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ABSTRACT

Large language models (LLMs) demand substantial computational and memory
resources, posing challenges for efficient deployment. Two complementary ap-
proaches have emerged to address these issues: token-adaptive layer execution,
which reduces floating-point operations (FLOPs) by selectively bypassing layers,
and quantization, which lowers memory footprint by reducing weight precision.
However, naively integrating these techniques leads to additional accuracy degra-
dation due to reduced redundancy in token-adaptive models. We propose QTALE
(Quantization-Robust Token-Adaptive Layer Execution for LLMs), a novel frame-
work that enables seamless integration of token-adaptive execution with quanti-
zation while preserving accuracy. Conventional token-adaptive methods reduce
redundancy in two ways: (1) by limiting the diversity of training paths explored
during fine-tuning, and (2) by lowering the number of parameters actively involved
in inference. To overcome these limitations, QTALE introduces two key com-
ponents: (1) a training strategy that ensures diverse execution paths are actively
explored during fine-tuning, and (2) a post-training mechanism that allows flexible
adjustment of the execution ratio at inference to reintroduce redundancy when
needed. Experimental results show that QTALE enables seamless integration of
token-adaptive layer execution with quantization, showing no noticeable accuracy
difference, with the gap to quantization-only models kept below 0.5% on Com-
monsenseQA benchmarks. By combining token-adaptive execution for FLOPs
reduction and quantization for memory savings, QTALE provides an effective
solution for efficient LLM deployment.

1 INTRODUCTION

LLMs have demonstrated remarkable proficiency in a wide range of natural language processing
tasks (Zhang et al., 2022; Touvron et al., 2023; Grattafiori et al., 2024; Yang et al., 2025). Conse-
quently, they have become the core components of modern Al applications. However, the substantial
size of these models poses significant challenges for real-world deployment. In particular, their
high memory consumption and computational demands substantially increase inference cost and
latency, limiting accessibility and scalability in resource-constrained environments. These constraints
hinder the widespread adoption of LLMs. As a result, improving the efficiency of LLM inference
has become a central research direction, with efforts focused on reducing computational cost and
memory footprint while maintaining task accuracy.

Recent research has introduced several techniques for efficient LLM inference, such as pruning (Fran-
tar & Alistarh, 2023; Sun et al., 2024; Song et al., 2024), quantization (Frantar et al., 2022; Dettmers
et al., 2022; Zhang et al., 2024), and token-adaptive execution (Jiang et al., 2024; Liu et al., 2023).
Each of these methods exploits redundancy in large models but targets different efficiency dimensions:
quantization reduces memory footprint by lowering weight precision, while token-adaptive layer
execution reduces FLOPs by bypassing unimportant layers. Despite their complementary benefits,
these techniques are typically studied in isolation. When applied together, their naive integration
often leads to additional accuracy degradation due to compounded redundancy reduction. This creates
a critical need for a unified approach that combines the strengths of both techniques while mitigating
their drawbacks.
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Figure 1: Overview of a standard LLM architecture and representative techniques for efficient
inference. The fraction of color fill in each transformer layer denotes memory cost per layer, while
dashed gray outlines indicate skipped execution.

In this paper, we propose QTALE, a novel framework that seamlessly integrates token-adaptive
layer execution with quantization while preserving accuracy. QTALE addresses the key limitations
of conventional token-adaptive methods, namely reduced training-path redundancy and reduced
parameter redundancy, through two innovations:

* A quantization-robust training strategy that ensures diverse execution paths are explored
during fine-tuning

* A post-training execution ratio adjustment mechanism that reintroduces redundancy at
inference time to improve robustness against quantization errors.

Through these contributions, QTALE enables the effective integration of token-adaptive layer execu-
tion with quantization, thereby reducing both FLOPs and memory usage.

2 BACKGROUND

2.1 TRANSFORMER LAYER-WISE PRUNING

Recently, many studies have demonstrated that LLMs exhibit redundancy at the transformer layer
level Song et al. (2024); Men et al. (2024); Kim et al. (2024). During inference, consecutive
transformer layers often produce highly similar outputs, since each block incrementally contributes to
the residual stream that spans the entire network. As shown in Figure 1(a), Modern LLM architectures
are typically built on residual connections, where the output of each transformer layer is the sum of
the previous layer output and the current layer computation:

T4 = o1 + fi(x) (1)

where x; is the input to the [-th layer and f;(-) is the transformer layer function. If z; 1 is sufficiently
similar to x;, the removal of the [-th layer has little effect on the final prediction. As layer-wise
pruning (Figure 1(b)) removes both the parameters of a layer and its associated computations, it
reduces FLOPs and memory overhead proportionally to the number of pruned layers. However,
because it eliminates entire transformer blocks, achieving high pruning ratios (e.g., beyond 20%)
typically leads to significant accuracy degradation.

2.2 TOKEN-ADAPTIVE LAYER EXECUTION

LLMs exhibit contextual sparsity, where only a subset of computations is required to generate each
token. Previous works on token-adaptive execution have leveraged this sparsity to improve inference
efficiency (Hoefler et al., 2021; Schuster et al., 2022; Del Corro et al., 2023; Luo et al., 2025; He et al.,
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2025; Jaiswal et al., 2024; Jiang et al., 2024; Liu et al., 2023). Building on this idea, D-LLM (Jiang
et al., 2024) integrates both layer-wise redundancy and contextual sparsity by applying token-adaptive
execution at the transformer layer level, achieving significant FLOPs reduction while maintaining
accuracy.

As shown in Figure 1(c), D-LLM introduces a router module g; for each transformer layer to
decide whether to execute or bypass that layer. Each router is a lightweight MLP performing binary
classification (execute or bypass). During inference, the router selects the class with the higher score:

b = Y arg max(g;(z;))) 2

where 1(-) denotes the one-hot operation, and b; is a two-dimensional decision vector resulting in
either [1, 0] (execute layer) or [0, 1] (bypass layer). The output of the I-th layer is then computed as:

- {:m + fi(zy), ifb =[1,0] o

a1, ifb, = [0,1]

D-LLM trains both the router parameters and task-specific adapters (Hu et al., 2022) during fine-
tuning to adapt pre-trained LLMs to downstream tasks under token-adaptive execution. Here, as the
arg max operation is non-differentiable and determinisitic, D-LLM uses the Gumbel-Softmax with
reparameterization trick and straight-through estimator for the training.

To achieve the target execution ratio, D-LLM introduces a ratio regularization loss L.t and the
overall training objective of D-LLM combines the cross-entropy loss L£c g with this regularization:

ED-LLM = ‘CCE + A1 : £rate s.L. ‘Crate = ‘Ravg - Rtarget| (4)

where 4,4 denotes the average execution ratio across all layers during inference, and Ryqrges 15
the desired target ratio. \; is a hyperparameter that controls the strength of L,4z.. In D-LLM,
Riarget 18 set to 0.5. After fine-tuning, D-LLM achieves the target execution ratio and reduces
the FLOPs required for LLM inference to about 50% of those of the original model. Although
token-adaptive execution can deliver substantially higher FLOPs reduction compared to layer-wise
pruning, it leaves memory overhead unaddressed since the full set of model parameters remains
stored. Hence, a complementary strategy is necessary to reduce both computational cost and memory
footprint simultaneously.

2.3 QUANTIZATION

Quantization is a widely adopted compression technique that reduces model size by lowering the
precision of weight parameters from high to low precision (Dettmers et al., 2022; Xiao et al., 2023;
Frantar et al., 2022; Lin et al., 2024). Recent studies show that weights can be quantized to 4-bit
integers without significant accuracy loss when combined with careful calibration, even under post-
training quantization (PTQ) (Lin et al., 2024; Zhang et al., 2024). Since conventional LLMs store
weights in 16-bit floating-point (FP) format, 4-bit quantization achieves up to a 4 x reduction in model
size and effectively alleviates memory overhead (Figure 1(d)). Therefore, modern PTQ algorithms
such as AWQ (Lin et al., 2024) are integrated into widely used LLM serving frameworks (e.g.,
vLLM), further enhancing deployment practicality. However, quantization does not reduce FLOPs, as
the total number of operations remains unchanged. Thus, integrating the two techniques (Figure 1(e))
offers the potential to build a more efficient LLM execution model that simultaneously addresses
computational cost and memory footprint.

3 PROPOSED QTALE

3.1 CHALLENGES OF INTEGRATING TOKEN-ADAPTIVE EXECUTION WITH QUANTIZATION

While token-adaptive layer execution reduces FLOPs and quantization reduces memory overhead,
directly applying PTQ to the token-adaptive execution model D-LLM introduces additional accuracy
degradation (details are provided in the Experimental Section). This degradation arises from reduced
redundancy in D-LLM models, which can be examined from two perspectives.

First, reduced training-path redundancy. Although D-LLM is designed for token-adaptive ex-
ecution, its training objective focuses only on meeting the average target execution ratio. This
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Figure 2: Heatmap of the average execution ratio for each layer of LLaMA3.1-8B with D-LLM. The
ratios are measured on the first 200 training samples after fine-tuning epochs 0, 3, and 6, across four
CommonsenseQA datasets: ARCe, ARCc, SIQA, and PIQA.
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Figure 3: (a) Execution ratio and (b) execution decision flipping induced by Gumbel noise across
fine-tuning epochs in D-LLM. Results are reported for three low-execution layers (20, 23, and 26) of
LLaMA3.1-8B on the ARCe dataset.

allows solutions where half of the layers are permanently executed while the others are permanently
bypassed. Consequently, as shown in Figure 2, instead of evenly distributing execution across layers,
D-LLM often converges to highly uneven execution patterns, closely resembling layer-wise pruning.
At the start of fine-tuning, router modules are biased toward execution, so most layers are active.
As training progresses, certain layers gradually stop receiving execution signals and thus rarely
participate in training. For example, in LLaMA3.1-8B, the 20th, 23rd, and 26th layers receive less
than 5% execution ratio after fine-tuning, with their ratios dropping sharply within the first three
epochs of a 10-epoch training process (Figure 3a). As a result, these layers have little opportunity
to participate in fine-tuning. This leads to sparsely explored paths through the model, ultimately
limiting robustness.

Second, reduced parameter redundancy. Deep learning models are generally overparameterized to
enhance training capacity, making them inherently tolerant to moderate errors during inference (Allen-
Zhu et al., 2019). For example, when a large pre-trained model is quantized, the network can rely
on redundant parameters to absorb quantization errors and preserve accuracy. In contrast, D-LLM
achieves efficiency by processing only about half of the transformer layers. As a result, each parameter
becomes more critical to inference, and quantization errors have a disproportionately large impact on
accuracy.

In summary, D-LLM reduces redundancy by both limiting the diversity of training paths and lowering
the number of active parameters during inference. This reduction in redundancy makes the model less
robust to quantization. Therefore, integrating token-adaptive execution with quantization requires
careful management of redundancy to preserve overall model robustness.

3.2 OVERVIEW OF QTALE

We propose QTALE, a token adaptive execution method designed to be resilient against quantization
errors, thereby enabling seamless integration with quantization without sacrificing accuracy. To
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address the two key limitations of conventional token adaptive methods, namely reduced training
path redundancy and reduced parameter redundancy, QTALE introduces two components: (1) a
novel training strategy that involves diverse execution paths during fine-tuning and (2) a post-training
mechanism for adjusting the execution ratio at inference, providing flexible control over redundancy.

3.3 QUANTIZATION-ROBUST TRAINING FOR TOKEN-ADAPTIVE EXECUTION

According to transformer layer-wise pruning studies Song et al. (2024); Men et al. (2024); Kim et al.
(2024), LLMs contain layers with relatively low contributions to residual path propagation. As a result,
uneven execution ratios that deactivate certain layers are consistent with the inherent characteristics
of LLMs, since not every layer contributes equally to final model performance. However, if execution
decisions consistently favor a fixed subset of layers, large portions of the model remain under-trained,
reducing redundancy and limiting robustness. To address this, we introduce randomness in path
generation to enhance training-path redundancy. This idea is inspired by stochastic regularization
techniques such as dropout (Srivastava et al., 2014) and stochastic depth (Huang et al., 2016), which
improve generalization by randomly dropping neurons or entire layers during training. In a similar
vein, introducing controlled randomness into execution decisions forces different subsets of layers to
participate in training, ensuring that more paths are explored.

As discussed in Section 2.2, D-LLM uses Gumbel-Softmax instead of arg max in Eq. 2 during
training. In this approach, the forward pass uses a hard mode of Gumbel-Softmax:

b, = A(arg max(log(gi(x;)) + 7)), 7~ Gumbel(0,1) 5)

where 7 is noise sampled from a Gumbel distribution. Please note that while the logarithm notation
log(g;(x;)) is often used in the Gumbel-Softmax equation, in practice the operation directly accepts
logits, which is the router output g;(2;) in this case. During backpropagation, a soft mode is applied:

P exp ((log(gi(x))s + m3)/7)
1,1

* Y exp ((log(gu(wr))i + m) /7)

where 7 is a temperature parameter that controls the sharpness 1000
of the softmax. Since this approach introduces Gumbel noise

i€{0,1} (6)

, it initially injects stochasticity into routing decisions. How- =
ever, during D-LLM training, this stochastic effect gradually 3 500
diminishes. Because the distribution of 7 ~ Gumbel(0,1) is
centered near 0 (Figure 4), the router logits must remain within 0

a moderate range (e.g., approximately [—1, 1]) for the noise to —-25 00 2|-5 50 75
efffzc.tively ﬂip .decisions and introduce stochasticity..Yf?t,.as the gure 4: Histo grzirinuf)f data sam-
training objective of D-LLM focuses solely on maximizing ac- 1

. . ) pled from 7 ~ Gumbel(0, 1)
curacy and meeting the target execution ratio, the gaps between
bypass and execute logits grow progressively larger as training advances (Figure 5). In this regime,
the influence of Gumbel noise becomes negligible, and decision flipping due to noise injection rarely
occurs. For example, Figure 3b shows that the ratio of decision flipping caused by Gumbel noise

drops to zero after Epoch 4, indicating that stochasticity is essentially lost.

If the gap between bypass logits and execute logits can be properly regulated, the Gumbel noise can
effectively induce stochastic decisions, allowing diverse training paths and preventing the model from
collapsing into a fixed execution pattern. To achieve this, we introduce an entropy regularization loss
on the router outputs:

Nlayer 1
1 ~ ~
»Cent'r‘opy = - N Z Z bl,i log(bl,i) @)
layer =0 i=0

where Njayer is the total number of transformer layers, and b; ; denotes the soft probability of the i-th
decision for layer [ (Eq. 6). A higher entropy corresponds to a smaller logit gap between bypass and
execute classes, thereby increasing the likelihood that Gumbel noise can flip decisions and introduce
stochasticity. By encouraging higher entropy during training, more diverse execution paths are
explored, ensuring that additional layers remain actively involved in fine-tuning. The final fine-tuning
objective is defined as:

Actotal = CCE + )\1 . E'r'ute - >\2 . Lentropy (8)
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The hyperparameter A, balances the contribution of entropy maximization. By subtracting Lentropys
the training process explicitly encourages higher entropy.

Figure 6 shows the histogram of router logits after training with the proposed quantization-robust
method, whose training objective is defined in Eq. 8. Compared to the original D-LLM results in
Figure 5, the gap between bypass and execute logits is substantially narrower. As a result, the router
outputs remain within a range where Gumbel noise can meaningfully influence routing decisions.
This increases the likelihood of stochastic flipping in execution outcomes, as illustrated in Figure 7.
Such stochastic path exploration prevents the model from over-relying on a small subset of layers,
ensures more balanced participation of layers during training, and ultimately enhances robustness to
quantization.

3.4 EXECUTION RATIO ADJUSTMENT MECHANISM

Since token-adaptive layer execution inherently reduces parameter redundancy by activating only
a subset of layers, slightly increasing the execution ratio can reintroduce sufficient redundancy to
absorb quantization errors and better preserve accuracy. Although this adjustment introduces a
modest increase in FLOPs, the resulting improvement in robustness to quantization enables seamless
integration with quantization techniques. This integration reduces memory overhead and improves
the overall efficiency of LLMs.

However, conventional D-LLM provides no mechanism for tuning the execution ratio at inference
time. During inference, the execution decision for each layer is determined by an arg max operation
on the router output: a layer is executed if the score for execution exceeds the score for bypassing
(Eq. 2). This rule locks the model to the execution ratio established during training, where the ratio is
enforced through the regularization loss L, (Eq. 4). As a result, any adjustment to the target ratio
requires retraining.

Retraining to achieve the redundancy needed for each deployment setting is impractical. Therefore, to
design an execution mechanism with inference-stage adjustability, the router must include a tunable
component. Moreover, to ensure predictable effects of such adjustments, this tunable component
should be normalized within a bounded range, and it should involve only a minimal number of
parameters to allow practical adjustment. To this end, we apply softmax to the D-LLM router output,
converting the class scores into probabilities within [0, 1] that sum to 1. Since all routers produce
probabilities under the same bounded distribution, a single global threshold 6 can be shared across
layers. Thus, the execution ratio of the entire model can be controlled in a lightweight, training-free
manner with just one parameter #. Under this mechanism, a layer is executed if the probability for
the execute class is greater than or equal to €, which can be expressed as:

b _ [1,0], ifp17023
! [0,1], ifp1 <6

If 6 = 0.5, Eq. 9 becomes equivalent to the arg max-based decision rule in Eq. 2, since the class
with the higher score is selected. Lowering 6 below 0.5 increases the execution ratio by reducing

where p; = softmax(g;(z;)) ©)
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Figure 5: Histogram of router output logits in D-LLM for three low-execution layers (20, 23, and 26)
of LLaMA3.1-8B. Logits are computed from the first 200 training samples after fine-tuning epochs 0,
3, and 6 on the ARCe dataset.
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Figure 6: Histogram of router output logits under the proposed quantization-robust training for three
low-execution layers (20, 23, and 26) of LLaMA-3.1-8B. Logits are computed from the first 200
training samples after fine-tuning epochs 0, 3, and 6 on the ARCe dataset.
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Figure 7: Comparison of Gumbel-noise—induced execution decision flipping across fine-tuning
epochs between D-LLM and the proposed quantization-robust training. Results are shown for three
low-execution layers (20, 23, and 26) of LLaMA3.1-8B on the ARCe dataset.

the required probability for execution, whereas raising 6 above 0.5 decreases the execution ratio by
increasing this requirement. To adjust the execution threshold, we adopt a simple two-phase grid
search strategy with a small calibration dataset. Since the objective is to reintroduce redundancy, the
threshold is searched within the range (0, 0.5]. In the coarse-grained phase, we sweep across the full
target range using a large step size to quickly identify a promising region. In the fine-grained phase,
we refine the search within a narrower window around the best coarse-phase candidate, employing a
small step size to precisely determine the optimal threshold.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate the proposed QTALE on two open-source LLMs: Llama2-7B and
Llama3.1-8B. For evaluation, we report zero-shot accuracy on the CommonsenseQA (CSQA) bench-
mark suite (Talmor et al., 2019), which includes PIQA, BoolQ, SIQA, ARCe, ARCc, Winogrande,
and OBQA (Bisk et al., 2020; Clark et al., 2019; Sap et al., 2019; Clark et al., 2018; Sakaguchi et al.,
2021; Mihaylov et al., 2018). We also evaluate zero-shot accuracy on the MMLU dataset (Hendrycks
et al., 2021) and measure perplexity (PPL) on the Stanford-Alpaca dataset (Taori et al., 2023).

Baselines. We compare the proposed QTALE against three baselines: the widely adopted PTQ
method AWQ (Lin et al., 2024), the prior token-adaptive layer execution method D-LLM (Jiang et al.,
2024), and their naive integration, evaluating them in terms of accuracy/PPL, model size (memory
overhead), and FLOPs.

Implemenatation Details. In the experiments, all quantization is performed using the AWQ algorithm
with a group size of 128 (Lin et al., 2024). We evaluate both 4-bit and 3-bit integer quantization
settings. For token-adaptive layer execution, the fine-tuning configurations, including learning rate,
number of training epochs, and other hyperparameters, for both the proposed QTALE and D-LLM
follow the implementation details reported in the original D-LLM paper (Jiang et al., 2024).
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Table 1: Accuracy and PPL comparison on LLaMA2-7B. Accuracy is reported on CommonsenseQA
and MMLU, while perplexity is reported on Alpaca. (Avg. denotes the average score.)

Layer CSQA MMLU | Alpaca
Bits Execution | PIQA BoolQ SIQA ARCe ARCc Winogrr OBQA ‘ Avg. (1) (@) )
Full 83.73 8798 79.58 8253 6527 81.61 83.00 80.53 54.26 3.23

16 D-LLM 83.51 88.17 79.02 81.06 66.04 81.22 81.40 80.06 52.83 4.33
QTALE 84.06 8822 7897 81.65 6570 8145 82.40 80.35 53.00 4.09

Full 81.34 87.67 79.53 7997 6237 81.14 79.40 78.77 51.74 3.22
4  D-LLM 81.23 8620 77.18 79.08 62.03 78.14 77.40 77.32 50.47 4.43
QTALE 8330 87.67 7856 79.59 66.21  79.95 80.20 79.18 51.24 3.74

Full 78.02 8376 7436 7138 5529 7451 68.20 72.22 46.12 3.30
3  D-LLM 74.65 80.02 7334 7155 55.03 7443 65.00 70.57 42.84 5.35
QTALE 7758 83.82 7334 7344 5717 7498 69.20 72.79 44.78 4.38

Table 2: Accuracy and PPL comparison on LLaMA3.1-8B. Accuracy is reported on CommonsenseQA
and MMLU, while perplexity is reported on Alpaca. (Avg. denotes the average score.)

Layer CSQA MMLU | Alpaca
Bits Execution | PIQA BoolQ SIQA ARCe ARCc Winogr. OBQA ‘ Avg. (1) ©) )
Full 80.04 88.19 88.90 87.58 77.03 84.21 85.20 81.28 59.12 3.57

16 D-LLM 79.84 86.02 8935 8624 75.68 83.43 84.20 80.45 58.85 5.06
QTALE 78.81 86.18 8737 87.16 78.16  83.43 84.80 80.54 58.40 4.90

Full 79.53 8629 8752 86.07 7517  83.58 83.00 79.67 56.16 3.65
4 D-LLM 79.27 8357 86.88 8493 69.88 80.51 81.00 77.68 55.36 5.47
QTALE 79.27 8526 88.13 8556 7483  82.08 82.40 79.17 55.86 4.11

Full 72.11  79.65 81.58 77.61 5990 71.27 69.60 69.54 44.56 4.83
3  D-LLM 68.99 7688 7733 76.09 5529 71.19 @ 65.20 66.81 43.49 7.24
QTALE 69.96 7720 7898 77.57 6152 7506  71.80 69.65 45.11 5.29

4.2 ACCURACY/PPL EVALUATION

Table 1 and Table 2 present the accuracy and PPL results of the baseline methods and the proposed
QTALE. The full-layer execution model refers to the fine-tuned LLMs on downstream tasks without
applying token-adaptive layer execution. Across all benchmarks, token-adaptive layer execution
models trained with the D-LLM approach and the proposed QTALE with Ly ¢r0py for quantization-
robust training achieve comparable accuracy and PPL before quantization. However, when combined
with quantization, the D-LLM approach suffers from noticeable drops in accuracy and PPL compared
to the quantized full-layer execution models. In contrast, QTALE maintains performance close to
that of the quantized full models. For example, on the CSQA benchmark with LLaMA?2-7B, the
accuracy of the 3-bit quantized full-layer execution model is 72.22%, while the 3-bit D-LLM model
drops to 70.57%. With the proposed QTALE, the accuracy is recovered to 72.79%. These results
demonstrate that QTALE effectively restores the redundancy needed for robust quantization, enabling
token-adaptive execution to be seamlessly integrated with low-bit quantization.

4.3 EFFICIENCY EVALUATION

Table 3 presents the efficiency evaluation results in terms of model size (memory overhead) and
FLOPs. With token-adaptive layer execution alone, the model size remains unchanged, 12.6 GB for
LLaMA2-7B and 15.0 GB for LLaMA3.1-8B, making deployment on memory-constrained devices
challenging. In contrast, when combined with quantization, the model size is reduced to below 3.6
GB and 4.6 GB for LLaMA2-7B and LLaMA3.1-8B, respectively. With the proposed execution
ratio adjustment mechanism, the execution ratio does not drastically increase on CSQA and MMLU
benchmarks, since these tasks can recover accuracy with only a slight increase in redundancy. On
the other hand, for the Alpaca benchmark, recovering PPL requires a more substantial increase in
the execution ratio. Overall, these results demonstrate that the proposed approach enables dynamic
adjustment of the execution ratio to balance efficiency and accuracy requirements across different
benchmarks.
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Table 3: Model size and FLOPs required for single-token processing with LLaMA2-7B and
LLaMA3.1-8B. Numbers in parentheses denote FLOPs relative to full-model execution.

LLaMA2-7B LLaMA3.1-8B
Layer Model FLOPs Model FLOPs
Bits Execute | (GB) CSQA MMLU Alpaca (GB) CSQA MMLU Alpaca

Full 13.0 (1.00x)  13.0 (1.00x) 13.0 (1.00x) 15.6 (1.00x)  15.6 (1.00x) 15.6 (1.00x)
16 D-LLM 12.6 6.85(0.53x) 7.18 (0.55x)  7.76 (0.60x) 15.0 8.39 (0.54x)  8.53(0.55x)  9.30 (0.60x)
QTALE 6.81 (0.53x)  7.27 (0.56x) 8.03 (0.62x) 8.24 (0.53x) 8.55(0.55x)  9.65 (0.62x)
Full 13.0 (1.00x)  13.0 (1.00x) 13.0 (1.00x) 15.6 (1.00x)  15.6 (1.00x) 15.6 (1.00x)
4 DLLM | 3.6 | 7.18(053%) 7.62(0.59%) 7.86(0.61x) | 4.6 | 8.46(0.54x) 8.53(0.55x)  9.30 (0.60x)
QTALE 6.97 (0.54x) 7.69 (0.59x) 10.47 (0.81x) 8.44 (0.54x) 8.57 (0.55x) 12.53 (0.80x)
Full 13.0(1.00x) 13.0(1.00x)  13.0 (1.00x) 15.6 (1.00x) 15.6(1.00x)  15.6 (1.00x)
3 D-LLM | 2.8 | 7.21(0.56x) 7.46(0.58x) 8.24(0.64x) | 3.7 | 8.44(0.54x) 8.59(0.55x) 9.49 (0.61x)
QTALE 7.13(0.55x) 7.63(0.59x) 11.01 (0.85x) 8.54 (0.55x) 8.66 (0.56x) 12.91 (0.83x)

Table 4: Ablation study on the impact of the proposed quantization-robust training with Lep¢ropy and
execution ratio adjustment with 6. Results are reported in terms of accuracy (Acc.), PPL, and R,
(the average layer execution ratio) for token-adaptive layer execution models combined with 4-bit
quantization.

CSQA MMLU Alpaca
Model Lemtimarmy 0 Acc.  Raug | Acc.  Rayg | PPL Ry
LLaMA2-7B X 0.5 7732 053 | 5047 055 | 443 0.61
X adjust | 7848 0.56 | 50.62 0.57 | 3.74 0.77
o 0.5 78.86 053 | 51.24 056 | 435 0.63
o adjust | 79.18 0.54 | 51.24 059 | 3.74 0.81
LLaMA3.1-8B X 0.5 77.68 054 | 5536 055 | 547 0.60
X adjust | 78.14 0.59 | 55.36 0.56 | 430 0.76
o 0.5 78.86 053 | 5580 0.55 | 5.01 0.63
o adjust | 79.17 0.54 | 55.86 0.55 | 4.11 0.80

4.4 ABLATION STUDY

The ablation study evaluates the impact of the two key components of QTALE: (1) quantization-robust
training with Leniopy and (2) execution ratio adjustment with 6. As shown in Table 4, both components
play essential roles in recovering accuracy/PPL after quantization. The quantization-robust training
with Lenropy increases the entropy of router logits, ensuring that the gap between execute and bypass
logits remains small. As a result, it stabilizes path diversity during training but does not alter the
execution ratio after fine-tuning. In contrast, the execution ratio adjustment with 6 directly controls
the number of executed layers. As discussed in the previous section, the amount of adjustment
required to recover accuracy and PPL varies across models and benchmarks, depending on the level
of redundancy needed for robustness.

5 CONCLUSION

To address the challenge of integrating token-adaptive layer execution with quantization for efficient
LLM inference, this paper propose QTALE, a novel framework that enables seamless integration of
token-adaptive execution with quantization without sacrificing accuracy. QTALE introduces two key
components: quantization-robust training with entropy regularization, which preserves training-path
diversity, and inference-time execution ratio adjustment, which reintroduces redundancy when needed
for robustness. Experimental results demonstrate that QTALE preserves accuracy after integrating
token-adaptive execution with quantization, maintaining the gap to quantization-only models within
0.5% on CommonsenseQA, while simultaneously reducing both FLOPs and memory footprint. In
summary, QTALE provides a practical and unified solution for efficient LLM deployment, effectively
bridging the complementary benefits of token-adaptive execution and quantization.
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