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ABSTRACT

Effective motion planning in high dimensional spaces is a long-standing open
problem in robotics. One class of traditional motion planning algorithms corre-
sponds to potential-based motion planning. An advantage of potential based mo-
tion planning is composability – different motion constraints can easily combined
by adding corresponding potentials. However, constructing motion paths from po-
tentials requires solving a global optimization across configuration space potential
landscape, which is often prone to local minima, causing these approaches to fall
out of favor in recent years. We propose a new approach towards learning poten-
tial based motion planning, where we train a neural networks to capture and learn
an easily optimizable potentials over motion planning trajectories. We illustrate
the effectiveness of such approach, significantly outperforming both classical and
recent learned motion planning approaches, and illustrate its inherent composabil-
ity, enabling us to generalize to a multitude of different motion constraints.

1 INTRODUCTION

Motion planning is a fundamental problem in robotics and aims to find a smooth, collision free path
between a start and goal state given a specified configuration space, and is heavily used across a va-
riety of different robotics tasks such as manipulation or navigation (Laumond et al., 1998). A variety
of approaches exist for motion planning, ranging from classical sampling based approaches (Kara-
man & Frazzoli, 2011; Gammell et al., 2015; Kavraki et al., 1996; Kuffner & LaValle, 2000) and
optimization based methods (Ratliff et al., 2009; Mukadam et al., 2018; Kalakrishnan et al., 2011).
A recent body of works have further explored how learned neural networks can be integrated with
motion planning for accelerated performance (Fishman et al., 2023; Yamada et al., 2023; Qureshi
et al., 2019; Le et al., 2023).
A classical approach towards motion planning is potential based motion planning (Koren et al.,
1991; Ratliff et al., 2009; 2018; Xie et al., 2020), where both obstacles and goals define energy
potentials through which trajectories are optimized to reach. A great advantage of potential based
motion planning is that different constraints to motion planning can be converted into equivalent
energy potentials and directly combined to optimize for motion plans. However, such approach
generates motion plans primarily based on the local geometry with greedy optimization, resulting
in the long-standing local minima issues (LaValle, 2006). In addition, it typically requires implicit
obstacle representations, which is hard to obtain in real-world settings.
We present a potential based motion planning approach leveraging diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) where diffusion models are used to parameterize and learn potential
landscapes across configuration space trajectories between start and goal states. Our method maps
the start state, goal state, and environment geometry directly into a learned latent potential space,
eliminating the need to design sophisticated potential functions. These potential functions are fit
directly over long-horizon plans, helping avoid local energy minima. Furthermore, the inherent
stochasticity in diffusion model enables a more robust optimization and can generate diverse motion
plans for a specific problem, enabling failure recovery. In addition, guided by both local and global
environment geometry in learned potentials, our method provides faster planning and requires less
collision checking, compared with problem-independent sampling-based planners.
One major hurdle of learning-based motion planners (Ichter & Pavone, 2019; Qureshi et al., 2019;
Fishman et al., 2023) is their generalizability to unseen, more complex constraints. For example,
models trained on sparse obstacles usually fall short of the scenarios with cluttered obstacles. By
contrast, similar to prior potential based motion planning methods, our learned potentials can be
additively composed together to jointly solve motion planning problems with sets of constraints. As
illustrated in Figure 1, combining two potentials from different diffusion models enables us to opti-
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Figure 1: Illustrative Example of Composing Diffusion Energy Potentials. Our approach learns different
potential functions over motion planning trajectories (orange dashed lines) q1:N . Different potentials can be
combined and optimized to construct new motion plans that avoid obstacles encoded in both potential functions.

mize for trajectories that satisfy both constraints, one to avoid obstacles in a cross, and a second to
avoid obstacles in a square. Such flexibility to ad-hoc composition of constraints is especially useful
in robotics where agents will often experience new sets of motion constraints in its environment over
the course of execution.
In addition to being able to combining different motion constraints together, we can also compose
multiple instance of the sample diffusion potential together. This form of composition enables us
to naturally generalize at inference time to motion planning problems with a larger number of ob-
stacles than what have been observed at training time, by composing multiple instances of the learn
diffusion obstacle potential model conditioned on subsets of the larger set of obstacles. We illustrate
the effectiveness of such approach, substantially outperforming both classical and learned baselines.
Overall, in this paper, our contributions are three-fold. (1) We present an approach to learned po-
tential based motion planning using diffusion models. (2) We illustrate the effectiveness of our
approach, outperforming existing classical and learned motion planning algorithms. (3) We illus-
trate the compositionality of motion planner, enabling it to generalize to multiple sets of motion
constraints as well as an increased number of objects.
2 RELATED WORK
Motion Planning. Classic sampling-based motion planners (Kavraki et al., 1996; Kuffner &
LaValle, 2000; Elbanhawi & Simic, 2014; Gammell et al., 2014; Janson et al., 2015; Choudhury
et al., 2016; Strub & Gammell, 2020) have gained wide adoption due to their completeness and
generalizability. However, problem-independent nature of these methods can result in inefficiency
particularly when planning for similar problems repetitively. Reactive methods, such as potential-
based approaches (Khatib, 1986; Ratliff et al., 2018; Xie et al., 2020), velocity obstacles (Fiorini
& Shiller, 1998; Van den Berg et al., 2008), and safety barrier certificates (Wang et al., 2017) can
provide fast updates and have the guarantee for obstacle avoidance. However, their performance
is typically constrained by local minima or numerical instability issues (LaValle, 2006), and they
usually need to construct obstacle representations in the robot configuration space, which is hard
to obtain especially in high dimension. To address these issues, recent works have proposed many
deep-learning based motion planners (Ichter & Pavone, 2019; Qureshi et al., 2019; Bency et al.,
2019; Fishman et al., 2023). These methods can generally increase planning speed, expand the
planning horizon, or reduce the access queries to the environment by leveraging learned knowledge.
One important line of research is combining neural network with sampling-based methods (Johnson
et al., 2021; Yu & Gao, 2021; Lawson & Qureshi, 2022), termed hybrid motion planner. Particu-
larly, latest work (Saha et al., 2023; Carvalho et al., 2023) adapts diffusion model as an auxiliary
prior for trajectory generation, but still require accurate ground-truth cost function and dense envi-
ronment queries when planning. In addition, many existing methods are only constrained to sim-
ple 2D environments (Yonetani et al., 2021; Chaplot et al., 2021; Toma et al., 2021). Contrary to
them, we propose a motion planner applicable to various environments with different dimension-
ality while with shorter planning time and notably less environment access (i.e., collision checks).
In addition, our potential formulation also equips our model with high generalization capability to
out-of-distribution environment.
Diffusion Models for Robotics. Many recent works have explored the application of diffusion
model for robotics (Janner et al., 2022; Chen et al., 2022; Kapelyukh et al., 2023; Ha et al., 2023).
Current research spans a variety of robotics problems, including action sequence generation (Liang
et al., 2023; Fang et al., 2023; Li et al., 2023), policy (Wang et al., 2023; Kang et al., 2023),
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grasping (Urain et al., 2023; Huang et al., 2023), and visuomotor planning or control (Dalal et al.,
2023; Yang et al., 2023a; Chi et al., 2023), with recent work also exploring their application in
solving manipulation constraints (Yang et al., 2023b). In contrast to these works, we focus on
how diffusion models can be used to explicitly parameterize and learn potentials in potential based
motion planning. We illustrate the efficacy of such an approach and its ability to compose with
other learned potentials.

3 METHOD

In this section, we first introduce potential based motion planning in Section 3.1. We then discuss
how potential based motion planning can be implemented with diffusion models in Section 3.2. We
further discuss how such an approach enables us to combine multiple different potentials together in
Section 3.3. Finally, we discuss how we can refine motion plans generated by diffusion models in
cases of collision in Section 3.4.

3.1 POTENTIAL BASED MOTION PLANNING

Given a specified start state qstart and end state qend in a configuration space Rn, motion planning
is formulated as finding a collision-free trajectory q1:N which starts from qstart and ends at qend. To
solve for such a collision-free trajectory q1:N in potential based motion planning (Koren et al., 1991),
a potential function U(q) : Rn → R on the configuration space composed of

U(q) = Uatt(q) + Urepel(q), (1)
is defined, where u(q) assigns low potential value to the goal state qend and high potential to all states
which are in collision. In Equation 1, Uatt(q) represents a attraction potential that has low values at
the the end state qend and high values away from it and Urepel(q) represents a repulsion potential
that has high values near obstacles and low values away them. The functional form of the potential
function U(q) provides an easy approach to integrate additional obstacles in motion planning by
adding the a new potential Unew(q) representing obstacles to the existing potential in Equation 1.
To obtain a motion plan from a potential field U(q), a collision-free trajectory q1:N from qstart to qend
is obtained by iteratively following gradient of the potential function

qt = qt−1 − γ∇qU(q), (2)
with a successful motion plan constructed when the optimization procedure reaches the minimum
of the potential function U(q). A major limitation of above approach in Equation 2 is local minima
– if the optimization procedure falls in such a minima, the motion plan will no longer successfully
construct paths from qstart to qend (Yun & Tan, 1997; Teli & Wani, 2021).

3.2 POTENTIAL BASED DIFFUSION MOTION PLANNING

We next discuss how to learn potentials for potential motion planning that enable us to effectively
optimize samples. Given a motion plan q1:T from start state qstart to end state qend and a characteriza-
tion of the configuration space C (i.e. the set of obstacles in the environment), we propose to learn
a trajectory-level potential function Uθ so that

q∗1:T = argmin
q1:T

Uθ(q1:T , qstart, qend, C), (3)

where q∗1:T is a successful motion plan from qstart to qend.
To learn the potential function in Equation 3, we propose to learn a EBM (LeCun et al., 2006; Du
& Mordatch, 2019) across a dataset of solved motion planning D = {qistart, q

i
end, q

i
1:T , C

i}, where
e−Eθ(q1:T |qstart,qend,C) ∝ p(q1:T |qstart, qend, C). Since the dataset D is of solved motion planning prob-
lems, the learned energy function Eθ will have minimal energy at successful motion plans q∗1:T and
thus satisfy our potential function Uθ in Equation 3.
To learn the EBM landscape that enables us to effectively optimize and generate motion plans
q∗1:T , we propose to shape the energy landscape using denoising diffusion training objective (Sohl-
Dickstein et al., 2015; Ho et al., 2020). In this objective, we explicitly train the energy landscape so
gradient with respect to the energy function it can denoise and recover a motion plans q1:T across
many differing levels of noise corruption {1, . . . , S} ranging from mostly correct motion paths to
fully corrupted Gaussian noise trajectories. By shaping the gradient of the energy function to gener-
ate motion plans q1:T from arbitrary initialization trajectories, our learned energy landscape is able
to effectively optimize for motion paths.
Formally, to train our potential, we use the energy based diffusion training objective in (Du et al.,
2023) , where the gradient of energy function is trained to denoise noise corrupted motion plans q∗1:T

LMSE = ∥ϵ−∇q1:TEθ(
√
1− βsq

i
1:T +

√
βsϵ, s, q

i
start, q

i
end, C

i)∥2 (4)
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Algorithm 1 Code for Compositional Potential Based Planning

1: Models: compositional set of N diffusion potential functions Ei
θ(q1:T , t, qstart, qend, Ci)

2: Hyperparameters: horizon T , guidance scales ωi, denoising diffusion steps S
3: Input: start position qstart, goal position qgoal, N constraints C1:N

4: Initialize qS1:T ∼ N (0, I)
5: for s = S . . . 1 do
6: # Combining Different Energy Potentials Together
7: ϵcomb = ∇q1:TEθ(q

s
1:T , s, qstart, qend,∅) +

∑N
i=1 ωi∇q1:T (E

i
θ(q

s
1:T , s, qstart, qend, Ci) −

Ei
θ(q

s
1:T , s, qstart, qend,∅))

8: # Transit to Next Diffusion Time Step
9: qs−1

1:T = qs1:T − γϵcomb + ξ, ξ ∼ N
(
0, σ2

sI
)
.

10: end for
11: return

where ϵ is sampled from Gaussian noise N (0, 1), s ∈ {1, 2, ...S} is the denoising diffusion step,
and βs is the corresponding Gaussian noise corruption on a motion planning path qi1:T . We refer to
Eθ as the diffusion potential function.
To optimize and sample from our diffusion potential function, we initialize a motion path qS1:T at
diffusion step S from Gaussian noise N (0, 1) and optimize for motion path following the gradient
of the energy function. We iteratively refine the motion qs1:T across each diffusion step following

qs−1
1:T = qs1:T − γϵC + ξ, ξ ∼ N

(
0, σ2

sI
)
, (5)

where ϵC = ϵ∅ − ω(∇q1:TEθ(q1:T , t, qstart, qend, C)− ϵ∅), ϵ∅ = ∇q1:TEθ(q1:T , t, qstart, qend,∅) (6)
where γ and σ2

s are diffusion specific scaling constants1. The final predicted motion path q∗1:T
corresponds to the output q01:T after running S steps of optimization from the diffusion potential
function.
3.3 COMPOSING DIFFUSION POTENTIAL FUNCTIONS

Given two separate diffusion potential functions E1
θ (·) and E2

θ (·), encoding separate constraints in
motion planning, we can likewise form a composite potential function Ecomb(·) = E1(·)+E2(·) by
directly summing the corresponding potentials. This potential function Ecomb will have low energy
precisely at motion planning paths q1:T which satisfy both constraints, with sampling correspondings
to optimizing this potential function.
To sample from the new diffusion potential function Ecomb, we can follow

qt−1
1:T = qt1:T − γ∇q1:T (E

comb
θ (q1:T , t, qstart, qend, C)) + ξ, ξ ∼ N

(
0, σ2

t I
)
. (7)

To further improve the composition, a more expensive MCMC procedure can be used to explicitly
combine diffusion models (Du et al., 2023).
Applications of Composing Potential Functions. The ability to combine multiple separate poten-
tial functions for motion planning offers a variety of different ways to generalize and extend existing
motion planning systems. First, in many motion planning problems, there are often a heterogenous
set of different types of constraints or collisions that limit possible configuration space paths. For
instance, in autonomous driving, constraints that can arise may include moving pedestrians, traffic
lanes, road work or incoming cars. Oftentimes, we cannot enumerate all potential combinations,
but we wish motion planning systems to be able to handle all possible combination of constraints.
Jointly learning a single motion planning model for all constraints may be difficult, as at test time,
we may see novel combinations that we do not have training data for. By learning separate diffusion
potential fields for each constraint, we can combine them in an ad-hoc manner at test-time to deal
with arbitrary sets of constraints. We provide two concrete implementations of composing potentials
together as below and a detailed procedural in Algorithm 1.
Generalization over More Obstacles Suppose that the model is trained on environments with 4
obstacles, namely, |C| = 4. However, in the test time, we want to generalize to a more complex
environment that has 6 obstacles C ′ = {o1, o2, o3, o4, o5, o6}. This can be achieved by adding the
potentials evaluated on two sets of obstacles, where C1 = {o1, o2, o3, o4} and C2 = {o3, o4, o5, o6}.
This formulation can be further extended to N sets of obstacles C1:N and the composite diffusion
potential function is given by:

Ecomb
θ (q1:T , t, qstart, qend, C1:N ) =

N∑
i=1

Eθ(q1:T , t, qstart, qend, Ci) (8)

1A rescaling term at each diffusion step is omitted above for clarity
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Algorithm 2 Code for Refining Motion Plans

1: Model: compositional potential denoiser fθ(q1:T , t, qstart, qend, C1:N )
2: Hyperparameters: number of refine attempts R, noise scale k
3: Input: trajectory q1:T , staet position qstart, goal position qgoal, N constraints C1:N

4: S = Get Collision Sections(q) # A Set of Indices of Collision Sections in q1:T
5: for r = 1 . . . R do
6: qk1:T =

√
ᾱkq1:T + (1− ᾱk)ξ, ξ ∼ N

(
0, σ2

t I
)

# Add Noise to q1:T
7: q′ = fθ(q

k
1:T , k, qstart, qend, C1:N ), # Get new Denoised Trajectory

8: for all si ∈ S do
9: if is section good(q′[si]) then

10: q[si] = q′[si]; S = S \ si # Refine q1:T and Remove si from set S
11: end if
12: end for
13: end for
14: return q

Initial Noise Proposal Plan ReplannedPartially Noisy
Figure 2: Visualization of the Motion Refining Scheme. A proposal plan is first generated by denoising an
initial Gaussian noise. If collision is detected, a small noise is first added to the proposal and the new plan is
generated based on the partially noisy trajectory.

Generalization over Static and Dynamic Obstacles. Many real-life scenarios involves dynamic
real-time interaction. For instance, to construct motion plan for an autonomous vehicle, we must
both avoid static lane obstacles as well as dynamically moving cars. While static obstacles are
often known a priori, the motion patterns of dynamics obstacles often change with time, making it
advantageous to be able to combine different dynamic constraints with static ones. We can directly
implement this by using a diffusion potential function Ei

θs
that only trained on static obstacles Cs

i

and a diffusion potential function Ej
θd

that only trained on dynamic obstacles Cd
j , we can obtain the

static&dynamic potential by adding Ei
θs

and Ej
θd

. In a more general form, to condition on a set of
N1 static obstacles Cs

1:N1
with their potential diffusion functions E1:N1

θs
and a set of N2 dynamic

Cd
1:N2

obstacles with their potential diffusion functions E1:N2

θd
, the composite diffusion potential

function is then written as:

Ecomb
θ (q1:T , t, qstart, qend, [C

s
1:N1

, Cd
1:N2

]) =
∑N1

i=1 E
i
θs(q1:T , t, qstart, qend, C

s
i ) +

∑N2
j=1 E

j
θd
(q1:T , t, qstart, qend, C

d
j ) (9)

3.4 REFINING MOTION PLANS

In practice, the predicted motion plan q1:T might occasionally contains sections that violate the
constraints of the environment (i.e., collide with obstacles). To solve this issue, both classical and
learned motion planners (Kuffner & LaValle, 2000; Qureshi et al., 2019) provide mechanisms to
refine trajectories subject to collisions in configuration space.
With diffusion potential fields, we can likewise refine a trajectory, q1:T with collision, by locally
perturbing it into a noisy trajectory qk1:T defined by the kth step of the diffusion forward process:

qk1:T =
√
ᾱkq1:T + (1− ᾱk)ξ, ξ ∼ N

(
0, σ2

t I
)
. (10)

A new motion plan q′1:T can be obtained by denoising the noisy trajectory following Equation 5. To
be simple, let

q′1:T = fθ(q1:Tk , k, qstart, qend, C1:N ) (11)
where fθ(.) is a iterative diffusion potential denoiser that output the clean trajectory. The warm-
start denoising scheme enables faster planning and is more efficient, especially important for those
energy-critical mobile agents. We will then replace the collision section in q1:T with corresponding
section in q′1:T when the new section is collision-free. This refining procedural can be repeated

5



Under review as a conference paper at ICLR 2024

Maze2D KUKA 7D Dual KUKA 14D
Figure 3: Environment Demonstration. a) Maze2D: a point robot moving in 2D workspace with the high-
lighted block as obstacles. b) KUKA: robot manipulator with 7 DoF operating on a tabletop. The grey cuboids
are obstacles. c) Dual KUKA14D: Two side by side KUKA manipulators operate simultaneously, where the
dimension of the configuration space is 14.

Figure 4: Quantitative Comparisons in Motion Planning Environments. Our method outperforms the
sampling-based planner and all other learning-based motion planning approaches on all metrics across a set
of different environments. From left to right: a) number of collision checks, b) success rate, c) planning time.

until a desired trajectory is found. Algorithm 2 displays the complete refining pipeline and Figure 2
provides a corresponding visualization.
4 EXPERIMENTS
In this section, we firstly describe our environments and baselines in Section 4.1. Next, in Section
4.2, we discuss our experiments on base environments and motion refining algorithm. Following, in
Section 4.3, we present the compositionality results by evaluating our motion planner on composite
environments. Then, we describe the real world motion planning performance in Section 4.4.

4.1 ENVIRONMENTS AND BASELINES

We first classify the environments that we evaluated on to 4 categories by the level of generalization
capability:

• Base Environments: same number of constraints as in training; constraints sampled from the
same distribution;

• Composite Same Environment: more constraints than training phase, constraints sampled from
the same distribution;

• Composite Different Environment: more constraints than training phase, constraints sampled
from different distributions.

• Real World Motion Planning Environments.

Concretely, we propose three simulated motion planning environments with increasing difficulty as
shown in Figure 3:
Maze2D A point-robot moving in a 2D workspace. The configuration space is the x-y coordinate
of the robot. The task is to generate a 2D trajectory navigate through the workspace without any
collision with obstacles. We offer two variants: Static Maze2D where obstacles stay in the same lo-
cations and Dynamic Maze2D where obstacles are moving in randomly generated linear trajectories.
Kuka7D A KUKA arm of 7 DoF operating on a tabletop. Obstacles are randomly placed in the
3D workspace. The start and goal are given as the 7 joint states of the KUKA arm.
Dual KUKA Two KUKA arms are placed side by side on a tabletop and operate simultaneously
with a total configuration space of 14 DoF. A successful trajectory should have both arms arrived in
their goal states and should not have any self-collision or collision with obstacles.
Baselines We compare our methods with the classic sampling-based planning baselines
RRT* (Karaman & Frazzoli, 2011), P-RRT* (Qureshi & Ayaz, 2016), BIT* (Gammell et al., 2015)
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R = 3 R = 5 R = 10

Env Before After Before After Before After

Maze2D 96.25 99.75 95.25 99.00 95.75 100.00
KUKA 71.25 90.00 69.50 94.30 69.75 94.75

Dual KUKA 45.50 69.75 47.25 77.25 47.00 80.75

Table 1: Quantitative Results of Refining Motion Plans. Success
rate before and after motion refining. R denotes the number of refine
attempts. The proposed method consistently boost success rate on
three base environments.

Static 1 + Static 2

Method Success Time Check

RRT* 99.90 2.15 19k+
Ours 100.00 0.38 71.86

Table 2: Quantitative Results on
Composite Different Environments.
Two static Maze2D with different types
of obstacles are combined at test time.

Figure 5: Compositional Generalization. Quantitative comparisons of different planner on compositional
environment. The shaded area indicates the standard error across the mean of all tested environments. The
leftmost column reports the results on the same number of obstacles that the models trained on. We report The
composite model outperforms all other baseline by a margin, only except that in Maze2D, where RRT* is on
par with our model, but with order of magnitude of more collision checks.

and SIPP (Phillips & Likhachev, 2011), traditional potential-based method RMP (Ratliff et al.,
2018), and several learning-based motion planners: MPNet (Qureshi et al., 2019), MπNet (Fish-
man et al., 2023), and AMP-LS (Yamada et al., 2023). MPNet is trained on trajectories with sparse
waypoints and use MLPs to encode environment configuration and predict the next position. In
contrast, MπNet is trained on dense trajectory waypoints and predicts the movement vector instead
of directly the next position. AMP-LS encodes the robot pose into a latent feature and approaching
the goal pose by using the gradient of hand-crafted losses to update the latent. A sequence of latents
are then decoded and form a trajectory. In evaluation, all start/goal poses and environment config-
urations are unseen to the model. For each experiment, we evaluate on 100 different environments
with 20 problems each.

4.2 MOTION PLANNING PERFORMANCE ON BASE ENVIRONMENTS

We first evaluate our method on motion planning in each base environments: randomly generated en-
vironments that follow the same procedural generation pipeline as the training environments. Qual-
itative results are shown in Figure 4 and Table VIII. We include the full details of evaluation setup
in Section A.2.3.
Comparison to Sampling-based Planner We compare our method to traditional sampling-based
RRT*(Karaman & Frazzoli, 2011). The success rate of RRT* suffers from a significant degradation
when the dimension of the configuration space increases. In addition, the planning time of the
sampling-based planner rises dramatically as the dimension of the problems increases. However,
the planning time of our method performs steadily across all environments, namely, 0.116s, 0.135s,
0.299s and with order of magnitude less collision check.
Comparison to Learning-based Planners We also compare to three other learning-based motion
planning baselines: MPNet, MπNet, and AMP-LS, as displayed in Figure 4 and 6. We can see that
our method outperform all the learning baseline in both success rate and number of collision check.
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(a) Ours (b) M𝜋Net View 1 (c) M𝜋Net View 2
Figure 6: Qualitative Motion Plan in KUKA Environment. Obstacles are shown in transparent grey for
clearer view. Our method, in column (a), generates an end-to-end, smooth trajectory. In column (b) and (c)
show the trajectory generated by MπNet from two different viewing angles. The proposed trajectory traverses
from the other direction that requires more movement, is frequently stuck in local geometry, and finally fails to
reach the goal state.

6 + 3 6 + 4 6 + 5 6 + 6
Figure 7: Qualitative Compositionality Generalization over More Obstacles. Two models that trained on
only six obstacles are composed and tested on out-of-distribution environments, with 9, 10, 11, 12 obstacles,
respectively. Base Dynamic Static 1 + Dynamic Static 2 + Dynamic

Method Success Time Check Success Time Check Success Time Check

SIPP 69.85 32.21 1M+ 70.40 185.50 1.7M+ 73.95 98.66 1.3M+
Ours 99.65 0.12 49.26 97.35 3.72 213.97 97.95 3.63 177.31

Table 3: Quantitative Results on Base Dynamic and Static + Dynamic on Maze2D.
Static 1 and Static 2 refer to two different static Maze2D environments. Our method
outperforms the sampling-based planner by a large margin.

Notably, in Dual KUKA, our method led the the state-of-the-art learning-based planner MπNet by
37% while with 3 times less of collision checks. We also observe that the planning time of it is
slightly shorter than ours, even though it requires a higher number of collision checks. Note that
the gap is closing as the dimension of the environment increases – in practice in the real world, we
believe this gap will be further eliminated where collision checks is much more expensive.
Motion Refining We present quantitative and qualitative results of refining motion plans, as shown
in Table 1 and Figure 2. The gain of refining motion plans increases as the dimensionality of the
environment increases. As in Table 1, the success rate generally increases as we increase the number
of refining attempts R, but the gain gradually saturates in 10 attempts. In this case, the proposed
trajectory probably suffers from a catastrophic collision and the model might need to resample a
trajectory from a pure noise.

4.3 COMPOSITIONALITY

Composing Obstacles We first evaluate the compositionality by adding obstacles to the envi-
ronments. A qualitative visualization of a composite Maze2D environment is given in Figure 7,
where we train our model on 6 obstacles and evaluate on environments with up to 12 obstacles.
The blue blocks indicate 6 obstacles as in training distribution, while the orange blocks indicate
out-of-distribution additional obstacles. As we can see, the composed model effectively proposes
different trajectories according to the presented obstacles by sampling poses from the region with
low composite potential. We report the full quantitative results in Figure 5 and Table XI.
Composing Multiple Constraints We then investigate the compositionality to combine two dif-
ferent diffusion potential functions together, (i.e., models trained on completely different environ-
ments ). Specifically, we first train a model on 6 small obstacles and a model on 3 large obstacles and
evaluate on environments where both the small and large obstacles are presented. The qualitative
results is shown in Table 2. Moreover, we want to compose the two aforementioned models trained
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Baseline

Composed

(a) (d)(b) (c)
Figure 8: Qualitative Real World Motion Plans, Hotel Scene. The composed model provides long-horizon
motion plan that avoid 10 pedestrians, while only trained on 5 pedestrians. In column (a) and (b), the composed
plan is aware of P1 (cyan) and P6 (pink) and overtakes them from above, while the baseline model runs into
them. In column (c), the composed motion plan chooses to move faster so as to pass through the intersection
with P7 (brown) before P7 arrives, but the baseline motion plan results in a collision due to its slower speed. In
column (d), the composed plan choose to go upward to avoid the oncoming P8 (black).

on static environments with another model that trained on dynamic environments. Hence, we test
the composed model on environments where both static and dynamic obstacles are presented. We
named the environments static 1 + dynamic and static 2 + dynamic, respectively. The quantitative
results of the base dynamic environment and static + dynamic environments are shown in Table 3
and the qualitative results are in Figure X.

4.4 REAL WORLD

Finally, we evaluate the effectiveness of our method on the real world ETH\UCY(Pellegrini et al.,
2010; Lerner et al., 2007) dataset. The dataset group we used consists of 5 scenes (ETH, Hotel,
Zara01, Zara02, UNIV), where each scene contains human trajectories in world-coordinates col-
lected by manual annotation from bird-eye-view camera. Our focus is to investigate if our model
can propose successful trajectories given the start and goal locations of an agent in a random, clut-
tered street-level real-world interaction. Specifically, the planner is trained to predict the trajectory
of the agent (highlighted in red), conditioned on the trajectories of 5 other pedestrians. Data from all
the scenes are used when training and evaluate on unseen combination of start, goal, and surrounding
pedestrian trajectories. In Figure XI, we present the qualitative results where 5 other pedestrians are
presented. We also evaluate on 10 presented pedestrians by composing the two potential functions
constrained by 5 pedestrians each, as illustrated in Figure 8.

5 DISCUSSION

Limitations. Our existing formulation of potential based diffusion motion planner has several lim-
itations. First, although our motion trajectory is accurate, it is often suboptimal, e.g., there exists a
shorter path from start to goal. This may be addressed by adding an additional potential to reach
the goal as soon as possible. Second, our approach to composing potentials scales linearly with
the number of composed models, requiring significantly more computation power with additional
models. This can remedied by having different potential operate on shared features in a network.
Conclusion. In this work, we have introduced the potential based diffusion motion planner. We first
formulate our potential diffusion motion planner and describe its connections and advantages over
traditional potential based planner. We illustrate the motion planning performance of our approach in
terms of success rate, planning time, and the number of collision checks over motion planning prob-
lems with dimensionality of 2D, 7D, 14D. We further illustrate the compositionality of apporach,
enabling generalization to both new object and new combinations of motion constraints. Finally, we
illustrate the potential of our work on real world scenes with multi-agent interaction.
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A APPENDIX

In this appendix, we first present our dataset details in Section A.1. Next, we provide implementation
details in Section A.2, including model architecture and training and evaluation hyperparameters.
Section A.3 provides additional quantitative and qualitative results.

A.1 DATASET DETAILS

In this section, we present details of the three base environments. Each dataset is consists of
feasible trajectories of randomly sampled start and goal position. All datasets are collected by
BIT*(Gammell et al., 2015). All environments except Maze2D are simulated via PyBullet (Coumans
& Bai, 2016–2021).
Maze2D The workspace is a 5 × 5 square where the obstacle is square of size 1 × 1. For sim-
plicity, the volume of the robot agent is ignored – collision happens when the location is inside the
region of an obstacle. The training data contains 3,000 different environment configurations and
25,000 waypoints for each environments.
KUKA The KUKA arm is placed at the center (0, 0, 0) of world coordinate and obstacles are
given as cubic of length 0.4 meter and are randomly placed in the surrounding of the robot. The
training data contains 2,000 different environment configurations and 25,000 waypoints for each
environments.
Dual KUKA For our Dual KUKA environment, one KUKA arm is placed at world coordinate
(−0.5, 0, 0) and the other at (0.5, 0, 0). The training data contains 2,500 different environment
configurations and 25,000 waypoints for each environments.

A.2 IMPLEMENTATION DETAILS

Software: The computation platform is installed with Red Hat 7.9, Python 3.8, PyTorch 1.10.1,
and Cuda 11.1
Hardware: For each of our experiments, we used 1 RTX 3090 GPU.

A.2.1 ENERGY-BASED DIFFUSION MODEL

Model Architecture We represent the diffusion potential model fθ consisting of a CNN trajectory
denoiser based on U-Net similar to (Ajay et al., 2023) and a constraint (i.e., environment configura-
tion) encoder. The U-Net contains repeated residual blocks where each block consisted of two tem-
poral convolutions followed by GroupNorm and SiLU nonlinearity (Hendrycks & Gimpel, 2016).
The constraint encoder use the Transformer encoder structure (Vaswani et al., 2017), whose input is
as a set of obstacle locations or obstacle trajectories. We remove the positional embedding, since the
obstacles information should be permutation invariance with each other. We concatenate the learned
class token from transformer with the time embedding and feed the concatenated tensor to temporal
convolution blocks in U-Net for denoising. More details of the models are shown in Table A.2.1 and
Table A.2.1. Note that we do not further explore the selection of the concrete model architecture,
but we believe that some more advanced architectures could further improve our performance.

Hyperparameters Value

Base Feature Channels 64
Feature Dimension Scale (64, 256, 512)
Groups in GroupNorm 8

Nonlinearity SiLU

Table IV: Hyperparameter of U-Net.

Hyperparameters Value

Base Embedding Channel 64
Transformer Layers 3

Attention Heads 1
Nonlinearity SiLU

Table V: Hyperparameter of Constraint Encoder.

Energy Parameterization We use L2 energy-parameterization as given in equation 12. For more
details on Energy-based Diffusion Model, please refer to (Du et al., 2023).

EL2
θ (x, t) =

1

2
||fθ(x, t)||2 (12)

A.2.2 TRAINING DETAILS

Training Pipeline In training, the dataloader randomly samples trajectories of length equal to the
training horizon from the whole dataset. We provide a detailed hyperparamter of training our model
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in Table VI. We do not apply any hyperparameter search nor learning rate scheduler. We typically
train our model for two days, but we observe the performance are close to saturated within one day.

Hyperparameters Value

Horizon 48
Diffusion Time Step 100

Probability of Condition Dropout 0.2
Iterations 2M

Batch Size 512
Optimizer Adam

Learning Rate 2e-4

Table VI: Hyperparameters: Training on Maze2D Environment

A.2.3 EVALUATION DETAILS

Our Evaluation Pipeline The input of the planner is the start state, goal state and environ-
ment configuration, and the outputs are the proposed trajectories. In test time, we only sample
10 timesteps by using DDIM (Song et al., 2020) with intermediate noise scale eta set to 0. The eval-
uation pipeline of our model consists of three phases: Propose Motion Plan Candidates, Candidate
Selection, and Motion Refining. The planner first generates multiple candidate trajectories as given
in Algorithm 1. It then accesses to the environment configuration to select a successful trajectory
from the candidates. Finally, if no desired candidate is found, it will execute the motion refining as
in Algorithm 2. Hyperparameter used in evaluation is detailed in Table VII.
Baselines Evaluation Pipeline We try our best to re-implement every baseline and follow their
original setting. For MPNet (Qureshi et al., 2019), we follow their implementation and use bi-
directional path generation in test time. As for AMP-LS, we implement a Variional Auto-Encoder
(VAE) (Kingma & Welling, 2013) to encode the robot pose state and leverage GECO loss (Rezende
& Viola, 2018) in path optimization. MπNet does not provide a replan scheme in their design.
For fair comparison, we boost MπNet with replan by backtracing to previous timestep and adding
random noise for restart when collision is detected.

Hyperparameters Value

Horizon 48
DDIM Time Step 10

DDIM eta 0.0
Guidance Scale 2.0

# of Trajectory Candidate 10
# of Refine Attempts R 5
Refine Noise Scale k 3

Table VII: Hyperparameters: Evaluation on Maze2D Environment

A.3 ADDITIONAL RESULTS

In this section, we provide more quantitative results in A.3.1 and extra qualitative results in A.3.2.

A.3.1 QUANTITATIVE RESULTS

Performance on Base Environment We provide detailed numerical motion planning results on
three base environments in Table VIII. The corresponding visualization is given in Figure 4. We
report three main motion planning metrics: Success rate, Planning time and Number of collision
checks. Our method consistently outperforms all other baselines.
Performance on Composite Same Environment We provide quantitative results on out-of-
distribution environments by adding more obstacles than training time. We further provide a baseline
Diffusion in which we do not compose potentials. Our composed model demonstrate superior ef-
ficiency over all benchmarks. Note that RRT* generally requires two order of magnitude of more
collision checks than our method for planning one path.
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Maze2D KUKA Dual KUKA

Method Success Time Check Success Time Check Success Time Check

RRT* 100.00 1.08 10561.73 67.20 11.86 53282.03 47.50 33.80 81759.17
P-RRT* 99.95 1.34 15697.09 66.20 12.72 53590.14 47.40 33.98 104820.10

BIT* 100.00 0.21 1894.20 99.20 1.17 7988.53 94.95 4.60 20689.98
AMP-LS 86.35 1.41 1025.36 27.20 3.89 4176.40 40.90 7.38 12091.33
MPNet 88.40 0.21 1830.90 75.95 0.10 885.41 41.95 0.35 1750.17
MπNet 99.30 0.05 64.66 88.75 0.10 129.15 58.70 0.28 345.03

Ours 100.00 0.12 49.07 98.65 0.13 67.02 96.35 0.30 129.63

Table VIII: Quantitative Motion Planning Performance. Detailed numerical results corresponding to Figure
4. Our method is able to efficiently propose paths and outperforms other baseline planners, especially in the
hardest Dual KUKA environment.

Performance on ETH/UCY Dataset Current robotic path planning problem is usually limited
to simulation environments and there is no widely-used real-world benchmark. Since pedestrian
trajectory is naturally a kind of demonstrations of human planning, we leverage the ETH/UCY
Dataset to evaluate real-world motion planning ability. Specifically, the entire dataset is comprised
of 6 scenes: ETH, Hotel, Zara01, Zara02, Students01, Students03, where the models are trained on
5 scenes and tested on the held-out scene. Similar to our simulation environments, the model takes
as input the position of start, goal, and other pedestrians, and outputs a predicted motion plan. The
predicted motion plan is desired to be as close as possible to the real human trajectory and thus we
report the Average Displacement Error (ADE) as defined in equation 13:

ADE =

∑
i∈N

∑
t∈T

||qit − q̂it||2

N × T
(13)

where q̂it ∈ R2 is the step t in the ith predicted path and qit is the corresponding ground truth. ADE
measure the similarity between the predicted trajectories and human trajectories. A smaller ADE
value indicates the predictions are closer to the real human behavior.

ETH Hotel Zara01 Zara02 Students01 Students03

Method ADE ↓ Time ADE Time ADE Time ADE Time ADE Time ADE Time

MPNet 18.11 0.12 28.60 0.11 11.06 0.12 17.22 0.11 10.37 0.12 8.93 0.11
MπNet 37.70 0.26 44.49 0.29 1.14 0.22 13.66 0.23 12.76 0.18 1.54 0.22

Ours 0.94 0.17 5.20 0.17 0.35 0.17 0.38 0.17 0.52 0.17 0.89 0.17

Table IX: Quantitative Results on real-world ETH/UCY Dataset. We adopt the ADE metric to show the
similarity between the predicted motion plans and real human motion trajectories on unseen scenarios. All
motion plans are in the world coordinate as given in the dataset. Our method can precisely mimic human
motion behaviors in most scenes, while both MPNet and MπNet cause drastic error compared to real human
trajectories.

The per-scene quantitative performance is shown in Table IX. Each scene is captured at different
time of a day or different location, resulting in different data distribution. The ADE is relatively
smaller in Zara and Students because the model can see a similar counterpart scene at training, e.g.,
train set includes Zara01 when tested on Zara02. By contrast, ETH or Hotel are more unique to other
scenes (e.g., contain different scene layout and human behavior patterns) and thus causing higher
evaluation error. As shown in Table IX, MPNet consistently falls short of the ADE, though with
slightly faster speed. We observe that MπNet can produce reasonable motion plans in many cases,
but it occasionally predicts random values, which causes significant deviation from the target and
leads to the notbaly larger ADE. Our method demonstrates better generalizability and stability by
precisely mimicing the human trajectories in most held-out scenes. We also notice that in Hotel, all
methods suffer from a severe surge in ADE. Our speculation is that the Hotel has different walkable
world-coordination and in addition, it contains various unseen types of pedestrians motion pattern,
such as slowly pacing people that are chatting or waiting, people stepping on or off the train.
Performance on Concave Obstacles We create a Maze2D environment with 7 concave obstacles
as shown in Figure IX to further demonstrate the capability of our learned potential method to avoid
local minima. As shown in Table X, all methods subject to a certain decline in performance in the
more difficult concave environments. Notably, our potential-based diffusion motion planner can still
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solve all the problems, on par with the sampling-based planners, while traditional potential-based
planner, RMP, exhibits a significant decline in success rate.

Maze2D – Convex Maze2D – Concave

Method Success Time Success Time

RRT* 100.0 1.08 100.0 2.53
P-RRT* 99.95 1.34 99.9 3.31

BIT* 100.0 0.21 100.0 0.45
MPNet 88.4 0.21 84.3 0.38
MπNet 99.3 0.05 98.7 0.06

RMP 64.9 0.13 28.0 0.34
Ours 100.0 0.12 100.0 0.15

Table X: Quantitative Performance with Convex and Concave Obstacles. Motion planning performance on
the Maze2D environments with 6 convex obstacles and 7 concave obstacles. Obstacles are randomly placed and
example visualizations are shown in Figure 3 and Figure IX, respectively. Reported results are averaged across
100 different environment configurations with 20 problems in each configuration. Both our method, RRT*, and
BIT* can successfully solve all the motion planning problems, while our method requires less planning time.

(a) (b)

(c) (d)

Figure IX: Qualitative Performance on Environments with Concave Obstacles. Trajectories generated by
RMP and our method on 4 motion planning problems are shown (left: RMP; right: ours). Traditional potential-
based method tends to stuck in the local minima, while our method can generate smooth and low-cost trajecto-
ries without collision. The green star indicates the star pose and the red star indicates the goal pose.

A.3.2 QUALITATIVE RESULTS

Static 2 + Dynamic Environment In Figure X, we show our results on a Composite Different En-
vironment as described in Section 4.1. Specifically, one component environment consists of a large
blue block moving along the grey trajectories (i.e. dynamic) and the other component environment
consists of three orange static obstacles.
Base Real World Motion Planning We visualize the motion trajectory planned by our model in
Zara02 scene where five other pedestrians are presented in Figure XI. In the given scenario, our
agent (highlighted in red) enters the scene alongside with the P2 (yellow) and enter an intersection
with four oncoming pedestrians. The trajectory planned by our model first chooses to follow the
P2 (shown in T = 10) and then crosses the intersection without interrupting any other pedestrians
(shown in T = 22).
A.4 PROOF OF OPTIMALITY AND COMPLETENESS

In this section, we will show the probabilistic completeness and optimality of our method.
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6 + 2 6 + 4 6 + 6

Method Success Check Success Check Success Check

Maze2D

RRT* 99.90 12986.05 99.70 16842.79 99.90 21089.77
AMP-LS 66.70 3357.64 45.15 4560.38 33.45 5107.20
MπNet 88.45 120.00 76.25 181.77 65.95 226.01

Diffusion 89.50 331.30 66.70 646.80 69.10 527.75
Composed 100.00 70.21 98.90 130.78 96.85 161.03

4 + 1 4 + 2 4 + 3

KUKA

RRT* 66.10 51405.21 64.25 50993.57 66.90 46399.91
AMP-LS 28.80 6767.00 34.95 7461.55 37.00 7277.37
MπNet 86.20 134.13 82.85 152.03 83.35 148.67

Diffusion 92.70 273.29 83.90 425.54 82.80 430.78
Composed 97.00 171.54 92.40 283.35 93.40 259.90

5 + 1 5 + 2 5 + 3

Dual KUKA

RRT* 46.10 81670.24 41.15 83559.30 43.35 80090.60
AMP-LS 0.10 17512.00 0.30 17107.36 0.15 16725.14
MπNet 55.70 358.28 48.25 391.52 45.20 399.11

Diffusion 86.10 237.93 74.40 329.72 64.70 360.91
Composed 94.80 165.42 90.80 215.30 84.40 269.73

Table XI: Compositional Generalization over Increased Obstacles. Detailed results corresponding to Figure
5. In the top row, the left digit indicates the number of obstacles that the model trained on; the right digit rep-
resents the number of additional obstacles. Compared to other learning-based planner, our method smoothly
generalizes to out-of-distribution test-time environments by compositionality while others suffer from a notice-
able decrease in success rate.

T = 0 T = 12 T = 18 T = 40
Figure X: Qualitative Compositionality Generalization over Static + Dynamic Obstacles. Zoom in for
clearer view. The current position of the agent is shown in the pink asterisk. The planned trajectory first goes
down in order to wait for the large moving obstacles to pass through and then goes left toward the goal, while
still being aware of other orange static obstacles in the environment.

A.4.1 PROBABILISTIC COMPLETENESS

Let fθ(q1:T ) denote the probability density function of the output distribution Do of our diffusion
model. In such learned neural distribution, all data points q1:T are assigned positive density, that is,

∀q1:T , fθ(q1:T ) > 0 (14)
Define Jc as the a set of all valid trajectories subject to constraint C. There exists a small interval in
the vicinity of a random trajectory qc1:T ∈ Jc, such that

[qc1:T − τ, qc1:T + τ ] ⊆ Jc, τ > 0, (15)
i.e., all trajectories in the interval satisfy the given constraint C. Let Pτ denote the probability for
our model to sample a trajectory from the interval, and according to equation 14 we have,

Pτ =

∫ qc1:T+τ

qc1:T−τ

f(x)dx > 0 (16)

Let An denote the event that there is at least one trajectory q1:T ∈ Jc among n sampled trajectories.
Clearly, as the number of samples approaches infinity, event A will happen almost surely, i.e.,

lim
n→∞

P
(
An

)
= 1 (17)

Hence, our method is probabilistically complete.
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T = 10 T = 22 T = 50

Figure XI: Qualitative Real World Motion Plan, Zara02 Scene. Red indicates the trajectory planned by our
model, while other colors represents 5 unseen pedestrians in the surrounding. Our motion plan passes through
the intersection, without any collision or discontinuity (an abrupt stop).

A.4.2 OPTIMALITY

Theoretically, with sufficient training data and according to the Universal Approximation Theorem,
the optimal energy function E∗

θ (.) can be learned by our model. Hence, let f∗
θ (q1:T , C) denote the

probability density function of the optimal output distribution subject to the constraint C and q∗1:T
denote the corresponding optimal trajectory. Then,

∀ C, f∗
θ (q

∗
1:T ) → ∞. (18)

Thus, assume that an optimal model is learned, our model can generate optimal trajectories almost
surely.

A.5 PROOF OF CONDITIONAL INDEPENDENCE

Assume that two set of constraints are given, C1 = {o1, o2, o3, o4} and C2 = {o3, o4, o5, o6}. In this
section, we will show that C1 and C2 are conditional independent and hence the compositionality of
our planner can be achieved as in (Liu et al., 2022). Define Jc1 and Jc2 as the set of trajectories that
satisfy C1 and C2, respectively. Let fCi(q1:T ) denote a probabilistic density function of trajectories,
whose value is 1 if q1:T ∈ J and is 0 otherwise, that is

fCi
(J ) =

{
1 if J ∈ Jci

0 if J /∈ Jci

(19)

Then, note that for the joint probability density function for the union of the obstacles fC1∪C2

is directly proportional to the product of the individual density functions (since set of trajectories
satisfying both obstacles corresponds to Jc1 ∩ Jc2 ). Therefore, we have

fC1∪C2 ∝ fC1fC2 . (20)
Hence, C1 and C2 are conditional independent.
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