the easiest and effective solutions to demonstrate the combinations of links and
joints of an articulated object.

In this paper, we propose a graph neural network (GNN) designed to decompose the diverse infor-
mation of articulated objects, which is essential for robotic manipulation. We utilize the Message
Passing Neural Network (MPNN), a widely adopted framework in GNNs, which efficiently ag-
gregates information from both nodes and edges to update node features through our edge update
networks [3].

The model takes as input a 360-degree point cloud of a single articulated object along with class-
agnostic part labels. It then outputs four types of information: 1) language embeddings of part
names, 2) confidence scores indicating the possibilities that two parts are actually connected, 3)
probabilities for joint types (i.e., prismatic or revolute), and 4) joint state values, which describe the
current configuration or position of each joint, scaled between 0 and 1. The details of the model
output are described in Figure 1.
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Figure 1: An example of decomposing the configuration of an articulated object. An articulated
object can be decomposed into parts and joints. Our model represents the object as a graph and
outputs: 1) language embeddings of part names, 2) confidence scores (i.e., connectedness), 3) joint
types, and 4) joint state values scaled between [0, 1].

In this experiment, we evaluate our proposed model on a range of articulated object instances with
different joint configurations of a single category. We evaluated the performance of the model on all
four criteria mentioned above with accuracy metrics exceeding 90% on several measures, demon-
strating outstanding quantitative results. Furthermore, we train a robot arm agent with the SAC
algorithm [4] within a simulation environment [5, 6]. We incorporate joint state information of the
object into the observation inputs and employ it for reward shaping. This approach aims to demon-
strate our insight that our proposed model can significantly enhance the performance of robotic
manipulation tasks in future work, particularly for real-world applications.

2 Graph Neural Network for Articulated Object Decomposition
The model takes as input a 360-degree point cloud view of an articulated object, along with point-
wise class-agnostic part labels that represent the object’s structure. The model outputs the following:

• A language embedding for the name of each part of the articulated object.

• A joint confidence score representing the probability that two parts (i.e. links) are con-
nected by a joint.

• Joint type probabilities indicating whether a specific joint is prismatic or revolute.

• Joint state values representing the positional data of a joint, which describe its current
orientation or displacement within its allowable range of motion, scaled between 0 and 1.

Figure 2 illustrates the overall framework of our model. First, our model extracts shape embeddings
for each part using a discrete Variational Autoencoder (dVAE) [7], following the approach outlined
in Point-BERT [8]. The detailed procedure for extracting partwise shape embeddings, {ψpk}Gk=1,
for G parts {pk}Gk=1 from Point-BERT embeddings {ϕgj}Gj=1 of G groups {gj}Gj=1 can be found in
Appendix B.

We utilize MPNN to obtain language embeddings for each part name and information vectors for
each joint between two connected parts. The shape embeddings for each part, denoted as {ψpk}Gk=1

are obtained from a dVAE model and serve as the initial node features {Xi}Gi=1, while the edge fea-
tures are initialized as zero vectors. Each joint information vector has five dimensions, representing
the confidence score, the probabilities of joint type, and the values of the joint state, as detailed in
Figure 2. We denote the joint information vector connecting nodes i and j as χij .

For message passing, node features and adjacent edge features are utilized to update node features.
We can use the structure of the MPNN model as [9, 10, 11]. Additionally, we design an edge update
network comprising three linear layers, each followed by a batch normalization and an activation
function. The MPNN is used to update the node features {Xi}Gi=1 by aggregating information from
neighboring nodes and connected edges. Subsequently, the edge update network is applied to update
the edges E = {χij |1 <= i, j <= G, if parts pi, pj are connected}.
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Figure 2: Overall framework of our model. Our model processes a 360-degree point cloud of an
articulated object using the discrete Variational Autoencoder (dVAE) from Point-BERT to generate
part-wise shape embeddings, ψ. These embeddings serve as initial node features in the graph, with
edge features initialized as zero vectors. After the Message Passing Neural Network (MPNN), node
featuresX are transformed into a language embedding for part names and a joint information vector.

To train MPNN, we first freeze the weight of dVAE which is trained in advance following the method
in Point-BERT. After MPNN, the node features {Xi}Gi=1 are transformed into language embeddings
for each part pi, denoted as Xpi .. We employ an L2 loss function to train the node features, which
is formulated as Llang = 1

G
∑G

i=1 ||Xi −Xpi ||2.

The five-dimensional joint information vector χij is decomposed into the confidence score cij , the
probabilities of the joint type γij , and the values of the joint state θij . Unlike the confidence score
cij ∈ R, the vectors γij ,θij ∈ R2 represent the probabilities that the joint is prismatic or revolute
and the joint states for the prismatic and revolute joints, respectively. The corresponding ground
truth for the joint information is denoted as c′ij , γ′

ij , and θ′
ij . The confidence score loss function

Lconf is defined as a binary cross entropy function as Lconf = 1
|E|
∑

χij∈E BCELoss(cij , c′ij).

The model update joint-type probabilities γij uses a cross-entropy loss, conditioned on γ′
ij ̸= 0

(i.e., an edge with a valid joint type) as follows:

Ltype =
1∑

χij∈E 1(γ
′
ij ̸= 0)

∑
χij∈E

1(γ′
ij ̸= 0) · CELoss(γij ,γ

′
ij) (1)

Finally, the joint state loss is defined using an L2 loss. This loss is computed only for joints with a
finite state range, with joints of infinite state ranges masked by Mstate and conditioned on γ′

ij ̸= 0:

Ljoint state =
1∑

χij∈E 1(γ
′
ij ̸= 0) · Mstate

∑
χij∈E

1(γ′
ij ̸= 0) · Mstate · ||θij − θ′

ij ||2) (2)

The total loss L is then defined as L = Llang + Lconf + Ltype + Ljoint state.

3 Experimental Results

In this section, we evaluate the performance of our proposed model in interpreting complex joint
configurations of articulated objects. The experimental setup and dataset details referred to in Sec-
tion 3.1 are provided in Appendix D. Also, the setup for the initial experiment conducted in the
simulation environment (Section 3.2) is in Appendix E.

3.1 Inference on Complex Joint Configurations

In this experiment, we measured the accuracy of the predicted language embeddings by matching
them to the nearest ground-truth embeddings from the part name list of each object instance. Further-
more, we derived the predicted confidence scores and joint types from the joint information vectors
and calculated their respective accuracies. Furthermore, we observed errors in the joint states by
scaling the predicted joint state values according to the actual range of the joints provided.
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Table 1: Overall performance of our models with varying MPNN iterations (Iteration) on articulated
object instances with complex joint configurations.

Iteration Lang. acc. Joint conf. acc. Joint type acc. Rev. err. (◦) ↓ Pris. err. (cm) ↓
1 0.985 0.999 0.930 15.942 14.281
3 0.986 0.999 0.939 16.057 14.323
5 0.987 0.999 0.930 16.195 14.282

Table 1 presents the performance of our models in all four outputs, comparing different numbers of
MPNN iterations. This experiment involves objects with varying joint types and a diverse number
of parts. We conducted our experiments on the StorageFurniture category, which consists of objects
with complex part structures and connectivity. Specifically, the average number of parts in the test
data set is 3.149, while the average number of prismatic and revolute joints is 1.148 and 1.000,
respectively.

Our models achieved a better accuracy 90% in predicting language embeddings, joint confidences,
and joint types. This demonstrates the effectiveness of the MPNN in aggregating information for
articulated objects. Moreover, our model offers a significant advantage over recent models for articu-
lated object inference [1, 2, 12, 13], which lack the ability to handle objects with varying connectivity
and joint types in a single model or are unable to infer part names, an essential feature for enabling
human-robot interaction in real-world applications. Finally, our models exhibit consistent perfor-
mance across different MPNN iterations for joint state errors. As demonstrated in Appendix C, our
model achieves joint-state error rates that are on par with the state-of-the-art approach presented by
[1], despite of its broader applicability beyond joint state error inference.

3.2 Initial Experiment for Learning Manipulation Skill

We conducted reinforcement learning (RL) experiments in a simulation environment using the Ro-
bosuite framework [6]. In this experiment, the goal of the SAC agent is to manipulate the Franka-
Emika-Panda robot arm to rotate the handle of the door sufficiently to release the latch and open
the door so that the angle of the hinge of the door becomes a specific angle. Please note that the
information used for observations and reward shaping is not obtained through our proposed model.
The mean reward curves during training are shown in Figure E.2.

Table 2: Performance of reinforcement learning agent in door opening task using Soft Actor-Critic
algorithm (SAC). We compared the model using the provided joint state values as observations
(Obs.) and reward shaping (Reward).

Setting Prop. Obs. Reward Success Rate (%)Handle Hinge Handle Hinge
w/o Arti-info ✓ × × × × 0
w/ Arti-info ✓ ✓ ✓ ✓ ✓ 49.4

Our experimental results are summarized in Table 2. Both settings incorporate proprioceptive infor-
mation (Prop.) as part of the observations, which includes the 7-DoF joint positions of the robot, the
joint positions of the gripper, and the position and orientation of the end effector. The agent utilizing
articulated object information (w/ Arti-info) has a 49.4% higher average task success rate than the
agent without the information (w/o Arti-info).

4 Discussion

Considering that the ground-truth information for articulated objects is not inherently available in the
real world, the results of this experiment demonstrate that the configurations of articulated objects
generated by our proposed model can significantly enhance the manipulation capabilities of real-
world robotic agents. Although not addressed in the initial experiment in Section 3.2, the ability of
our proposed model to extract language embeddings and estimate part labels represents a significant
advantage. In particular, combining our model with large language model can extend the robot to
learn more diverse and general manipulation skills.
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A Related Works

A.1 Estimating a Configuration of an Articulated Object

Numerous methods have been proposed for estimating the configuration of articulated objects. [14]
learns 3D articulation flow from point clouds, facilitating robotic manipulation of objects. [15]
utilizes RGB-D and object part segmentation images to estimate node types and part connectiv-
ity, aiming to classify the articulation type (i.e., prismatic or revolute). [12, 16] leverage effective
representations, such as screw theory and Stiefel manifolds, to model the configuration of articu-
lated objects. [17, 18, 19] focus on estimating the affordances for manipulating articulated objects.
[13, 20] propose learning the joint parameters through robot interaction with articulated objects.

Despite the strengths of previous work, many do not fully encompass the range of articulation in-
formation that our model outputs: part name embeddings, joint connectivity confidence, joint types,
and joint position states. In particular, our model’s ability to generate part-name embeddings of-
fers a significant advantage in deducing the configuration of articulated objects. [21, 22] employ
Distributed Correspondance Graph (DCG) [23] to parse narrations and derive language-based infer-
ences in robotic tasks. However, our model is more suitable for application to articulated objects
with complex relationships between parts and joints.

PartSLIP [24] utilizes a 360-degree point cloud of an object to ground the language into its con-
stituent parts. In contrast, our model primarily focuses on the relationships between the parts of
articulated objects and joint configuration, grounding the language using a provided list of part
names. Although our model requires class-agnostic part labels as input, these can be easily obtained
through image segmentation models such as Segment Anything [25].

A.2 Graph Structure for the Configuration of an Articulated Object

In recent years, many studies have leveraged graphs to model articulated objects. In particular,
cutting-edge works like [26, 27] utilize graph structures for object generation tasks, demonstrating
that such structures can effectively encode the information necessary for successful object gener-
ation. Similarly, our model harnesses the power of graphs through the use of a Message Passing
Neural Network (MPNN), which outputs critical information for articulated object manipulation
tasks.

[28] employs a Graph Neural Network (GNN) to infer the kinematic hierarchies of articulated ob-
jects, predicting joint types and the existence of edges. Like our approach, they represent object
parts as nodes and joints as edges. However, our model extends this by also outputting joint states
and part names, in addition to joint type and edge existence. These added features make our model
particularly applicable to real-world tasks requiring precise joint state configurations for robotic
perception and high-level reasoning (e.g., language understanding).

B Obtain Shape Embeddings from a discrete Variational Autoencoder

We utilize a Discrete Variational Autoencoder (dVAE) to obtain shape embeddings of object parts,
which will later serve as node features of the graph at initialization. Point clouds are first processed
through the dVAE in Point-BERT, which outputs the shape embedding for each local group. The
dVAE at Point-BERT divides N points {xi}Ni=1 into G groups {gj}Gj=1, with each group containing
H points (i.e., N = G ×H). Each group is represented by an embedding generated by the dVAE,
denoted as {ϕgj}Gj=1.The ith point of the jth group of the point cloud can be denoted as xgji . Thus,
the point cloud can be represented as {xgji }Hi=1, for j = 1, 2, . . . , G. Simultaneously, points from
the point cloud {xi}Ni=1, sharing the same part label {pk}Gk=1 can be denoted as {xpk

i }Hi=1 where G
represents the total number of part labels and H the number of points for a given part label.

To construct part-wise shape embeddings {ψpk}Gk=1 from the group embeddings {ϕgj}Gj=1, we first
calculate the chamfer distance between the part labels and the group embeddings. This will be
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referred to as the chamfer distance matrix M . Next, we take the reciprocal of M and apply the
softmax function. The value for the jth group of the point cloud and the kth part of the original
point cloud is given by the following:

Mjk = softmax

(
1

ChamferDist
(
{xgji }Hi=1, {x

pk

i }Hi=1

)
+ ϵ

)
(3)

Finally, we obtain the shape embeddings of the kth part of the point cloud by multiplying the chamfer
distance matrix with group embeddings. This process can be simply written as ψpk =

∑G
j=1Mjk ·

ϕgj .

C Joint state values Inference

In this experiment, we compare our model’s ability to infer joint state values with a decoder of
A-SDF, a recent method for obtaining joint state. Before examining the results, we would like
to emphasize that A-SDF requires a fixed joint number to be set during each training instance,
which contrasts with the flexibility of our model. Furthermore, A-SDF cannot infer the connectivity
between parts. These limitations reduce the generalizability of the model, which is crucial for robots
interacting with objects with varying numbers and types of joints. Additionally, A-SDF requires
further optimization of shape codes and joint angles during inference, which increases its runtime
and renders it impractical for dynamic robotic environments.

We utilize A-SDF for both prismatic and revolute joint inference, referencing the implementation
from [2]. For fairness, since A-SDF does not require the actual state range to infer the joint state,
we clamp its predictions to the minimum and maximum values of the object instance.

Table 3: Joint state errors for articulated objects with varying joint configurations. Results are
compared across different iterations (#It.) of the MPNN. The units for revolute errors and prismatic
errors are degrees (◦) and centimeters (cm), respectively.

Method #It. Double Revolute ↓ Single Revolute ↓ Single Prismatic ↓
StorageFurniture Eyeglasses Door Laptop TrashCan Table

A-SDF [1] - 11.762 8.771 6.543 18.298 12.973 9.788
Ours 1 12.412 10.678 6.653 18.227 5.921 10.766
Ours 3 12.375 10.617 6.835 17.749 5.980 10.724
Ours 5 12.516 10.631 7.042 17.395 6.108 11.147

Table 3 demonstrates the joint state errors between the predicted and ground truth values. We
grouped the data set based on the number and type of joints into six categories for comparison with
A-SDF. Both models are trained on a per-category basis. As shown in the table, our model achieves
a performance comparable to that of A-SDF despite the advantages for robotic applications. For
objects with revolute joints, both models exhibit less than a difference 2◦ in all categories. For ob-
jects with prismatic joints, our model outperforms the baseline by 7cm in the TrashCan category,
while showing slightly inferior performance in the Table category.

We also investigated the performance of our model with varying numbers of iterations for the MPNN
and the subsequent edge update network. We found that the optimal number of iterations varied
between categories; however, the difference in performance within a single category was less than
1◦ (or cm), indicating a minimal impact on overall performance.

D Experimental Setup and Datasets

We conducted experiments using the PartNet-Mobility dataset, which contains 46 categories of artic-
ulated objects [29]. For each object, we capture 360-degree point clouds across various joint states.
The data set comprises 2,312 object instances, which we split into training and test sets. First, we
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Figure E.1: Simulation environment for reinforcement learning experiment. Scene capture and
detailed configuration of door object in the simulator for the door opening task. The door object
includes the handle, latch, and hinge.

train a dVAE using 10 poses with different joint configurations per instance. This enables us to
obtain 768-dimensional shape embeddings {ψpk}Gk=1 for each part of the articulated objects. We
acquire ground truth language embeddings {Xpi}Gi=1 using a pre-trained BERT model, optimized
following the approach of [30].

Unlike dVAE, the MPNN is trained per object category, selecting object instances depending on the
specific experiment. We utilize GINEConv [10], implemented via [31]. MPNN training is conducted
using 100 poses with different joint configurations for each instance.

E Details of the RL Experiment

Door Opening Task Figure E.1 illustrates the simulation environment within the Mujoco-based
Robosuite framework. The objective of this experiment is to control a Franka-Emika-Panda robot
arm to adjust the position of the door hinge to 0.3 radians. The door is equipped with two revolute
joints: the hinge and the handle. The robot’s goal is to open the door by rotating the handle to unlock
the latch located at the rear of the handle.

Reward Function Both settings in Table 2 yield a reward value of 1 if the position of the door hinge
exceeds 0.3 radians. We also receive a reward of 0.25 for both handle and hinge positions in the w/
Arti-info setting.

Rhandle = min
(
0.25, 0.25×

∣∣∣qhandle
0.5π

∣∣∣)

Rhinge = min
(
0.25, 0.25×

∣∣∣qhinge
0.5π

∣∣∣)

Rtotal =

{
1 if qhinge > 0.3 rad

Rhandle +Rhinge else

Here, Rhandle represents the handle reward, Rhinge represents the hinge reward, qhandle denotes
the handle position value, qhinge denotes the handle position value, and Rtotal indicates the total
reward.
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Figure E.2: Mean of episode rewards in different reinforcement learning settings. Plot of mean
episode rewards of with and without Arti-info settings during training. Each line color represents a
different random seed used for training.

Training & Evaluation Agents are implemented using the Stable-Baselines3 [32] packages. The
actor and policy networks of the model architecture are constructed with two-layer MLPs, trained
using the Adam optimizer. Each layer consists of 256 dimensions. The total number of samples
for training and replay buffer size is set to 1 milion with a learning rate of 0.00075 and a discount
factor of 0.99. We trained for 2,000 episodes using 14 processors, with each episode consisting of
500 steps. During the evaluation, we randomize the position and orientation of a door object within
2 cm and 0.25 radians, respectively. We calculate the mean success rate by measuring the number
of successful trials divided by the number of total trials (i.e., 100 trials).
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