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ABSTRACT

Large language models (LLMs) demand substantial computational and memory
resources, posing challenges for efficient deployment. Two complementary ap-
proaches have emerged to address these issues: token-adaptive layer execution,
which reduces floating-point operations (FLOPs) by selectively bypassing layers,
and quantization, which lowers memory footprint by reducing weight precision.
However, naively integrating these techniques leads to additional accuracy degra-
dation due to reduced redundancy in token-adaptive models. We propose QTALE
(Quantization-Robust Token-Adaptive Layer Execution for LLMs), a novel frame-
work that enables seamless integration of token-adaptive execution with quanti-
zation while preserving accuracy. Conventional token-adaptive methods reduce
redundancy in two ways: (1) by limiting the diversity of training paths explored
during fine-tuning, and (2) by lowering the number of parameters actively involved
in inference. To overcome these limitations, QTALE introduces two key com-
ponents: (1) a training strategy that ensures diverse execution paths are actively
explored during fine-tuning, and (2) a post-training mechanism that allows flexible
adjustment of the execution ratio at inference to reintroduce redundancy when
needed. Experimental results show that QTALE enables seamless integration of
token-adaptive layer execution with quantization, showing no noticeable accuracy
difference, with the gap to quantization-only models kept below 0.5% on Com-
monsenseQA benchmarks. By combining token-adaptive execution for FLOPs
reduction and quantization for memory savings, QTALE provides an effective
solution for efficient LLM deployment.

1 INTRODUCTION

LLMs have demonstrated remarkable proficiency in a wide range of natural language processing
tasks (Zhang et al., 2022; Touvron et al., 2023; Grattafiori et al., 2024; Yang et al., 2025). Conse-
quently, they have become the core components of modern AI applications. However, the substantial
size of these models poses significant challenges for real-world deployment. In particular, their
high memory consumption and computational demands substantially increase inference cost and
latency, limiting accessibility and scalability in resource-constrained environments. These constraints
hinder the widespread adoption of LLMs. As a result, improving the efficiency of LLM inference
has become a central research direction, with efforts focused on reducing computational cost and
memory footprint while maintaining task accuracy.

Recent research has introduced several techniques for efficient LLM inference, such as pruning (Fran-
tar & Alistarh, 2023; Sun et al., 2024; Song et al., 2024), quantization (Frantar et al., 2022; Dettmers
et al., 2022; Zhang et al., 2024), and token-adaptive execution (Jiang et al., 2024; Liu et al., 2023).
Each of these methods exploits redundancy in large models but targets different efficiency dimensions:
quantization reduces memory footprint by lowering weight precision, while token-adaptive layer
execution reduces FLOPs by bypassing unimportant layers. Despite their complementary benefits,
these techniques are typically studied in isolation. When applied together, their naive integration
often leads to additional accuracy degradation due to compounded redundancy reduction. This creates
a critical need for a unified approach that combines the strengths of both techniques while mitigating
their drawbacks.
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Figure 1: Overview of a standard LLM architecture and representative techniques for efficient
inference. The fraction of color fill in each transformer layer denotes memory cost per layer, while
dashed gray outlines indicate skipped execution.

In this paper, we propose QTALE, a novel framework that seamlessly integrates token-adaptive
layer execution with quantization while preserving accuracy. QTALE addresses the key limitations
of conventional token-adaptive methods, namely reduced training-path redundancy and reduced
parameter redundancy, through two innovations:

• A quantization-robust training strategy that ensures diverse execution paths are explored
during fine-tuning

• A post-training execution ratio adjustment mechanism that reintroduces redundancy at
inference time to improve robustness against quantization errors.

Through these contributions, QTALE enables the effective integration of token-adaptive layer execu-
tion with quantization, thereby reducing both FLOPs and memory usage.

2 BACKGROUND

2.1 TRANSFORMER LAYER-WISE PRUNING

Recently, many studies have demonstrated that LLMs exhibit redundancy at the transformer layer
level Song et al. (2024); Men et al. (2024); Kim et al. (2024). During inference, consecutive
transformer layers often produce highly similar outputs, since each block incrementally contributes to
the residual stream that spans the entire network. As shown in Figure 1(a), Modern LLM architectures
are typically built on residual connections, where the output of each transformer layer is the sum of
the previous layer output and the current layer computation:

xl+1 = xl + fl(xl) (1)

where xl is the input to the l-th layer and fl(·) is the transformer layer function. If xl+1 is sufficiently
similar to xl, the removal of the l-th layer has little effect on the final prediction. As layer-wise
pruning (Figure 1(b)) removes both the parameters of a layer and its associated computations, it
reduces FLOPs and memory overhead proportionally to the number of pruned layers. However,
because it eliminates entire transformer blocks, achieving high pruning ratios (e.g., beyond 20%)
typically leads to significant accuracy degradation.

2.2 TOKEN-ADAPTIVE LAYER EXECUTION

LLMs exhibit contextual sparsity, where only a subset of computations is required to generate each
token. Previous works on token-adaptive execution have leveraged this sparsity to improve inference
efficiency (Hoefler et al., 2021; Schuster et al., 2022; Del Corro et al., 2023; Luo et al., 2025; He et al.,
2025; Jaiswal et al., 2024; Jiang et al., 2024; Liu et al., 2023). Building on this idea, D-LLM (Jiang
et al., 2024) integrates both layer-wise redundancy and contextual sparsity by applying token-adaptive
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execution at the transformer layer level, achieving significant FLOPs reduction while maintaining
accuracy.

As shown in Figure 1(c), D-LLM introduces a router module gl for each transformer layer to decide
whether to execute or bypass that layer. Each router is a lightweight Multi-Layer Perceptron (MLP)
performing binary classification (execute or bypass). During inference, the router selects the class
with the higher score:

bl = 1(argmax(gl(xl))) (2)
where 1(·) denotes the one-hot operation, and bl is a two-dimensional decision vector resulting in
either [1, 0] (execute layer) or [0, 1] (bypass layer). The output of the l-th layer is then computed as:

xl+1 =

{
xl + fl(xl), if bl = [1, 0]

xl, if bl = [0, 1]
(3)

D-LLM trains both the router parameters and task-specific adapters (Hu et al., 2022) during fine-
tuning to adapt pre-trained LLMs to downstream tasks under token-adaptive execution. Here, as the
argmax operation is non-differentiable and deterministic, D-LLM uses the Gumbel-Softmax with
reparameterization trick and straight-through estimator for the training.

To achieve the target execution ratio, D-LLM introduces a ratio regularization loss Lrate and the
overall training objective of D-LLM combines the cross-entropy loss LCE with this regularization:

LD-LLM = LCE + λ1 · Lrate s.t. Lrate = |Ravg −Rtarget| (4)

where Ravg denotes the average execution ratio across all layers during inference, and Rtarget is
the desired target ratio. λ1 is a hyperparameter that controls the strength of Lrate. In D-LLM,
Rtarget is set to 0.5. After fine-tuning, D-LLM achieves the target execution ratio and reduces
the FLOPs required for LLM inference to about 50% of those of the original model. Although
token-adaptive execution can deliver substantially higher FLOPs reduction compared to layer-wise
pruning, it leaves memory overhead unaddressed since the full set of model parameters remains
stored. Hence, a complementary strategy is necessary to reduce both computational cost and memory
footprint simultaneously.

2.3 QUANTIZATION

Quantization is a widely adopted compression technique that reduces model size by lowering the
precision of weight parameters from high to low precision (Dettmers et al., 2022; Xiao et al., 2023;
Frantar et al., 2022; Lin et al., 2024). Recent studies show that weights can be quantized to 4-bit
integers without significant accuracy loss when combined with careful calibration, even under post-
training quantization (PTQ) (Lin et al., 2024; Zhang et al., 2024). Since conventional LLMs store
weights in 16-bit floating-point (FP) format, 4-bit quantization achieves up to a 4× reduction in model
size and effectively alleviates memory overhead (Figure 1(d)). Therefore, modern PTQ algorithms
such as AWQ (Lin et al., 2024) are integrated into widely used LLM serving frameworks (e.g.,
vLLM), further enhancing deployment practicality. However, quantization does not reduce FLOPs, as
the total number of operations remains unchanged. Thus, integrating the two techniques (Figure 1(e))
offers the potential to build a more efficient LLM execution model that simultaneously addresses
computational cost and memory footprint.

3 PROPOSED QTALE

3.1 CHALLENGES OF INTEGRATING TOKEN-ADAPTIVE EXECUTION WITH QUANTIZATION

While token-adaptive layer execution reduces FLOPs and quantization reduces memory overhead,
directly applying PTQ to the token-adaptive execution model D-LLM introduces additional accuracy
degradation (details are provided in the Experimental Section and Appendix A.3). This degradation
arises from reduced redundancy in D-LLM models, which can be examined from two perspectives.

First, reduced training-path redundancy. Although D-LLM is designed for token-adaptive ex-
ecution, its training objective focuses only on meeting the average target execution ratio. This
allows solutions where half of the layers are permanently executed while the others are permanently
bypassed. Consequently, as shown in Figure 2, instead of evenly distributing execution across layers,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Heatmap of the average execution ratio for each layer of LLaMA3.1-8B with D-LLM. The
ratios are measured on the first 200 training samples after fine-tuning epochs 0, 3, and 6, across four
CommonsenseQA datasets: ARCe, ARCc, SIQA, and PIQA.

(a) Execution ratio (b) Decision flipping ratio

Figure 3: (a) Execution ratio and (b) execution decision flipping induced by Gumbel noise across
fine-tuning epochs in D-LLM. Results are reported for three low-execution layers (20, 23, and 26) of
LLaMA3.1-8B on the ARCe dataset.

D-LLM often converges to highly uneven execution patterns, closely resembling layer-wise pruning.
At the start of fine-tuning, router modules are biased toward execution, so most layers are active.
As training progresses, certain layers gradually stop receiving execution signals and thus rarely
participate in training. For example, in LLaMA3.1-8B, the 20th, 23rd, and 26th layers receive less
than 5% execution ratio after fine-tuning, with their ratios dropping sharply within the first three
epochs of a 10-epoch training process (Figure 3a). As a result, these layers have little opportunity
to participate in fine-tuning. This leads to sparsely explored paths through the model, ultimately
limiting robustness.

Second, reduced parameter redundancy. Deep learning models are generally overparameterized to
enhance training capacity, making them inherently tolerant to moderate errors during inference (Allen-
Zhu et al., 2019). For example, when a large pre-trained model is quantized, the network can rely
on redundant parameters to absorb quantization errors and preserve accuracy. In contrast, D-LLM
achieves efficiency by processing only about half of the transformer layers. As a result, each parameter
becomes more critical to inference, and quantization errors have a disproportionately large impact on
accuracy.

In summary, D-LLM reduces redundancy by both limiting the diversity of training paths and lowering
the number of active parameters during inference. This reduction in redundancy makes the model less
robust to quantization. Therefore, integrating token-adaptive execution with quantization requires
careful management of redundancy to preserve overall model robustness.

3.2 OVERVIEW OF QTALE

We propose QTALE, a token-adaptive execution method designed to be resilient against quantization
errors, thereby enabling seamless integration with quantization without sacrificing accuracy. To
address the two key limitations of conventional token-adaptive methods, namely reduced training
path redundancy and reduced parameter redundancy, QTALE introduces two components: (1) a
novel training strategy that involves diverse execution paths during fine-tuning and (2) a post-training
mechanism for adjusting the execution ratio at inference, providing flexible control over redundancy.
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3.3 QUANTIZATION-ROBUST TRAINING FOR TOKEN-ADAPTIVE EXECUTION

According to transformer layer-wise pruning studies Song et al. (2024); Men et al. (2024); Kim et al.
(2024), LLMs contain layers with relatively low contributions to residual path propagation. As a result,
uneven execution ratios that deactivate certain layers are consistent with the inherent characteristics
of LLMs, since not every layer contributes equally to final model performance. However, if execution
decisions consistently favor a fixed subset of layers, large portions of the model remain under-trained,
reducing redundancy and limiting robustness. To address this, we introduce randomness in path
generation to enhance training-path redundancy. This idea is inspired by stochastic regularization
techniques such as dropout (Srivastava et al., 2014) and stochastic depth (Huang et al., 2016), which
improve generalization by randomly dropping neurons or entire layers during training. In a similar
vein, introducing controlled randomness into execution decisions forces different subsets of layers to
participate in training, ensuring that more paths are explored.

As discussed in Section 2.2, D-LLM uses Gumbel-Softmax instead of argmax in Eq. 2 during
training. In this approach, the forward pass uses a hard mode of Gumbel-Softmax:

b̂l = 1(argmax(log(ĝl(xl)) + π)), π ∼ Gumbel(0, 1) (5)
where π is noise sampled from a Gumbel distribution. Please note that while the logarithm notation
log(ĝl(xl)) is often used in the Gumbel-Softmax equation, in practice the operation directly accepts
logits, which is the router output gl(xl) in this case. During backpropagation, a soft mode is applied:

b̃l,i =
exp ((log(ĝl(xl))i + πi)/τ)∑
i exp ((log(ĝl(xl))i + πi)/τ)

, i ∈ {0, 1} (6)

Figure 4: Histogram of data sam-
pled from π ∼ Gumbel(0, 1)

where τ is a temperature parameter that controls the sharpness
of the softmax. Since this approach introduces Gumbel noise
π, it initially injects stochasticity into routing decisions. How-
ever, during D-LLM training, this stochastic effect gradually
diminishes. Because the distribution of π ∼ Gumbel(0, 1) is
centered near 0 (Figure 4), the router logits must remain within
a moderate range (e.g., approximately [−1, 1]) for the noise to
effectively flip decisions and introduce stochasticity. Yet, as
the training objective of D-LLM focuses solely on maximizing
accuracy and meeting the target execution ratio, the gaps between bypass and execute logits grow
progressively larger as training advances (Figure 5). In this regime, the influence of Gumbel noise
becomes negligible, and decision flipping due to noise injection rarely occurs. For example, Fig-
ure 3b shows that the ratio of decision flipping caused by Gumbel noise drops to zero after Epoch 4,
indicating that stochasticity is essentially lost.

If the gap between bypass logits and execute logits can be properly regulated, the Gumbel noise can
effectively induce stochastic decisions, allowing diverse training paths and preventing the model from
collapsing into a fixed execution pattern. To achieve this, we introduce an entropy regularization loss
on the router outputs:

Lentropy = − 1

Nlayer

Nlayer∑
l=0

1∑
i=0

b̃l,i log(b̃l,i) (7)

Figure 5: Histogram of router output logits in D-LLM for three low-execution layers (20, 23, and 26)
of LLaMA3.1-8B. Logits are computed from the first 200 training samples after fine-tuning epochs 0,
3, and 6 on the ARCe dataset.
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Figure 6: Histogram of router output logits under the proposed quantization-robust training for three
low-execution layers (20, 23, and 26) of LLaMA3.1-8B. Logits are computed from the first 200
training samples after fine-tuning epochs 0, 3, and 6 on the ARCe dataset.

Figure 7: Comparison of Gumbel-noise–induced execution decision flipping across fine-tuning
epochs between D-LLM and the proposed quantization-robust training. Results are shown for three
low-execution layers (20, 23, and 26) of LLaMA3.1-8B on the ARCe dataset.

where Nlayer is the total number of transformer layers, and b̃l,i denotes the soft probability of the i-th
decision for layer l (Eq. 6). A higher entropy corresponds to a smaller logit gap between bypass and
execute classes, thereby increasing the likelihood that Gumbel noise can flip decisions and introduce
stochasticity. By encouraging higher entropy during training, more diverse execution paths are
explored, ensuring that additional layers remain actively involved in fine-tuning. The final fine-tuning
objective is defined as:

Ltotal = LCE + λ1 · Lrate − λ2 · Lentropy (8)

The hyperparameter λ2 balances the contribution of entropy maximization. By subtracting Lentropy ,
the training process explicitly encourages higher entropy.

Figure 6 shows the histogram of router logits after training with the proposed quantization-robust
method, whose training objective is defined in Eq. 8. Compared to the original D-LLM results in
Figure 5, the gap between bypass and execute logits is substantially narrower. As a result, the router
outputs remain within a range where Gumbel noise can meaningfully influence routing decisions.
This increases the likelihood of stochastic flipping in execution outcomes, as illustrated in Figure 7.
Such stochastic path exploration prevents the model from over-relying on a small subset of layers,
ensures more balanced participation of layers during training, and ultimately enhances robustness to
quantization.

3.4 EXECUTION RATIO ADJUSTMENT MECHANISM

Since token-adaptive layer execution inherently reduces parameter redundancy by activating only
a subset of layers, slightly increasing the execution ratio can reintroduce sufficient redundancy to
absorb quantization errors and better preserve accuracy. Although this adjustment introduces a
modest increase in FLOPs, the resulting improvement in robustness to quantization enables seamless
integration with quantization techniques. This integration reduces memory overhead and improves
the overall efficiency of LLMs.

However, conventional D-LLM provides no mechanism for tuning the execution ratio at inference
time. During inference, the execution decision for each layer is determined by an argmax operation
on the router output: a layer is executed if the score for execution exceeds the score for bypassing
(Eq. 2). This rule locks the model to the execution ratio established during training, where the ratio is
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enforced through the regularization loss Lrate (Eq. 4). As a result, any adjustment to the target ratio
requires retraining.

Retraining to achieve the redundancy needed for each deployment setting is impractical. Therefore, to
design an execution mechanism with inference-stage adjustability, the router must include a tunable
component. Moreover, to ensure predictable effects of such adjustments, this tunable component
should be normalized within a bounded range, and it should involve only a minimal number of
parameters to allow practical adjustment. To this end, we apply softmax to the D-LLM router output,
converting the class scores into probabilities within [0, 1] that sum to 1. Since all routers produce
probabilities under the same bounded distribution, a single global threshold θ can be shared across
layers. Thus, the execution ratio of the entire model can be controlled in a lightweight, training-free
manner with just one parameter θ. Under this mechanism, a layer is executed if the probability for
the execute class is greater than or equal to θ, which can be expressed as:

bl =

{
[1, 0], if pl,0 ≥ θ

[0, 1], if pl,1 < θ
where pl = softmax(gl(xl)) (9)

If θ = 0.5, Eq. 9 becomes equivalent to the argmax-based decision rule in Eq. 2, since the class
with the higher score is selected. Lowering θ below 0.5 increases the execution ratio by reducing
the required probability for execution, whereas raising θ above 0.5 decreases the execution ratio by
increasing this requirement. To adjust the execution threshold, we adopt a simple two-phase grid
search strategy with a small calibration dataset. Since the objective is to reintroduce redundancy, the
threshold is searched within the range (0, 0.5]. In the coarse-grained phase, we sweep across the full
target range using a large step size to quickly identify a promising region. In the fine-grained phase,
we refine the search within a narrower window around the best coarse-phase candidate, employing a
small step size to precisely determine the optimal threshold.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate the proposed QTALE on three open-source LLMs: LLaMA2-7B,
LLaMA3.1-8B, and LLaMA3.2-3B. For evaluation, we report zero-shot accuracy on the Common-
senseQA (CSQA) benchmark suite (Talmor et al., 2019), which includes PIQA, BoolQ, SIQA, ARCe,
ARCc, Winogrande (Winogr.), and OBQA (Bisk et al., 2020; Clark et al., 2019; Sap et al., 2019;
Clark et al., 2018; Sakaguchi et al., 2021; Mihaylov et al., 2018). We also evaluate zero-shot accuracy
on the MMLU dataset (Hendrycks et al., 2021) and measure perplexity (PPL) on the Stanford-Alpaca
dataset (Alpaca) (Taori et al., 2023) and SAMSum (Gliwa et al., 2019).

Baselines. We compare the proposed QTALE against three baselines: the widely adopted PTQ
method AWQ (Lin et al., 2024), the prior token-adaptive layer execution method D-LLM (Jiang et al.,
2024), and their naive integration, evaluating them in terms of accuracy/PPL, model size (memory
overhead), and FLOPs.

Implementation Details. In the experiments, all quantization is performed using the AWQ algorithm
with a group size of 128 (Lin et al., 2024). We evaluate both 4-bit and 3-bit integer quantization
settings. For token-adaptive layer execution, the fine-tuning configurations, including learning rate,
number of training epochs, and other hyperparameters, for both the proposed QTALE and D-LLM
follow the implementation details reported in the original D-LLM paper (Jiang et al., 2024).

4.2 ACCURACY/PPL EVALUATION

Table 1 and Table 2 present the accuracy and PPL results of the baseline methods and the proposed
QTALE. The full-layer execution model refers to the fine-tuned LLMs on downstream tasks without
applying token-adaptive layer execution. Across all benchmarks, token-adaptive layer execution
models trained with the D-LLM approach and the proposed QTALE with Lentropy for quantization-
robust training achieve comparable accuracy and PPL before quantization. However, when combined
with quantization, the D-LLM approach suffers from noticeable drops in accuracy and PPL compared
to the quantized full-layer execution models. In contrast, QTALE maintains performance close to that
of the quantized full models. For example, on the CSQA benchmark with LLaMA2-7B, the accuracy
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Table 1: Accuracy and PPL comparison on LLaMA2-7B and LLaMA3.1-8B. Accuracy is reported
on CSQA and MMLU, while PPL is reported on Alpaca. (Avg.: average)

Layer CSQA MMLU Alpaca
Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. (↑) (↑) (↓)

LLaMA2-7B
Full 83.73 87.98 79.58 82.53 65.27 81.61 83.00 80.53 54.26 3.23

16 D-LLM 83.51 88.17 79.02 81.06 66.04 81.22 81.40 80.06 52.83 4.33
QTALE 84.06 88.22 78.97 81.65 65.70 81.45 82.40 80.35 53.00 4.09
Full 81.34 87.67 79.53 79.97 62.37 81.14 79.40 78.77 51.74 3.22

4 D-LLM 81.23 86.20 77.18 79.08 62.03 78.14 77.40 77.32 50.47 4.43
QTALE 83.30 87.67 78.56 79.59 66.21 79.95 80.20 79.18 51.24 3.74
Full 78.02 83.76 74.36 71.38 55.29 74.51 68.20 72.22 46.12 3.30

3 D-LLM 74.65 80.02 73.34 71.55 55.03 74.43 65.00 70.57 42.84 5.35
QTALE 77.58 83.82 73.34 73.44 57.17 74.98 69.20 72.79 44.78 4.38

LLaMA3.1-8B
Full 80.04 88.19 88.90 87.58 77.03 84.21 85.20 81.28 59.12 3.57

16 D-LLM 79.84 86.02 89.35 86.24 75.68 83.43 84.20 80.45 58.85 5.06
QTALE 78.81 86.18 87.37 87.16 78.16 83.43 84.80 80.54 58.40 4.90
Full 79.53 86.29 87.52 86.07 75.17 83.58 83.00 79.67 56.16 3.65

4 D-LLM 79.27 83.57 86.88 84.93 69.88 80.51 81.00 77.68 55.36 5.47
QTALE 79.27 85.26 88.13 85.56 74.83 82.08 82.40 79.17 55.86 4.11
Full 72.11 79.65 81.58 77.61 59.90 71.27 69.60 69.54 44.56 4.83

3 D-LLM 68.99 76.88 77.33 76.09 55.29 71.19 65.20 66.81 43.49 7.24
QTALE 69.96 77.20 78.98 77.57 61.52 75.06 71.80 69.65 45.11 5.29

Table 2: Accuracy and PPL comparison on LLaMA3.2-3B. Accuracy is reported on CSQA and
MMLU, while PPL is reported on Alpaca and Samsum. (Avg.: average)

Layer CSQA MMLU Alpaca Samsum
Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. (↑) (↑) (↓) (↓)

Full 84.98 87.58 77.94 82.41 69.54 81.69 79.40 80.51 53.91 3.62 4.02
16 D-LLM 83.90 62.92 78.30 82.28 69.03 78.93 78.00 76.19 54.02 4.95 4.96

QTALE 84.66 84.09 77.38 83.25 69.62 79.79 79.00 79.68 54.64 4.91 4.79
Full 81.12 86.36 75.59 80.09 65.27 76.80 77.60 77.55 47.95 3.71 4.15

4 D-LLM 82.37 62.37 76.56 80.35 66.21 75.06 74.80 73.96 51.62 5.22 5.20
QTALE 82.97 85.90 76.36 81.31 67.49 77.66 77.20 78.41 52.12 4.26 4.89
Full 64.64 79.44 66.38 67.55 51.96 65.90 66.00 65.98 36.79 5.20 5.31

3 D-LLM 64.36 62.56 57.32 68.43 47.70 65.90 51.60 59.70 40.57 7.33 6.07
QTALE 71.06 62.74 61.72 69.23 48.81 66.46 59.60 62.82 42.09 5.54 5.64

of the 3-bit quantized full-layer execution model is 72.22%, while the 3-bit D-LLM model drops to
70.57%. With the proposed QTALE, the accuracy is recovered to 72.79%. A similar trend is even
more pronounced in the LLaMA3.2-3B model. Under 4-bit quantization, QTALE achieves 78.41%
accuracy on the CSQA benchmark, whereas the quantized full-layer execution baseline shows 77.55%
accuracy, and D-LLM experiences a significant accuracy drop to 73.96%.

These results demonstrate that QTALE effectively restores the redundancy needed for robust quanti-
zation, enabling token-adaptive execution to be seamlessly integrated with low-bit quantization.

4.3 EFFICIENCY EVALUATION

FLOPs and Memeory Usage. Table 3 presents the efficiency evaluation results in terms of model
size (memory overhead) and FLOPs. With token-adaptive layer execution alone, the model size
remains unchanged, 12.6 GB for LLaMA2-7B and 15.0 GB for LLaMA3.1-8B, making deployment
on memory-constrained devices challenging. In contrast, when combined with quantization, the
model size is reduced to below 3.6 GB and 4.6 GB for LLaMA2-7B and LLaMA3.1-8B, respectively.
With the proposed execution ratio adjustment mechanism, the execution ratio does not drastically
increase on CSQA and MMLU benchmarks, since these tasks can recover accuracy with only a slight
increase in redundancy. On the other hand, for the Alpaca benchmark, recovering PPL requires a
more substantial increase in the execution ratio. Overall, these results demonstrate that the proposed
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Table 3: Model size and FLOPs required for single-token processing with LLaMA2-7B and
LLaMA3.1-8B. Numbers in parentheses denote FLOPs relative to full-model execution.

LLaMA2-7B LLaMA3.1-8B
Layer Model FLOPs Model FLOPs

Bits Execute (GB) CSQA MMLU Alpaca (GB) CSQA MMLU Alpaca

Full 12.6 13.0 (1.00x) 13.0 (1.00x) 13.0 (1.00x) 15.0 15.6 (1.00x) 15.6 (1.00x) 15.6 (1.00x)

16 D-LLM 13.5 6.85 (0.53x) 7.18 (0.55x) 7.76 (0.60x) 16.0 8.39 (0.54x) 8.53 (0.55x) 9.30 (0.60x)
QTALE 6.81 (0.53x) 7.27 (0.56x) 8.03 (0.62x) 8.24 (0.53x) 8.55 (0.55x) 9.65 (0.62x)

Full 3.6 13.0 (1.00x) 13.0 (1.00x) 13.0 (1.00x) 5.3 15.6 (1.00x) 15.6 (1.00x) 15.6 (1.00x)

4 D-LLM 4.5 7.18 (0.53x) 7.62 (0.59x) 7.86 (0.61x) 6.3 8.46 (0.54x) 8.53 (0.55x) 9.30 (0.60x)
QTALE 6.97 (0.54x) 7.69 (0.59x) 10.47 (0.81x) 8.44 (0.54x) 8.57 (0.55x) 12.53 (0.80x)

Full 2.8 13.0 (1.00x) 13.0 (1.00x) 13.0 (1.00x) 4.5 15.6 (1.00x) 15.6 (1.00x) 15.6 (1.00x)

3 D-LLM 3.8 7.21 (0.56x) 7.46 (0.58x) 8.24 (0.64x) 5.5 8.44 (0.54x) 8.59 (0.55x) 9.49 (0.61x)
QTALE 7.13 (0.55x) 7.63 (0.59x) 11.01 (0.85x) 8.54 (0.55x) 8.66 (0.56x) 12.91 (0.83x)

Table 4: Inference latency for processing 256 samples from each benchmark on an NVIDIA A6000
GPU (batch size 4; numbers in parentheses indicate speedup over the 16-bit full-model baseline).

Layer CSQA
Execute PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg.

16-bit
Full 21.4 s (1.00x) 27.4 s (1.00x) 18.6 s (1.00x) 27.9 s (1.00x) 30.5 s (1.00x) 11.1 s (1.00x) 23.1 s (1.00x) 22.8 s (1.00x)
D-LLM 15.8 s (1.36x) 20.1 s (1.37x) 14.7 s (1.26x) 21.8 s (1.28x) 23.6 s (1.29x) 9.3 s (1.20x) 19.1 s (1.21x) 17.8 s (1.28x)
QTALE 16.3 s (1.31x) 20.2 s (1.36x) 14.6 s (1.28x) 21.8 s (1.28x) 24.5 s (1.25x) 8.9 s (1.25x) 18.5 s (1.25x) 17.8 s (1.28x)

4-bit
Full 22.2 s (0.96x) 28.6 s (0.96x) 19.5 s (0.95x) 28.9 s (0.96x) 30.6 s (1.00x) 11.2 s (0.99x) 23.8 s (0.97x) 23.5 s (0.97x)
D-LLM 17.1 s (1.25x) 20.5 s (1.33x) 15.0 s (1.24x) 21.2 s (1.31x) 23.5 s (1.30x) 8.8 s (1.26x) 18.5 s (1.25x) 17.8 s (1.28x)
QTALE 17.0 s (1.26x) 21.1 s (1.30x) 14.7 s (1.27x) 21.6 s (1.29x) 26.2 s (1.16x) 8.6 s (1.29x) 18.1 s (1.28x) 18.2 s (1.26x)

approach enables dynamic adjustment of the execution ratio to balance efficiency and accuracy
requirements across different benchmarks.

Speedup. To measure the actual speedup achievable with token-adaptive layer execution and
quantization, we evaluate inference latency on the CSQA dataset. For each experiment, we randomly
sampled 256 examples and ran inference on a single NVIDIA A6000 GPU (48 GB VRAM) with a
batch size of 4. As shown in Table 4, the speedup achieved by D-LLM and QTALE is comparable.
Token-adaptive layer execution yields an average speedup of 1.28×. However, there is no additional
speedup when applying quantization, and QTALE shows a slight slowdown due to its increased
execution ratio. Nevertheless, as shown in Table 3, quantization provides a substantial reduction in
memory usage, which is important in deployment scenarios with limited VRAM. For example, on a
consumer-level GPU such as the NVIDIA RTX 5070 with only 12 GB of VRAM, the 4-bit quantized
model runs successfully, whereas the 16-bit model triggers an out-of-memory error.

4.4 ADDITIONAL ANALYSIS

Impact of Key Components. The ablation study evaluates the impact of the two key components of
QTALE: (1) quantization-robust training with Lentropy and (2) execution ratio adjustment with θ. As
shown in Table 5, both components play essential roles in recovering accuracy/PPL after quantization.
The quantization-robust training with Lentropy increases the entropy of router logits, ensuring that
the gap between execute and bypass logits remains small. As a result, it stabilizes path diversity
during training but does not alter the execution ratio after fine-tuning. In contrast, the execution
ratio adjustment with θ directly controls the number of executed layers. As discussed in the previous
section, the amount of adjustment required to recover accuracy and PPL varies across models and
benchmarks, depending on the level of redundancy needed for robustness.

Compatibility with Other PTQ Techniques. To demonstrate the effectiveness of QTALE when com-
bined with other PTQ methods beyond AWQ, we evaluated its performance with the MagR+GPTQ
quantization scheme (Zhang et al., 2024; Frantar et al., 2022). Table 6 presents the results when
QTALE is paired with MagR. QTALE consistently outperforms D-LLM under both 4-bit and 3-
bit quantization settings. These results confirm that QTALE presents the quantization-robustness
regardless of PTQ methods and provides superior performance stability under quantization noise.
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Table 5: Ablation study on the impact of the proposed quantization-robust training with Lentropy and
execution ratio adjustment with θ. Results are reported in terms of accuracy (Acc.), PPL, and Ravg

(average layer execution ratio) for token-adaptive layer execution models under 4-bit quantization.

CSQA MMLU Alpaca
Model Lentropy θ Acc. Ravg Acc. Ravg PPL Ravg

LLaMA2-7B x 0.5 77.32 0.53 50.47 0.55 4.43 0.61
x adjust 78.48 0.56 50.62 0.57 3.74 0.77
o 0.5 78.86 0.53 51.24 0.56 4.35 0.63
o adjust 79.18 0.54 51.24 0.59 3.74 0.81

LLaMA3.1-8B x 0.5 77.68 0.54 55.36 0.55 5.47 0.60
x adjust 78.14 0.59 55.36 0.56 4.30 0.76
o 0.5 78.86 0.53 55.80 0.55 5.01 0.63
o adjust 79.17 0.54 55.86 0.55 4.11 0.80

Table 6: Accuracy and PPL of LLaMA3.2-3B under MagR+GPTQ quantization.(Avg.: average)
Layer CSQA MMLU Alpaca

Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. (↑) (↑) (↓)

16
Full 84.98 87.58 77.94 82.41 69.54 81.69 79.40 80.51 53.91 3.62
D-LLM 83.90 62.92 78.30 82.28 69.03 78.93 78.00 76.19 54.02 4.95
QTALE 84.66 84.09 77.38 83.25 69.62 79.79 79.00 79.68 54.64 4.79

4
Full 81.07 85.71 75.28 79.08 62.29 76.24 76.60 76.61 47.83 4.05
D-LLM 80.25 62.53 76.20 79.21 64.76 75.22 75.00 73.31 48.05 5.84
QTALE 81.88 84.95 75.03 80.72 67.32 76.64 76.80 77.62 49.38 4.73

3 Full 64.64 80.45 67.14 69.53 45.31 66.54 62.60 65.17 36.34 5.10
D-LLM 66.49 60.48 68.73 71.55 53.41 69.14 68.80 65.51 39.96 7.29
QTALE 71.76 74.95 66.89 71.25 56.48 65.90 66.60 67.76 40.04 6.12

Table 7: Accuracy and PPL comparison on LLaMA3.2-3B for dense and pruned models. Accuracy is
reported on CSQA and MMLU, while PPL is reported on Alpaca.(Avg.: average)

Layer CSQA MMLU Alpaca
Sparsity Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. (↑) (↑) (↓)

Full 84.98 87.58 77.94 82.41 69.54 81.69 79.40 80.51 53.91 3.62
0% D-LLM 83.90 62.92 78.30 82.28 69.03 78.93 78.00 76.19 54.02 4.95

QTALE 84.66 84.09 77.38 83.25 69.62 79.79 79.00 79.68 54.64 4.79

Full 75.24 74.49 71.39 71.51 51.37 71.82 62.60 68.35 40.46 5.76
50% D-LLM 62.19 62.31 71.44 73.32 52.65 71.43 51.60 63.56 43.12 8.48

QTALE 71.06 66.63 70.11 74.87 55.29 72.22 68.20 68.34 39.89 6.14

Compatibility with Other Compression Techniques. The proposed training scheme enhances
quantization robustness by exposing the model to diverse execution paths during fine-tuning, which
makes it generally resilient to inference-time perturbations that may alter the selected routing path.
To assess its effectiveness when combined with other compression methods such as pruning, we
apply 50% unstructured sparsity to a QTALE-trained model using Wanda (Sun et al., 2024) for
weight pruning. Table 7 reports the corresponding performance. While D-LLM exhibits a substantial
performance drop under 50% sparsity, QTALE compensates for the loss of weights and achieves
performance comparable to the full-layer execution model. These results demonstrate that QTALE
has strong potential to be extended to various post-training compression techniques.

5 CONCLUSION

To address the challenge of integrating token-adaptive layer execution with quantization for efficient
LLM inference, this paper proposes QTALE, a novel framework that enables seamless integration of
token-adaptive execution with quantization without sacrificing accuracy. QTALE introduces two key
components: quantization-robust training with entropy regularization, which preserves training-path
diversity, and inference-time execution ratio adjustment, which reintroduces redundancy when needed
for robustness. Experimental results demonstrate that QTALE preserves accuracy after integrating
token-adaptive execution with quantization, maintaining the gap to quantization-only models within
0.5% on CommonsenseQA, while simultaneously reducing both FLOPs and memory footprint. In
summary, QTALE provides a practical and unified solution for efficient LLM deployment, effectively
bridging the complementary benefits of token-adaptive execution and quantization.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Training Datasets. Consistent with previous work D-LLM (Jiang et al., 2024), we use the official
training split of each downstream benchmark—including CommonsenseQA tasks (PIQA, BoolQ,
SIQA, ARCe, ARCc, Winogrande, and OBQA), MMLU, and Alpaca—for the fine-tuning stage of
QTALE. That is, for each task, the model is adapted using the benchmark’s official training set. For
example, models fine-tuned on the Alpaca training set are evaluated on the Alpaca test set.

Training Hyperparameter. We largely follow the hyperparameter configurations of D-LLM. The
learning rate is set to 0.009, λ1 is set to 0.1 for all benchmarks except for the Alpaca fine-tuning case,
where we use λ1 = 5. We fine-tune for 10 epochs, but for the MMLU benchmark, we reduced the
number of epochs from 10 to 3 due to its significantly larger training set compared to the other tasks.
We consistently applied an entropy weight (λ2) of 0.01 across all evaluated datasets. Regarding the
batch size, LLaMA2-7B and LLaMA3.1-8B use various batch sizes as listed in Table 8, while for
LLaMA3.2-3B we fixed the batch size to 4 across all training experiments for consistency.

Table 8: Batch sizes used for fine-tuning across different model configurations.

Model PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA MMLU Alpaca

LLaMA2-7B 4 4 8 1 1 4 2 7 7
LLaMA3.1-8B 4 4 7 6 6 4 6 6 7
LLaMA3.2-3B 4 4 4 4 4 4 4 4 4

Threshold Calibration. To calibrate the threshold, we use a calibration set of 300 samples and apply
a simple grid-search procedure with a two-stage coarse-to-fine strategy. We first conduct a coarse
search with a step size of 0.05 to identify the approximate optimal region, then perform a fine-grained
search with a step size of 0.01 around the selected candidate.

A.2 SENSITIVITY TO HYPERPARAMETER

Sensitivity to the entropy regularization weight λ2. During fine-tuning, the other loss terms (e.g.,
execution-ratio loss) continue to decrease as training progresses, whereas the entropy loss saturates
relatively quickly. Therefore, an overly large λ2 suppresses the impact of these other losses. For this
reason, we set λ2 = 0.1λ1. To analyze sensitivity, we scan λ2 over a wide range from 0.005 to 0.5
on ARCc benchmark with LLaMA3.2-3B and reported the results in Figure 8. We observe:

• When λ2 is near the default value λ2 = 0.1λ1 = 0.01, the accuracy remains stable with
minimal variation.

• When λ2 becomes substantially larger, the accuracy begins to fluctuate and slightly de-
creases.

Overall, QTALE is insensitive to λ2 within a reasonable neighborhood around the chosen value, and
performance remains stable.

Figure 8: Accuracy of LLaMA3.2-3B on the ARCc benchmark after fine-tuning with different λ2

settings. The dashed line indicates the trend line.
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(a) w/o Lentropy (b) w/ Lentropy

Figure 9: Execution Ratio–Threshold curves for four representative CSQA tasks (ARCc, ARCe,
BoolQ, and Winogrande).

(a) ARCc (b) ARCe

(c) BoolQ (d) Winogr.

Figure 10: Accuracy–Execution Ratio curves for four representative CSQA tasks (ARCC, ARCE,
BoolQ, and Winogr.). We compare the baseline without Lentropy (D-LLM) against the proposed
method with Lentropy (QTALE) on LLaMA3.2-3B.

Sensitivity to the inference threshold θ We also evaluate LLaMA3.2-3B across a wide range of
inference thresholds θ, with results shown in Figures 9 and 10. Our observations are:

• As θ decreases, the execution ratio generally increases, although the magnitude differs across
tasks (Figure 9).

• For models trained with entropy regularization, accuracy improves as the execution ratio
increases and eventually saturates (Figure 10).

• For models trained without entropy regularization (i.e., the D-LLM training setup), higher
execution ratios do not consistently improve accuracy and can even degrade performance
indicating poor adaptability to diverse execution paths, as discussed in Section 3.1 of our
manuscript (Figure 10).

This behavior demonstrates that QTALE induces a monotonic and predictable relationship between
the threshold and accuracy, enabling a simple calibration strategy (e.g., grid search) to reliably select
an appropriate threshold.
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A.3 ADDITIONAL ANALYSIS OF INTEGRATING TOKEN-ADAPTIVE LAYER EXECUTION AND
QUANTIZATION

The primary reason accuracy degrades when combining token-adaptive execution with quantization
is that quantization significantly disrupts the learned routing patterns. Token-adaptive models (e.g.,
D-LLM) assume a stable execution path after fine-tuning. However, low-bit quantization perturbs
hidden states and router logits, causing substantial path drift.

For example, under 3-bit quantization, 39.75% of tokens in SIQA and 24.68% of tokens in OBQA
switch their execution path compared to the FP16 model. This drift often pushes tokens toward
pruned, lower-capacity paths and alters routing boundaries, directly harming accuracy. QTALE
mitigates this effect by employing an entropy-based objective that restores path redundancy and
produces smoother, more quantization-robust routing behavior. Consequently, QTALE maintains
accuracy close to quantized full models, unlike prior token-adaptive approaches.

Table 9: Token path change statistics under 3-bit quantization.

Dataset Bits Total Tokens Path Changed Path Change Rate

SIQA 3 194,518 77,326 39.75%
OBQA 43,768 10,800 24.68%

A.4 MORE EVALUATION RESULTS

A.4.1 COMPARISON WITH OTHER EFFICIENCY TECHNIQUE

To compare QTALE against other efficiency methods, we additionally evaluate structured pruning
combined with quantization. Since layer-wise pruning is known to provide a better speedup–accuracy
trade-off than other structured pruning strategies for LLMs, we adopted SLEB, a state-of-the-art
layer-wise pruning method, for this experiment (Song et al., 2024). The evaluation is conducted
on LLaMA2-7B, and the results are shown in Table 5. In terms of speedup, 20% layer pruning
achieves a similar acceleration to QTALE, yielding approximately 1.25× over the baseline full-
layer execution model. Compared to QTALE, structured pruning provides better memory efficiency
because redundant layers are removed entirely. However, the accuracy degradation under 20%
pruning is substantially larger than that of QTALE (Note that accuracy of QTALE is reported on
Table 1). Even when we consider a milder setting such as 10% layer pruning, QTALE consistently
achieves better accuracy and perplexity. These results highlight that QTALE offers a more favorable
accuracy–efficiency trade-off compared to structured pruning combined with quantization.

Table 10: Accuracy, PPL, and model size for SLEB-pruned LLaMA2-7B under 4-bit and 3-bit AWQ
quantization. Avg. denotes the average CSQA accuracy.

Model CSQA MMLU Alpaca
Sparsity (GB) Bits PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. (↑) (↑) (↓)

10%
11.0 16 83.19 86.82 72.01 79.97 61.86 68.90 77.00 75.68 46.94 3.61
2.9 4 80.20 86.88 71.03 76.68 58.53 62.43 74.60 72.91 44.87 3.58
2.2 3 71.16 77.15 64.48 64.73 45.73 56.75 55.20 62.17 34.71 4.45

20%
9.9 16 76.77 75.07 67.20 73.53 52.73 60.62 65.00 67.27 44.06 4.71
2.6 4 72.85 72.32 65.66 68.94 47.87 55.56 60.20 63.34 42.35 4.76
1.9 3 53.97 48.55 49.08 44.02 30.38 54.38 25.20 43.65 31.56 7.54

A.4.2 MIXED-PRECISIONQUANTIZATION

To evaluate QTALE under more challenging precision settings, we consider a mixed-precision config-
uration that combines 2-bit and 4-bit weights. Specifically, we interleave 4-bit and 2-bit quantization
in a layer-wise manner (i-th layer: 4-bit, (i+1)-th layer: 2-bit). This mixed-precision setup introduces
substantially higher quantization noise. We apply MagR+GPTQ for quantization (Zhang et al., 2024;
Frantar et al., 2022) and evaluate the LLaMA2-7B model. As shown in Table 11, even under these
demanding conditions, QTALE consistently provides stronger quantization robustness compared to
D-LLM.
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Table 11: Evaluation results of mixed 2&4-bit quantization on the LLaMA2-7B model.

Layer CSQA
Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. MMLU Alpaca

Accuracy

LoRA 60.17 70.51 62.44 66.75 38.40 53.73 60.40 58.91 30.54 12.67
D-LLM 61.59 61.36 34.03 63.34 47.61 50.43 59.00 53.91 30.99 61.25
QTALE 61.04 63.90 50.15 65.74 49.32 51.07 62.20 57.63 27.05 35.20

Execution Ratio

D-LLM 0.5103 0.5100 0.5945 0.5274 0.6115 0.7781 0.5639 0.5851 0.5554 0.6578
QTALE 0.5131 0.5443 0.6099 0.5337 0.6376 0.8740 0.5815 0.6134 0.5827 0.8306

Threshold (θ)

QTALE 0.05 0.45 0.49 0.41 0.38 0.41 0.45 – 0.20 0.05

A.4.3 OTHER OPTIMAL THRESHOLD SEARCHING METHODS

Beyond the heuristic grid search used for threshold calibration in QTALE, we explored several
optimization-based approaches for threshold tuning. We primarily examined two categories of
methods: evolution strategies and Bayesian optimization. For the evolution-strategy approach, we
adopted Natural Evolution Strategies (NES) (Wierstra et al., 2014), which iteratively updates the
threshold distribution through gradient-based estimation. For Bayesian optimization, we tested both
(i) a standard Gaussian Process–based Bayesian optimizer provided as a Python package (Nogueira,
2014–) (denoted as Bayes) and (ii) the Bayesian optimization algorithm implemented in the Optuna
framework (Akiba et al., 2019), which leverages the Tree-structured Parzen Estimator (TPE). As
shown in Table 12, these more advanced optimization methods are often able to discover thresholds
that yield slightly better accuracy. However, when considering the overall calibration time, the simple
grid search remains a competitive and practical choice.

Table 12: Performance comparison of different threshold calibration strategies.

CSQA
Method PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg.

Accuracy
grid 76.20 82.86 85.90 81.31 67.49 77.66 77.20 78.37
nes 76.46 83.46 86.08 81.82 67.75 78.22 76.60 78.63
bayes 76.71 83.79 86.17 81.82 67.75 78.77 77.00 78.86
optuna 76.66 83.73 86.23 81.73 67.66 78.69 77.60 78.90

Execution Ratio
grid 0.5425 0.5244 0.5511 0.5505 0.5448 0.5258 0.5385 0.5396
nes 0.5177 0.5259 0.5387 0.5349 0.5488 0.5203 0.5326 0.5313
bayes 0.5198 0.5251 0.5483 0.5347 0.5441 0.5218 0.5381 0.5331
optuna 0.5195 0.5253 0.5452 0.5333 0.5444 0.5217 1.0000 0.7013

Best Threshold (θ)
grid 0.0500 0.0300 0.0600 0.0400 0.2500 0.2500 0.1000 –
nes 0.0120 0.0967 0.3930 0.1965 0.1952 0.4542 0.0664 –
bayes 0.3835 0.1042 0.1460 0.2024 0.2675 0.4125 0.0760 –
optuna 0.3932 0.1017 0.1776 0.2442 0.2625 0.4140 0.0000 –

Calibration Time (s)
grid 803.83 621.55 707.16 1051.51 959.80 576.62 940.97 808.78
nes 2476.38 1928.49 2425.95 3304.38 3606.26 1620.04 2994.07 2622.22
bayes 832.21 2216.38 717.25 2624.23 999.65 1862.74 3108.58 1765.85
optuna 1206.63 1589.58 922.49 1888.10 1459.43 1374.25 2053.64 1499.16
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A.4.4 DETAILED EXECUTION RATIO AND THRESHOLD RESULTS

In this section, we provide detailed results of the layer execution ratios and the corresponding
thresholds (θ) used across our experiment. Tables 13 and 14 provides execution ratios and thresholds
(θ) for LLaMA2-7B and LLaMA3.1-8B, which correspond to the results reported in Table 1. Tables 15
and 16 provides execution ratios and thresholds (θ) for LLaMA3.2-3B, corresponding to the results
reported in Tables 2 and 7, respectively.

Table 13: Execution Ratio and threshold results for LLaMA2-7B

Layer CSQA
Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. MMLU Alpaca

Execution Ratio

16 D-LLM 0.5088 0.5306 0.5087 0.5209 0.5943 0.5163 0.5591 0.5367 0.5546 0.5989
QTALE 0.5069 0.5203 0.5319 0.5209 0.5531 0.5238 0.5222 0.5300 0.5611 0.6203

4 D -LLM 0.5128 0.5756 0.5888 0.5228 0.5361 0.5250 0.5613 0.5513 0.5884 0.6066
QTALE 0.5284 0.5275 0.5322 0.5334 0.5747 0.5366 0.5353 0.5453 0.5941 0.8086

3 D-LLM 0.5141 0.5825 0.5875 0.5234 0.6002 0.5251 0.5628 0.5590 0.5763 0.6359
QTALE 0.5544 0.5269 0.5319 0.5584 0.6099 0.5263 0.5441 0.5551 0.5886 0.8504

Threshold (θ)

16
QTALE

0.50 0.50 0.50 0.50 0.50 0.50 0.50 – 0.50 0.50
4 0.25 0.30 0.50 0.23 0.12 0.22 0.15 – 0.05 0.05
3 0.05 0.35 0.50 0.10 0.22 0.40 0.15 – 0.08 0.05

Table 14: Execution Ratio and threshold results for LLaMA3.1-8B

Layer CSQA
Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg. MMLU Alpaca

Execution Ratio

16 D-LLM 0.5244 0.5241 0.5691 0.5341 0.5172 0.5272 0.5772 0.5402 0.5481 0.5972
QTALE 0.5068 0.5070 0.5317 0.5307 0.5517 0.5340 0.5436 0.5319 0.5494 0.6199

4 D-LLM 0.5244 0.5241 0.5691 0.5341 0.5172 0.5272 0.5772 0.5402 0.5481 0.5972
QTALE 0.5066 0.5077 0.5569 0.5671 0.5666 0.5334 0.5572 0.5432 0.5503 0.8046

3 D-LLM 0.5344 0.5206 0.5700 0.5353 0.5384 0.5256 0.5719 0.5435 0.5516 0.6094
QTALE 0.5086 0.5059 0.5639 0.5869 0.5951 0.5381 0.5401 0.5494 0.5564 0.8294

Threshold (θ)

16
QTALE

0.50 0.50 0.50 0.50 0.50 0.50 0.50 – 0.50 0.50
4 0.30 0.50 0.25 0.20 0.25 0.50 0.10 – 0.45 0.05
3 0.10 0.50 0.22 0.05 0.08 0.50 0.46 – 0.32 0.05

Table 15: Execution ratio and threshold results for LLaMA3.2-3B

Layer CSQA
Bits Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg MMLU Alpaca Samsum

Execution Ratio

16 D-LLM 0.5095 0.5074 0.5343 0.5197 0.5321 0.5285 0.5301 0.5278 0.5607 0.6132 0.5952
QTALE 0.5349 0.5158 0.5097 0.5252 0.5336 0.5204 0.5316 0.5273 0.5469 0.6107 0.5947

4 D-LLM 0.5099 0.5069 0.5292 0.5196 0.5336 0.5297 0.5309 0.5275 0.5604 0.6199 0.5978
QTALE 0.5425 0.5163 0.5511 0.5505 0.5448 0.5258 0.5385 0.5433 0.5767 0.7775 0.6832

3 D-LLM 0.5095 0.5090 0.5285 0.5263 0.5345 0.5317 0.5287 0.5285 0.5598 0.6382 0.6045
QTALE 0.5459 0.5226 0.5472 0.5347 0.5450 0.5284 0.5441 0.5401 0.5528 0.7910 0.6902

Threshold (θ)

16
QTALE

0.50 0.50 0.50 0.50 0.50 0.50 0.50 – 0.50 0.50 0.50
4 0.05 0.03 0.06 0.04 0.25 0.25 0.10 – 0.26 0.05 0.05
3 0.09 0.15 0.12 0.20 0.21 0.30 0.16 – 0.3 0.05 0.05
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Table 16: Execution ratio and threshold results for LLaMA3.2-3B on dense and pruned models.

Layer CSQA
Sparsity Execution PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA Avg MMLU Alpaca

Execution Ratio

0% D-LLM 0.5095 0.5074 0.5343 0.5197 0.5321 0.5285 0.5301 0.5373 0.5607 0.6132
QTALE 0.5158 0.5097 0.5349 0.5252 0.5336 0.5204 0.5316 0.5469 0.5469 0.6107

50% D-LLM 0.5115 0.5065 0.5349 0.5188 0.5276 0.5259 0.5298 0.5221 0.5544 0.5946
QTALE 0.5196 0.5336 0.5576 0.5310 0.5813 0.5476 0.5382 0.5441 0.5489 0.7644

Threshold (θ)

0% QTALE 0.50 0.50 0.50 0.50 0.50 0.50 0.50 – 0.50 0.50
50% 0.36 0.05 0.04 0.29 0.03 0.05 0.17 – 0.17 0.05

A.5 EVALUATION ON INSTRUCTION-FOLLOWING BENCHMARK

With the LLaMA3.2-3B model fine-tuned on the Alpaca dataset, we evaluate the instruction-following
capabilities of both D-LLM and QTALE using AlpacaEval (Li et al., 2023). GPT-4o mini is used
as the evaluator. As shown in Figure 11, QTALE and D-LLM exhibit similar instruction-following
performance under the 16-bit setting. However, when applying 4-bit AWQ quantization, QTALE
significantly outperforms D-LLM, achieving a 70.46% win rate. We additionally provide qualitative
comparisons of instruction-following outputs under the 4-bit AWQ configuration in Examples 1–5,
which further highlight the quantization robustness of QTALE.

Figure 11: Win rates of QTALE over D-LLM on AlpacaEval, evaluated using GPT-4o mini. Results
are reported for both full-precision (16-bit) and quantized (4-bit) weight settings using the LLaMA3.2-
3B model.

Example 1

Instruction: What are some species of bears that are now extinct?
Model Outputs:
• QTALE (4-bit quantized): Unfortunately, many species of bears have become extinct. Some

include the American bear, spectacled bear, Chinese giant panda, Himalayan bear, and polar
bear.

• D-LLM (4-bit quantized): Answer Jonathan Crusher is a biologist at the University of
Illinois. He has studied the evolution of the bear species for over 10 years. He has also been a
consultant on the movie "The Bear King", released by Universal Studios in 2019.

Instruction: Why do a lot of scientists not believe in God or Satan?
Model Outputs:
• QTALE (4-bit quantized): Many scientists believe scientific explanations are sufficient and

see no need for supernatural beings. Others argue religious beliefs lack empirical evidence.
• D-LLM (4-bit quantized): Why do you, who a toeh and forth between between belief-bel

Bel or vice vice vice.
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Example 2

Instruction: Please tell me the history of Walt Disney.
Model Outputs:
• QTALE (4-bit quantized): I heard somewhere that it was started by two men, but I don’t

remember. He moved between studios and had to pay royalties before using some works.
• D-LLM (4-bit quantized): how they became an incredibly great leader leaders of the time

period.

Instruction: How are carbon fibers used in buildings?
Model Outputs:
• QTALE (4-bit quantized): Carbon fibers reinforce structural materials, strengthen electron-

ics, sports equipment, aerospace components, and medical devices due to their high strength
and low weight.

• D-LLM (4-bit quantized): and/or Movies and other for purposes of building bridges,
etcursos de worthwhiles Worthworth,ihu, huar Hore, and so on.

Example 3

Instruction: Tell me about alpacas.
QTALE (4-bit quantized): Alpacas are a domesticated camelid species from the Andes. They
are small, gentle, and valued for meat and dairy.
D-LLM (4-bit quantized): Alpacas are South American camelids raised for wool. They have
soft fur, gentle temperament, and are easily trained.

Example 4

Instruction: List all Canadian provinces in alphabetical order.
QTALE (4-bit quantized): Alberta, British Columbia, Manitoba, New Brunswick, Newfound-
land, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon, Northwest
Territories.
D-LLM (4-bit quantized): Alberta, British Columbia, Manitoba, New Brunswick, Newfound-
land, Nova Scotia, Ontario, Quebec, Saskatchewan, Yukon.

Example 5

Instruction: Write a Python program that prints the first 10 Fibonacci numbers.
QTALE (4-bit quantized):
import math

def fibonacci(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fibonacci(n-1) + fibonacci(n-2)

D-LLM (4-bit quantized):
for i in range(11):

print(i)
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