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Abstract

The effectiveness of current machine learning mod-
els relies on their ability to grasp diverse con-
cepts present in datasets. However, biased and
noisy data can inadvertently cause these models
to learn certain undesired concepts, undermining
their ability to generalize and provide utility. Con-
sequently, modifying a trained model to forget
these concepts becomes imperative for their re-
sponsible deployment. We refer to this problem
as concept forgetting. Our goal is to develop tech-
niques for forgetting specific undesired concepts
from a pre-trained classification model’s predic-
tion. To achieve this goal, we present an algo-
rithm called Label ANnealing (LAN). This iter-
ative algorithm employs a two-stage method for
each iteration. In the first stage, pseudo-labels are
assigned to all the samples by annealing or redis-
tributing the original labels based on the predic-
tions of the model in the current iteration. Dur-
ing the second stage, the model is fine-tuned on
this pseudo-labeled dataset generated from the
first stage. We illustrate the effectiveness of the
proposed algorithms across various models and
datasets. Our method reduces concept violation,
a metric that measures how much the model for-
gets specific concepts, by about 85.35% on the
MNIST dataset, 73.25% on the CIFAR-10 dataset,
and 69.46% on the CelebA dataset while main-
taining high model accuracy. Our implementa-
tion can be found at this following link: https:
//github.com/Subhodip123/LAN

*Equal contribution

1 INTRODUCTION

The superior performance capability of deep learning sys-
tems is primarily attributed to their ability to learn various
concepts inherent in the dataset. For instance, advancements
in face recognition systems [LeCun et al., 1998, Krizhevsky
and Hinton, 2009, He et al., 2016] can be largely attributed
to their ability to discern and characterize different semantic
features from facial images, such as age, gender, and facial
hair characteristics, etc. Similarly, in tasks involving image
and text generation [Ramesh et al., 2021, 2022, Rombach
et al., 2022], the ability to learn varied concepts present in
the dataset, enables the generation of realistic and diverse
outputs. Consequently, the efficacy of these models relies
upon the acquisition of learned concepts inherent within the
dataset. Nevertheless, when the dataset is tainted with noisy
samples or biased concepts [Tommasi et al., 2017], these
models are susceptible to learning such undesired concepts.
For example, suppose we are learning a model to predict
whether a person should get a bank loan or not. Such a model
should not depend on the gender or race of the person. How-
ever, it is possible that the machine learning model might
inadvertently use these features to make predictions, which
is highly undesirable. As a result, there emerges a pressing
necessity to forget the undesired biased concept from these
trained models to ensure their reliable and accountable de-
ployment. Apart from removing biases, forgetting concepts
can prove beneficial in topics such as domain generalization.
For example, envision a CelebA [Liu et al., 2015] image
classifier that heavily relies on background color as a dis-
tinguishing feature to classify different celebrities, limiting
its ability to generalize effectively. Therefore, in such sce-
narios, rapidly forgetting only undesired concepts from a
pre-trained model, without affecting the ability of the model
to use other features, can improve the model’s generalization
capabilities.

Motivation: To make a pre-trained model forget a concept,
we start by asking the following question - what is meant
by forgetting? Our definition of forgetting is motivated by
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the fact that in the case of humans, if one forgets a concept,
the forgotten concept doesn’t affect one’s decision-making.
Thus concept forgetting within the context of machine learn-
ing entails ensuring that a model’s predictions become en-
tirely independent of the targeted forgetting concept.

However, achieving this task presents challenges, as the goal
is to forget a specific undesired concept without adversely
affecting the ability of the model to use other concepts. This
challenge, well studied in a similar context, is also known
as catastrophic forgetting [McCloskey and Cohen, 1989,
Goodfellow et al., 2014, Kirkpatrick et al., 2017, Ginart
et al., 2019], where adapting a model for new tasks (in
our case, the task of concept forgetting), can significantly
degrade the model’s performance on older tasks (in this case,
retaining the model’s test accuracy). Thus, to explore the
extent of forgetting concepts in pre-trained models, we pose
the following question:

Can we efficiently modify a pre-trained model to forget an
undesirable concept while maintaining a low performance

degradation?

Before we proceed further, we first state the differences
between concept forgetting and machine unlearning, the
latter of which has been recently used to remove the effect
of certain training examples from the model.

Figure 1: Machine Unlearning vs. Concept Forgetting: In the
first scenario (on the left), such as gender, machine unlearning
fails. This failure occurs because the dataset includes only males
and females, making it impossible to retrain the model without
the gender concept. In the second scenario (on the right), when a
user requests the removal of concepts related to "Angelina Jolie,"
unlearning methods, like the optimal retraining approach, can be
used successfully.

Machine Unlearning vs. Concept Forgetting: Machine
unlearning [Cao and Yang, 2015, Xu et al., 2020, Nguyen
et al., 2022] aims to remove the influence of particular sub-
sets of training data from a model so that the unlearned
model mirrors the behaviour of a retrained model that is
trained from scratch without the undesired data subset. The

best method to achieve this is by retraining the model from
scratch without the unwanted data, although this process can
be computationally expensive [Ginart et al., 2019, Sekhari
et al., 2021]. However the goal of concept forgetting is to
make a model’s predictions entirely independent of the tar-
geted forgetting concept. The formal definition of concept
forgetting is given in Sec. 3.1. Given this, we note that ma-
chine unlearning and concept forgetting as two different
problem scenarios (see Figure 1). For example, consider the
CelebA dataset which contains images of celebrities. Sup-
pose we would like to make the model forget the concept of
gender. A machine unlearning approach should remove the
influence of all examples that have gender and produce an
unlearned model that is equivalent to retraining the model on
the empty dataset as all CelebA dataset images have gender.
However, as we show later, concept forgetting can be used
to remove the dependence on gender concept. We do note
that machine unlearning can be potentially used to forget
small concepts, which are only present in a subset of exam-
ples. For example, if we want to eliminate the concept of a
particular celebrity, from a classifier trained on the CelebA
dataset, we can retrain the model without the images of that
celebrity. However, such applications are limited, and our
proposed algorithm works for forgetting the dependence of
undesired concepts from the model’s predictions.

Our contributions: Our contribution can be summarized
as follows:

• We introduce the framework of concept forgetting from
pre-trained classification models. Motivated by works in
fairness [Dwork et al., 2012, Hardt et al., 2016, Lowy et al.,
2022], we propose concept violation metric that empirically
quantifies the extent to which the model remains dependent
on a concept for its predictions.

• We propose an algorithm called Label ANnealing (LAN).
LAN employs an iterative approach, where each iteration re-
distributes the class labels of all data points, thus creating a
pseudo-labelled dataset. This redistribution ensures that the
empirical concept violation on the newly generated pseudo-
labeled dataset is essentially zero. This method draws an
analogy to the term annealing frequently employed in mate-
rial science. It denotes the controlled redistribution of atoms
within a solid material under specific temperature conditions
to attain an equilibrium state, which inspired our method’s
nomenclature. This strategy not only aids in removing the
dependence of the undesirable concept from the model’s pre-
dictions but also is computationally efficient. This method
necessitates minimal epochs, sometimes as few as a single
epoch, to diminish the reliance of the model’s predictions
on the forgetting concept, all the while maintaining low
performance degradation of the model.

• We demonstrate the efficacy of our algorithm through
detailed evaluations on various image classification
datasets such as MNIST [LeCun et al., 1998], CIFAR-



10 [Krizhevsky and Hinton, 2009], miniImageNet [Vinyals
et al., 2016], and CelebA [Liu et al., 2015] using state-of-
the-art image classification models such as MobileNetV2,
DenseNet-121, ResNet-50. From Table 2 and Table 3 (Ap-
pendix B.1 and B.2), it can be seen that our method reduces
(averaged over several concepts) empirical concept viola-
tion by about 85.35% on the MNIST dataset, 73.25% on the
CIFAR-10 dataset, 17.05% on the miniImageNet dataset,
and 69.46% (averaged over 81.34% for binary concepts and
63.52% for non-binary concepts forgetting) on the CelebA
dataset.

2 RELATED WORKS

2.1 FAIRNESS

Fairness in machine learning systems is an important re-
search area aimed at ensuring that system predictions are
both accurate and fair across different groups (based on their
features) of data points. Earlier works [Dwork et al., 2012]
initially proposed the notion of demographic parity as a
preliminary definition of fairness. According to this concept,
a machine learning algorithm satisfies demographic parity
if the predicted target is independent of sensitive attributes.
However, promoting demographic parity may lead to dimin-
ished performance, particularly if the true outcome is not in-
dependent of sensitive attributes. To address this, subsequent
works [Hardt et al., 2016] introduced a relaxed notion of
fairness based on equalized odds and equal opportunity def-
inition. To achieve a fair model, recent works [Kamishima
et al., 2011, Feldman et al., 2015, Zafar et al., 2017, Donini
et al., 2018, Mary et al., 2019, Cho et al., 2020a, Jiang
et al., 2020, Rezaei et al., 2020, Lowy et al., 2022] have
explored incorporating different fairness regularizers dur-
ing the training process itself. These methods incorporate
regularization-based techniques based on different statistical
distances between the distribution of the model’s prediction
and sensitive attributes.

Drawing inspiration from fairness notions, especially de-
mographic parity [Dwork et al., 2012, Lowy et al., 2022],
we propose that forgetting a particular concept can also be
interpreted as achieving independence between the model’s
prediction and the undesired concept or feature we aim to
forget. However, methods focusing on enforcing fairness
with respect to the forgetting concept require a large number
of epochs to converge and can be computationally inefficient.
For instance, according to state-of-the-art FERMI algorithm
[Lowy et al., 2022], achieving ||∇ℓ(θ, x, y)|| ≤ ϵ where ℓ
is the loss function requires approximately O( 1

ϵ4 ) iterations.
Empirically, the convergence of the FERMI algorithm varies
depending on the dataset and application, typically ranging
from as few as 50 to as many as 2000 epochs [Lowy et al.,
2022]. Given our specific objective of forgetting only cer-
tain concepts from a model’s parameters without affecting

others, we aim to devise a more computationally efficient
approach for concept forgetting from pre-trained models.

2.2 MACHINE UNLEARNING FOR TRAINING
EXAMPLE REMOVAL

Machine unlearning, as described in the literature [Xu et al.,
2020, Nguyen et al., 2022, Cao and Yang, 2015, Ginart
et al., 2019, Golatkar et al., 2020a,b, 2021, Neel et al., 2021,
Nguyen et al., 2020, Guo et al., 2020, Graves et al., 2021,
Sekhari et al., 2021], involves intentionally erasing the im-
pact of particular subsets of training data from a pre-trained
model, addressing user privacy concerns. Here, the objective
is to craft a computationally efficient method that produces
an unlearned model that mirrors the behavior of the model
that is trained from scratch, on the training dataset devoid
of the sensitive data points. Although retraining serves as
the optimal benchmark method for unlearning, this method
becomes computationally impractical for large models and
iterative unlearning demands [Cao and Yang, 2015, Ginart
et al., 2019, Sekhari et al., 2021]. Consequently, to address
user privacy concerns, more efficient data deletion meth-
ods [Cao and Yang, 2015, Ginart et al., 2019] were devised,
leading to the emergence of machine unlearning. The ma-
chine unlearning methods are broadly categorized into two
types: exact unlearning [Wu et al., 2020] and approximate
unlearning [Neel et al., 2021, Sekhari et al., 2021]. Exact
unlearning aims to completely eliminate the influence of
unwanted data from the trained model, while approximate
unlearning methods only partially mitigate data influence,
resulting in parameter distributions closely resembling the
retrained model. More sophisticated methods [Guo et al.,
2020, Graves et al., 2021] have suggested using influence
functions, but these are computationally demanding and
limited to small convex models. To extend unlearning tech-
niques to non-convex models like deep neural networks, Go-
latkar et al. [2020a,b] introduced a scrubbing mechanism
based on the Fisher Information matrix.

As we noted earlier, concept forgetting and machine unlearn-
ing have fundamental differences ( Figure 1 demonstrates
machine unlearning cannot be applied for a general concept
forgetting setup) in their objectives. Machine Unlearning
seeks to forget specific data points while emulating the be-
havior of a retrained model, whereas Concept Forgetting
aims for the model’s predictive performance to become in-
dependent of the forgotten concept.

3 PRELIMINARIES AND BACKGROUND

3.1 PROBLEM FORMULATION

Unless otherwise specified, we consider the problem of
multi-class classification throughout the paper. Let Y ≜
{0, 1, 2, . . . , k − 1} denote the set of k labels. Let z =



(x, y) denote a data point where x ∈ Rd is the feature
and y ∈ Y is the label. A dataset D ≜ {zi}|D|

i=1 is a set
of samples sampled from the underlying data distribution
Pxy : Rd × Y → [0, 1]. Let a categorical concept C : Rd ×
Y → {0, 1, 2, . . . ,m − 1} be a mapping from the sample
to the set of all possible values the concept can take. For
example, if the concept is binary such as beard, it can take
two values {0, 1} (m = 2), which denotes the absence and
presence of the beard, respectively. Similarly, if the concept
is non-binary such as facial hair type, it can take multiple
values {0, 1, 2, 3} (m = 4) which signifies no facial hair,
mustache, beard, and goatee respectively. Let hθ : Rd →
∆|Y| denote a classifier parameterized by θ ∈ Rp where
∆ is the probability simplex. This classifier takes a feature
x ∈ Rd and predicts a distribution over the label space.
Let ĥ(θ, z) denote a post-processing step on the classifier
(e.g. argmax) where a hard label is inferred based on the
probability over the labels.

Definition 1. (Concept neutral): We call a classifier with
parameter θ concept neutral with respect to a concept C, if
for all output class y ∈ Y and all possible concept values
c ∈ {0, 1, 2, . . . ,m− 1},

Pxy(ĥ(θ, z) = y|C(z) = c) = Pxy(ĥ(θ, z) = y). (1)

Definition 2. (Concept violation): For a classifier ĥ with
parameter θ, we measure the violation of concept neutrality
in terms of the total variation distance as follows:

V (θ, C, P ) ≜
1

m

m−1∑
c=0

dTV

(
Pxy(ĥ(θ, z) = y),

Pxy(ĥ(θ, z) = y | C(z) = c)

)
=

1

2m

m−1∑
c=0

k−1∑
y=0

∣∣∣∣Pxy(ĥ(θ, z) = y)

− Pxy(ĥ(θ, z) = y | C(z) = c)

∣∣∣∣. (2)

Note that V (θ, C, P ) ∈ [0, 1] and if a model is concept
neutral, then V (θ, C, P ) = 0. As the underlying data distri-
bution Pxy is unknown, we have only access to the dataset
D to empirically estimate concept violation V (θ, C, P ) as
follows:

V̂ (θ, C,D) ≜ 1

m

m−1∑
c=0

dTV

(
P̂D(ĥ(θ, z) = y),

P̂D(ĥ(θ, z) = y | C(z) = c)

)
=

1

2m

m−1∑
c=0

k−1∑
y=0

∣∣P̂D(ĥ(θ, z) = y)

− P̂D(ĥ(θ, z) = y | C(z) = c)
∣∣. (3)

where P̂D(ĥ(θ, z) = y) = 1
|D|

∑
z∈D

1(ĥ(θ, z) = y), Dc =

{z ∈ D : C(z) = c}, and P̂D(ĥ(θ, z) = y|C(z) = c) =
1

|Dc|
∑

z∈Dc

1(ĥ(θ, z) = y). Now given a pre-trained model

with a parameter θ∗ and a concept C, the goal of a concept
forgetting algorithm is to find the forgotten parameter θC
such that the algorithm has the following properties:

• Minimize empirical concept violation: The empirical
concept violation metric V̂ (θC , C,D) measures how much
‘neutral’ is the forgotten model for the given concept. For
an ideal forgotten model, this metric will be zero indicating
that the model has forgotten the concept. Hence minimizing
concept violation is an important criterion and our goal is to
ensure V̂ (θC , C,D)≪ V̂ (θ∗, C,D).

• Minimize accuracy loss: Any forgotten model θC should
exclusively erase the specified concept without erasing other
concepts, thereby enabling the retained generalization capa-
bilities to persist. Hence minimizing loss of the forgotten
model’s test accuracy is one of the important criteria. Let
ℓ(θ, z) denote the loss of the model with parameters θ for
a sample z = (x, y) ∈ D. Hence our goal is to ensure∣∣∣∣ E
z∼Pxy

[ℓ(θC , z)]− E
z∼Pxy

[ℓ(θ∗, z)]

∣∣∣∣ to be small.

• Small time complexity: In dynamic environments, rapid
model adaptation and updating are vital to remove unde-
sired or outdated information. Thus, it is desirable to have
concept-forgetting algorithms that have low computational
time for running.

4 METHODOLOGY

4.1 LABEL ANNEALING (LAN) ALGORITHM

Main intuition: Recall our goal is to reduce the concept vi-
olation while minimizing accuracy degradation. To achieve
the forgotten model θC , we devise a method called Label
ANnealing (LAN). In the first stage LAN tries to create
a pseudo-labeled dataset where the empirical concept vi-
olation is zero/very low and then as part of second stage,
model is finetuned with this pseudo-labeled dataset. The
intuition is that since the model is trained on this pseudo-
labeled dataset with nearly zero empirical concept violation,
the resulting model should also have nearly zero empirical
concept violation. Note that there are many ways to pseudo-
label dataset such that empirical concept violation is zero.
We propose a way such that when the model is trained on
this pseudo-labeled dataset, the model quality does not de-
grade much, to this end: if the original model is confident
in certain examples, we prefer not to change them and if
model is not confident in certain examples, we allow them
to be changed so that concept violation becomes zero. The
overall methodology is shown in the Figure 2.



Figure 2: Label Annealing (LAN) methodology - The task involves forgetting the concept C(z) = c ∈ {0, 1, 2} from a
classification task with data points labeled as j ∈ {Class-0,Class-1,Class-2} (blue, red, and yellow, respectively). This
iterative method runs E iterations, where each eth-iteration constitutes two stages: in first stage, known as label annealing
subroutine, the labels within each concept data subset (e.g., D0,D1,D2) are redistributed based on the class prediction of
eth-iteration’s model θe, denoted as p̂θe(x, j), resulting in the label annealed dataset D̃. Subsequently at the next stage,
termed as parameter fine-tuning using D̃, we minimize the loss function LLAN(θ, D̃) to obtain final the concept forgotten
model θC .

Algorithm 1 Label Annealing Subroutine
Input: model parameter θe ∈ Rp, dataset D, forgetting
concept C

1: For each class j ∈ [k − 1], let bj denote the number of
samples z ∈ D with argmaxj pθe(x, j) = j.

2: for c = 0, 1, . . . ,m− 1 do
3: Construct Dc = {z ∈ D : C(z) = c}, nc = |Dc|
4: For each sample zi ∈ Dc, compute pmax(xi) =

maxj pθe(xi, j). Sort Dc in decreasing order of
pmax(x).

5: Let nc,j be the number of samples in Dc such that
argmaxj pθe(x, j) = j.

6: Initialize αc,j = 0 for all j ∈ [k − 1].
7: for i = 1, 2, . . . , |Dc| do
8: ỹi ← ϕ
9: j∗ ← argmax

j∈{0,...,k−1}
pθe(xi, j)

10: if αc,j∗ < bj∗ · nc/|D| then
11: ỹi ← j∗

12: αc,ỹi
← αc,ỹi

+ 1
13: end if
14: end for
15: for i = 1, 2, . . . , |Dc| do
16: if ỹi == ϕ then
17: ji ← ϕ
18: while ỹi == ϕ do
19: ji ← argmax

j∈{0,...,k−1}\ji
pθe(xi, j)

20: if αc,ji < bji · nc/|D| then
21: ỹi ← ji
22: αc,ỹi

← αc,ỹi
+ 1

23: else
24: ji ← ji ∪ {ji}
25: end if
26: end while
27: end if
28: end for
29: end for
30: Output: D̃ ← {z̃i = (xi, ỹi)}|D|

i=1

Algorithm 2 Parameter Fine-Tuning
Input: pre-trained parameter θ∗ ∈ Rp, dataset D, con-
cept that needs to be forgotten C, batch size B, learn-
ing rate η, number of iterations E, number of steps
T .

1: Initialize: θe ← θ∗

2: for e = 1, . . . , E do
3: D̃ ← LAN(θe,D, C)
4: for t = 1, . . . , T do
5: Draw a random mini-batch of size B from D̃, de-

noted as D̃b

6: θe ← θe − η∇θL(θ, D̃b)
7: end for
8: end for
9: Output: θE

At the heart of this algorithm is the label annealing sub-
routine, given in Algorithm 1. Given a model parameter
θe, training dataset D, and particular concept C targeted
forforgetting, this subroutine at a particular iteration e cre-
ates a dataset with the same features as xi ∈ D and with
pseudo-labels ỹi such that the model θe has zero empirical
concept-violation on the newly created dataset D̃. Further to
retain the model’s overall performance, this assignment of
pseudo-labels must result in a minimal change in empirical
risk. Thus, we would like to change labels for the samples
where changing the label does not significantly change the
loss. To achieve these goals, the whole dataset is divided into
concept data sub-groups Dc for each c ∈ {0, 1, ...,m− 1}.
Now for each of Dc, the first term in Eq. 3 for a particular
class label j would be bj

|D| and second term would be ncj

|nc|



where nc = |Dc|, bj and ncj are the nos. of samples of class-
j predicted by the current model θe on dataset D and Dc re-
spectively. In other words to make concept violation zero in
Dc, number of samples predicted class-j in Dc i.e. ncj must
be equal to bj · nc

|D| . This is why we need to redistribute the la-
bels of each class-j in Dc without much affecting the model
performance (empirical loss). Thus to achieve this dual ob-
jective of redistributing the labels without much affecting
the empirical loss, we calculate pmax(xi) = maxj pθe(xi, j)
for each sample zi = (xi, yi) ∈ Dc, and then Dc is sorted
in decreasing order of pmax(x) (Ref. line 4 in Algorithm 1).
Now, in the second for loop (Ref. lines 7-13 in Algorithm 1)
for this sorted Dc, each sample xi is initialized with label
ỹi = ϕ and iteratively assigned the most probable label
ỹi = j∗ = argmaxj pθe(xi, j) until the nos. of samples
in class-j∗ is less than bj∗ · nc

|D| . This part of the algorithm
ensures that reassigned labels don’t change from the initial
ones, specifically on those data points where the model is
most confident. This is why the deterministic assignment of
labels is done on Dc sorted based on higher to lower predic-
tion confidence of the model. Further in the subsequent for
loop (Ref. lines 15-28 in Algorithm 1), the data points where
the labels are unassigned i.e. yi = ϕ, the algorithm assigns
the subsequent (second or third and so on) most probable
label class-j if still, the nos. of samples in that assigned
class-j is less than bj · nc

|D| . This step tries to redistribute the
labels of data points where the model is not confident (low
concept violation is achieved by trading off some accuracy).
Subsequently, in the next stage of parameter fine-tuning
(Algorithm 2), we fine-tune the eth-model θe on the new
dataset D̃ =

⋃m−1
c=0 D̃c to obtain the forgotten model θe+1

by minimizing the Label Annealing loss function LLAN as
follows:

LLAN(θ, D̃) =
1

|D̃|

m−1∑
c=0

|D̃c|∑
i=1

ℓ(θ, z̃i). (4)

We repeat this process for E steps to get the final concept-
neutral model θC . The value of E depends on the user’s
choice. However, to achieve concept forgetting with low
computational complexity we experimented with E = 1 (re-
sults of Table 2 and Table 3). Further results on higher values
of E ∈ {2, 4} are given in the ablation studies section.

4.2 THEORETICAL ANALYSIS

In this section, we theoretically analyze the properties of
Algorithm 1 using Lemma 1. Theorem 1 signifies that the
LAN algorithm reduces the pre-trained model’s accuracy
loss if the original model has low concept violation. Recall
that θ∗ denotes the input to Algorithm 2 and θC denotes the
output of our algorithm. With this, let bj denotes the number
of samples of class-j in D predicted by the initial model.
Thus, n = |D| =

∑k−1
j=0 bj . Similarly, let ncj for the number

of samples of class-j inDc. Hence, nc = |Dc| =
∑k−1

j=0 ncj .
Let the number of labels changed by Algorithm 1 (denoted
by A) in the total dataset D be cl(A). We first prove the
following lemma.

Lemma 1. Let E = 1. For any concept C, the number of
labels changed by Algorithm 1 cl(A) ≤ 2nm · V̂ (θ∗, C,D).

Theorem 1. Let the loss function be bounded i.e., ∀θ, z
ℓ(θ, z) ≤ L. If the fine-tuning reduces the loss on D̃ i.e.,
E
[
LD̃(θC)

]
≤ LD̃(θ

∗), then

E [LD(θC)] ≤ LD(θ
∗) + 4LEm · V̂ (θ∗, C,D) (5)

where the expectation is over the randomization in the
stochastic gradients in Algorithm 2.

The above bound implies that if the original concept vi-
olation is small, then the performance of the new model
(trained on D̃) will not degrade significantly. In particular,
if the original concept violation is zero, then the loss of
the forgotten model is the same as the loss of the original
model. Furthermore, while the upper bound degrades with
E, as we show in experiments, the performance improves
or remains the same with an increasing value of E. Due to
space constraints, we provide the proof of the above lemma
and theorem in Appendix A.

5 EXPERIMENTS AND RESULTS

5.1 DATASETS AND MODELS

For our experiments, we consider mainly forgetting two
types of concepts: binary-concept (m = 2) and non-binary
concept (m > 2). We have used different image classifica-
tion models such as 2-layer-MLP (hidden layer size 500),
Mobinetv2 [Sandler et al., 2018], Densenet-121 [Huang
et al., 2017], Resnet-50 [He et al., 2016]. Further to show
the applicability of our method for different classification
tasks across diverse datasets, we have used MNIST [LeCun
et al., 1998], CIFAR-10 [Krizhevsky and Hinton, 2009],
miniImageNet [Vinyals et al., 2016], and CelebA [Liu et al.,
2015] datasets. Different concept forgetting scenarios for
E = 1 can be seen from Table 2 and Table 3. Further
details about the datasets and models are included in the
Appendix C.1.

5.2 EVALUATION METRICS

To evaluate the efficacy of any concept-forgetting algorithm
we propose two different metrics as defined below:

• Empirical concept violation: This metric denoted as
V̂ (θC , C,D), is defined in equation 3, quantifies the con-
cept neutrality of the forgotten model θC . Observe that
V̂ (θC , C,D) ∈ [0, 1], and a smaller V̂ (θC , C,D) signifies



(a) (Facial hair, Resnet-50, CelebA) (b) (Facial hair, Resnet-50, CelebA) (c) (Triceratops, Resnet-50, miniImageNet)

(d) (Bugs, Resnet-50, miniImageNet) (e) (Frog, Densenet-121, CIFAR-10) (f) (Frog, Mobinetv2, CIFAR-10)

(g) (Digit-3, MLP, MNIST) (h) (Digit-3, Resnet-50, MNIST)

Figure 3: Concept violation vs. accuracy trade-off: We have plotted concept violation on the y-axis and accuracy on the
x-axis. Each point represents an algorithm with a hyper-parameter, and the Fit line for an algorithm is obtained by a linear fit
of all experiments corresponding to the algorithm. The underlined concepts are forgotten in different settings as follows:
Figures (a) and (b) show forgetting facial hair from the task of heavy makeup vs. not-heavy makeup and attractive vs.
not-attractive classification respectively, on CelebA. Figures (c) and (d) show different concepts forgotten from pre-trained
Resnet-50 on the miniImageNet dataset. Figures (e) and (f) show concept forgetting from pre-trained Densenet-121 and
Mobinetv2, respectively, on the CIFAR-10 dataset. Figures (g) and (h) show digit-3 concept forgetting from pre-trained
MLP and Resnet-50 models, respectively, on the MNIST dataset. It can be seen that increasing accuracy increases concept
violation. Thus, for a particular achievable accuracy, LAN achieves lower concept violation than other baseline methods.

that the model is conceptually neutral regarding the for-
getting concept C. In the rest of the section, we denote
V̂ (θC , C,D) as V̂C .

• Test accuracy: Any concept forgetting algorithm mustn’t
render the initial model ineffective during the forgetting
process. Therefore, maintaining a low performance degra-
dation, i.e., accuracy, close to that of the initial model θ∗ is
desirable. This metric is denoted by AD,

5.3 BASELINES

According to our knowledge, this is the first work that in-
troduces concept forgetting as a property of the forgotten
model to induce independence from the forgetting feature
during its prediction task. Thus for proper evaluation of our
method, we adopt several baselines from fairness because
these baseline methods also advocate for the independence



of prediction and sensitive concept features. Here we have
used particularly three baseline methods: (a) FERMI [Lowy
et al., 2022] (b) Continuous-Fairness [Mary et al., 2019] and
(c) Fairness-KDE [Cho et al., 2020b]. We have used official
implementation for both FERMI and Continuous-Fairness
baselines while for Fairness-KDE an open-source imple-
mentation has been used. Further details about the baselines
can be found in the Appendix C.3.2.

5.4 RESULTS: BINARY AND NON-BINARY
CONCEPT FORGETTING

We evaluated our approach for different classification scenar-
ios to forget both binary concepts with c ∈ {0, 1} (m = 2)
and non-binary concepts with c ∈ {0, 1, . . . ,m− 1} (m >
2). For example, as illustrated in Table 3 (Appendix B.2),
in the context of the MNIST digit classification problem,
the objective is to forget a particular class digit concept
e.g. class-3 data. Thus, here c = 0 represents concepts of
non-digit-3 data and c = 1 represents concepts of digit-3
data. Similarly, in the CelebA dataset for gender concept
c = 0 represents male and c = 1 represents female. Table 2
(Appendix B.1) illustrates LAN method’s performance for
forgetting non-binary concepts. In this scenario, we forget
certain features from a pre-trained classifier in the process
of classifying other features. For example, while classifying
samples as young vs. not-young, we aim to forget subtle fea-
ture concepts such as hair color and facial hair from the pre-
trained models. As there exists a trade-off between our two
metrics of interest, for proper evaluation of our method with
FERMI [Lowy et al., 2022], Continuous-Fairness [Mary
et al., 2019], and Fairness-KDE [Cho et al., 2020b] base-
lines, concept-violation vs. accuracy trade-off plots are de-
picted in Figure 3. It can be seen from Figure 3 that our
method performs significantly better than other baseline
methods in terms of achieving a better trade-off. From these
plots, it can be seen that at a particular accuracy, our method
achieves a lower concept violation (LAN trade-off curve
lies below the other baseline methods) than other baseline
methods.

5.5 ABLATION STUDY

Effect of learning rate: Table 1 demonstrates the perfor-
mance of the LAN method for different learning rates. It can
be seen as the learning rate increases the accuracy decreases,
while the concept violation decreases at first but starts to
increase afterward. Thus, at higher accuracy regions, con-
cept violation decreases along with accuracy whereas at
lower accuracy regions concept violation increases with a
decrease in accuracy. This suggests an optimal point lies in
the trade-off curve where concept violation is low with a
slight reduction of accuracy.

Performance at higher values of E: Further in Figure 4,

Table 1: Empirical concept violation V̂C and accuracy AD

for different learning rates.

Dataset Models Concepts Learning Rates V̂ AD

MNIST 2-layer
MLP Digit-3

1.00e-07 0.476 0.973
1.00e-05 0.091 0.884
0.0001 0.055 0.883
0.001 0.148 0.876
0.005 0.257 0.842

CIFAR-10 Mobinetv2 Frog

1.00e-07 0.481 0.9253
1.00e-05 0.141 0.861
0.0001 0.108 0.856
0.001 0.170 0.810
0.005 0.210 0.6371

miniImageNet Resnet-50 Triceratops

1.00e-07 0.506 0.968
1.00e-05 0.419 0.959
0.0001 0.4166 0.8564
0.001 0.453 0.477
0.005 0.833 0.034

CelebA Resnet-50
Facial Hair

(Attractive vs.
not-Attractive)

1.00e-08 0.234 0.826
1.00e-06 0.103 0.817
0.0001 0.076 0.800
0.001 0.120 0.802
0.01 0.320 0.680

we demonstrate the effectiveness of LAN over multiple itera-
tions E ∈ {2, 4}. We present concept violation vs. accuracy
trade-off plot to forget the facial hair concept while classi-
fying attractive vs. not-attractive on the CelebA dataset. As
E increases, at higher accuracy regions, the concept viola-
tion further decreases for the same accuracy value making
the trade-off plot flatter. This suggests that increasing val-
ues of E result in flatter trade-off curves, signifying better
performance.

Figure 4: Concept violations vs. accuracy plots for LAN
method at higher values of E

6 CONCLUSION AND LIMIATATIONS

In the pursuit of safer and more responsible machine learn-
ing, the elimination of undesired concepts from models is
crucial. Our work focuses on efficiently removing these un-
desired concepts from pre-trained classification models, a
task that is challenging due to the degradation in general-
ization performance, which can render the forgotten model
ineffective. To address this, we propose a computationally



efficient algorithm termed as Label ANnealing (LAN) al-
gorithm to create a forgotten model while preserving its
ability to generalize. We define concept forgetting as the
property of a model to disregard undesired concepts during
its decision-making process and introduce concept neutral-
ity as a necessary attribute of a forgotten model. To quantify
the extent of concept neutrality in any model, we propose
a novel metric called concept violation. Our experimental
results demonstrate that our method effectively reduces con-
cept violation while maintaining the model’s performance
across multiple concept-forgetting settings, various models,
and datasets. Additionally, we acknowledge that our def-
inition and method are limited only to concept forgetting
in classification models. Further research is needed to de-
velop definitions and methods for concept forgetting that
generalize to generative models as well.
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A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA-1

We recall some of the notation used in the algorithm. bj denotes the number of samples of class-j in D predicted by
the initial model. Thus, n = |D| =

∑k−1
j=0 bj . Similarly, let ncj for the number of samples of class-j in Dc. Hence,

nc = |Dc| =
∑k−1

j=0 ncj . Let the number of labels changed by Algorithm 1 (denoted by A) in the total dataset D be cl(A)
and in concept data subset Dc be cl(A)c. We first prove the following lemma.

Proof. For a particular concept value C = c the label annealing subroutine Algorithm 1 changes the concept data subset
to D̃c by redistributing the labels of the samples in Dc. Let Tcj = min(ncj , bj

nc

|D| ) and αcj be the number of samples for
class-j in Dc assigned by the algorithm in current run. By closely observing algorithm 1 it can be said that the first phase
(second for loop) algorithm tries to retain the original labels of the data until αc,j < bj

nc

|D| while in the second phase (third
for loop) the labels are assigned to other most likelihood classes. Thus the following propositions holds:

• If Tcj = ncj , then the number of labels changed for class-j in Dc termed as cl(A)cj = 0.

• If Tcj = bj
nc

|D| , then the number of labels changed for class-j is in Dc termed as cl(A)cj =
∣∣∣ncj − bj

nc

|D|

∣∣∣.
Hence, in the worst-case scenario number of labels changed for class-j in Dc , cl(A)cj =

∣∣∣∣ncj − bj
nc

|D|

∣∣∣∣. Therefore,

cl(A)c ≤
k−1∑
j=0

cl(A)cj =
k−1∑
j=0

∣∣∣∣ncj − bj
nc

|D|

∣∣∣∣. (6)

Now, for a particular concept C = c the empirical concept violation of the forgotten model θC on D̃c is as follows:

V̂ (θ∗, C = c,D) =
1

2

k−1∑
j=0

∣∣∣∣P̂D(ĥ(θ
∗, z) = j)− P̂D(ĥ(θ

∗, z) = j | C = c)

∣∣∣∣ (7)

=
1

2

k−1∑
j=0

∣∣∣∣bj(θ∗)|D|
− ncj(θ

∗)

nc

∣∣∣∣ (8)

≥ 1

2nc
cl(A)c. (9)

*Equal contribution
*Equal contribution
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Hence, cl(A)c ≤ 2ncV̂ (θ∗, C = c,D) ≤ 2nV̂ (θ∗, C = c,D). Summing over all concepts c results in the lemma.

A.2 PROOF OF THEOREM-1

Proof. We will use the above lemma to prove our main result. We provide the proof for E = 1. The proof for larger values
of E follows by a telescoping sum of the epochs. Let’s denote LD(θ

∗) and LD(θC) denote the empirical losses of the
pre-trained model and forgotten model on the initial dataset D respectively. Now following the notations from the above
proof of Lemma 1 the number of labels changed in the whole dataset D̃ =

⋃m−1
c=0 D̃c is cl(A). We now upper bound the

empirical loss of θC on D as follows:

E [LD(θC)] = E
[
LD̃(θC) + LD(θC)− LD̃(θC)

]
(10)

= E

LD̃(θC) +
1

n

[ ∑
zi∈D

ℓ(θC , zi)−
∑
zi∈D̃

ℓ(θC , zi)

] (11)

(c)

≤ E
[
LD̃(θC)

]
+

L

n
cl(A) (12)

(d)

≤ LD̃(θ
∗) +

L

n
cl(A) (13)

= LD(θ
∗) + LD̃(θ

∗)− LD(θ
∗) +

L

n
cl(A) (14)

(e)

≤ LD(θ
∗) +

2L

n
cl(A) (15)

(f)

≤ LD(θ
∗) + 4LmV̂ (θ∗, C,D) (16)

Here (c) and (e) holds as ∀θ if z = z̃ then ℓ(θ, z) = ℓ(θ, z̃) and the fact that ℓ(θ, z) ≤ L. (d) holds because of the
assumption. Finally applying Lemma 1, we get (f).

B QUANTATIVE RESULTS

B.1 NON-BINARY CONCEPT FORGETTING

Table 2 illustrates the performance of LAN—in reducing concept violation and maintaining test accuracy across various
settings of concept forgetting from a pre-trained Resnet-50 model trained on the CelebA [Liu et al., 2015] dataset. In this
setting, the LAN algorithm reduces concept violation by about 63.52% without significantly affecting test accuracy.

Table 2: Empirical concept violation V̂C(↓) and test accuracy AD(↑) of the initial model and forgotten model via LAN. For
the forgotten model, V̂C reduced without significantly reducing AD

Tasks Concepts Initial Model LAN
V̂C AD V̂C AD

Young vs. Not-Young Hair Color 0.2 0.898 0.063 0.8626
Facial Hair 0.11 0.897 0.0329 0.8921

Attractive vs. Not-attractive Hair Color 0.195 0.827 0.083 0.7955
Facial Hair 0.1716 0.827 0.076 0.8088

Heavy Makeup vs. Not-Heavy Makeup Hair Color 0.157 0.92 0.073 0.881
Facial Hair 0.316 0.919 0.077 0.844



B.2 BINARY CONCEPT FORGETTING

Table 3 shows the efficacy of our method for different concept-forgetting scenarios. In this case, the average reduction of
concept violation is about 85.35% on the MNIST dataset, 73.25% on the CIFAR-10 dataset, 17.05% on the miniImageNet
dataset, and 81.34% on the CelebA dataset, while retention of high model accuracy.

Table 3: Empirical concept violation V̂C(↓) and test accuracy AD(↑) of the initial model and forgotten model via LAN. For
the forgotten model, V̂C reduced without significantly reducing AD

Dataset Models Task Concept Initial Model LAN
V̂C AD V̂C AD

CelebA Resnet-50
Young or not Gender 0.117 0.898 0.015 0.847

Attractive or not Gender 0.2219 0.827 0.006 0.767
Heavy makeup or not Gender 0.314 0.919 0.127 0.764

miniImageNet Resnet-50 class 0-99 classification
Triceratops 0.4991 0.9791 0.406 0.951

Bugs 0.4966 0.9791 0.364 0.936
Fences 0.4948 0.9791 0.466 0.96

CIFAR-10

Mobinet-v2 class 0-9 classification
Bird 0.440 0.928 0.103 0.871
Frog 0.473 0.921 0.108 0.855

Truck 0.472 0.921 0.113 0.855

Densenet-121 class 0-9 classification
Bird 0.445 0.923 0.152 0.869
Frog 0.473 0.917 0.116 0.878

Truck 0.472 0.917 0.147 0.861

MNIST

2-layer MLP Digit 0-9 classification
Digit-3 0.479 0.974 0.055 0.883
Digit-5 0.491 0.971 0.104 0.901
Digit-8 0.470 0.976 0.081 0.889

Resnet-50 Digit 0-9 classification
Digit-3 0.498 0.990 0.047 0.893
Digit-5 0.492 0.992 0.078 0.905
Digit-8 0.496 0.991 0.063 0.897

C IMPLEMENTATIONAL DETAILS

C.1 DATASETS AND MODELS

Here we have used four datasets as follows:

• MNIST [LeCun et al., 1998]: The MNIST dataset consist of 28 × 28 gray-scale representing handwritten digits from
0 to 9. The MNIST dataset contains 6,000 images per digit class totaling 60,000 training samples and 1,000 images per
digit class totalling 10,000 testing images.

• CIFAR-10 [Krizhevsky and Hinton, 2009]: The CIFAR-10 dataset consists of 60000 32x32 color images in 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck with 6000 images per class. There are 50000
training images and 10000 test images.

• CelebA [Liu et al., 2015]: The Celeb Faces Attributes Dataset (CelebA) is a large-scale facial attributes dataset
comprising over 200,000 celebrity images, each annotated with 40 attributes. This dataset features significant pose
variations and background clutter. CelebA offers extensive diversity, a substantial quantity of images, and rich
annotations.

• miniImageNet [Vinyals et al., 2016]: Here we have used a smaller subset of the ImageNet dataset consisting of
50,000 training images and 10,000 testing images, evenly distributed across 100 classes. Here we have used an image
dimension of 224× 224 same as the original ImageNet data dimension.

Models: Further to evaluate our method to different models we experimented with a variety of models with different
learnable parameter sizes such as 2-layer-MLP, Mobinet-v2 [Sandler et al., 2018], Densenet-121 [Huang et al., 2017],



Resnet-50 [He et al., 2016]. The 2-layer-MLP net has two hidden layers both having the size of 500. For Mobinet-v2,
Densenet-121, and Resnet-50 we have taken Pytorch default models with pre-trained weights. For all of these models, the
last layer is changed to an appropriate size suitable for the classification tasks.

C.2 INITIAL TRAINING:

C.2.1 Initial training on MNIST

Here we have used 2-layer-MLP and Resnet-50 models for the classification tasks. For optimization, we have used the Adam
optimizer with a learning rate of 0.001 on mean cross-entropy loss. All the models are trained for 5 epochs with a batch size
of 64. The loss and accuracy curves can be seen in Figure 5.
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Figure 5: Results of training the initial models on MNIST dataset

C.2.2 Initial training on CIFAR-10

Here we have used Mobinet-v2 and Densenet-121 models for the classification tasks. For optimization, we have used the
Adam optimizer with a learning rate of 0.001 on mean cross-entropy loss. Mobinet-v2 and Densenet-121 models are trained
for 60 and 20 epochs respectively with a batch size of 64. We have an early-stopping of 3 epochs for all the models. The loss
and accuracy curves can be seen in Figure 6.
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(b) Mobinet-v2 accuracy
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(c) Densenet-121 loss
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Figure 6: Results of Training of the Initial Models on CIFAR-10 dataset

C.2.3 Initial training on CelebA

Here we have used the Resnet-50 model for the classification tasks. As there are 40 attributes for classification we have
trained 40 MLP heads for this. For optimization, we have used the SGD optimizer with a learning rate of 0.01 a learning rate
scheduler with a decay of 0.1 every 30 steps, momentum of 0.9, and weight decay 1e-4 on total cross-entropy loss. Here
Resnet-50 is trained for 90 epochs with a batch size of 256.

C.3 TRAINING FOR CONCEPT FORGETTING

C.3.1 LAN training

Our official codebase for LAN is available at the following link:https://github.com/Subhodip123/LAN. Here
we have used the label annealing methodology to finetune the pre-trained model for 1 epoch. We evaluated our method with

https://github.com/Subhodip123/LAN


both retraining and FERMI methodology in different forgetting settings. For our results the optimal hyper-parameters For
different settings of forgetting we give the optimal hyper-parameters for our optimal results in the following tables

C.3.2 Baselines

• FERMI [Lowy et al., 2022]: Here we have used the official implementation of FERMI which can
be found in the following link: https://www.dropbox.com/scl/fo/tz8aksm4ibsta9l9hzig7/
AMK3ixeUQRqoY0FhWgDy5rM?rlkey=yufnfhuvhs91mvvl9kc3lbss1&e=1&dl=0. Here we have used
the FERMI loss with the usual regularized cross-entropy loss to fine-tune the pre-trained model for E=1.

• Continuous Fairness [Mary et al., 2019]: The official implementation can be found at: https://github.com/
criteo-research/continuous-fairness. We have used the usual regularized cross-entropy loss to fine-
tune the pre-trained model for E=1.

• Fariness-KDE [Cho et al., 2020a]: As there is no official implementation for this method we use the open-source
implementation from https://github.com/Gyeongjo/FairClassifier_using_KDE. Similarly, like
other baselines, we train the pre-trained model using this regularized loss for E=1.

https://www.dropbox.com/scl/fo/tz8aksm4ibsta9l9hzig7/AMK3ixeUQRqoY0FhWgDy5rM?rlkey=yufnfhuvhs91mvvl9kc3lbss1&e=1&dl=0
https://www.dropbox.com/scl/fo/tz8aksm4ibsta9l9hzig7/AMK3ixeUQRqoY0FhWgDy5rM?rlkey=yufnfhuvhs91mvvl9kc3lbss1&e=1&dl=0
https://github.com/criteo-research/continuous-fairness
https://github.com/criteo-research/continuous-fairness
https://github.com/Gyeongjo/FairClassifier_using_KDE
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