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Abstract

The current paradigm in dense retrieval is to represent queries and passages as low-
dimensional real-valued vectors using neural language models, and then compute query-
passage similarity as the dot product of these vector representations. A limitation of this
approach is that these learned representations cannot capture or express uncertainty. At the
same time, information retrieval over large corpora contains several sources of uncertainty,
such as misspelled or ambiguous text. Consequently, retrieval methods that incorporate
uncertainty estimation are more likely to generalize well to such data distribution shifts.
The multivariate representation learning (MRL) framework proposed by Zamani & Ben-
dersky (2023) is the first method that works in the direction of modeling uncertainty in
dense retrieval. This framework represents queries and passages as multivariate normal
distributions, and computes query-passage similarity as the negative Kullback-Leibler (KL)
divergence between these distributions. Furthermore, MRL formulates KL divergence as a
dot product, allowing for efficient first-stage retrieval using standard maximum inner prod-
uct search.
In this paper, we attempt to reproduce the MRL framework for dense retrieval by Za-
mani & Bendersky (2023). We find that the original work (i) introduces a typographi-
cal/mathematical error early in the formulation of the method that propagates to the rest
of the original paper’s mathematical formulations, (ii) does not provide all of the necessary
information to facilitate reproducibility, and (iii) proposes a training setup to train MRL
that, if followed, does not yield the reported performance in a fair comparison. In light
of the aforementioned, we address the mathematical error, make some reasonable design
choices, and propose an improved training setup that complements the original paper by
filling in important details that were unspecified. We further contribute a thorough abla-
tion study which is absent from the original paper, to gain more insight into the impact of
the framework’s different components. Despite our efforts, we were neither able to repro-
duce the exact results reported in the original paper, nor to uncover the reported trends
against the baselines. Our analysis offers insights as to why that is the case. Most im-
portantly, our empirical results suggest that the definition of variance in MRL does not
consistently capture uncertainty. The source code for our reproducibility study is available
at: https://anonymous.4open.science/r/multivariate_ir_code_release-AB26.

1 Introduction

Dense retrieval has become the new paradigm in first-stage retrieval, largely replacing lexical methods which
cannot model semantic information as well as neural models. Dense retrievers following the dual-encoder
architecture (Karpukhin et al., 2020) are popular first-stage retrievers due to their performance and scal-
ability. This paradigm leverages pre-trained neural language models to encode queries and passages as
low-dimensional real-valued dense vectors, with relevance defined as their dot product. Passages are en-
coded offline and stored in a dense index. At query time, retrieval can be done efficiently using maximum
inner product search (MIPS). However, representing queries and passages as single vectors has an important
limitation that has influenced the research landscape: these representations do not model, capture, or express
predictive uncertainty or risk. At the same time, there are various sources of uncertainty arising both from
the data and the neural retrieval models:
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Query uncertainty. User queries may include misspellings, ambiguity, and incomplete or inaccurate in-
formation (e.g., false memories). Furthermore, in a realistic setting, the retrieval system has minimal to
no prior knowledge about the distribution of the queries, except for possibly a few assumptions (e.g., the
language they are in, or common user mistakes).

Passage uncertainty. Passages may present similar uncertainty-inducing artifacts to queries, such as
misspellings and ambiguity. Unlike queries, the retrieval model has prior knowledge of a passage collection.

Relevance uncertainty. Relevance, or ranking uncertainty refers to the confidence of the model in the
estimated query-passage relevance. Such an estimator may be anything between a deterministic function
of query and passage uncertainty e.g., the model reproduced in this paper, to a stochastic function of
deterministic query and passage representations e.g., a Monte-Carlo dropout Bayesian estimator (Cohen
et al., 2021).

Uncertainty estimation remains largely unexplored for the case of first-stage dense retrieval, despite it having
received increased attention from the community in the case of re-ranking (Wang & Zhu, 2009; Zhu et al.,
2009; Feng et al., 2020; Cohen et al., 2021; Heuss et al., 2023). Recently, Zamani & Bendersky (2023) proposed
the multivariate representation learning (MRL) framework, the first approach that models uncertainty in
the context of dense retrieval. MRL uses predictive variance as a proxy for uncertainty. Each query and
passage is mapped to a multivariate Gaussian distribution parameterized by a mean vector and a (diagonal)
covariance matrix, where the mean represents the predicted query or passage embedding, and the variance
represents the uncertainty of said embedding. However, different from existing approaches to modelling
uncertainty in IR that leverage Bayesian inference (Cohen et al., 2021), MRL treats both the mean and
the variance as point estimates. In that sense, variance in the MRL framework does not express statistical
variance, i.e., deviation from the mean, as much as it expresses predicted risk. In essence, this is a trade-off
between being theoretically principled and computationally efficient. Admittedly, computational efficiency is
of the utmost importance in first-stage retrieval, where one has to manage collections of potentially billions
of passages.

Having represented queries and passages as multivariate normal distributions, the authors of the origi-
nal paper proceed to formulate a query-passage relevance scoring function based on a simplified version
of the Kullback–Leibler (KL) divergence. Further, they express this function as a dot product between
query and passage representations, thereby allowing for efficient retrieval by means of standard MIPS (e.g.,
FAISS (Johnson et al., 2021)). Finally, they report state-of-the-art retrieval performance, and show that the
predicted covariance matrix could be used as a pre-retrieval query performance predictor.

Even though the results reported in the original study showcase the effectiveness of the proposed method, our
study is motivated by several important questions that still need to be explored. First and foremost, the fact
that neither the source code nor model checkpoints are released, makes it hard to verify the paper’s substantial
claims. Second, even though the model consists of various components and several stages of knowledge
distillation, the original work does not include an extensive ablation study that explores the impact of each
on downstream performance. Therefore, whether the performance gains come from representing the queries
and passages as distributions is unclear. To this extent, it is important to understand the representations
learned by MRL. In this reproducibility work, we aim to answer the following research questions:

RQ1 Reproducibility: Can the models proposed in Zamani & Bendersky (2023) be reproduced by fol-
lowing the methodology and experimental setup outlined in the original paper?

RQ2 Analysis: Can the multivariate query and passage representations express uncertainty?

RQ3 Ablation Study: What is the contribution of each component that comprises MRL to downstream
retrieval performance?

Furthermore, we summarize our contributions to the original work:

Correction of a typographical/mathematical error. We correct a typographical/mathematical error
of the original work, made early in the formulation of the method, in an attempt by the authors to simplify
the computation of KL divergence between two multivariate normal distributions. This error propagated to
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the rest of the original paper’s mathematical formulations. We hypothesize that this error did not further
propagate to the implementation of their experiments, as we provide empirical evidence that if the incorrect
similarity function is used instead of our corrected version, it harms retrieval performance.

Reproduction of the MRL model. We attempt to be as faithful as possible to the reported training
regime. Due to a few details omitted in the original work, we test and validate several plausible variants of
the proposed method. We show that some training setups result in much lower effectiveness than others, and
highlight effective strategies that result in a competitive retrieval model. We contextualize each strategy in
the context of the original paper and justify these choices.

Reproducing retrieval and QPP experiments. We reproduce the experimental setup of the original
paper, for the tasks of dense retrieval and pre-retrieval query performance prediction (QPP). We were
not able to obtain the exact results reported in the original study or confirm the original findings using our
experimental setup. We show that even though MRL is a highly competitive approach, it does not outperform
the baselines in a fair comparison (e.g., MRL does not outperform baseline method when the same batch
size is utilized across baselines) Additionally, MRL yields inconsistent results for the QPP experiments, with
our analysis revealing that the variance vectors do not consistently capture notions of uncertainty.

Ablation study. The MRL framework is composed of multiple components, including multivariate rep-
resentations, knowledge distillation, and model initialization from an already effective pre-trained dense
retriever. To unveil the importance of each component in training an effective retriever, we conduct a thor-
ough ablation study. For example, how much of the reported performance increase can be attributed to
the core contribution of the paper, which is the use of multivariate representations? Our elaborate ablation
study uncovers the impact of each component on the retrieval performance. In particular, we find that
multivariate representations do not boost the model’s performance, and the high effectiveness stems from
the model initialization and knowledge distillation from the re-ranker.

Proposed improvements upon the original MRL model. We propose a simple alteration to the
original model, which results in a reduced hyperparameters search space. In short, instead of a parametric
softplus activation which ensures positive semi-definiteness of the covariance matrix, we propose predicting
the log-variance instead, which obviates searching for the β hyperparameter of the softplus function. We
show that the log-variance model either matches or outperforms the original softplus model.

2 Related Work

Uncertainty-aware retrieval. Uncertainty estimation in neural information retrieval (IR) has been ex-
plored in the past, although not in the context of dense (first-stage) passage retrieval, which is the main
novelty aspect of the MRL method. The work of Cohen et al. (2021) and Heuss et al. (2023) focuses on
risk-aware (second-stage) re-ranking. Both approaches attempt to approximate Bayesian models that predict
a distribution of relevance scores rather than point estimates; the former utilizes Monte-Carlo dropout (Gal
& Ghahramani, 2016), while the latter leverages Laplace approximation. The common denominator across
these Bayesian methods is that the predictive distribution p(y|θ, D) is approximated by performing forward
inference using multiple samples of θ. This is the main difference between prior work and MRL: In MRL,
predictive uncertainty is not framed as weight uncertainty, and variance does not represent deviation from
the mean prediction. Rather, variance in MRL is a predicted value of a deterministic estimator.

Uncertainty for detecting out-of-distribution/corruptions. While a variety of efforts exist in the
area of stochastic representations in image retrieval (Warburg et al., 2021; Chun et al., 2021), recent work
by Warburg et al. (2023) showed that Bayesian image retrieval with Laplace approximation can achieve some
desirable properties. They show that the uncertainty of prediction increases (almost monotonically) with the
amount of corruptions in the input. The model’s predictive uncertainty further behaves as expected when
making out-of-domain predictions. These insights are valuable in text retrieval as well, where these desirable
properties have not yet been achieved effectively.

Knowledge distillation. The MRL framework is surrounded by multiple layers of knowledge/parameter
distillation, which we summarize in this section. First, the selected neural architecture employed in MRL
is DistilBERT (Sanh et al., 2019); a distilled version of BERT with 40% fewer parameters for 97% of its
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original performance. Furthermore, the architecture has been distilled with balanced topic-aware sampling
(TAS-B) (Hofstätter et al., 2021), that uses two teacher models to construct better training batches. Finally,
MRL itself utilizes a knowledge distillation loss inspired by CLDRD (Zeng et al., 2022). While the original
paper does not discuss how these sources of distilled knowledge affect downstream performance, in Section 4
of this paper we perform a thorough ablation study that examines them one-by-one.

3 Methodology

The proposed MRL framework represents queries and passages as multivariate Gaussian distributions. It
does so by computing a mean vector µ and a diagonal covariance matrix Σ for a query q and passage d,
using query and passage encoders fθ and fϕ, parameterized by θ and ϕ respectively,

µQ, ΣQ = fθ(q), (1)
µD, ΣD = fϕ(d). (2)

It is also possible to have θ = ϕ, i.e., weight sharing, which the authors of the original paper opt for. Dense
retrieval models (e.g., DPR Karpukhin et al. (2020)) typically utilize the embedding of a special token, the
[CLS] token as the low-dimensional representation of queries and documents. Given a piece of text, for
instance, ‘Hello world’, pre-processing appends the special [CLS] token to the start of the text, producing
‘[CLS] Hello world’, and the output of the transformer model for the [CLS] token is used. Relevance is a
function of representations of query and document, typically a dot product or cosine similarity. MRL however
produces two vectors per input, which motivates the choice in the original study to use an additional special
token, termed the [VAR] token, appended after the [CLS]token, but before the text. For instance, ‘Hello
world’ is pre-processed to ‘[CLS] [VAR] Hello world’. The output representation of the [CLS]token is used
to compute the mean, and the output representation of the [VAR] token is used to compute the variance.

The relevance score between queries and passages is then defined as the negative KL divergence between
their distributional embeddings: Q ∼ N (µQ, ΣQ) and D ∼ N (µD, ΣD),

rel(q, d) = − KLD(Q∥D). (3)

The minus sign is there to implement a “higher is better” type of scoring. To simplify matters, we will
disregard it in the upcoming derivations and re-introduce it at the very end.

In this section, we detail the reproducibility study of the above framework. First, we direct attention to
a small mathematical error that was made early in the formulation of the relevance scoring in the original
paper, that propagated through the rest of the mathematical derivations. We then discuss matters of model
training. Whenever we make a strong assumption due to the lack of implementation detail in the original
paper, or the lack of shared source code, it is explicitly mentioned.

3.1 KL divergence-based relevance scoring

In Eq. 4, we start by repeating the standard definition of KL divergence, as written in Eq. 9 of the original
paper:

KLD(Q∥D) = 1
2

[
log det ΣD

det ΣQ
− k + tr{Σ−1

D ΣQ} + (µQ − µD)⊺ Σ−1
D (µQ − µD)

]
, (4)

where k denotes the dimensionality of the multivariate Gaussian embedding. For the purpose of relevance
scoring, the authors proceed to further simplify Eq. 4 and reformulate it as document ranking function.
They do so by eliminating document-independent terms and constants, and by taking advantage of the fact
that the covariance matrices are diagonal. Let us follow their simplification steps by considering each term
separately. For the first term we have,

log det ΣD

det ΣQ
= log det ΣD − log det ΣQ︸ ︷︷ ︸

constant w.r.t.
doc. ranking

= log det ΣD = log
k∏

i=1
σ2

iD
=

k∑
i=1

log σ2
iD

. (5)
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The subsequent steps in the original paper contains a error in the simplification of the second term. We
include the original formulation in Appendix A for completeness. We note that using the original formulation
leads to drastically lower performance, which makes it likely that this error is typographical i.e., it did not
propagate to the implementation (see Section 5.1 for more details). We provide the correct derivation in
Eq. 6 as follows:

tr{Σ−1
D ΣQ} =

k∑
i=1

σ2
iQ

σ2
iD

. (6)

Finally, for the third term we have,

(µQ − µD)⊺ Σ−1
D (µQ − µD) =

k∑
i=1

(µiQ
− µiD

)2

σ2
iD

=
k∑

i=1

µ2
iQ

σ2
iD

−
k∑

i=1

2µiQ
µiD

σ2
iD

+
k∑

i=1

µ2
iD

σ2
iD

. (7)

Combining Eq. 5, 6 and 7 into Eq. 4, and removing constants, we arrive at the intended derivation of the
ranking function:

KLD(Q∥D) =
k∑

i=1
log σ2

iD
+

k∑
i=1

σ2
iQ

σ2
iD

+
k∑

i=1

µ2
iQ

σ2
iD

−
k∑

i=1

2µiQ
µiD

σ2
iD

+
k∑

i=1

µ2
iD

σ2
iD

. (8)

Note that, unlike Eq. 4, Eq. 8 is no longer the KL divergence. After all the simplifications, it is a KL
divergence-based relevance scoring function for ranking documents, given a query. From this point forward,
we continue with the work described in the original paper, but we base it on our Eq. 8, which is the derivation
of the relevance scoring function that includes our correction.

The next step of this reproducibility study is to express Eq. 8 as a dot product between query and passage
vectors,

KLD(Q∥D) = q⊺ · d, (9)

with the purpose of reusing standard efficient inner product similarity search (Johnson et al., 2021). To do
so, we isolate the document-specific terms of Eq. 8 that can be pre-computed:

γD =
k∑

i=1

(
log σ2

iD
+

µ2
iD

σ2
iD

)
. (10)

In the original paper, the term γD is referred to as a “document prior”. Now we can express the relevance
score as a dot product between query and passage vector representations:

q⃗ =
[
1, σ2

1Q
, . . . , σ2

kQ
, µ2

1Q
, . . . , µ2

kQ
, µ1Q

, . . . , µkQ

]
, (11)

d⃗ =
[

γD,
1

σ2
1D

, . . . ,
1

σ2
kD

,
1

σ2
1D

, . . . ,
1

σ2
kD

, −2µ1D

σ2
1D

, . . . , −2µkD

σ2
kD

]
, (12)

where q⃗, d⃗ ∈ R1×(3k+1). At this point we remind the reader that, following Eq. 3, the relevance score is the
negative of Eq. 9.

3.2 Listwise knowledge distillation

Knowledge distillation has shown to be of great importance in boosting the effectiveness of dense retrievers.
In detail, a highly effective cross-encoder re-ranker is used as a teacher to transfer knowledge to a less effective
but efficient first-stage dense retriever student model. Consequently, the effectiveness of the dense retriever
is increased while it retains its efficiency. That said, in the original work by Zamani & Bendersky (2023),
the authors employ a listwise distillation loss function (Zeng et al., 2022) to train their dense retriever (i.e.,
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student model). For each query q and its set of passage Dq (see Section 4.3 for details on how this set is
constructed), the loss is computed as:∑

d,d′∈Dq

1{yt
q(d) > yt

q(d′)}| 1
πq(d) − 1

πq(d′) | log(1 + eMθ(q,d′)−Mθ(q,d)), (13)

where πq(d) denotes the position of passage d in the ranked list produced by the dense retrieval student
model Mθ and yt

q(d) denotes the relevance judgment produced by the teacher model for the pair of query q
and passage d; yt

q(d) can be either a score or a label (see Section 4.3 for details).

4 Experimental Setup

4.1 Datasets and metrics

Our evaluation is performed on both in-domain (ID) data, and out-of-domain (OOD) data in a zero-shot
setting. All tasks are ad-hoc retrieval, with a fixed set of documents. Statistics of the datasets are reported
in Appendix C. We summarize the datasets and evaluation methodology below.

In Domain (ID). We train all models on the MS-MARCO Nguyen et al. (2016) training set. Note that
we split the full training set into a training and validation set for hyperparameter tuning as described in
Section 4.2. There are three in-domain evaluation sets, all of which are based on the MS-MARCO corpus.
This includes the MS-MARCO Dev set, the TREC-DL 2019 Craswell et al. (2020) and TREC-DL 2020
Craswell et al. (2021) datasets. Both TREC datasets are densely labeled by humans. The evaluation metric
for the Dev set is the mean reciprocal rank (MRR) with a cut-off of 10, denoted as MRR@10. For the TREC
subsets, we use the standard evaluation metrics of normalized discounted cumulative gain at 10 (nDCG@10),
and mean average precision (MAP).

Out of Domain (OOD). We evaluate the retrieval models’ generalization ability in different domains via
zero-shot passage retrieval experimentation. All retrieval models are trained on the MS-MARCO training set
and tested on previously unseen queries and underlying corpus. We replicate the evaluation setup outlined in
Zamani & Bendersky (2023), with nDCG@10 as the primary metric. We evaluate the following OOD datasets
in zero-shot setting: (i) Scifact (Wadden et al., 2020): a scientific claim verification dataset where the task
involves retrieving abstracts that either refute or support a claim, (ii) FiQA (Maia et al., 2018): a dataset
that involves retrieval of documents in the financial domain using natural language questions, (iii) TREC-
COVID (Voorhees et al., 2021): a biomedical dataset of scientific articles about COVID-19, with questions
as the topics/queries, and (iv) CQADupStack (Hoogeveen et al., 2015): a community question answering
(CQA) dataset, with the task of retrieving duplicate questions in a community website (StackOverflow).

4.2 Baselines

We compare MRL against the following single-vector dense retrieval models:

• DPR (Karpukhin et al., 2020): is a traditional dense retriever that is trained with softmax cross-entropy.

• TAS-B (Hofstätter et al., 2021): is an effective dense retriever that is trained by combining (i) knowledge
distillation from a re-ranker teacher model (i.e., cross-encoder) with (ii) a balanced topic-aware sampling
method. This method alternates the creation process of the training batches by composing batches based
on queries clustered in the same topic. Furthermore, it selects passage w.r.t the pairwise margin between
positive and negative passages in the batch so that the margin of positive-negative pairs is balanced in
the margin range.

• CLDRD (Zeng et al., 2022): is a state-of-the-art dense retriever that uses TAS-B as initialization and is
trained by combining curriculum learning with knowledge distillation; in particular, it uses the listwise loss
of Eq. 13. The student dense retriever is trained via an iterative training process in which the difficulty
of the training data, produced by the re-ranking teacher model, increases with each iteration.
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The motivation behind selecting these baselines is twofold: First, their inclusion in the original study, and
second, to enable fair comparisons in our subsequent ablation study. For instance, MRL can be compared
with CLDRD to assess the impact of the multivariate representations, and a similar assessment can be made
when MRL without distillation is compared against DPR.

4.3 Training setup

A crucial aspect of training MRL is the computation of the listwise distillation loss. In the original work of
Zamani & Bendersky (2023), it is suggested that for computing the listwise distillation loss in Eq. 13:

• Given a query q, the passage set Dq is constructed with positive passages provided by the dataset’s
official relevance judgments. On the other hand, the negative passages are sampled from the top-k
passages retrieved with BM25 and the top-k passages retrieved by the student dense retrieval model
itself (using an asynchronously updated ANN index).

• yt
q(d) is the raw score from the teacher model for a query-passage pair.

• Follow in-batch negative training to reuse passages from other queries that are already in the batch.

In addition to the training setup outlined above, we experiment with an alternative training perspective
based on the intuition that knowledge distillation is primarily designed to leverage incomplete relevance
judgements (rather than effective utilization of in-batch negatives) common in large-scale retrieval datasets
like MS-MARCO Nguyen et al. (2016). That is, an effective teacher model might be preferred to using
(random) in-batch negatives that might be easy to distinguish Hofstätter et al. (2021). Furthermore, in-
batch negatives are expensive to compute for expensive models e.g., cross-encoders (Lin et al., 2021).

Exact relevance scores produced by the teacher do not impact the loss as it only considers the ordering
rather than the score. Despite this, the scores control which query-passage pairs will contribute to the loss
via the 1{yt

q(d) > yt
q(d′)} term. Therefore, when raw teacher scores are used, we argue that all pairs – even

irrelevant or easy to distinguish pairs – contribute to the loss, which is a source of noise that pushes the
student model to learn this possibly uninformative ordering. To combat this problem, Zeng et al. (2022)
utilize labels instead of raw scores – all irrelevant passages are assigned the same label, removing comparisons
between irrelevant pairs in the loss.

Motivated by the arguments outlined above, we follow the pseudo-labeling approach from CLDRD (Zeng
et al., 2022). Therefore, to compute the listwise distillation loss:

• Given a query q, the passage set Dq is constructed with respect to the top-k passages in the ranked
list returned by the teacher model (reranking order). In particular, the first K passages in the
ranked list returned by the teacher model are considered positive, the next K ′ are considered hard
negatives, and the remaining K ′′ soft negatives.

• yt
q(d) is a relevance label according to the group, passage d belongs to:

yt
q(d) =


1

rt
qd

iff d is positive
0 iff d is hard-negative
−1 iff d is soft-negative

where rt
qd is the ranking position of the document d given the query q in the teacher ranked list. To this

extent, we proceed with incorporating the curriculum formulation of CLDRD (Zeng et al., 2022) in MRL,
thus following the exact training setup of CLDRD. The advantages of following this setup are two-fold: (i)
preliminary results showed superior retrieval performance for the case where we employ the training scheme
of CLDRD rather than the one suggested by the original MRL paper (see Section 5.3), and (ii) we create
a fair comparison against CLDRD which is the primary competing approach. This approach allows us to
attribute any observed performance increase solely to MRL’s multivariate representations and not other
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Table 1: Model specifications of MRL variants and CLDRD. Models are initialized with TAS-B and use the
listwise knowledge distillation loss of Equation 13.

Representations Passages Teacher judgments In-batch negatives Curriculum Learning
CLDRD Vector Pseudo-labeling Labels No Yes

MRL-Orig. Distribution positives: gold annotations
negatives: BM25, ANN Raw scores Yes No

MRL-Ours Distribution Pseudo-labeling Labels No Yes

aspects, such as differences in training data or teacher models. For the remainder of this work, we will refer
to the MRL implementation that utilizes the original training setup as “MRL-Orig”, and the implementation
that utilizes the CLDRD training setup a “MRL-Ours”. The differences between CLDRD, MRL-Ours and
MRL-Orig are summarized in Table 1.

4.4 Query performance prediction

The QPP task (He & Ounis, 2004; 2006; Carmel & Yom-Tov, 2010) involves inferring the difficulty of a
given query for a search system without using relevance judgments. We replicate the pre-retrieval QPP
setup in Zamani & Bendersky (2023), evaluating on the TREC-DL 19 and TREC-DL 20 datasets. That is,
we retrieve documents for given a query using a search system, and evaluate using nDCG@10 it to obtain
a ground-truth assessment of performance. Then, we use a QPP method to predict the performance and
evaluate it against the ground-truth assessment using three correlation measures, Spearman’s correlation,
Pearson correlation and Kendall’s Tau.

The effectiveness of a QPP method is a function of the underlying retrieval system. Since it was unclear
from the original study which system was used to compute the ground truth performance, we experiment
with multiple search systems. In addition to the model itself, we experiment with three retrieval models
independent of the MRL model, to measure how well the QPP method generalizes. We include a traditional
lexical retriever (BM25), a simple dense retriever (DPR), and an effective dense retriever (TAS-B). We utilize
the following baselines used in the original study:

• SCQ (Zhao et al., 2008): computes the similarity between a query and the corpus for each query term
based on the frequency of occurrence of the term in the corpus.

• VAR (Carmel & Yom-Tov, 2010): considers the variance or standard-deviation of the term weights of
each query term, based on the documents in which the term occurs.

• IDF (Carmel & Yom-Tov, 2010): is based on the inverse document frequency of each query term.

• PMI (Hauff, 2010): is a predictor that computes the pointwise mutual information, assigning high scores
for frequently co-occurring query terms. Given all possible query term pairs, either the average or the
maximum can be used as the predictor.

For SCQ, VAR, and IDF, the scores are computed at the query term level and then aggregated using either
summing, averaging, or taking the maximum of each score. We report each of these aggregations in the
results.

QPP for MRL. Zamani & Bendersky (2023) mention that the norm of the variance | ΣQ | is used to
compute the predicted performance. We interpret this statement as using a function of the covariance, and
use the negative norm −| ΣQ |, because the predicted variance should increase for queries that are difficult,
rather than decrease. For instance, a typographical error in the query makes it more difficult to address
than a “clean” query (Sidiropoulos & Kanoulas, 2022; 2024), leading to lower performance compared to a
clean query. Similarly, an OOD query could also result in poorer performance on average compared to an
ID query. From the QPP perspective, a model should therefore assign lower predicted performance for these
types of queries, motivating our choice. In Section 5.2.1, we show that this intuition holds empirically.
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4.5 Implementation details

As mentioned above, we follow the exact training setup as in CLDRD. This setup includes three curriculum
learning iterations with 100K, 50K, and 50K steps for the first, second, and third iterations. The number
of passages for each query is 30. We use 5 positives, 12 hard negatives, and 13 soft negatives for the first
iteration. Similarly, for the second iteration, we use 10, 10, and 10 positives, hard-negatives, and soft-
negatives, respectively, while the third iteration consists of 30 positives only. We have a batch size of 15, the
maximum we can fit in a 40GB A100 GPU. We set the maximum length for queries and passages to 32 and
256 tokens, respectively. We initialize the dense retriever student model with the official TAS-B checkpoint,
and we set as the teacher model the ms-marco-MiniLM-L-6-v2 cross-encoder that is publicly available on
HuggingFace. The learning rate is set to [5 × 10−6, 1 × 10−6, 1 × 10−6] for the three iterations using Adam,
and the rate of the linear scheduling with a warm-up is set to 0.1. The β parameter for softplus is set to
2.5. For MRL, the mean and variance are obtained by passing the CLS token and a VAR token respectively
through fully connected projection layers. The MRL models reported use means and variances projected
down to 383 (= 768

2 − 1).

Since MS-MARCO does not come with a validation set, we split the train set into a validation (6890 queries)
and train set. The parameters above were selected after a hyperparameter search with the validation set
performance used to pick the best model. Refer to Appendix D for the full set of hyperparameters. We
use the Tevatron toolkit (Gao et al., 2023) to train the models and the pytrec_eval library (Van Gysel &
de Rijke, 2018) to evaluate the retrieval performance. Finally, we our QPP baselines are based on an existing
implementation by Meng et al. (2023).

5 Discussion

We organize the discussion section around retrieval experiments in Section 5.1, the investigation of the
variance vectors in Section 5.2, and the results of the ablation study in Section 5.3.

5.1 Reproducing the retrieval results

We start by testing whether we can obtain the results reported in the original study. We report the results
in Table 2, where DPR, CLDRD, and MRL are our implementations of the original methods. We report
results for TAS-B by utilizing the official pre-trained checkpoint, which also serves as CLDRD and MRL
initialization. This way, we can ensure a fair comparison between the different methods. We include the
original numbers in the lower group in Table 2. At this point, we want to underline that for MRL we use the
corrected KL formulation we presented in Section 3 for our experiments. Our decision to do so is grounded
in the belief that the original study’s authors also utilized this formulation in their implementation and that
the formulation with the mathematical error is a typographical mistake in their paper. We arrived at this
conclusion based on our preliminary experiments, which yielded a dramatically low retrieval performance
(i.e., MRR@10 was 0.134 for MS-MARCO) when following the wrong formulation.

We first focus on testing whether we are able to replicate the results for CLDRD, the main counterpart of
MRL. As shown in Table 2, our experimental results affirm the state-of-the-art retrieval performance (for
single-vector dense retrievers) of CLDRD. Furthermore, our findings validate the original study regarding
its ability to enhance the performance of TAS-B, both in the ID and OOD scenarios. We consider this a
successful replication despite the slight discrepancy in the results. The reason for not obtaining the exact
same results can be attributed to different development toolkits, hardware, or implementation details not
present in the original work, etc.

Regarding the reproduction of MRL, as shown in Table 2, we were unable to yield the same results as the
original study. First and foremost, we notice that following the original training setup for MRL cannot train
an effective retriever (see MRL-Orig. in Table 2). Specifically, there is a discrepancy of 0.138 in MRR@10
between our replicated model and the original reported values. In Table 2, we showcase that MRL-Ours,
which adopts an alternative training approach (outlined in Section 4.3), can successfully reduce the gap in
performance against the reported MRL to 0.018.
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Table 2: Reproduction results of MRL. The upper part contains the reproduction results, while the lower
part contains the results reported in the original study. MRL-Ours indicates that our proposed training
setup for MRL is being followed, while MRL-Orig. denotes adherence to the training setup outlined in the
original paper. In a fair comparison, MRL fails to outperform the main competing approach, CLDRD.

Model MS MARCO TREC-DL’19 TREC-DL’20 SciFact FiQA TREC-COVID CQADupStack
MRR@10 MAP NDCG@10 MAP NDCG@10 MAP NDCG@10 NDCG@10 NDCG@10 NDCG@10

R
ep

ro
du

ce
d DPR .312 .319 .649 .345 .625 .356 .474 .231 .600 .266

TAS-B .344 .351 .721 .396 .685 .430 .643 .301 .481 .313
CLDRD .378 .383 .727 .448 .670 .446 .627 .308 .608 .327
MRL-Orig. .255 .261 .576 .270 .534 .304 .305 .146 .169 .185
MRL-Ours .375 .380 .721 .439 .667 .438 .605 .293 .510 .320

R
ep

or
te

d TAS-B .344 .351 .717 .447 .685 .455 .643 .300 .481 .314
CLDRD .382 .386 .725 .453 .687 .465 .637 .348 .571 .327
MRL .393 .402 .738 .472 .701 .479 .683 .371 .668 .341

Even with our best-performing MRL, namely, MRL-Ours, we observe a drop in performance across all
reported metrics for both the ID and OOD datasets. For instance, in the case of FiQA, our implementation
yielded an NDCG@10 of 0.293, which is significantly lower than the original study’s reported value of 0.371.
Furthermore, we could not find the trends that were reported in the original study. Specifically, the original
study showed that MRL outperformed both TAS-B and CLDRD in ID and OOD scenarios. In contrast,
in our work, MRL achieves similar performance to CLDRD in the ID datasets. A similar trend holds for
the OOD dataset, except for TREC-COVID, where CLDRD outperforms MRL with a substantially higher
score of 0.608 compared to 0.510 for MRL. Upon comparing MRL with TAS-B, it is noted that MRL either
matches or outperforms TAS-B in the ID datasets, except for TREC-DL 20. However, in the OOD datasets,
MRL surpasses TAS-B only for TREC-COVID and CQADupStack.

We hypothesize that the original trends were not reproduced perhaps due to the different train-
ing/experimental setups for the baseline and the MRL model in the original study. For instance, CLDRD is
trained with a batch size of 8, and the original study reports models trained with a batch size of 512.

Testing this hypothesis would require replicating the same training and experimental settings used in the
original study. However, an exact replication of the initial work is not possible since the original manuscript
does not sufficient details for the best hyper-parameters (e.g., learning rate, softplus β, number of training
steps), the cross-encoder model that was used as a teacher, as well as the number of soft and hard negative
passages per query in a batch. Additionally, it reports a rather large batch of 512, which is unattainable
within the limitations of an academic GPU budget.

We stress that our goal is to reproduce the paper (i.e., generalize to a different training setup) rather than
replicate, by using a training and experimental setup that facilitates a fair comparison of MRL against base-
line models. As such, when comparing our implementation of MRL against CLDRD, performance differences
can be attributed solely to MRL’s approach of representing queries and passages as distributions. From our
experimental results, we can conclude that although MRL is a competitive approach, the multivariate rep-
resentations do not boost the retrieval performance. Furthermore, we unveil that MRL cannot consistently
outperform its counterparts when evaluated under fair comparisons. Different from CLDRD, MRL produces
a variance that can be utilized in downstream tasks. We investigate this predicted variance in the following
section.

5.2 Analyzing the variance

We analyze the predicted variance in three experiments: query performance prediction experiments (Section
5.2.1), experiments with typos, and retrieval experiments with alternate encoding schemes in Section 5.2.2.
The first is a replication of the QPP experiments outlined in the original paper, while the latter two are
additional analysis. We perform this analysis on MRL-Ours, our best-performing MRL model.
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Table 3: QPP results for MRL for four different reference models. While MRL does perform well for TREC-
DL 20 for BM25, it fails to do so for TREC-DL 19. The opposite is true for DPR. For both TAS-B and
MRL reference models, MRL is more consistent but fails to reach the reported performance (bottom row).
Furthermore, as is evident from Figures 1 and 2, MRL is outperformed by simple baselines.

TREC-DL 19 TREC-DL 20
S-ρ P-ρ K-τ S-ρ P-ρ K-τ

M
R

L
BM25 .024 .030 .032 .308 .313 .203
DPR .222 .190 .158 -.075 -.011 -.045

TAS-B .124 .190 .075 .139 .155 .093
MRL .105 .170 .068 .170 .200 .113

MRL (reported) - .271 .259 - .272 .298

BM25 TAS-B DPR MRL

MRL

VAR-std-sum

VAR-std-max

VAR-var-sum

VAR-var-max

VAR-std-avg

VAR-var-avg

PMI-avg

PMI-max

PMI-sum

IDF-std

IDF-avg

IDF-max

IDF-sum

SCQ-avg

SCQ-sum

SCQ-max

0.024 0.124 0.222 0.105

0.171 0.177 0.313 0.154

0.368 0.150 0.132 0.122

0.280 0.180 0.266 0.141

0.368 0.150 0.132 0.122

0.334 0.080 0.146 0.066

0.379 0.122 0.140 0.094

0.449 0.259 0.325 0.171

0.216 0.232 0.341 0.173

0.280 0.285 0.392 0.224

0.370 0.239 0.029 0.109

0.307 0.102 0.016 0.033

0.337 0.228 0.029 0.100

0.116 0.208 0.244 0.163

-0.108 -0.116 0.035 -0.057

0.006 0.087 0.262 0.099

0.000 -0.086 0.045 -0.015

S-ρ
BM25 TAS-B DPR MRL

0.030 0.190 0.190 0.170

0.251 0.181 0.285 0.150

0.394 0.182 0.189 0.155

0.366 0.173 0.259 0.165

0.410 0.169 0.194 0.165

0.388 0.111 0.207 0.095

0.429 0.131 0.192 0.131

0.489 0.248 0.299 0.164

0.284 0.243 0.321 0.189

0.298 0.199 0.298 0.146

0.470 0.267 -0.088 0.162

0.374 0.139 0.080 0.094

0.421 0.262 -0.049 0.164

0.198 0.222 0.236 0.183

-0.119 -0.156 0.242 -0.096

-0.051 0.093 0.243 0.091

-0.171 -0.126 0.250 -0.081

P-ρ
BM25 TAS-B DPR MRL

0.032 0.075 0.158 0.068

0.114 0.104 0.202 0.105

0.243 0.093 0.091 0.079

0.181 0.102 0.182 0.090

0.243 0.093 0.091 0.079

0.225 0.058 0.106 0.043

0.251 0.084 0.095 0.061

0.313 0.189 0.215 0.119

0.150 0.153 0.246 0.123

0.203 0.186 0.282 0.163

0.247 0.184 0.031 0.081

0.216 0.080 0.018 0.008

0.223 0.169 0.029 0.061

0.085 0.131 0.155 0.112

-0.065 -0.091 0.011 -0.065

0.006 0.055 0.169 0.059

-0.001 -0.051 0.029 -0.021

K-τ
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Figure 1: QPP results for TREC-DL 19 for four reference models (x-axis) and several methods (y-axis). Each
subplot corresponds to a different correlation metric: Spearman’s (S-ρ), Pearson’s (P-ρ), and Kendall’s Tau
(K-τ) correlations. MRL is outperformed by simple baselines regardless of the reference model or metric.

5.2.1 Query performance prediction

The results for the QPP experiments are plotted in Figures 1 and 2. We also report the MRL results
separately in Table 3, which also includes the reported numbers in Zamani & Bendersky (2023). As mentioned
previously, we utilized four different reference models because the original study did not report which model
was used, and also to see if MRL generalizes to different reference models. We note that the original paper
does not mention how the norm is used in computing the predicted performance – in our experiments we
use the negative norm (using the norm flips the signs of the correlation) – intuitively, a higher uncertainty
should result in lower performance (see Section 4.4).

From Table 3, we were unable to reproduce the numbers for MRL reported in the original paper, with
any of the reference models. While we do achieve higher than reported correlations for TREC-DL 20 with
BM25, we note that MRL fails to generalize to TREC-DL 19. This observation is flipped for DPR, where
MRL performs well for TREC-DL 19 but not TREC-DL 20. For TA-B and DPR, we see that MRL is more
consistent. But how does MRL compare with the baselines?

Figure 1 contains results for TREC-DL 19, with each subplot corresponding to the three metrics we used.
Comparing the MRL (top row) with the other methods, we notice that a simple baseline outperforms MRL
for each metric regardless of the reference metric. In particular, at least one variant of the PMI baseline
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BM25 TAS-B DPR MRL

MRL

VAR-std-sum

VAR-std-max

VAR-var-sum

VAR-var-max

VAR-std-avg

VAR-var-avg

PMI-avg

PMI-max

PMI-sum

IDF-std

IDF-avg

IDF-max

IDF-sum

SCQ-avg

SCQ-sum

SCQ-max

0.308 0.139 -0.075 0.170

0.084 0.154 0.153 0.109

0.479 0.242 0.059 0.167

0.385 0.158 0.023 0.118

0.479 0.242 0.059 0.167

0.454 0.093 -0.120 0.019

0.481 0.127 -0.091 0.054

0.185 0.226 0.071 0.108

0.160 0.172 0.091 0.061

-0.056 0.197 0.204 0.140

0.389 0.171 -0.029 0.116

0.436 0.049 -0.125 -0.010

0.392 0.165 0.009 0.099

-0.027 0.109 0.164 0.100

0.228 0.021 -0.037 -0.085

-0.180 0.042 0.185 0.062

-0.126 0.148 0.052 -0.051

S-ρ
BM25 TAS-B DPR MRL

0.313 0.155 -0.011 0.200

0.116 0.186 0.227 0.171

0.499 0.166 0.039 0.117

0.431 0.211 0.140 0.168

0.457 0.160 0.060 0.116

0.475 -0.001 -0.130 -0.013

0.428 0.051 -0.052 0.033

0.257 0.246 0.124 0.209

0.191 0.281 0.170 0.189

0.059 0.198 0.280 0.194

0.421 0.104 -0.072 0.068

0.454 -0.044 -0.197 -0.054

0.402 0.078 -0.052 0.036

-0.002 0.140 0.217 0.140

0.167 -0.146 -0.153 -0.177

-0.165 0.109 0.237 0.116

-0.096 0.079 0.049 -0.019

P-ρ
BM25 TAS-B DPR MRL

0.203 0.093 -0.045 0.113

0.046 0.103 0.118 0.076

0.326 0.155 0.026 0.108

0.275 0.122 0.015 0.071

0.326 0.155 0.026 0.108

0.315 0.066 -0.086 0.004

0.336 0.085 -0.065 0.025

0.134 0.160 0.044 0.074

0.112 0.118 0.066 0.052

-0.052 0.142 0.152 0.101

0.273 0.118 -0.024 0.076

0.313 0.029 -0.076 -0.011

0.270 0.110 -0.002 0.062

-0.015 0.080 0.113 0.078

0.155 0.022 -0.038 -0.062

-0.129 0.041 0.131 0.048

-0.074 0.101 0.043 -0.024
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Figure 2: QPP results for TREC-DL 20. Simple lexical baselines outperform MRL when the reference is
BM25, TAS-B, or DPR. With MRL itself as the reference, MRL achieves similar or better performance.

outperforms MRL. We remind the reader that these baselines are simple, non-parametric methods that use
statistics derived from the corpora to compute the query difficulty.

For TREC-DL 20, the results are more encouraging. We observe similar trends for three reference models
BM25, TAS-B and DPR, with MRL outperformed by at least one baseline (PMI, VAR, IDF). However, if
the reference model is MRL itself, we observe that MRL achieves similar performance, or even beats every
other baseline for one metric (K-τ).

In these experiments, we investigate the degree to which the MRL framework captures the notion of uncer-
tainty by measuring a proxy – query difficulty. Intuitively, this suggests that for some datasets and reference
models, higher uncertainty was indeed assigned to difficult queries. However, the positive correlation is not
consistent. MRL fails to generalize to different reference models and datasets, achieving random correlation
in many settings.

Furthermore, even the positive correlations are typically weak, and MRL is outperformed by simple non-
parametric baselines in most comparisons. The lack of consistent and strong correlations suggests that MRL
is unlikely to be a strong and consistent predictor of query difficulty in our experimental setup. Motivated
by these results, we explore what the predicted variance captures in the next section.

5.2.2 Does MRL capture uncertainty?

We outline two additional experiments investigating the predicted variance beyond the original paper: (a)
contrasting the predicted variance of corrupted and clean data and (b) experimenting with alternate encoding
schemes.

Experiments with typographical errors. Here, we consider an analog to the QPP experiments above,
but instead of retrieval difficulty, we examine if the model is sensitive to data distribution shifts instead.
Inspired by several works in the vision domain (e.g., Warburg et al., 2021; 2023), we argue that a model
should assign higher variance to corrupted or OOD data compared to clean or ID data.

We experiment with the DL-Typo (Zhuang & Zuccon, 2022) dataset that contains 60 query pairs accompanied
by their relevance assessments. Each pair consists of a real user query with typographical errors and its
corresponding version where these errors have been corrected. For instance, the corrupted query “what is
acid reflex” and its typo-free version “what is acid reflux”. Given these data, we compute the norms of the
predicted variance and plot their distributions. If the model does indeed model uncertainty accurately, we
expect (a) clean data should be assigned lower variance compared to corrupted data (b) the distributions
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Figure 3: Uncertainty of clean and corrupted data: We plot the distributions of the norm of the predicted
variance of the clean and corrupted data on the left. MRL assigns lower uncertainty to the corrupted data
compared to the clean data. On the right, we plot the distribution of | Σclean | − | Σcorrupted |, which is
positive. Contrary to expectations, MRL fails to assign higher uncertainty to corrupted data.

Table 4: Performance of different encoding schemes for the MRL model. The first row uses the original
equations proposed in the original paper, whereas the second row includes our corrections.

Encoding MS MARCO TREC-DL’19 TREC-DL’20 SciFact FiQA TREC-COVID CQADupStack
MRR@10 MAP NDCG@10 MAP NDCG@10 MAP NDCG@10 NDCG@10 NDCG@10 NDCG@10

Zamani & Bendersky (2023)
(Eq. 16 & 17) .134 .140 .347 .109 .340 .134 .014 .056 .132 .099

Ours (Eq. 11 & 12) .375 .380 .721 .439 .667 .438 .605 .293 .510 .320
Mean .242 .248 .562 .251 .493 .233 .291 .142 .115 .174

of the clean and corrupted data are well separated (c) the differences between the clean and corrupted data
i.e., | Σclean | − | Σcorrupted |, should be negative.

We plot these distributions in Figure 3. We note while we expected more variance to be assigned to the
corrupted data, the opposite is true. While there is some separation observed between the two distributions
– the distribution of the corrupted data is to the left of the clean data. The right plot underscores this result,
as the | Σclean | − | Σcorrupted | distribution is mostly positive. This suggests that contrary to expectation,
the model predicts a higher variance for clean data. We expand on this analysis by examining the role of
the predicted variance in retrieval relevance.

Encoding. MRL produces both a mean and variance for queries and documents. In Table 2, we reported
retrieval results using the encoding scheme which enables retrieval using the KL divergence i.e., documents
are encoded and indexed with Equation 12 and queries with Equation 11. If the variance only captures
uncertainty, we argue that the difference in retrieval performance when only the mean is used should not be
much lower than this encoding scheme. However, as we show in Table 4, this is not true. Comparing the
encoding scheme (second row) with using just the mean (third row), we see that performance drops sharply
across all datasets.

The performance drop could be explained partly due to the way the models were trained. Since the full KL
loss (Equation 4) was used in training the model, it may not be equipped to perform retrieval using just the
mean. However, intuitively, we expect the mean to model relevance and variance to model uncertainty, which
means that the retrieval performance should not be drastically different when only the mean is utilized for
retrieval. The drastic drop suggests that the model may be instead utilizing the predicted variance vectors
as a signal for relevance. This is the core difference between a method such as MRL and a Bayesian method:
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Table 5: Ablation study on the different sources of performance improvements in the MRL framework. The
first row indicates MRL following our training setup, while the last row is MRL with the original setup.
Performance is greatly influenced by the initialization (TAS-B), the loss (Listwise KD), as well as how the
training batch is constructed.

MS MARCO TREC-DL’19 TREC-DL’20 SciFact FiQA TREC-COVID CQADupStack
MRR@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10

MRL-Ours
Multivariate representation
TAS-B
Listwise KD
Teacher constructs the batch
Teacher pseudolabels

.375 .721 .667 .605 .293 .510 .320

- Multivariate representation
+ Vector representation
(i.e., CLDRD)

.378 .727 .670 .627 .308 .608 .327

- TAS-B
+ DistilBERT .349 .684 .650 .539 .263 .551 .307

- Teacher constructs the batch
+ Qrels & negative mining .331 .681 .659 .461 .224 .402 .272

- Listwise KD
+ Cross-entropy .328 .629 .644 .498 .245 .473 .268

- TAS-B
- Listwise KD
- Multivariate representation
+ DistilBERT
+ Cross-entropy
+ Vector representation

.315 .636 .631 .494 .244 .574 .280

- Teacher constructs the batch
- Teacher pseudolabels
+ Teacher raw scores
+ Qrels & negative mining
(i.e., MRL-Orig.)

.255 .576 .534 .305 .146 .169 .185

variance in MRL is not statistical variance, i.e., it does not express deviation from the mean prediction.
Instead, variance in MRL is a deterministically estimated quantity that minimizes a distance objective.

In this section, we examined if the MRL model consistently predicts a variance that reflects a notion of
uncertainty defined by either query difficulty or sensitivity to data distribution shifts. We find that the QPP
results are inconsistent, and the model against initial expectations assigns a higher uncertainty to corrupted
data. In addition, experiments with encoding using only the mean suggest that the variance seems to model
relevance since performance drops drastically when only the mean is used for retrieval.

5.3 Ablation study

Even though the MRL performance reported in the original paper was not reproduced under our experimental
setup, MRL remains a framework that can produce a highly effective dense retriever. MRL consists of
several components: multivariate representations, knowledge distillation, model initialization from a pre-
trained dense retriever, and a batch construction strategy. Thus, it needs to be made clear how much
each component impacts effectiveness. To understand how each component affects the retrieval results, we
experiment with several MRL variants. The ablations are performed on the MRL-Ours model, the best-
performing MRL we could obtain and results are reported in Table 5.

Multivariate representations. MRL represents queries and passages as multivariate distributions and uses
negative multivariate KL divergence to compute similarity. First and foremost, we want to understand how
much the multivariate representations contribute to the overall effectiveness of the retriever. In order to test
this, we conduct an experiment where we substitute multivariate representations with vector representations
and compute similarity via the dot product. We find that multivariate representations do not lead to a
higher retrieval performance; in contrast, we observe a small decrease in performance when utilized.

Model initialization. An important question regarding MRL’s retrieval performance is how much it will
degrade if not initialized with a pre-trained TAS-B checkpoint. To test this, we use DistilBERT as the
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initialization instead. When comparing the first two rows in Table 5, we see that it is possible to train a
competitive model with a DistilBERT initialization; however, it cannot achieve state-of-the-art performance.

Training batch construction. We explore different approaches for constructing the training batch, namely,
using the teacher model to produce the data vs. obtaining it through the ground-truth query relevance
judgments (i.e., qrel file) and negative mining; positive passages come from human judgments, while negative
passages are retrieved from BM25 and an asynchronous ANN index (see Section 4.3). The former is often
used alongside knowledge distillation training since it can overcome the sparsity issue of the ground-truth
query relevance judgments files by relying only on the teacher’s signal. The latter is commonly used in
combination with a softmax cross-entropy loss. Our results in Table 5 (comparing the first with the third
row) indicate that relying on human judgments and negative mining for constructing the training data
decreases performance significantly.

Training strategy. Besides training with knowledge distillation, MRL can be trained with supervised
contrastive learning by minimizing a softmax cross-entropy loss. We test this alternative and find that
following a knowledge distillation training scheme is crucial for training an effective retriever. This result is
in line with recent works in dense retrieval that have shown the superiority of knowledge distillation training
over supervised contrastive learning (Hofstätter et al., 2021; Lin et al., 2021).

MRL-Ours vs. MRL-Orig. When training with knowledge distillation, the teacher’s relevance judgments
can be either pseudo-labels or raw scores (controlling term 1{yt

q(d) > yt
q(d′)} in Equation 13). Focusing on

the first, fourth, and last rows in Table 5, we can see the dramatic effect of using raw scores. This low
performance is likely related to the fact that the loss term, which controls pairs will contribute to the loss, is
bypassed when raw scores are utilized. As a result, all possible pairs, including those of irrelevant passages,
contribute to the loss computation, forcing the student model to match the exact ordering the teacher model
provides between irrelevant passages (see Section 4.3).

At this point, we want to underline that MRL-Ours consists of training with a listwise knowledge distillation
loss with pseudo-labels for teacher judgments, using the cross-encoder teacher to construct the batches, and
TAS-B initialization. In contrast, MRL-Orig. follows the original MRL paper that suggests constructing
the batches via the ground-truth query relevance judgments and negative mining (BM25+ANN) and using
raw scores as the judgments from the teacher model. Our experiments have revealed that adhering to
the MRL-Orig training in our experimental setup leads to dramatically low retrieval performance. We
empirically demonstrate that relying on ground-truth query relevance judgments and negative mining for
batch construction, as well as depending solely on raw teacher scores, performs worse than their alternatives.

5.4 Simple extension to reduce the hyperparameter search space

The MRL model produces a mean and a diagonal co-variance matrix / variance vector given text input. Using
the raw co-variance without ensuring that it is positive (and semi-definite) would make the model produce
invalid values for the variance e.g., a negative variance. To ensure positivity, Zamani & Bendersky (2023) pass
the raw values through a softplus activation function (Softplus(x) = 1

β ∗ log(1 + exp(β ∗ x))), which ensures
that the predicted variance is positive. The β parameter in the softplus function as a hyperparameter, with
the original study notes that the retrieval performance is robust to β. An alternative to using the softplus
function that predicts a variance is to predict the log-variance instead, without any activation function. That
is, we assume that the raw values produced by the encoder is the log-variance. As such, these values are
exponentiated prior to use e.g., when plugging it into Equations 12 and 11. This alternate method is simpler,
and renders the β hyperparameter unnecessary. We term this variant “LogVar”, and validate this approach
through experimentation.

Our experiments include the MRL model trained with and without distillation, which is compared to the
softplus variant. We stress that we do not expect improved performance; this is a variant that functions
similar to the original model. The results, reported in Table 6, show that the LogVar models achieve similar
performance across datasets and metrics. We also conducted an ablation with different initializations and
observe the same trend. In essence, the LogVar model provides similar results to the Softplus model without
requiring an additional hyperparameter.
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Table 6: MRL Variant: LogVar vs Softplus: LogVar performs similarly to Softplus, both for the MRL model
and MRL without distillation (denoted as MRL (-LKD +CE)), but with no hyperparameter tuning required.

Model MS MARCO TREC-DL’19 TREC-DL’20 SciFact FiQA TREC-COVID CQADupStack
MRR@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10 NDCG@10

Softp
lus MRL .375 .721 .667 .605 .293 .510 .320

MRL (-LKD +CE) .328 .629 .644 .498 .245 .473 .268

LogVar MRL .372 .714 .673 .610 .299 .510 .321
MRL (-LKD +CE) .330 .641 .647 .523 .241 .342 .265

5.5 Limitations of our study

While we attempted a faithful reproducibility study, there were a handful of factors that limited the scope
of our work. In this section we outline these limitations and our best efforts to mitigate them.

Lack of details. As mentioned previously, our reproducibility effort was hampered by a lack of crucial
details in the original paper, such as the composition of the batches used while training the model, or which
underlying cross-encoder was used as a teacher. Therefore, it is unclear whether the impressive performance
improvements reported in the original paper are the result of some crucial implementation detail that was
omitted. However, we tried to mitigate this limitation through exhaustive experimentation. The most
promising part of that experimentation is presented in our ablation study, but it still constitutes a fraction
of all model configurations that we attempted in order to get closer to the reported performance.

Hyperparameter search. Our access to realistic hardware resources allowed us to perform hyperparameter
search only on the models in Table 2 and the model using cross-entropy without distillation in Table 5. We
outline these hyperparameters in Appendix D. However, we note that the model performance is quite robust
to the choice of hyperparameters in our initial experiments – mitigating this limitation to an extent.

Batch size. As mentioned in Section 4.5, we limited the batch size to 15, which was the maximum batch
size possible on one GPU. This is in contrast to the original batch size of 512. However, we note that (a) ex-
periments with more GPUs led to similar results (b) limiting to a batch size of 15 across all models makes it a
fair comparison, especially given the impact of batch size on downstream retrieval performance (Sidiropoulos
et al., 2021; Gao et al., 2021).

6 Conclusion

In this paper, we reproduce the multivariate representation learning framework by Zamani & Bendersky
(2023). After addressing a likely typographical error in the original paper’s derivations, we show that in a
fair comparison, MRL fails to outperform baseline models during retrieval, both for in- and out-of-domain
datasets. While MRL does not outperform baselines, we maintain that it still remains a competitive retrieval
model. We also conduct an extensive analysis of the predicted variance. Against our expectations, our
analysis reveals that the variance vectors do not consistently express uncertainty. In contrast to the original
paper, we conduct a thorough ablation study, investigating the impact of the different components of the
MRL framework: (i) multivariate representations, (ii) distillation, and (iii) model initialization. Through
this study, we conclude that while multivariate representations do not harm performance, distillation is likely
the primary source of improvement.

While we are unable to reproduce the results, we maintain that the ideas in the original paper are very
valuable to the community. Prior to this paper, uncertainty was only utilized in ranking, not first-stage
retrieval. The decomposition of the KL divergence as a dot-product enables incorporating uncertainty in
first stage retrieval. This implies that any model that produces a distribution for queries/passages can
be used in this framework, even if it was not trained with the objective function outlined in the paper –
this is a promising direction of future research. Future work could further consider incorporating document
uncertainty to the framework, e.g., for post-retrieval QPP.
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A Dot product formulation in the original paper

We include the original dot product formulation below of the KL divergence for completeness. Consider the
term tr{Σ−1

D ΣQ}, the source of the error. Zamani & Bendersky (2023) formulate this as:

tr{Σ−1
D ΣQ} =

∏k
i=1 σ2

iQ∏k
i=1 σ2

iD

. (14)

This differs from our version in Equation 6. This error is propagated throughout the next steps. The KL
formulation becomes:

KLD(Q∥D) =
k∑

i=1
log σ2

iD
+
∏k

i=1 σ2
iQ∏k

i=1 σ2
iD

+
k∑

i=1

µ2
iQ

σ2
iD

−
k∑

i=1

2µiQ
µiD

σ2
iD

+
k∑

i=1

µ2
iD

σ2
iD

(15)

The equivalent dot product formulation, after taking the negative of the equation above gives us the original
formulation (Equation (14) in Zamani & Bendersky (2023), with signs flipped for d⃗):

q⃗ =
[
1,

k∏
i=1

σ2
iQ

, µ2
1Q

, . . . , µ2
kQ

, µ1Q
, . . . , µkQ

]
, (16)

d⃗ =
[

γD,
1∏k

i=1 σ2
iD

,
1

σ2
1D

, . . . ,
1

σ2
kD

,
2µ1D

σ2
1D

, . . . ,
2µkD

σ2
kD

]
, (17)

where γD is equivalent in our formulation i.e., Equation 10. Here, q⃗, d⃗ ∈ R1×(2k+1) and q⊺ · d is equal to
Equation 15. Note that the final vector for d⃗, the signs are flipped because we want to obtain the negative
KL.

B Dot product formulation of full KL divergence

We start from the unsimplified version of Eq. 8, that includes constants:

KLD(Q∥D) = 1
2

[
k∑

i=1
log σ2

iD
−
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i=1

log σ2
iQ

− k +
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µ2
iD

σ2
iD

]
. (18)

To formulate it as a dot product, we use the definition of the document prior, γD, from Eq. 10, but further
define γQ as:

γQ =
k∑

i=1
log σ2

iQ
. (19)

Then we can extend the vector representations in Eq. 11 and Eq. 12 to include γQ:

q⃗′ =
[
1, γQ, σ2

1Q
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kQ
, µ2
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kQ
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where q⃗′, d⃗′ ∈ R1×(3k+2). Then,
KLD(Q∥D) = 1

2
(
q⃗′⊺ · d⃗′ − k

)
, (22)

should precisely yield the KL divergence between the distributions of Q and D, as defined in Eq. 4.
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Table 7: Statistics and Description of Evaluation Datasets. Number of tokens for average query/document
lengths were computed based on the distilbert-base-uncased tokenizer.

Name Domain # q # p avg. q length avg. p length

ID

MS MARCO Dev Miscellaneous 6,890 8,841,823 9.01 76.97
TREC-DL 19 Miscellaneous 43 8,841,823 9.02 76.97
TREC-DL 20 Miscellaneous 54 8,841,823 9.22 76.97

O
O

D

Scifact Scientific Document Retrieval 300 5,183 22.84 315.65
FiQA Financial QA 648 57,638 15.59 177.11

TREC-COVID Biomedical document retrieval 50 171,332 18.04 224.78
CQADupStack Community QA retrieval 13,145 457,199 13.55 248.73

Table 8: Hyperparameter search space for DPR (LR), CLDRD (LR) and MRL (LR, β). The best parameters
were: MRL(β = 2.5, LR = [5 × 10−6, 1 × 10−6, 1 × 10−6]), CLDRD (LR = [7 × 10−6, 3 × 10−6, 3 × 10−6])
and DPR (LR = 7 × 10−6).

Parameter Values

Learning Rate (LR) 1 × 10−4, 1 × 10−5, 1 × 10−6,
3 × 10−6, 5 × 10−6, 7 × 10−6

β 0.5, 1, 2.5, 7.5

C Datasets

In Table 7 we present the statistics of the datasets. Here, “p” and “q” indicate questions and passages,
respectively. The length is in tokens.

D Hyperparameters

In Table 8 we detail our hyperparameter search space used throughout our experimental setup.
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