

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QTALE: QUANTIZATION-ROBUST TOKEN-ADAPTIVE LAYER EXECUTION FOR LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) demand substantial computational and memory resources, posing challenges for efficient deployment. Two complementary approaches have emerged to address these issues: token-adaptive layer execution, which reduces floating-point operations (FLOPs) by selectively bypassing layers, and quantization, which lowers memory footprint by reducing weight precision. However, naively integrating these techniques leads to additional accuracy degradation due to reduced redundancy in token-adaptive models. We propose QTALE (Quantization-Robust Token-Adaptive Layer Execution for LLMs), a novel framework that enables seamless integration of token-adaptive execution with quantization while preserving accuracy. Conventional token-adaptive methods reduce redundancy in two ways: (1) by limiting the diversity of training paths explored during fine-tuning, and (2) by lowering the number of parameters actively involved in inference. To overcome these limitations, QTALE introduces two key components: (1) a training strategy that ensures diverse execution paths are actively explored during fine-tuning, and (2) a post-training mechanism that allows flexible adjustment of the execution ratio at inference to reintroduce redundancy when needed. Experimental results show that QTALE enables seamless integration of token-adaptive layer execution with quantization, showing no noticeable accuracy difference, with the gap to quantization-only models kept below 0.5% on CommonsenseQA benchmarks. By combining token-adaptive execution for FLOPs reduction and quantization for memory savings, QTALE provides an effective solution for efficient LLM deployment.

1 INTRODUCTION

LLMs have demonstrated remarkable proficiency in a wide range of natural language processing tasks (Zhang et al., 2022; Touvron et al., 2023; Grattafiori et al., 2024; Yang et al., 2025). Consequently, they have become the core components of modern AI applications. However, the substantial size of these models poses significant challenges for real-world deployment. In particular, their high memory consumption and computational demands substantially increase inference cost and latency, limiting accessibility and scalability in resource-constrained environments. These constraints hinder the widespread adoption of LLMs. As a result, improving the efficiency of LLM inference has become a central research direction, with efforts focused on reducing computational cost and memory footprint while maintaining task accuracy.

Recent research has introduced several techniques for efficient LLM inference, such as pruning (Frantar & Alistarh, 2023; Sun et al., 2024; Song et al., 2024), quantization (Frantar et al., 2022; Dettmers et al., 2022; Zhang et al., 2024), and token-adaptive execution (Jiang et al., 2024; Liu et al., 2023). Each of these methods exploits redundancy in large models but targets different efficiency dimensions: quantization reduces memory footprint by lowering weight precision, while token-adaptive layer execution reduces FLOPs by bypassing unimportant layers. Despite their complementary benefits, these techniques are typically studied in isolation. When applied together, their naive integration often leads to additional accuracy degradation due to compounded redundancy reduction. This creates a critical need for a unified approach that combines the strengths of both techniques while mitigating their drawbacks.

Figure 1: Overview of a standard LLM architecture and representative techniques for efficient inference. The fraction of color fill in each transformer layer denotes memory cost per layer, while dashed gray outlines indicate skipped execution.

In this paper, we propose QTALE, a novel framework that seamlessly integrates token-adaptive layer execution with quantization while preserving accuracy. QTALE addresses the key limitations of conventional token-adaptive methods, namely reduced training-path redundancy and reduced parameter redundancy, through two innovations:

- A quantization-robust training strategy that ensures diverse execution paths are explored during fine-tuning
- A post-training execution ratio adjustment mechanism that reintroduces redundancy at inference time to improve robustness against quantization errors.

Through these contributions, QTALE enables the effective integration of token-adaptive layer execution with quantization, thereby reducing both FLOPs and memory usage.

2 BACKGROUND

2.1 TRANSFORMER LAYER-WISE PRUNING

Recently, many studies have demonstrated that LLMs exhibit redundancy at the transformer layer level [Song et al. \(2024\)](#); [Men et al. \(2024\)](#); [Kim et al. \(2024\)](#). During inference, consecutive transformer layers often produce highly similar outputs, since each block incrementally contributes to the residual stream that spans the entire network. As shown in Figure 1(a), Modern LLM architectures are typically built on residual connections, where the output of each transformer layer is the sum of the previous layer output and the current layer computation:

$$x_{l+1} = x_l + f_l(x_l) \quad (1)$$

where x_l is the input to the l -th layer and $f_l(\cdot)$ is the transformer layer function. If x_{l+1} is sufficiently similar to x_l , the removal of the l -th layer has little effect on the final prediction. As layer-wise pruning (Figure 1(b)) removes both the parameters of a layer and its associated computations, it reduces FLOPs and memory overhead proportionally to the number of pruned layers. However, because it eliminates entire transformer blocks, achieving high pruning ratios (e.g., beyond 20%) typically leads to significant accuracy degradation.

2.2 TOKEN-ADAPTIVE LAYER EXECUTION

LLMs exhibit contextual sparsity, where only a subset of computations is required to generate each token. Previous works on token-adaptive execution have leveraged this sparsity to improve inference efficiency ([Hoefler et al., 2021](#); [Schuster et al., 2022](#); [Del Corro et al., 2023](#); [Luo et al., 2025](#); [He et al., 2025](#); [Jaiswal et al., 2024](#); [Jiang et al., 2024](#); [Liu et al., 2023](#)). Building on this idea, D-LLM ([Jiang et al., 2024](#)) integrates both layer-wise redundancy and contextual sparsity by applying token-adaptive

108 execution at the transformer layer level, achieving significant FLOPs reduction while maintaining
 109 accuracy.
 110

111 As shown in Figure 1(c), D-LLM introduces a router module g_l for each transformer layer to decide
 112 whether to execute or bypass that layer. Each router is a lightweight **Multi-Layer Perceptron (MLP)**
 113 performing binary classification (execute or bypass). During inference, the router selects the class
 114 with the higher score:

$$b_l = \mathbb{1}(\arg \max(g_l(x_l))) \quad (2)$$

115 where $\mathbb{1}(\cdot)$ denotes the one-hot operation, and b_l is a two-dimensional decision vector resulting in
 116 either $[1, 0]$ (execute layer) or $[0, 1]$ (bypass layer). The output of the l -th layer is then computed as:
 117

$$x_{l+1} = \begin{cases} x_l + f_l(x_l), & \text{if } b_l = [1, 0] \\ x_l, & \text{if } b_l = [0, 1] \end{cases} \quad (3)$$

120 D-LLM trains both the router parameters and task-specific adapters (Hu et al., 2022) during fine-
 121 tuning to adapt pre-trained LLMs to downstream tasks under token-adaptive execution. Here, as the
 122 arg max operation is non-differentiable and **deterministic**, D-LLM uses the Gumbel-Softmax with
 123 reparameterization trick and straight-through estimator for the training.
 124

125 To achieve the target execution ratio, D-LLM introduces a ratio regularization loss \mathcal{L}_{rate} and the
 126 overall training objective of D-LLM combines the cross-entropy loss \mathcal{L}_{CE} with this regularization:
 127

$$\mathcal{L}_{D-LLM} = \mathcal{L}_{CE} + \lambda_1 \cdot \mathcal{L}_{rate} \quad \text{s.t. } \mathcal{L}_{rate} = |R_{avg} - R_{target}| \quad (4)$$

128 where R_{avg} denotes the average execution ratio across all layers during inference, and R_{target} is
 129 the desired target ratio. λ_1 is a hyperparameter that controls the strength of \mathcal{L}_{rate} . In D-LLM,
 130 R_{target} is set to 0.5. After fine-tuning, D-LLM achieves the target execution ratio and reduces
 131 the FLOPs required for LLM inference to about 50% of those of the original model. Although
 132 token-adaptive execution can deliver substantially higher FLOPs reduction compared to layer-wise
 133 pruning, it leaves memory overhead unaddressed since the full set of model parameters remains
 134 stored. Hence, a complementary strategy is necessary to reduce both computational cost and memory
 135 footprint simultaneously.
 136

137 2.3 QUANTIZATION

138 Quantization is a widely adopted compression technique that reduces model size by lowering the
 139 precision of weight parameters from high to low precision (Dettmers et al., 2022; Xiao et al., 2023;
 140 Frantar et al., 2022; Lin et al., 2024). Recent studies show that weights can be quantized to 4-bit
 141 integers without significant accuracy loss when combined with careful calibration, even under post-
 142 training quantization (PTQ) (Lin et al., 2024; Zhang et al., 2024). Since conventional LLMs store
 143 weights in 16-bit floating-point (FP) format, 4-bit quantization achieves up to a $4 \times$ reduction in model
 144 size and effectively alleviates memory overhead (Figure 1(d)). Therefore, modern PTQ algorithms
 145 such as AWQ (Lin et al., 2024) are integrated into widely used LLM serving frameworks (e.g.,
 146 vLLM), further enhancing deployment practicality. However, quantization does not reduce FLOPs, as
 147 the total number of operations remains unchanged. Thus, integrating the two techniques (Figure 1(e))
 148 offers the potential to build a more efficient LLM execution model that simultaneously addresses
 149 computational cost and memory footprint.
 150

151 3 PROPOSED QTALE

153 3.1 CHALLENGES OF INTEGRATING TOKEN-ADAPTIVE EXECUTION WITH QUANTIZATION

155 While token-adaptive layer execution reduces FLOPs and quantization reduces memory overhead,
 156 directly applying PTQ to the token-adaptive execution model D-LLM introduces additional accuracy
 157 degradation (details are provided in the Experimental Section and Appendix A.3). This degradation
 158 arises from reduced redundancy in D-LLM models, which can be examined from two perspectives.
 159

160 **First, reduced training-path redundancy.** Although D-LLM is designed for token-adaptive ex-
 161 ecution, its training objective focuses only on meeting the average target execution ratio. This
 162 allows solutions where half of the layers are permanently executed while the others are permanently
 163 bypassed. Consequently, as shown in Figure 2, instead of evenly distributing execution across layers,

Figure 2: Heatmap of the average execution ratio for each layer of LLaMA3.1-8B with D-LLM. The ratios are measured on the first 200 training samples after fine-tuning epochs 0, 3, and 6, across four CommonsenseQA datasets: ARCe, ARCc, SIQA, and PIQA.

Figure 3: (a) Execution ratio and (b) execution decision flipping induced by Gumbel noise across fine-tuning epochs in D-LLM. Results are reported for three low-execution layers (20, 23, and 26) of LLaMA3.1-8B on the ARCe dataset.

D-LLM often converges to highly uneven execution patterns, closely resembling layer-wise pruning. At the start of fine-tuning, router modules are biased toward execution, so most layers are active. As training progresses, certain layers gradually stop receiving execution signals and thus rarely participate in training. For example, in LLaMA3.1-8B, the 20th, 23rd, and 26th layers receive less than 5% execution ratio after fine-tuning, with their ratios dropping sharply within the first three epochs of a 10-epoch training process (Figure 3a). As a result, these layers have little opportunity to participate in fine-tuning. This leads to sparsely explored paths through the model, ultimately limiting robustness.

Second, reduced parameter redundancy. Deep learning models are generally overparameterized to enhance training capacity, making them inherently tolerant to moderate errors during inference (Allen-Zhu et al., 2019). For example, when a large pre-trained model is quantized, the network can rely on redundant parameters to absorb quantization errors and preserve accuracy. In contrast, D-LLM achieves efficiency by processing only about half of the transformer layers. As a result, each parameter becomes more critical to inference, and quantization errors have a disproportionately large impact on accuracy.

In summary, D-LLM reduces redundancy by both limiting the diversity of training paths and lowering the number of active parameters during inference. This reduction in redundancy makes the model less robust to quantization. Therefore, integrating token-adaptive execution with quantization requires careful management of redundancy to preserve overall model robustness.

3.2 OVERVIEW OF QTALE

We propose QTALE, a token-adaptive execution method designed to be resilient against quantization errors, thereby enabling seamless integration with quantization without sacrificing accuracy. To address the two key limitations of conventional token-adaptive methods, namely reduced training path redundancy and reduced parameter redundancy, QTALE introduces two components: (1) a novel training strategy that involves diverse execution paths during fine-tuning and (2) a post-training mechanism for adjusting the execution ratio at inference, providing flexible control over redundancy.

216 3.3 QUANTIZATION-ROBUST TRAINING FOR TOKEN-ADAPTIVE EXECUTION
217

218 According to transformer layer-wise pruning studies [Song et al. \(2024\)](#); [Men et al. \(2024\)](#); [Kim et al. \(2024\)](#), LLMs contain layers with relatively low contributions to residual path propagation. As a result, uneven execution ratios that deactivate certain layers are consistent with the inherent characteristics 219 of LLMs, since not every layer contributes equally to final model performance. However, if execution 220 decisions consistently favor a fixed subset of layers, large portions of the model remain under-trained, 221 reducing redundancy and limiting robustness. To address this, we introduce randomness in path 222 generation to enhance training-path redundancy. This idea is inspired by stochastic regularization 223 techniques such as dropout ([Srivastava et al., 2014](#)) and stochastic depth ([Huang et al., 2016](#)), which 224 improve generalization by randomly dropping neurons or entire layers during training. In a similar 225 vein, introducing controlled randomness into execution decisions forces different subsets of layers to 226 participate in training, ensuring that more paths are explored.

227 As discussed in Section 2.2, D-LLM uses Gumbel-Softmax instead of arg max in Eq. 2 during 228 training. In this approach, the forward pass uses a hard mode of Gumbel-Softmax:

$$\hat{b}_l = \mathbb{1}(\arg \max(\log(\hat{g}_l(x_l)) + \pi)), \quad \pi \sim \text{Gumbel}(0, 1) \quad (5)$$

229 where π is noise sampled from a Gumbel distribution. Please note that while the logarithm notation 230 $\log(\hat{g}_l(x_l))$ is often used in the Gumbel-Softmax equation, in practice the operation directly accepts 231 logits, which is the router output $g_l(x_l)$ in this case. During backpropagation, a soft mode is applied:

$$\tilde{b}_{l,i} = \frac{\exp((\log(\hat{g}_l(x_l))_i + \pi_i)/\tau)}{\sum_i \exp((\log(\hat{g}_l(x_l))_i + \pi_i)/\tau)}, \quad i \in \{0, 1\} \quad (6)$$

232 where τ is a temperature parameter that controls the sharpness 233 of the softmax. Since this approach introduces Gumbel noise 234 π , it initially injects stochasticity into routing decisions. How- 235 ever, during D-LLM training, this stochastic effect gradually 236 diminishes. Because the distribution of $\pi \sim \text{Gumbel}(0, 1)$ is 237 centered near 0 (Figure 4), the router logits must remain within 238 a moderate range (e.g., approximately $[-1, 1]$) for the noise to 239 effectively flip decisions and introduce stochasticity. Yet, as 240 the training objective of D-LLM focuses solely on maximizing 241 accuracy and meeting the target execution ratio, the gaps between 242 bypass and execute logits grow 243 progressively larger as training advances (Figure 5). In this regime, 244 the influence of Gumbel noise becomes negligible, and decision 245 flipping due to noise injection rarely occurs. For example, Fig- 246 ure 3b shows that the ratio of decision flipping caused by Gumbel 247 noise drops to zero after Epoch 4, indicating that stochasticity 248 is essentially lost.

249 If the gap between bypass logits and execute logits can be properly regulated, the Gumbel noise can 250 effectively induce stochastic decisions, allowing diverse training paths and preventing the model from 251 collapsing into a fixed execution pattern. To achieve this, we introduce an entropy regularization loss 252 on the router outputs:

$$\mathcal{L}_{\text{entropy}} = -\frac{1}{N_{\text{layer}}} \sum_{l=0}^{N_{\text{layer}}} \sum_{i=0}^1 \tilde{b}_{l,i} \log(\tilde{b}_{l,i}) \quad (7)$$

253 Figure 4: Histogram of data sam- 254 pled from $\pi \sim \text{Gumbel}(0, 1)$
255
256 Figure 5: Histogram of router output 257 logits in D-LLM for three low-execution 258 layers (20, 23, and 26) of LLaMA3.1-8B. 259 Logits are computed from the first 200 training 260 samples after fine-tuning epochs 0, 261 3, and 6 on the ARCe dataset.

Figure 6: Histogram of router output logits under the proposed quantization-robust training for three low-execution layers (20, 23, and 26) of LLaMA3.1-8B. Logits are computed from the first 200 training samples after fine-tuning epochs 0, 3, and 6 on the ARCe dataset.

Figure 7: Comparison of Gumbel-noise-induced execution decision flipping across fine-tuning epochs between D-LLM and the proposed quantization-robust training. Results are shown for three low-execution layers (20, 23, and 26) of LLaMA3.1-8B on the ARCe dataset.

where N_{layer} is the total number of transformer layers, and $\tilde{b}_{l,i}$ denotes the soft probability of the i -th decision for layer l (Eq. 6). A higher entropy corresponds to a smaller logit gap between bypass and execute classes, thereby increasing the likelihood that Gumbel noise can flip decisions and introduce stochasticity. By encouraging higher entropy during training, more diverse execution paths are explored, ensuring that additional layers remain actively involved in fine-tuning. The final fine-tuning objective is defined as:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{CE} + \lambda_1 \cdot \mathcal{L}_{rate} - \lambda_2 \cdot \mathcal{L}_{entropy} \quad (8)$$

The hyperparameter λ_2 balances the contribution of entropy maximization. By subtracting $\mathcal{L}_{entropy}$, the training process explicitly encourages higher entropy.

Figure 6 shows the histogram of router logits after training with the proposed quantization-robust method, whose training objective is defined in Eq. 8. Compared to the original D-LLM results in Figure 5, the gap between bypass and execute logits is substantially narrower. As a result, the router outputs remain within a range where Gumbel noise can meaningfully influence routing decisions. This increases the likelihood of stochastic flipping in execution outcomes, as illustrated in Figure 7. Such stochastic path exploration prevents the model from over-relying on a small subset of layers, ensures more balanced participation of layers during training, and ultimately enhances robustness to quantization.

3.4 EXECUTION RATIO ADJUSTMENT MECHANISM

Since token-adaptive layer execution inherently reduces parameter redundancy by activating only a subset of layers, slightly increasing the execution ratio can reintroduce sufficient redundancy to absorb quantization errors and better preserve accuracy. Although this adjustment introduces a modest increase in FLOPs, the resulting improvement in robustness to quantization enables seamless integration with quantization techniques. This integration reduces memory overhead and improves the overall efficiency of LLMs.

However, conventional D-LLM provides no mechanism for tuning the execution ratio at inference time. During inference, the execution decision for each layer is determined by an arg max operation on the router output: a layer is executed if the score for execution exceeds the score for bypassing (Eq. 2). This rule locks the model to the execution ratio established during training, where the ratio is

enforced through the regularization loss \mathcal{L}_{rate} (Eq. 4). As a result, any adjustment to the target ratio requires retraining.

Retraining to achieve the redundancy needed for each deployment setting is impractical. Therefore, to design an execution mechanism with inference-stage adjustability, the router must include a tunable component. Moreover, to ensure predictable effects of such adjustments, this tunable component should be normalized within a bounded range, and it should involve only a minimal number of parameters to allow practical adjustment. To this end, we apply softmax to the D-LLM router output, converting the class scores into probabilities within $[0, 1]$ that sum to 1. Since all routers produce probabilities under the same bounded distribution, a single global threshold θ can be shared across layers. Thus, the execution ratio of the entire model can be controlled in a lightweight, training-free manner with just one parameter θ . Under this mechanism, a layer is executed if the probability for the execute class is greater than or equal to θ , which can be expressed as:

$$b_l = \begin{cases} [1, 0], & \text{if } p_{l,0} \geq \theta \\ [0, 1], & \text{if } p_{l,1} < \theta \end{cases} \quad \text{where } p_l = \text{softmax}(g_l(x_l)) \quad (9)$$

If $\theta = 0.5$, Eq. 9 becomes equivalent to the arg max-based decision rule in Eq. 2, since the class with the higher score is selected. Lowering θ below 0.5 increases the execution ratio by reducing the required probability for execution, whereas raising θ above 0.5 decreases the execution ratio by increasing this requirement. To adjust the execution threshold, we adopt a simple two-phase grid search strategy with a small calibration dataset. Since the objective is to reintroduce redundancy, the threshold is searched within the range $(0, 0.5]$. In the coarse-grained phase, we sweep across the full target range using a large step size to quickly identify a promising region. In the fine-grained phase, we refine the search within a narrower window around the best coarse-phase candidate, employing a small step size to precisely determine the optimal threshold.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate the proposed QTALE on three open-source LLMs: LLaMA2-7B, LLaMA3.1-8B, and LLaMA3.2-3B. For evaluation, we report zero-shot accuracy on the CommonsenseQA (CSQA) benchmark suite (Talmor et al., 2019), which includes PIQA, BoolQ, SIQA, ARCe, ARCC, Winogrande (Winogr.), and OBQA (Bisk et al., 2020; Clark et al., 2019; Sap et al., 2019; Clark et al., 2018; Sakaguchi et al., 2021; Mihaylov et al., 2018). We also evaluate zero-shot accuracy on the MMLU dataset (Hendrycks et al., 2021) and measure perplexity (PPL) on the Stanford-Alpaca dataset (Alpaca) (Taori et al., 2023) and SAMSum (Gliwa et al., 2019).

Baselines. We compare the proposed QTALE against three baselines: the widely adopted PTQ method AWQ (Lin et al., 2024), the prior token-adaptive layer execution method D-LLM (Jiang et al., 2024), and their naive integration, evaluating them in terms of accuracy/PPL, model size (memory overhead), and FLOPs.

Implementation Details. In the experiments, all quantization is performed using the AWQ algorithm with a group size of 128 (Lin et al., 2024). We evaluate both 4-bit and 3-bit integer quantization settings. For token-adaptive layer execution, the fine-tuning configurations, including learning rate, number of training epochs, and other hyperparameters, for both the proposed QTALE and D-LLM follow the implementation details reported in the original D-LLM paper (Jiang et al., 2024).

4.2 ACCURACY/PPL EVALUATION

Table 1 and Table 2 present the accuracy and PPL results of the baseline methods and the proposed QTALE. The full-layer execution model refers to the fine-tuned LLMs on downstream tasks without applying token-adaptive layer execution. Across all benchmarks, token-adaptive layer execution models trained with the D-LLM approach and the proposed QTALE with $\mathcal{L}_{entropy}$ for quantization-robust training achieve comparable accuracy and PPL before quantization. However, when combined with quantization, the D-LLM approach suffers from noticeable drops in accuracy and PPL compared to the quantized full-layer execution models. In contrast, QTALE maintains performance close to that of the quantized full models. For example, on the CSQA benchmark with LLaMA2-7B, the accuracy

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 1: Accuracy and PPL comparison on LLaMA2-7B and LLaMA3.1-8B. Accuracy is reported on CSQA and MMLU, while PPL is reported on Alpaca. (Avg.: average)

Bits	Layer Execution	CSQA						OBQA	Avg. (↑)	MMLU (↑)	Alpaca (↓)
		PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.				
LLaMA2-7B											
16	Full	83.73	87.98	79.58	82.53	65.27	81.61	83.00	80.53	54.26	3.23
	D-LLM	83.51	88.17	79.02	81.06	66.04	81.22	81.40	80.06	52.83	4.33
	QTALE	84.06	88.22	78.97	81.65	65.70	81.45	82.40	80.35	53.00	4.09
4	Full	81.34	87.67	79.53	79.97	62.37	81.14	79.40	78.77	51.74	3.22
	D-LLM	81.23	86.20	77.18	79.08	62.03	78.14	77.40	77.32	50.47	4.43
	QTALE	83.30	87.67	78.56	79.59	66.21	79.95	80.20	79.18	51.24	3.74
3	Full	78.02	83.76	74.36	71.38	55.29	74.51	68.20	72.22	46.12	3.30
	D-LLM	74.65	80.02	73.34	71.55	55.03	74.43	65.00	70.57	42.84	5.35
	QTALE	77.58	83.82	73.34	73.44	57.17	74.98	69.20	72.79	44.78	4.38
LLaMA3.1-8B											
16	Full	80.04	88.19	88.90	87.58	77.03	84.21	85.20	81.28	59.12	3.57
	D-LLM	79.84	86.02	89.35	86.24	75.68	83.43	84.20	80.45	58.85	5.06
	QTALE	78.81	86.18	87.37	87.16	78.16	83.43	84.80	80.54	58.40	4.90
4	Full	79.53	86.29	87.52	86.07	75.17	83.58	83.00	79.67	56.16	3.65
	D-LLM	79.27	83.57	86.88	84.93	69.88	80.51	81.00	77.68	55.36	5.47
	QTALE	79.27	85.26	88.13	85.56	74.83	82.08	82.40	79.17	55.86	4.11
3	Full	72.11	79.65	81.58	77.61	59.90	71.27	69.60	69.54	44.56	4.83
	D-LLM	68.99	76.88	77.33	76.09	55.29	71.19	65.20	66.81	43.49	7.24
	QTALE	69.96	77.20	78.98	77.57	61.52	75.06	71.80	69.65	45.11	5.29

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 2: Accuracy and PPL comparison on LLaMA3.2-3B. Accuracy is reported on CSQA and MMLU, while PPL is reported on Alpaca and Samsum. (Avg.: average)

Bits	Layer Execution	CSQA						OBQA	Avg. (↑)	MMLU (↑)	Alpaca (↓)	Samsum (↓)
		PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.					
LLaMA3.2-3B												
16	Full	84.98	87.58	77.94	82.41	69.54	81.69	79.40	80.51	53.91	3.62	4.02
	D-LLM	83.90	62.92	78.30	82.28	69.03	78.93	78.00	76.19	54.02	4.95	4.96
	QTALE	84.66	84.09	77.38	83.25	69.62	79.79	79.00	79.68	54.64	4.91	4.79
4	Full	81.12	86.36	75.59	80.09	65.27	76.80	77.60	77.55	47.95	3.71	4.15
	D-LLM	82.37	62.37	76.56	80.35	66.21	75.06	74.80	73.96	51.62	5.22	5.20
	QTALE	82.97	85.90	76.36	81.31	67.49	77.66	77.20	78.41	52.12	4.26	4.89
3	Full	64.64	79.44	66.38	67.55	51.96	65.90	66.00	65.98	36.79	5.20	5.31
	D-LLM	64.36	62.56	57.32	68.43	47.70	65.90	51.60	59.70	40.57	7.33	6.07
	QTALE	71.06	62.74	61.72	69.23	48.81	66.46	59.60	62.82	42.09	5.54	5.64

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
of the 3-bit quantized full-layer execution model is 72.22%, while the 3-bit D-LLM model drops to 70.57%. With the proposed QTALE, the accuracy is recovered to 72.79%. A similar trend is even more pronounced in the LLaMA3.2-3B model. Under 4-bit quantization, QTALE achieves 78.41% accuracy on the CSQA benchmark, whereas the quantized full-layer execution baseline shows 77.55% accuracy, and D-LLM experiences a significant accuracy drop to 73.96%.420
421
422
423
424
425
426
427
428
429
430
431
These results demonstrate that QTALE effectively restores the redundancy needed for robust quantization, enabling token-adaptive execution to be seamlessly integrated with low-bit quantization.

4.3 EFFICIENCY EVALUATION

424
425
426
427
428
429
430
431
FLOPs and Memory Usage. Table 3 presents the efficiency evaluation results in terms of model size (memory overhead) and FLOPs. With token-adaptive layer execution alone, the model size remains unchanged, 12.6 GB for LLaMA2-7B and 15.0 GB for LLaMA3.1-8B, making deployment on memory-constrained devices challenging. In contrast, when combined with quantization, the model size is reduced to below 3.6 GB and 4.6 GB for LLaMA2-7B and LLaMA3.1-8B, respectively. With the proposed execution ratio adjustment mechanism, the execution ratio does not drastically increase on CSQA and MMLU benchmarks, since these tasks can recover accuracy with only a slight increase in redundancy. On the other hand, for the Alpaca benchmark, recovering PPL requires a more substantial increase in the execution ratio. Overall, these results demonstrate that the proposed

432 Table 3: Model size and FLOPs required for single-token processing with LLaMA2-7B and
 433 LLaMA3.1-8B. Numbers in parentheses denote FLOPs relative to full-model execution.

434 435 436 437 438 439 440 441 442 443 444 445	435 436 437 438 439 440 441 442 443 444 445	435 436 437 438 439 440 441 442 443 444 445	435 436 437 438 439 440 441 442 443 444 445				435 436 437 438 439 440 441 442 443 444 445			
			435 436 437 438 439 440 441 442 443 444 445							
Full	12.6	13.0 (1.00x)	13.0 (1.00x)	13.0 (1.00x)	15.0	15.6 (1.00x)				
16 D-LLM QTALE	13.5 6.85 (0.53x) 6.81 (0.53x)	6.85 (0.53x) 7.18 (0.55x) 7.27 (0.56x)	7.18 (0.55x) 7.27 (0.56x) 8.03 (0.62x)	7.76 (0.60x) 8.03 (0.62x)	16.0 5.3	8.39 (0.54x) 8.24 (0.53x)	8.53 (0.55x) 8.55 (0.55x)	9.30 (0.60x) 9.65 (0.62x)	9.30 (0.60x) 9.65 (0.62x)	9.30 (0.60x) 9.65 (0.62x)
Full	3.6	13.0 (1.00x)	13.0 (1.00x)	13.0 (1.00x)	5.3	15.6 (1.00x)				
4 D-LLM QTALE	4.5 6.97 (0.54x)	7.18 (0.53x) 6.97 (0.54x)	7.62 (0.59x) 7.69 (0.59x)	7.86 (0.61x) 10.47 (0.81x)	6.3 4.5	8.46 (0.54x) 8.44 (0.54x)	8.53 (0.55x) 8.57 (0.55x)	9.30 (0.60x) 12.53 (0.80x)	9.30 (0.60x) 12.53 (0.80x)	9.30 (0.60x) 12.53 (0.80x)
Full	2.8	13.0 (1.00x)	13.0 (1.00x)	13.0 (1.00x)	4.5	15.6 (1.00x)				
3 D-LLM QTALE	3.8 7.21 (0.56x)	7.46 (0.58x) 7.13 (0.55x)	8.24 (0.64x) 7.63 (0.59x)	11.01 (0.85x)	5.5 5.5	8.44 (0.54x) 8.54 (0.55x)	8.59 (0.55x) 8.66 (0.56x)	9.49 (0.61x) 12.91 (0.83x)	9.49 (0.61x) 12.91 (0.83x)	9.49 (0.61x) 12.91 (0.83x)

446 Table 4: Inference latency for processing 256 samples from each benchmark on an NVIDIA A6000
 447 GPU (batch size 4; numbers in parentheses indicate speedup over the 16-bit full-model baseline).

448 449 450 451 452 453 454 455 456 457 458 459	448 449 450 451 452 453 454 455 456 457 458 459	448 449 450 451 452 453 454 455 456 457 458 459	450 451 452 453 454 455 456 457 458 459							
			448 449 450 451 452 453 454 455 456 457 458 459							
Full	21.4 s (1.00x)	27.4 s (1.00x)	18.6 s (1.00x)	27.9 s (1.00x)	30.5 s (1.00x)	11.1 s (1.00x)	23.1 s (1.00x)	22.8 s (1.00x)	22.8 s (1.00x)	22.8 s (1.00x)
D-LLM	15.8 s (1.36x)	20.1 s (1.37x)	14.7 s (1.26x)	21.8 s (1.28x)	23.6 s (1.29x)	9.3 s (1.20x)	19.1 s (1.21x)	17.8 s (1.28x)	17.8 s (1.28x)	17.8 s (1.28x)
QTALE	16.3 s (1.31x)	20.2 s (1.36x)	14.6 s (1.28x)	21.8 s (1.28x)	24.5 s (1.25x)	8.9 s (1.25x)	18.5 s (1.25x)	17.8 s (1.28x)	17.8 s (1.28x)	17.8 s (1.28x)
4-bit										
Full	22.2 s (0.96x)	28.6 s (0.96x)	19.5 s (0.95x)	28.9 s (0.96x)	30.6 s (1.00x)	11.2 s (0.99x)	23.8 s (0.97x)	23.5 s (0.97x)	23.5 s (0.97x)	23.5 s (0.97x)
D-LLM	17.1 s (1.25x)	20.5 s (1.33x)	15.0 s (1.24x)	21.2 s (1.31x)	23.5 s (1.30x)	8.8 s (1.26x)	18.5 s (1.25x)	17.8 s (1.28x)	17.8 s (1.28x)	17.8 s (1.28x)
QTALE	17.0 s (1.26x)	21.1 s (1.30x)	14.7 s (1.27x)	21.6 s (1.29x)	26.2 s (1.16x)	8.6 s (1.29x)	18.1 s (1.28x)	18.2 s (1.26x)	18.2 s (1.26x)	18.2 s (1.26x)

457 approach enables dynamic adjustment of the execution ratio to balance efficiency and accuracy
 458 requirements across different benchmarks.

460 **Speedup.** To measure the actual speedup achievable with token-adaptive layer execution and
 461 quantization, we evaluate inference latency on the CSQA dataset. For each experiment, we randomly
 462 sampled 256 examples and ran inference on a single NVIDIA A6000 GPU (48 GB VRAM) with a
 463 batch size of 4. As shown in Table 4, the speedup achieved by D-LLM and QTALE is comparable.
 464 Token-adaptive layer execution yields an average speedup of 1.28x. However, there is no additional
 465 speedup when applying quantization, and QTALE shows a slight slowdown due to its increased
 466 execution ratio. Nevertheless, as shown in Table 3, quantization provides a substantial reduction in
 467 memory usage, which is important in deployment scenarios with limited VRAM. For example, on a
 468 consumer-level GPU such as the NVIDIA RTX 5070 with only 12 GB of VRAM, the 4-bit quantized
 469 model runs successfully, whereas the 16-bit model triggers an out-of-memory error.

4.4 ADDITIONAL ANALYSIS

472 **Impact of Key Components.** The ablation study evaluates the impact of the two key components of
 473 QTALE: (1) quantization-robust training with $\mathcal{L}_{\text{entropy}}$ and (2) execution ratio adjustment with θ . As
 474 shown in Table 5, both components play essential roles in recovering accuracy/PPL after quantization.
 475 The quantization-robust training with $\mathcal{L}_{\text{entropy}}$ increases the entropy of router logits, ensuring that
 476 the gap between execute and bypass logits remains small. As a result, it stabilizes path diversity
 477 during training but does not alter the execution ratio after fine-tuning. In contrast, the execution
 478 ratio adjustment with θ directly controls the number of executed layers. As discussed in the previous
 479 section, the amount of adjustment required to recover accuracy and PPL varies across models and
 480 benchmarks, depending on the level of redundancy needed for robustness.

481 **Compatibility with Other PTQ Techniques.** To demonstrate the effectiveness of QTALE when com-
 482 bined with other PTQ methods beyond AWQ, we evaluated its performance with the MagR+GPTQ
 483 quantization scheme (Zhang et al., 2024; Frantar et al., 2022). Table 6 presents the results when
 484 QTALE is paired with MagR. QTALE consistently outperforms D-LLM under both 4-bit and 3-
 485 bit quantization settings. These results confirm that QTALE presents the quantization-robustness
 486 regardless of PTQ methods and provides superior performance stability under quantization noise.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Ablation study on the impact of the proposed quantization-robust training with $\mathcal{L}_{entropy}$ and execution ratio adjustment with θ . Results are reported in terms of accuracy (Acc.), PPL, and R_{avg} (average layer execution ratio) for token-adaptive layer execution models under 4-bit quantization.

Model	$\mathcal{L}_{entropy}$	θ	CSQA		MMLU		Alpaca	
			Acc.	R_{avg}	Acc.	R_{avg}	PPL	R_{avg}
LLaMA2-7B	x	0.5	77.32	0.53	50.47	0.55	4.43	0.61
	x	adjust	78.48	0.56	50.62	0.57	3.74	0.77
	o	0.5	78.86	0.53	51.24	0.56	4.35	0.63
	o	adjust	79.18	0.54	51.24	0.59	3.74	0.81
LLaMA3.1-8B	x	0.5	77.68	0.54	55.36	0.55	5.47	0.60
	x	adjust	78.14	0.59	55.36	0.56	4.30	0.76
	o	0.5	78.86	0.53	55.80	0.55	5.01	0.63
	o	adjust	79.17	0.54	55.86	0.55	4.11	0.80

Table 6: Accuracy and PPL of LLaMA3.2-3B under MagR+GPTQ quantization.(Avg.: average)

Bits	Layer Execution	CSQA						Avg. (↑)	MMLU (↑)	Alpaca (↓)
		PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.			
16	Full	84.98	87.58	77.94	82.41	69.54	81.69	79.40	80.51	53.91
	D-LLM	83.90	62.92	78.30	82.28	69.03	78.93	78.00	76.19	54.02
	QTALE	84.66	84.09	77.38	83.25	69.62	79.79	79.00	79.68	54.64
4	Full	81.07	85.71	75.28	79.08	62.29	76.24	76.60	76.61	47.83
	D-LLM	80.25	62.53	76.20	79.21	64.76	75.22	75.00	73.31	48.05
	QTALE	81.88	84.95	75.03	80.72	67.32	76.64	76.80	77.62	49.38
3	Full	64.64	80.45	67.14	69.53	45.31	66.54	62.60	65.17	36.34
	D-LLM	66.49	60.48	68.73	71.55	53.41	69.14	68.80	65.51	39.96
	QTALE	71.76	74.95	66.89	71.25	56.48	65.90	66.60	67.76	40.04

Table 7: Accuracy and PPL comparison on LLaMA3.2-3B for dense and pruned models. Accuracy is reported on CSQA and MMLU, while PPL is reported on Alpaca.(Avg.: average)

Sparsity	Layer Execution	CSQA						Avg. (↑)	MMLU (↑)	Alpaca (↓)
		PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.			
0%	Full	84.98	87.58	77.94	82.41	69.54	81.69	79.40	80.51	53.91
	D-LLM	83.90	62.92	78.30	82.28	69.03	78.93	78.00	76.19	54.02
	QTALE	84.66	84.09	77.38	83.25	69.62	79.79	79.00	79.68	54.64
50%	Full	75.24	74.49	71.39	71.51	51.37	71.82	62.60	68.35	40.46
	D-LLM	62.19	62.31	71.44	73.32	52.65	71.43	51.60	63.56	43.12
	QTALE	71.06	66.63	70.11	74.87	55.29	72.22	68.20	68.34	39.89

Compatibility with Other Compression Techniques. The proposed training scheme enhances quantization robustness by exposing the model to diverse execution paths during fine-tuning, which makes it generally resilient to inference-time perturbations that may alter the selected routing path. To assess its effectiveness when combined with other compression methods such as pruning, we apply 50% unstructured sparsity to a QTALE-trained model using Wanda (Sun et al., 2024) for weight pruning. Table 7 reports the corresponding performance. While D-LLM exhibits a substantial performance drop under 50% sparsity, QTALE compensates for the loss of weights and achieves performance comparable to the full-layer execution model. These results demonstrate that QTALE has strong potential to be extended to various post-training compression techniques.

5 CONCLUSION

To address the challenge of integrating token-adaptive layer execution with quantization for efficient LLM inference, this paper proposes QTALE, a novel framework that enables seamless integration of token-adaptive execution with quantization without sacrificing accuracy. QTALE introduces two key components: quantization-robust training with entropy regularization, which preserves training-path diversity, and inference-time execution ratio adjustment, which reintroduces redundancy when needed for robustness. Experimental results demonstrate that QTALE preserves accuracy after integrating token-adaptive execution with quantization, maintaining the gap to quantization-only models within 0.5% on CommonsenseQA, while simultaneously reducing both FLOPs and memory footprint. In summary, QTALE provides a practical and unified solution for efficient LLM deployment, effectively bridging the complementary benefits of token-adaptive execution and quantization.

540 REFERENCES
541

542 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
543 next-generation hyperparameter optimization framework. In *The 25th ACM SIGKDD International
544 Conference on Knowledge Discovery & Data Mining*, pp. 2623–2631, 2019.

545 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
546 parameterization. In *International conference on machine learning (ICML)*, 2019.

547 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
548 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
549 volume 34, pp. 7432–7439, 2020.

550 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
551 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
552 arXiv:1905.10044*, 2019.

553 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
554 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
555 *arXiv preprint arXiv:1803.05457*, 2018.

556 Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
557 Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient llm
558 inference. *arXiv preprint arXiv:2307.02628*, 2023.

559 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
560 multiplication for transformers at scale. *Advances in neural information processing systems*, 2022.

561 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
562 one-shot. In *International conference on machine learning (ICML)*, 2023.

563 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
564 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

565 Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
566 annotated dialogue dataset for abstractive summarization. In *Proceedings of the 2nd Workshop on
567 New Frontiers in Summarization*, pp. 70–79, 2019.

568 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
569 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
570 models. *arXiv preprint arXiv:2407.21783*, 2024.

571 Zhuomin He, Yizhen Yao, Pengfei Zuo, Bin Gao, Qinya Li, Zhenzhe Zheng, and Fan Wu.
572 Adaskip: Adaptive sublayer skipping for accelerating long-context llm inference. *arXiv preprint
573 arXiv:2501.02336*, 2025.

574 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
575 Steinhardt. Measuring massive multitask language understanding. *International Conference on
576 Learning Representations (ICLR)*, 2021.

577 Torsten Hoefer, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
578 learning: Pruning and growth for efficient inference and training in neural networks. *Journal of
579 Machine Learning Research*, 22(241):1–124, 2021.

580 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
581 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. 2022.

582 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
583 stochastic depth. In *European conference on computer vision (ECCV)*, 2016.

584 Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei Liu, Tianlong Chen, and Aditya Akella. Ffn-
585 skipllm: A hidden gem for autoregressive decoding with adaptive feed forward skipping. *arXiv
586 preprint arXiv:2404.03865*, 2024.

594 Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, Hui Qian, John Lui, et al. D-llm: A token
 595 adaptive computing resource allocation strategy for large language models. *Advances in Neural*
 596 *Information Processing Systems*, 2024.

597

598 Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
 599 Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. *ICLR*
 600 *Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)*,
 601 2024. URL <https://openreview.net/forum?id=18VGxu0dpu>.

602 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 603 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 604 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

605

606 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 607 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 608 llm compression and acceleration. In *MLSys*, 2024.

609 Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
 610 Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for
 611 efficient LLMs at inference time. In *Proceedings of the 40th International Conference on Machine*
 612 *Learning*, 2023.

613

614 Xuan Luo, Weizhi Wang, and Xifeng Yan. Diffskip: Differential layer skipping in large language
 615 models. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 7221–7231,
 616 2025.

617 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 618 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
 619 2024.

620

621 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 622 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

623

624 Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization
 625 tool for Python, 2014-. URL <https://github.com/bayesian-optimization/BayesianOptimization>.

626

627 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 628 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 629 2021.

630

631 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 632 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

633

634 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Quang Tran, Yi Tay,
 635 and Donald Metzler. Confident adaptive language modeling. In *Advances in Neural Information*
Processing Systems (NeurIPS), 2022.

636

637 Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
 638 Streamlining llms through redundancy verification and elimination of transformer blocks. In
 639 *Proceedings of the 41st International Conference on Machine Learning*, 2024.

640

641 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 642 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
learning research, 15(1):1929–1958, 2014.

643

644 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
 645 large language models. *International Conference on Learning Representations (ICLR)*, 2024.

646

647 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 648 answering challenge targeting commonsense knowledge. In *North American Chapter of the*
Association for Computational Linguistics (NAACL), 2019.

648 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
649 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
650 https://github.com/tatsu-lab/stanford_alpaca, 2023.
651

652 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaie, Nikolay
653 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
654 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

655 Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
656 Natural evolution strategies. *The Journal of Machine Learning Research*, 15(1):949–980, 2014.
657

658 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
659 Accurate and efficient post-training quantization for large language models. In *Proceedings of the
660 40th International Conference on Machine Learning*, 2023.

661 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
662 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
663 2025.

664 Aozhong Zhang, Naigang Wang, Yanxia Deng, Xin Li, Zi Yang, and Penghang Yin. Magr: Weight
665 magnitude reduction for enhancing post-training quantization. 2024.
666

667 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
668 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
669 models. *arXiv preprint arXiv:2205.01068*, 2022.
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
 703

704 **A.1 EXPERIMENTAL SETTINGS**
 705

706 **Training Datasets.** Consistent with previous work D-LLM (Jiang et al., 2024), we use the official
 707 training split of each downstream benchmark—including CommonsenseQA tasks (PIQA, BoolQ,
 708 SIQA, ARCe, ARCc, Winogrande, and OBQA), MMLU, and Alpaca—for the fine-tuning stage of
 709 QTALE. That is, for each task, the model is adapted using the benchmark’s official training set. For
 710 example, models fine-tuned on the Alpaca training set are evaluated on the Alpaca test set.

711 **Training Hyperparameter.** We largely follow the hyperparameter configurations of D-LLM. The
 712 learning rate is set to 0.009, λ_1 is set to 0.1 for all benchmarks except for the Alpaca fine-tuning case,
 713 where we use $\lambda_1 = 5$. We fine-tune for 10 epochs, but for the MMLU benchmark, we reduced the
 714 number of epochs from 10 to 3 due to its significantly larger training set compared to the other tasks.
 715 We consistently applied an entropy weight (λ_2) of 0.01 across all evaluated datasets. Regarding the
 716 batch size, LLaMA2-7B and LLaMA3.1-8B use various batch sizes as listed in Table 8, while for
 717 LLaMA3.2-3B we fixed the batch size to 4 across all training experiments for consistency.

718 Table 8: Batch sizes used for fine-tuning across different model configurations.
 719

Model	PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.	OBQA	MMLU	Alpaca
LLaMA2-7B	4	4	8	1	1	4	2	7	7
LLaMA3.1-8B	4	4	7	6	6	4	6	6	7
LLaMA3.2-3B	4	4	4	4	4	4	4	4	4

724 **Threshold Calibration.** To calibrate the threshold, we use a calibration set of 300 samples and apply
 725 a simple grid-search procedure with a two-stage coarse-to-fine strategy. We first conduct a coarse
 726 search with a step size of 0.05 to identify the approximate optimal region, then perform a fine-grained
 727 search with a step size of 0.01 around the selected candidate.

728 **A.2 SENSITIVITY TO HYPERPARAMETER**
 729

730 **Sensitivity to the entropy regularization weight λ_2 .** During fine-tuning, the other loss terms (e.g.,
 731 execution-ratio loss) continue to decrease as training progresses, whereas the entropy loss saturates
 732 relatively quickly. Therefore, an overly large λ_2 suppresses the impact of these other losses. For this
 733 reason, we set $\lambda_2 = 0.1\lambda_1$. To analyze sensitivity, we scan λ_2 over a wide range from 0.005 to 0.5
 734 on ARCc benchmark with LLaMA3.2-3B and reported the results in Figure 8. We observe:
 735

- When λ_2 is near the default value $\lambda_2 = 0.1\lambda_1 = 0.01$, the accuracy remains stable with minimal variation.
- When λ_2 becomes substantially larger, the accuracy begins to fluctuate and slightly decreases.

736 Overall, QTALE is insensitive to λ_2 within a reasonable neighborhood around the chosen value, and
 737 performance remains stable.

754 Figure 8: Accuracy of LLaMA3.2-3B on the ARCc benchmark after fine-tuning with different λ_2
 755 settings. The dashed line indicates the trend line.

Figure 9: Execution Ratio–Threshold curves for four representative CSQA tasks (ARCC, ARCE, BoolQ, and Winogrande).

Figure 10: Accuracy–Execution Ratio curves for four representative CSQA tasks (ARCC, ARCE, BoolQ, and Winogrande). We compare the baseline without $\mathcal{L}_{\text{Entropy}}$ (D-LLM) against the proposed method with $\mathcal{L}_{\text{Entropy}}$ (QTALE) on LLaMA3.2-3B.

Sensitivity to the inference threshold θ We also evaluate LLaMA3.2-3B across a wide range of inference thresholds θ , with results shown in Figures 9 and 10. Our observations are:

- As θ decreases, the execution ratio generally increases, although the magnitude differs across tasks (Figure 9).
- For models trained with entropy regularization, accuracy improves as the execution ratio increases and eventually saturates (Figure 10).
- For models trained without entropy regularization (i.e., the D-LLM training setup), higher execution ratios do not consistently improve accuracy and can even degrade performance indicating poor adaptability to diverse execution paths, as discussed in Section 3.1 of our manuscript (Figure 10).

This behavior demonstrates that QTALE induces a monotonic and predictable relationship between the threshold and accuracy, enabling a simple calibration strategy (e.g., grid search) to reliably select an appropriate threshold.

810
811 A.3 ADDITIONAL ANALYSIS OF INTEGRATING TOKEN-ADAPTIVE LAYER EXECUTION AND
812 QUANTIZATION813 The primary reason accuracy degrades when combining token-adaptive execution with quantization
814 is that quantization significantly disrupts the learned routing patterns. Token-adaptive models (e.g.,
815 D-LLM) assume a stable execution path after fine-tuning. However, low-bit quantization perturbs
816 hidden states and router logits, causing substantial path drift.817 For example, under 3-bit quantization, 39.75% of tokens in SIQA and 24.68% of tokens in OBQA
818 switch their execution path compared to the FP16 model. This drift often pushes tokens toward
819 pruned, lower-capacity paths and alters routing boundaries, directly harming accuracy. QTALE
820 mitigates this effect by employing an entropy-based objective that restores path redundancy and
821 produces smoother, more quantization-robust routing behavior. Consequently, QTALE maintains
822 accuracy close to quantized full models, unlike prior token-adaptive approaches.823
824 Table 9: Token path change statistics under 3-bit quantization.825
826
827
828

Dataset	Bits	Total Tokens	Path Changed	Path Change Rate
SIQA	3	194,518	77,326	39.75%
OBQA		43,768	10,800	24.68%

830 A.4 MORE EVALUATION RESULTS

831 A.4.1 COMPARISON WITH OTHER EFFICIENCY TECHNIQUE

832 To compare QTALE against other efficiency methods, we additionally evaluate structured pruning
833 combined with quantization. Since layer-wise pruning is known to provide a better speedup–accuracy
834 trade-off than other structured pruning strategies for LLMs, we adopted SLEB, a state-of-the-art
835 layer-wise pruning method, for this experiment (Song et al., 2024). The evaluation is conducted
836 on LLaMA2-7B, and the results are shown in Table 5. In terms of speedup, 20% layer pruning
837 achieves a similar acceleration to QTALE, yielding approximately 1.25× over the baseline full-
838 layer execution model. Compared to QTALE, structured pruning provides better memory efficiency
839 because redundant layers are removed entirely. However, the accuracy degradation under 20%
840 pruning is substantially larger than that of QTALE (Note that accuracy of QTALE is reported on
841 Table 1). Even when we consider a milder setting such as 10% layer pruning, QTALE consistently
842 achieves better accuracy and perplexity. These results highlight that QTALE offers a more favorable
843 accuracy–efficiency trade-off compared to structured pruning combined with quantization.844
845 Table 10: Accuracy, PPL, and model size for SLEB-pruned LLaMA2-7B under 4-bit and 3-bit AWQ
846 quantization. Avg. denotes the average CSQA accuracy.847
848
849

Sparsity	Model (GB)	Bits	CSQA						MMLU (↑)	Alpaca (↓)	
			PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.	OBQA		
10%	11.0	16	83.19	86.82	72.01	79.97	61.86	68.90	77.00	75.68	46.94
	2.9	4	80.20	86.88	71.03	76.68	58.53	62.43	74.60	72.91	44.87
	2.2	3	71.16	77.15	64.48	64.73	45.73	56.75	55.20	62.17	34.71
20%	9.9	16	76.77	75.07	67.20	73.53	52.73	60.62	65.00	67.27	44.06
	2.6	4	72.85	72.32	65.66	68.94	47.87	55.56	60.20	63.34	42.35
	1.9	3	53.97	48.55	49.08	44.02	30.38	54.38	25.20	43.65	31.56

855
856 A.4.2 MIXED-PRECISION QUANTIZATION857 To evaluate QTALE under more challenging precision settings, we consider a mixed-precision config-
858 uration that combines 2-bit and 4-bit weights. Specifically, we interleave 4-bit and 2-bit quantization
859 in a layer-wise manner (i -th layer: 4-bit, $(i+1)$ -th layer: 2-bit). This mixed-precision setup introduces
860 substantially higher quantization noise. We apply MagR+GPTQ for quantization (Zhang et al., 2024;
861 Frantar et al., 2022) and evaluate the LLaMA2-7B model. As shown in Table 11, even under these
862 demanding conditions, QTALE consistently provides stronger quantization robustness compared to
863 D-LLM.

864 Table 11: Evaluation results of mixed 2&4-bit quantization on the LLaMA2-7B model.
865

866 Layer 867 Execution	PIQA	BoolQ	SIQA	ARCe	CSQA 868 ARCc	Winogr.	OBQA	Avg.	MMLU	Alpaca
869 Accuracy										
870 LoRA	60.17	70.51	62.44	66.75	38.40	53.73	60.40	58.91	30.54	12.67
D-LLM	61.59	61.36	34.03	63.34	47.61	50.43	59.00	53.91	30.99	61.25
871 QTALE	61.04	63.90	50.15	65.74	49.32	51.07	62.20	57.63	27.05	35.20
872 Execution Ratio										
873 D-LLM	0.5103	0.5100	0.5945	0.5274	0.6115	0.7781	0.5639	0.5851	0.5554	0.6578
874 QTALE	0.5131	0.5443	0.6099	0.5337	0.6376	0.8740	0.5815	0.6134	0.5827	0.8306
875 Threshold (θ)										
876 QTALE	0.05	0.45	0.49	0.41	0.38	0.41	0.45	—	0.20	0.05

877
878 **A.4.3 OTHER OPTIMAL THRESHOLD SEARCHING METHODS**
879

880 Beyond the heuristic grid search used for threshold calibration in QTALE, we explored several
881 optimization-based approaches for threshold tuning. We primarily examined two categories of
882 methods: evolution strategies and Bayesian optimization. For the evolution-strategy approach, we
883 adopted Natural Evolution Strategies (NES) (Wierstra et al., 2014), which iteratively updates the
884 threshold distribution through gradient-based estimation. For Bayesian optimization, we tested both
885 (i) a standard Gaussian Process-based Bayesian optimizer provided as a Python package (Nogueira,
886 2014–) (denoted as Bayes) and (ii) the Bayesian optimization algorithm implemented in the Optuna
887 framework (Akiba et al., 2019), which leverages the Tree-structured Parzen Estimator (TPE). As
888 shown in Table 12, these more advanced optimization methods are often able to discover thresholds
889 that yield slightly better accuracy. However, when considering the overall calibration time, the simple
890 grid search remains a competitive and practical choice.

891 Table 12: Performance comparison of different threshold calibration strategies.
892

893 Method	PIQA	BoolQ	SIQA	ARCe	CSQA 894 ARCc	Winogr.	OBQA	Avg.
895 Accuracy								
896 grid	76.20	82.86	85.90	81.31	67.49	77.66	77.20	78.37
897 nes	76.46	83.46	86.08	81.82	67.75	78.22	76.60	78.63
898 bayes	76.71	83.79	86.17	81.82	67.75	78.77	77.00	78.86
optuna	76.66	83.73	86.23	81.73	67.66	78.69	77.60	78.90
900 Execution Ratio								
901 grid	0.5425	0.5244	0.5511	0.5505	0.5448	0.5258	0.5385	0.5396
902 nes	0.5177	0.5259	0.5387	0.5349	0.5488	0.5203	0.5326	0.5313
903 bayes	0.5198	0.5251	0.5483	0.5347	0.5441	0.5218	0.5381	0.5331
904 optuna	0.5195	0.5253	0.5452	0.5333	0.5444	0.5217	1.0000	0.7013
905 Best Threshold (θ)								
906 grid	0.0500	0.0300	0.0600	0.0400	0.2500	0.2500	0.1000	—
907 nes	0.0120	0.0967	0.3930	0.1965	0.1952	0.4542	0.0664	—
908 bayes	0.3835	0.1042	0.1460	0.2024	0.2675	0.4125	0.0760	—
909 optuna	0.3932	0.1017	0.1776	0.2442	0.2625	0.4140	0.0000	—
910 Calibration Time (s)								
911 grid	803.83	621.55	707.16	1051.51	959.80	576.62	940.97	808.78
912 nes	2476.38	1928.49	2425.95	3304.38	3606.26	1620.04	2994.07	2622.22
913 bayes	832.21	2216.38	717.25	2624.23	999.65	1862.74	3108.58	1765.85
914 optuna	1206.63	1589.58	922.49	1888.10	1459.43	1374.25	2053.64	1499.16

918 A.4.4 DETAILED EXECUTION RATIO AND THRESHOLD RESULTS
919

920 In this section, we provide detailed results of the layer execution ratios and the corresponding
921 thresholds (θ) used across our experiment. Tables 13 and 14 provides execution ratios and thresholds
922 (θ) for LLaMA2-7B and LLaMA3.1-8B, which correspond to the results reported in Table 1. Tables 15
923 and 16 provides execution ratios and thresholds (θ) for LLaMA3.2-3B, corresponding to the results
924 reported in Tables 2 and 7, respectively.

925 Table 13: Execution Ratio and threshold results for LLaMA2-7B
926

927 Bits	928 Layer 929 Execution	930 CSQA										931 MMLU	932 Alpaca
		933 PIQA	934 BoolQ	935 SIQA	936 ARCe	937 ARCc	938 Winogr.	939 OBQA	940 Avg.				
Execution Ratio													
16	D-LLM	0.5088	0.5306	0.5087	0.5209	0.5943	0.5163	0.5591	0.5367	0.5546	0.5989		
	QTALE	0.5069	0.5203	0.5319	0.5209	0.5531	0.5238	0.5222	0.5300	0.5611	0.6203		
4	D-LLM	0.5128	0.5756	0.5888	0.5228	0.5361	0.5250	0.5613	0.5513	0.5884	0.6066		
	QTALE	0.5284	0.5275	0.5322	0.5334	0.5747	0.5366	0.5353	0.5453	0.5941	0.8086		
3	D-LLM	0.5141	0.5825	0.5875	0.5234	0.6002	0.5251	0.5628	0.5590	0.5763	0.6359		
	QTALE	0.5544	0.5269	0.5319	0.5584	0.6099	0.5263	0.5441	0.5551	0.5886	0.8504		
Threshold (θ)													
16	QTALE	0.50	0.50	0.50	0.50	0.50	0.50	0.50	–	0.50	0.50		
4	QTALE	0.25	0.30	0.50	0.23	0.12	0.22	0.15	–	0.05	0.05		
3	QTALE	0.05	0.35	0.50	0.10	0.22	0.40	0.15	–	0.08	0.05		

939 Table 14: Execution Ratio and threshold results for LLaMA3.1-8B
940

942 Bits	943 Layer 944 Execution	945 CSQA										946 MMLU	947 Alpaca
		948 PIQA	949 BoolQ	950 SIQA	951 ARCe	952 ARCc	953 Winogr.	954 OBQA	955 Avg.				
Execution Ratio													
16	D-LLM	0.5244	0.5241	0.5691	0.5341	0.5172	0.5272	0.5772	0.5402	0.5481	0.5972		
	QTALE	0.5068	0.5070	0.5317	0.5307	0.5517	0.5340	0.5436	0.5319	0.5494	0.6199		
4	D-LLM	0.5244	0.5241	0.5691	0.5341	0.5172	0.5272	0.5772	0.5402	0.5481	0.5972		
	QTALE	0.5066	0.5077	0.5569	0.5671	0.5666	0.5334	0.5572	0.5432	0.5503	0.8046		
3	D-LLM	0.5344	0.5206	0.5700	0.5353	0.5384	0.5256	0.5719	0.5435	0.5516	0.6094		
	QTALE	0.5086	0.5059	0.5639	0.5869	0.5951	0.5381	0.5401	0.5494	0.5564	0.8294		
Threshold (θ)													
16	QTALE	0.50	0.50	0.50	0.50	0.50	0.50	0.50	–	0.50	0.50		
4	QTALE	0.30	0.50	0.25	0.20	0.25	0.50	0.10	–	0.45	0.05		
3	QTALE	0.10	0.50	0.22	0.05	0.08	0.50	0.46	–	0.32	0.05		

955 Table 15: Execution ratio and threshold results for LLaMA3.2-3B
956

957 Bits	958 Layer 959 Execution	960 CSQA										961 MMLU	962 Alpaca	963 Samsum
		964 PIQA	965 BoolQ	966 SIQA	967 ARCe	968 ARCc	969 Winogr.	970 OBQA	971 Avg					
Execution Ratio														
16	D-LLM	0.5095	0.5074	0.5343	0.5197	0.5321	0.5285	0.5301	0.5278	0.5607	0.6132	0.5952		
	QTALE	0.5349	0.5158	0.5097	0.5252	0.5336	0.5204	0.5316	0.5273	0.5469	0.6107	0.5947		
4	D-LLM	0.5099	0.5069	0.5292	0.5196	0.5336	0.5297	0.5309	0.5275	0.5604	0.6199	0.5978		
	QTALE	0.5425	0.5163	0.5511	0.5505	0.5448	0.5258	0.5385	0.5433	0.5767	0.7775	0.6832		
3	D-LLM	0.5095	0.5090	0.5285	0.5263	0.5345	0.5317	0.5287	0.5285	0.5598	0.6382	0.6045		
	QTALE	0.5459	0.5226	0.5472	0.5347	0.5450	0.5284	0.5441	0.5401	0.5528	0.7910	0.6902		
Threshold (θ)														
16	QTALE	0.50	0.50	0.50	0.50	0.50	0.50	0.50	–	0.50	0.50	0.50		
4	QTALE	0.05	0.03	0.06	0.04	0.25	0.25	0.10	–	0.26	0.05	0.05		
3	QTALE	0.09	0.15	0.12	0.20	0.21	0.30	0.16	–	0.3	0.05	0.05		

972 Table 16: Execution ratio and threshold results for LLaMA3.2-3B on dense and pruned models.
973

972 Table 16: Execution ratio and threshold results for LLaMA3.2-3B on dense and pruned models. 973											
		CSQA									
Sparsity	Layer Execution	PIQA	BoolQ	SIQA	ARCe	ARCc	Winogr.	OBQA	Avg	MMLU	Alpaca
Execution Ratio											
0%											
0%	D-LLM	0.5095	0.5074	0.5343	0.5197	0.5321	0.5285	0.5301	0.5373	0.5607	0.6132
0%	QTALE	0.5158	0.5097	0.5349	0.5252	0.5336	0.5204	0.5316	0.5469	0.5469	0.6107
50%											
50%	D-LLM	0.5115	0.5065	0.5349	0.5188	0.5276	0.5259	0.5298	0.5221	0.5544	0.5946
50%	QTALE	0.5196	0.5336	0.5576	0.5310	0.5813	0.5476	0.5382	0.5441	0.5489	0.7644
Threshold (θ)											
0%											
0%	QTALE	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
50%	QTALE	0.36	0.05	0.04	0.29	0.03	0.05	0.17	—	0.17	0.05

985 A.5 EVALUATION ON INSTRUCTION-FOLLOWING BENCHMARK
986

987 With the LLaMA3.2-3B model fine-tuned on the Alpaca dataset, we evaluate the instruction-following
988 capabilities of both D-LLM and QTALE using AlpacaEval (Li et al., 2023). GPT-4o mini is used
989 as the evaluator. As shown in Figure 11, QTALE and D-LLM exhibit similar instruction-following
990 performance under the 16-bit setting. However, when applying 4-bit AWQ quantization, QTALE
991 significantly outperforms D-LLM, achieving a 70.46% win rate. We additionally provide qualitative
992 comparisons of instruction-following outputs under the 4-bit AWQ configuration in Examples 1–5,
993 which further highlight the quantization robustness of QTALE.

1004 Figure 11: Win rates of QTALE over D-LLM on AlpacaEval, evaluated using GPT-4o mini. Results
1005 are reported for both full-precision (16-bit) and quantized (4-bit) weight settings using the LLaMA3.2-
1006 3B model.
1007

1008 Example 1

1009 **Instruction:** What are some species of bears that are now extinct?1010 **Model Outputs:**

- 1011 • **QTALE (4-bit quantized):** Unfortunately, many species of bears have become extinct. Some
1012 include the American bear, spectacled bear, Chinese giant panda, Himalayan bear, and polar
1013 bear.
- 1014 • **D-LLM (4-bit quantized):** Answer Jonathan Crusher is a biologist at the University of
1015 Illinois. He has studied the evolution of the bear species for over 10 years. He has also been a
1016 consultant on the movie "The Bear King", released by Universal Studios in 2019.

1017 **Instruction:** Why do a lot of scientists not believe in God or Satan?1018 **Model Outputs:**

- 1019 • **QTALE (4-bit quantized):** Many scientists believe scientific explanations are sufficient and
1020 see no need for supernatural beings. Others argue religious beliefs lack empirical evidence.
- 1021 • **D-LLM (4-bit quantized):** Why do you, who a toeh and forth between between belief-bel
1022 Bel or vice vice vice.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Example 2**Instruction:** Please tell me the history of Walt Disney.**Model Outputs:**

- **QTALE (4-bit quantized):** I heard somewhere that it was started by two men, but I don't remember. He moved between studios and had to pay royalties before using some works.
- **D-LLM (4-bit quantized):** how they became an incredibly great leader leaders of the time period.

Instruction: How are carbon fibers used in buildings?**Model Outputs:**

- **QTALE (4-bit quantized):** Carbon fibers reinforce structural materials, strengthen electronics, sports equipment, aerospace components, and medical devices due to their high strength and low weight.
- **D-LLM (4-bit quantized):** and/or Movies and other for purposes of building bridges, etcursos de worthwhiles Worthworth,ihu, huar Hore, and so on.

Example 3**Instruction:** Tell me about alpacas.**QTALE (4-bit quantized):** Alpacas are a domesticated camelid species from the Andes. They are small, gentle, and valued for meat and dairy.**D-LLM (4-bit quantized):** Alpacas are South American camelids raised for wool. They have soft fur, gentle temperament, and are easily trained.**Example 4****Instruction:** List all Canadian provinces in alphabetical order.**QTALE (4-bit quantized):** Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon, Northwest Territories.**D-LLM (4-bit quantized):** Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Quebec, Saskatchewan, Yukon.**Example 5****Instruction:** Write a Python program that prints the first 10 Fibonacci numbers.**QTALE (4-bit quantized):**

```
import math

def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
```

D-LLM (4-bit quantized):

```
for i in range(11):
    print(i)
```