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Abstract

Complex real-world scheduling problems often include mul-
tiple conflicting objectives. Decision makers (DMs) can ex-
press their preferences over those objectives in different
ways, including as sets of weights which are used in a linear
combination of objective values. However, finding good sets5

of weights that result in solutions with desirable qualities is
challenging and currently involves a lot of trial and error. We
propose a general method to explain objectives’ values under
a given set of weights using Shapley regression values. We
demonstrate this approach on the Test Laboratory Schedul-10

ing Problem (TLSP), for which we propose a multi-objective
solution algorithm and show that suggestions for weight ad-
justments based on the introduced explanations are success-
ful in guiding decision makers towards solutions that match
their expectations. This method is included in the TLSP MO-15

Explorer, a new decision support system that enables the ex-
ploration and analysis of high-dimensional Pareto fronts.

1 Introduction
In many complex real-world optimization problems, trade-
offs are required as optimizing for one desired preference20

comes at a cost to another. The area of multi-objective opti-
mization deals with such problems, where several objectives
should be optimized at once. A popular approach to deter-
mine the best solution to such problems is to capture the
preferences of domain experts and decision makers (DMs)25

between those objectives numerically in such a way that so-
lutions can be totally ordered and optimizing with respect
to this order. Several different approaches exist, such as
weighted linear combinations of objective values (Pajer et al.
2017), scalarizing functions using reference points (Misi-30

tano et al. 2022), and more. However, expressing and defin-
ing these preferences is a difficult task in itself. The conse-
quences of any particular preference structure (e.g. a set of
objective weights) on the solutions are often hard to predict,
especially where the range of possible solutions is initially35

unknown. Further, DMs may want to understand how the so-
lutions that are found by automated solvers have been gen-
erated and require solvers to explain the decisions they have
made. This information can be provided in the form of (ap-
proximated) Pareto fronts (see Section 2): Populations of so-40

lutions such that an improvement in one objective is possible
only via an increase in another. Unfortunately, Pareto fronts

for problems with more than two objectives are hard to vi-
sualize and understand, which makes it necessary to develop
decision support tools that assist the DM in the analysis and 45

exploration of alternative solutions.
This paper deals with a complex real-world scheduling

problem, the Test Laboratory Scheduling Problem (TLSP).
The TLSP was first described in (Mischek and Musliu 2018,
2021) in order to model the requirements of scheduling ac- 50

tivities in industrial test laboratories, where a large num-
ber of tests have to be performed subject to complex de-
mands regarding time windows, ordering of tests, as well as
qualification and certification of several different resources.
The original formulation of the TLSP used a weighted lin- 55

ear combination of several objectives in order to determine
the quality of otherwise feasible schedules. Previous works
proposing solution approaches for the TLSP (e.g. (Mischek,
Musliu, and Schaerf 2023; Danzinger et al. 2023; Geibinger,
Mischek, and Musliu 2021)) assumed uniform weights of 1 60

in their evaluations, with a discussion on the difficulty of
finding ”good” weights in practice (i.e. ones that lead to so-
lutions that are desirable for the DMs) given in (Danzinger
et al. 2023). Weights are roughly estimated based on prac-
tical experiences with previous scheduling runs, which can 65

lead to counter-intuitive or undesirable situations, where the
solver produces solutions that are optimal with respect to the
given weights, but do not match the expectations and prefer-
ences of the DM. In these situations, it is important for the
DM to be able to explore alternative solutions and analyze 70

where the weights they have set previously lead to these un-
desired results.

The contributions of this paper are as follows:

• We describe a multi-objective solution algorithm for the
TLSP, using Pareto-Simulated Annealing (PSA) com- 75

bined with Very Large Neighborhood Search (VLNS).

• We propose a new method to calculate the contribution of
objectives on each others’ value that is based on Shapley
regression values. From these Shapley values we com-
pute suggestions for objective weight adjustments and 80

show that following the suggestions is beneficial for im-
proving the value of desired target objectives.

• We introduce TLSP MO-Explorer, a graphical decision
support system that allows DMs to interactively explore
a set of populations of solutions for the TLSP, such as 85



those generated by the PSA algorithm. The system also
includes the suggestions for weight adjustments com-
puted via Shapley regression values, which provide in-
sights into the interaction between different objectives.
A short user study with domain experts from our indus-90

trial partner, who provided qualitative feedback on the
system prototype and a quantitative assessment of its us-
ability, shows the usefulness of this system in assisting
with real-world scheduling tasks.

This paper is structured as follows: The next section in-95

troduces theoretical background information and definitions,
including a description of the TLSP. We introduce our multi-
objective solution approach for the TLSP in Section 3. Sec-
tion 4 contains the description of our proposed explana-
tion approach using Shapley regression values. We demon-100

strate on the example of the TLSP that following the sugges-
tions for weight adjustments derived from these values is a
promising strategy to reduce the value of certain target ob-
jectives. In Section 5 we describe the TLSP MO-Explorer,
as well as the user study with domain experts. Finally, the105

last section contains our conclusions and lessons learned, as
well as an outlook on future research directions.

2 Background
The Test Laboratory Scheduling Problem
We provide here a summary of the Test Laboratory Schedul-110

ing Problem (TLSP). The full formal problem description is
included in the appendix (Section A) and can also be found
in (Mischek and Musliu 2021).

The TLSP is a project scheduling problem, where the
solver has to provide a schedule for multiple projects, each115

containing several tasks. Each task has a duration, a time
window in which it must be performed, requires multiple
different and heterogeneous resources, and can be performed
in one of several possible modes. Additional constraints pre-
scribe a precedence order between tasks, limit which units of120

a resource are suitable for a task and link tasks that should
be assigned the same resource units.

However, tasks are not scheduled directly, but must first
be grouped into larger units called jobs, which are then as-
signed a time interval, execution mode, and resource units.125

Each job derives its properties from the tasks it contains, un-
der the assumption that tasks within a job are performed se-
quentially, but without any defined order. As a consequence,
a job must fulfill all requirements of its tasks for its whole
duration, which is defined as the sum of the durations of its130

tasks, plus an additional setup time. For example, a job can
start only after the latest release date among all its tasks,
and after the end of all other jobs that contain prerequisite
tasks of at least one of its tasks. Similarly, it must be as-
signed enough units of a resource to cover the highest de-135

mand among its tasks and resource units that are suitable for
all its tasks can be assigned to it.

A combination of different objectives determines the
quality of a schedule. The default version of the TLSP con-
siders the following objectives:140

1. The number of jobs should be minimized.

2. The employees assigned to a job should be taken from
a further subset of the suitable employees, the preferred
employees.

3. The number of different employees assigned to each 145

project should be minimized.
4. The internal due date for each job should be observed,

which is typically before the deadline.
5. The total completion time (from the start of the first job to

the end of the last) of each project should be minimized. 150

Additional objectives have been described for practical ap-
plications (Danzinger et al. 2023), however in this work we
restrict our discussion to those objectives already present in
the original formulation.

Dominance and Pareto fronts 155

An important concept of multi-objective optimization is that
of dominance between solutions: Given evaluation functions
fi for each objective i, x dominates y if fi(x) ≤ fi(y) for
all objectives and fi(x) < fi(y) for at least one objective.
The set of Pareto optimal solutions are those that are not 160

dominated by any other solution. Their corresponding set
of objective vectors is called the Pareto front. In practice,
computing exact Pareto fronts is typically computationally
infeasible, so approximations are used instead.

Shapley values 165

Shapley values (Shapley 1952) were originally devised as a
measure for the contribution of individual players to the total
payout of a coalitional game: Given a set N of n players and
an evaluation function v : 2N → R assigning each subset
of players a total payout, the Shapley value of player i is 170

defined as

φi =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(v(S∪{i})−v(S)) (1)

They can be shown to guarantee important theoretical
properties, such as local accuracy, missingness, and con-
sistency (Lundberg and Lee 2017), and have been used as
the basis of several popular formalisms to explain the in- 175

fluence of input parameters of machine learning models on
the model output. For example, Shapley regression values
(Lipovetsky and Conklin 2001) are computed by directly
applying equation 1 with the input features as players and
v(C) being the output of a model trained on feature subset 180

C. One major drawback of this approach is that it requires
the training of a separate model for each subset of the input
features, as most machine learning techniques are unable to
work with only a subset of the original training features.

SHAP values (Lundberg and Lee 2017) aim to circumvent 185

the above problem by replacing the computation of partial
models (i.e. models over a subset of features) with a condi-
tional expectation function on the original model, preserving
the same theoretical properties. Since the exact computation
of SHAP values is still computationally expensive, in partic- 190

ular for models with a large number of features, both model-
agnostic and model-specific approximation methods exist.



Explainable interactive multi-objective
optimization
The setting of explainable interactive multiobjective opti-195

mization (XIMO) (Misitano et al. 2022) is as follows: We
are given a multi-objective optimization problem with k ob-
jectives and a certain preference structure z ∈ Rk over those
objectives that allows us to compute a single ”best” solu-
tion relative to this structure. Originally, this setting was de-200

fined only for preference structures taking the form of ref-
erence points in objective space. However, there are also
other widely-used ways of expressing preferences between
objectives (Miettinen 1999), including vectors of objective
weights used in a linear combination of penalties.205

A DM provides an initial estimate z0 of those preferences.
This estimate is passed to a black-box optimizer BB which
produces a solution with an objective vector x0 = BB(z0)
based on the given preferences1. While x0 is the best solu-
tion (found) relative to z0, it may still not match the expec-210

tations of the DM.
The goal in XIMO is to interactively assist the DM in

achieving a desirable solution by explaining how and why
the returned solution is the best for the provided preferences
and give suggestions on how those preferences can be ad-215

justed in order to achieve the DM’s goals (e.g. to reduce the
value of certain objectives). The DM can then provide an
updated preference structure z1, which yields a new solu-
tion x1 = BB(z1), and repeat until they are satisfied.

The R-XIMO method (Misitano et al. 2022) translates the220

formalism of using SHAP values for explaining machine
learning models to this setting, where preferences between
objectives are given as reference points. It is then possible
to compute SHAP values ϕij which indicate the contribu-
tion of component j of the given reference point towards225

the value of objective i in the resulting solution. The authors
of R-XIMO use these SHAP values (estimated using Kernel
SHAP) to provide suggestions on how to interactively mod-
ify the reference point in order to improve the value of one
particular objective. One limitation of that approach is that it230

requires an additional set of background values, representing
typical or aggregate vectors whose values are used in place
of masked objectives. In R-XIMO, the approximated Pareto
front itself is used as background data, which is empirically
shown to work well with reference points, but is unsuitable235

for other types of preference structures.

3 Multi-objective solving techniques for the
TLSP

Previous solution approaches to the TLSP have focused on
searching for near-optimal solutions with respect to a single240

set of objective weights. To provide decision makers with a
set of diverse solutions, we instead need methods that ap-
proximate the Pareto-front along its full length.

For this, we propose a Pareto Simulated Annealing (PSA)
for TLSP based on the general PSA framework (Czyzżak

1For simplicity and computational efficiency, we can assume
that the optimizer has access to a (precomputed) set of non-
dominated solutions close to the Pareto front and chooses its results
from this set.

and Jaszkiewicz 1998). PSA keeps a population S of solu-
tions of size p and performs a local search procedure similar
to Simulated Annealing (SA) to each of them individually.
At each iteration, this procedure generates a random new
solution y from the neighborhood of its current solution x.
The acceptance of this neighboring solution is determined
by a multi-objective version of the Metropolis criterion in
SA P (x,y, T,Λ), which also depends on the current tem-
perature T and a vector of weights Λ = (λ1, . . . , λk) (for
k objectives). In this work, we used the SL rule, which is
defined as follows:

P (x,y, T,Λ) =

min(1, exp(

∑J
j=1 λj(fj(x)− fj(y))

T
))

(2)

Since intermediate solutions can be infeasible, we add the
number of hard constraint violations as an additional ’objec- 245

tive’ with a fixed weight of 100.
Each solution x in the population has its own weight vec-

tor Λx which determines the direction in the objective space
in which the solution tends to move. These weight vectors
are initialized randomly and after each iteration, the weight
vector of each solution x is updated2 based on its closest
other solution x′ ∈ S \ {x}:

λx
j =

{
αλx

j if fj(x) ≤ fj(x
′)

λx
j /α if fj(x) > fj(x

′)
(3)

This increases the probability of each solution to move away
from its closest neighbor, which tends to disperse the pop-
ulation across the whole region of (near-)Pareto-optimal so-
lutions. Weight vectors are normalized to a total weight of 1 250

after each update. In addition, we enforce a minimum weight
of 0.001 for each objective, to avoid solutions where some
objectives are completely ignored.

The neighborhood definitions and selection probabilities,
as well as the cooling scheme were adapted from the (single- 255

objective) SA approach described in earlier work (Mischek,
Musliu, and Schaerf 2023).

To generate the initial population, we first used ran-
domly generated solutions. However, this approach turned
out to have difficulties finding feasible solutions, particu- 260

larly for large instances. Therefore, we propose a hybridiza-
tion of PSA with the VLNS approach from (Danzinger
et al. 2023): PSA with VLNS initialization (PSA-VI) ini-
tially runs VLNS on each solution in the population (VLNS
itself starts out from a greedily constructed initial solution). 265

Once it finds a feasible solution, it switches to PSA for that
solution for the rest of the run.

To evaluate our approach, we compared PSA-VI with
pure PSA, a variant that keeps running VLNS even on
feasible solutions (PVLNS) while also updating the objec- 270

tive weights after each move as in (3), and the two single-
objective algorithms SA and VLNS (using a linear combi-
nation of objective values with uniform weights and keep-
ing track of all non-dominated solutions found during the

2The signs are reversed compared to (Czyzżak and Jaszkiewicz
1998), as we deal with a minimization problem
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Figure 1: Hypervolumes spanned by the solution sets pro-
duced by different approaches, relative to the biggest hyper-
volume found in any run. Hypervolumes for each instance
were calculated relative to the same point for all approaches.

search). We evaluated these approaches on a set of 33 pub-275

licly available standard benchmark instances3. These in-
stances include 3 real-world instances as well as 30 ran-
domly generated ones. They contain between 13 and 1573
tasks to be scheduled and 150.9 resource units on average,
split across up to 8 different groups (see (Mischek and Mus-280

liu 2021) for more details on the benchmark instance set).
Each algorithm was run 5 times on each instance with a
timeout of 2 hours per run, using up to 6 cores in parallel,
with p = 20 for PSA(-VI) and PVLNS.

The results show that PSA-VI achieves a good balance be-285

tween solution quality and diversity compared to the other
approaches: It found feasible results on 84% of all runs,
significantly more than both PSA (73%) and VLNS (75%),
while roughly on par with PVLNS (82%) and SA (85%). Of
note is that while SA and VLNS are single-threaded, they290

had the significant advantage of being able to spend all their
time on a single solution, while PSA-(VI) and PVLNS had
to spread their efforts over all 20 solutions.

While the hypervolumes (Fonseca, Paquete, and Lopez-
Ibanez 2006) spanned by the solution sets found by PVLNS,295

SA, and VLNS are larger (Figure 1), the diversity of those
solutions (Figure 2), measured by the maximum spread mea-
sure (M∗

3 , (Zitzler, Deb, and Thiele 2000)) is clearly bigger
for PSA(-VI). Detailed experimental results are included in
the appendix (Section B).300

4 Explanations for multi-objective
scheduling problems using Shapley values

In this paper, we generalize the XIMO setting to multi-
objective problems with k objectives and any preference
structure of the form z ∈ Rk. Let N = {1, . . . , k} be the305

set of all objectives. We only require that the black-box opti-
mizer BB using that structure is also able to work with sub-
sets of those objectives. In other words, a function BBS must
exist for all S ⊆ N that selects the best solution xS accord-
ing only to the objectives in S (and the corresponding com-310

ponents of z). Natural definitions for such partial optimizers
are easy to find for many popular ways to express preference

3https://dbai.tuwien.ac.at/staff/fmischek/TLSP/
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Figure 2: M∗
3 maximum spread measure achieved by the dif-

ferent methods. Objective values were normalized to the in-
terval [0,1] for each instance and objective.

structures: For example, for problems using objective weight
vectors such as the TLSP (i.e. BB selects the solution x that
minimizes

∑
i∈N zifi(x)), we can simply treat the weight 315

of all absent objectives as 0. For problems using reference
points (like those treated by R-XIMO), we can similarly ap-
ply the scalarization function only over those objectives that
are present and ignore all others.

With such a structure, we are able to use Shapley regres-
sion values directly instead of SHAP values, as we can now
define the evaluation function v in Equation 1 as follows for
a target objective t ∈ N and preference vector z:

vt(S) = ft(BBS(z)) (4)

If we evaluate (1) for each t and each i ∈ N , we get a 320

matrix of Shapley values, where entry φti indicates the con-
tribution of the ith component of z to the value of objective t
in the solution x returned by the optimizer. These values can
then be used to provide insights to the DM on the relation-
ship between objectives and provide suggestions on modifi- 325

cations to the provided preference structures to achieve the
DM’s goals, as we demonstrate on a case study below.

Since practical multi-objective optimization problems
typically don’t have hundreds of objectives, the Shapley val-
ues can also be calculated exactly in reasonable time, with- 330

out having to rely on approximation methods.

Application to the TLSP
We applied our approach to the TLSP using a similar exper-
imental setup to the one used to evaluate R-XIMO (Misitano
et al. 2022): We first generated approximations of the Pareto 335

fronts for all 33 instances, using PSA-VI (see Section 3). Af-
ter discarding the 5 instances for which no feasible solution
was found, as well as one for which the returned solution
set contains only a single solution, we have non-dominated
solution sets for 27 instances, with at least 2 and up to 1037 340

solutions per instance, with an average of 348.97.
For each experiment, we start out with an initial vector of

weights w0. Designating each of the five objectives, one af-
ter the other, as the target t, we compute Shapley regression
values φti of all objectives i with respect to those weights 345

and the target. From that, we designate the objective other
than the target with the highest value (i.e. the most inhibiting



Strategy Description

A Improve target, impair rival
B Improve target only
C Improve target, impair random other

(not the target or rival)
D Impair rival only
E Impair random other (not the target or rival)

Table 1: The five strategies used in the evaluation, as in (Mis-
itano et al. 2022)

.

other objective) as the rival. As was done for R-XIMO, we
compare five strategies on which objective to improve (i.e.
increase its weight by a factor of γ), and which to impair (i.e.350

decrease its weight by a factor of γ). The five strategies are
listed in Table 1. Applying strategy S results in a new weight
vector w1

S . We then compare the objective value of the tar-
get in the best solution relative to w1

S with that of the best
solution relative to w0. Since some strategies behave nonde-355

terministically, we repeated each experiment 10 times, for a
total of 1350 applications of each strategy per configuration
(27 instances times 5 objectives times 10 runs).

To generate the initial weights w0, we compare two dif-
ferent approaches: In the uniform approach, we set a uni-360

form weight of 1 for each objective. In the exponential ap-
proach, we assign a weight of 10i, with i chosen uniformly
randomly between 0 and 4 (inclusive) to each objective. The
latter approach shows how the explanations deal with large
differences between objective weights and is also similar to365

the weights currently in use in practice in the lab of our in-
dustrial partner. For the parameter γ, we compare the values
1.5, 2, and 10 (based on typical weight adjustments used by
our industrial partner in practice).

The solution sets and the source code for our evaluation370

are included in the supplemental material.

Experimental results Figure 3 shows for each combina-
tion of initial weight setting and update factor γ the results
of applying either of the five strategies from Table 1. For the
purpose of this figure, a successful application of a strategy375

is one where the objective value of the target objective was
reduced, while a failure indicates that the value of the target
objective actually increased due to the change in weights. A
neutral case is one where the target objective value remained
the same, either because the best solution did not change380

or because the new best solution had the same value in the
target objective. For successful and neutral adjustments, the
darker shaded area additionally shows those results that are
the best achievable out of all possible adjustments (consist-
ing of up to one improved and up to one impaired objective).385

The figures show that following the suggestions derived
from the Shapley regression values (Strategy A) clearly pro-
vided the best results compared to the other strategies. It had
both the highest rate of successful adjustments (39.4% of all
experiments) and was the most likely to result in the best390

possible improvement (81.4%). Notably, both components
of the strategy (improving the target and impairing the ri-

val) contribute to this success: Strategies improving the tar-
get (A, B, C) consistently yield better results than strategies
that do not improve any objective (D, E) and strategies im- 395

pairing the rival (A, D) yield better results than strategies
that impair no or a random other objective (B, C, E). Unsur-
prisingly, smaller values for γ result in lower chances to find
an improvement.

Having an exponential distribution of initial weights also 400

resulted in more neutral outcomes compared to the uniform
case: If the target already has a much higher weight than
the other objectives, then further increasing it is unlikely to
have much effect. On the other hand, if another objective
has a much higher weight than the rest, it will dominate the 405

search for the best solution and again make changes to other
objective weights less impactful unless they come close or
surpass this high weight.

The average magnitude of change in the target objective
value for each experiment is shown in Figure 4. Again, fol- 410

lowing Strategy A results in a higher reduction of target ob-
jective value than any of the other strategies. As expected,
higher reductions are achievable with bigger weight update
steps. Interestingly, the average reductions are smaller for
uniform weight distributions than for randomly exponen- 415

tially distributed ones, despite the smaller success rate. This
indicates that where improvements are possible (e.g. when
the highest weighted objective changes), they are far larger
than in the uniform case.

5 Visualization and Interaction 420

While two- and to a lesser extent also three-dimensional
Pareto fronts can directly be displayed visually, this is no
longer the case for four or more dimensions. Much work
has been done on visualization techniques for such high-
dimensional data sets (Lotov and Miettinen 2008), which 425

can be classified into three main approaches (Dimara, Bez-
erianos, and Dragicevic 2018): Dimensionality reduction
strategies try to collapse the high-dimensional space into
fewer dimensions, and include e.g. self-organizing maps
(Obayashi, Jeong, and Chiba 2005), filtering (Yang et al. 430

2003), or principal component analysis (Huang et al. 2017).
Non-geometric visualization techniques are often icon-based
(Fuchs et al. 2016) or exploit structural relations between
objectives (Keim and Kriegel 1996). Finally, lossless ge-
ometric projection strategies attempt to preserve the raw 435

information of each data point. These include e.g. tabular
methods (Gratzl et al. 2013) or scatterplot matrices (Emer-
son et al. 2013). For our use case, a lossless approach is im-
portant because DMs need to able to see the actual objective
values of each solution. 440

One of the most popular lossless visualization approaches
are parallel coordinate plots (PCP) (Bagajewicz and Cabrera
2003), where the different dimensions or objectives are rep-
resented by parallel axes. Each solution is then plotted as a
single line in that graph, whose y-value at each axis corre- 445

sponds to the solution’s objective value of the objective asso-
ciated with the axis. These plots can then be enhanced with
interaction tools to support filtering, inspection, ranking, and
selection of solutions, as was done e.g. in the WeightLifter
system (Pajer et al. 2017). 450
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Figure 3: Success, neutral, and failure rates observed for each strategy. The darker shaded areas show those results where
following the strategy resulted in the best result achievable by improving up to one objective and impairing up to one other.
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Figure 4: Average change in objective value achieved for each strategy.



Our visualization and exploration tool for the multi-
objective TLSP proposed in this work (TLSP MO-Explorer)
also uses a PCP, whose design and interaction tools are based
on the PAVED system for the analysis of engineering design
alternatives (Cibulski et al. 2020). We extend those tools455

with the explanations and suggestions for objective weight
setting provided via Shapley value analysis. The prototype
was implemented in Java 11, using the Swing toolkit to build
the GUI and JFreeChart4 for the PCP.

The main view of the TLSP MO-Explorer is shown in Fig-460

ure 5. The top half shows the PCP, while the lower half con-
tains interaction tools and additional information regarding
individual objectives.

Selection and filtering
Two important tasks are the selection of interesting solutions465

and the removal of undesirable solutions.
The best solution relative to the current objective weights

(b) is always plotted on top in orange. In addition, users
can select individual solutions (shown in blue) for further
inspection or export by directly clicking on the chart. So-470

lutions with undesirable values for some objectives can be
greyed out via the value range controls for each objective
(a), which grey out and move to the background all solutions
that fall outside the specified range.

Detailed inspection of solutions475

While the PCP provides an overview over the objective val-
ues of each solution, DMs may wish to inspect certain solu-
tions in more detail.

Such detailed views (c) can be expanded for each objec-
tive.These views provide tabular data for the solution, in-480

cluding penalty values for each individual project and addi-
tional information relevant to the chosen objective. For ex-
ample, the details table for the 5 (Project completion time)
displays the actual start and end dates of each project.

In addition, individual solutions can also be exported (f)485

in various formats to allow for offline inspection or upload
of a schedule into the lab management system.

Objective interaction and weight setting
Several tools assist the DM in studying the interaction be-
tween different objectives and help with determining appro-490

priate objective weights for future solution processes.
They can select any objective to be focused (e): In the

chart, solutions are color-coded according to their value in
the focused objective, with a gradient from high values in red
to lower values in green. This provides a visual indication of495

correlations between the objectives, such as the negative cor-
relation between objective 5 (Project completion time) and
objectives 1 (Number of jobs) as well as 3 (Same resource).

The last row (d) uses the Shapley regression values de-
scribed in Section 4 to describe objective interaction effects.500

The arrows indicate the impact of other objectives on the
focused objective at their current weight (downward arrow:
decreasing effect, upward arrow: increasing effect). Those
objectives with the highest increasing and lowest decreasing

4https://www.jfree.org/jfreechart/

effect are additionally emphasized with a double arrow. The 505

actual Shapley values are available as a tooltip.
The current objective weights (b) can be edited to see how

different preferences change the solution regarded as best,
as well as the interaction effects between objectives. The ef-
fect indicators in the last row provide guidance on how the 510

weights should be edited to reduce the value of the focused
objective: The weight of objectives with a decreasing effect
(downward arrows) should be raised, while the weight of ob-
jectives with an increasing effect (upward arrows) should be
lowered, particularly the two most influential objectives. 515

User interview
To evaluate the usefulness of our prototype in practice, we
conducted a demonstration and interview session with do-
main experts from our industrial partner, DM1 and DM2.
Both are familiar with the TLSP and routinely use solvers 520

based on weighted linear combinations of the objectives for
daily scheduling in the lab.

As preparation, we generated an approximated Pareto
front for an instance of the TLSP taken from the lab’s
database. After a brief overview on the TLSP MO-Explorer 525

prototype and the PCP, we asked the DMs to perform sev-
eral tasks within the system.These tasks included filtering
solutions based on their values in two specific objectives,
selecting an interesting solution and inspecting additional
details for it, adjusting the weights in order to decrease the 530

value of one specific objective in the best solution relative
to the current weights (with a focus on interactions between
the chosen objective and others), and finally exporting so-
lutions they found interesting for further processing. While
they were exploring the tool, we asked the DMs to think 535

aloud and took notes on their comments. Afterwards, we
conducted a short interview regarding their experience and
asked them to rate the prototype’s usability on the Software
Usability Scale (SUS) (Brooke 1996).

Insights and results During exploration and the interview, 540

both DMs reported that the visualization and analysis of al-
ternative solutions (compared to the single ”best” solution
provided by existing solvers) was helpful for them. DM1
found that this capability would be particularly interesting
for short-term scheduling (i.e. for the next few weeks), as 545

finding good schedules is particularly challenging there and
trade-offs are unavoidable. DM2 remarked that they would
even prefer to employ the multi-objective exploration by de-
fault for all scheduling tasks, as the graphical overview of
solution alternatives and the option to analyse the effect of 550

shifting priorities between objectives proved very useful for
them. They also remarked that the overall value ranges of
individual objectives provide valuable insights for judging
what kind of solutions can be achieved at all.

While solving the given tasks, both DMs asked for clarifi- 555

cation regarding the visualization of the objective interaction
effects with upwards and downwards arrows. After explain-
ing the meaning behind the arrows, the DMs agreed that this
feature would be helpful in adjusting the weights to achieve
desirable solutions. Other features that required explanation 560

were the selection of individual objectives to focus on, and



Figure 5: Main view of the TLSP MO-Explorer. Each vertical axis corresponds to the objective listed below it, while solutions
are represented as lines in the plot. The columns below each objective provide interaction tools and additional information.

the effect of the value range filters. DM1 also remarked that
without the color gradient from having a focused objective,
the visual distinction to solutions that were filtered out was
insufficient, while DM2 would have liked a clearer connec-565

tion between the axes in the plot and the objectives below.
This feedback indicates that we should focus on improving
the visual affordability and clarity of our tools, and make
sure to provide sufficient documentation.

The DMs also suggested new features that would support570

their use of the system in practice. These included a compar-
ison of the proposed schedules with the schedule currently
active in the lab and a way to suggest objective weights that
would result in a particular solution becoming the best.

Regarding the quantitative results, while the sample size575

of 2 is too small to produce statistically robust results, the
achieved average SUS score of 80 (out of 100 maximum) is
clearly above the average result of 68 (Sauro 2011). On an
adjective-based scale for SUS results (Bangor, Kortum, and
Miller 2009), it lies between ”good” and ”excellent”. The580

scores are lowest for Q3 and Q4, which ask for ease of use.
This also corresponds with the qualitative feedback from the
DMs, as missing explanations and documentation was the
main criticism. The individual responses for all questions of
the SUS are included in the appendix (Section C).585

Based on the feedback we received from the DMs, we
recently added a comparison with the previously existing
schedule which can be displayed in the PCP as well as tex-
tual suggestions for weight updates in the tooltips of the ob-
jective interaction indicators (d). This updated version of the590

TLSP MO-Explorer is deployed in the lab of our industrial
partner and used to support their daily scheduling activities.

6 Conclusions
In this paper, we have proposed a natural and intuitive
method to explain the output of multi-objective optimiza- 595

tion problems with different preference structures via Shap-
ley regression values. These values provide insights into the
interactions between objectives and suggestions on weight
adjustments that are likely to lead to a desired outcome,
while the low number of features compared to typical ma- 600

chine learning problems allows for their exact computation.
We have applied our approach on the TLSP, a complex real-
world scheduling problem, and empirically shown the effec-
tiveness of the provided suggestions.

Additionally, we have introduced the TLSP MO-Explorer, 605

a new decision support system for the TLSP, which consists
of a graphical interface using parallel coordinate plots to vi-
sualize and explore populations of non-dominated solutions,
combined with the explanations computed via Shapley re-
gression values. We have demonstrated the usefulness of this 610

system for domain experts in practice.
In the future, we would like to explore research directions

suggested by the domain experts, in particular the automated
setting of weights in order to achieve a desired solution pro-
file. It would also be interesting to investigate how Shapley 615

regression values perform for other problems, for example
optimization problems using reference values like in the R-
XIMO system.
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Czyzżak, P.; and Jaszkiewicz, A. 1998. Pareto simulated
annealing—a metaheuristic technique for multiple-objective
combinatorial optimization. Journal of Multi-Criteria Deci-635

sion Analysis, 7(1): 34–47.
Danzinger, P.; Geibinger, T.; Janneau, D.; Mischek, F.; Mus-
liu, N.; and Poschalko, C. 2023. A System for Automated
Industrial Test Laboratory Scheduling. ACM Trans. Intell.
Syst. Technol., 14(1): 3:1–3:27.640

Dimara, E.; Bezerianos, A.; and Dragicevic, P. 2018. Con-
ceptual and Methodological Issues in Evaluating Multidi-
mensional Visualizations for Decision Support. IEEE Trans-
actions on Visualization and Computer Graphics, 24(1):
749–759.645

Emerson, J. W.; Green, W. A.; Schloerke, B.; Crowley, J.;
Cook, D.; Hofmann, H.; and Wickham, H. 2013. The gener-
alized pairs plot. Journal of Computational and Graphical
Statistics, 22(1): 79–91.
Fonseca, C.; Paquete, L.; and Lopez-Ibanez, M. 2006. An650

Improved Dimension-Sweep Algorithm for the Hypervol-
ume Indicator. In 2006 IEEE International Conference on
Evolutionary Computation, 1157–1163.
Fuchs, J.; Isenberg, P.; Bezerianos, A.; and Keim, D. 2016.
A systematic review of experimental studies on data glyphs.655

IEEE transactions on visualization and computer graphics,
23(7): 1863–1879.
Geibinger, T.; Mischek, F.; and Musliu, N. 2021. Con-
straint Logic Programming for Real-World Test Laboratory
Scheduling. Proceedings of the AAAI Conference on Artifi-660

cial Intelligence, 35(7): 6358–6366.
Gratzl, S.; Lex, A.; Gehlenborg, N.; Pfister, H.; and Streit,
M. 2013. Lineup: Visual analysis of multi-attribute rankings.
IEEE transactions on visualization and computer graphics,
19(12): 2277–2286.665

Huang, J.; Zhou, Z.; Gao, Z.; Zhang, M.; and Yu, L. 2017.
Aerodynamic multi-objective integrated optimization based
on principal component analysis. Chinese Journal of Aero-
nautics, 30(4): 1336–1348.
Keim, D. A.; and Kriegel, H.-P. 1996. Visualization tech-670

niques for mining large databases: A comparison. IEEE
Transactions on knowledge and data engineering, 8(6):
923–938.

Lipovetsky, S.; and Conklin, M. 2001. Analysis of regres-
sion in game theory approach. Applied Stochastic Models in 675

Business and Industry, 17(4): 319–330.
Lotov, A. V.; and Miettinen, K. 2008. Visualizing the Pareto
frontier. In Multiobjective optimization: interactive and evo-
lutionary approaches, 213–243. Springer.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach 680

to interpreting model predictions. Advances in neural infor-
mation processing systems, 30.
Miettinen, K. 1999. Nonlinear multiobjective optimization,
volume 12. Springer Science & Business Media.
Mischek, F.; and Musliu, N. 2018. A Local Search Frame- 685

work for Industrial Test Laboratory Scheduling. In Pro-
ceedings of the 12th International Conference on the Prac-
tice and Theory of Automated Timetabling (PATAT-2018),
Vienna, Austria, August 28–31, 2018, 465–467.
Mischek, F.; and Musliu, N. 2021. A local search framework 690

for industrial test laboratory scheduling. Annals of Opera-
tions Research, 302: 533–562.
Mischek, F.; Musliu, N.; and Schaerf, A. 2023. Local search
approaches for the test laboratory scheduling problem with
variable task grouping. J. Sched., 26(5): 457–477. 695
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