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ABSTRACT

We propose a Reward-Weighted Posterior Sampling of Policy (RWPSP) algorithm
to tackle the classic trade-off problem between exploration and exploitation under
finite Markov decision processes (MDPs). The Thompson sampling method so far
has only considered posterior sampling over transition probabilities, which is hard
to gain the globally sub-optimal rewards. RWPSP runs posterior sampling over
stationary policy distributions instead of transition probabilities, and meanwhile
keeps transition probabilities updated. Particularly, we leverage both relevant count
functions and reward-weighting to online update the policy posterior, aiming to
balance between local and long-term policy distributions for a globally near-optimal
game value. Theoretically, we establish a bound of Õ(Γ

√
T/S2)1 on the total

regret in time horizon T with Γ/S2 < D
√
SA satisfied in general, where S and A

represents the sizes of state and action spaces, respectively, D the diameter. This
matches the best regret bound thus far for MDPs. Experimental results corroborate
our theoretical results and show the advantage of our algorithm over baselines in
terms of efficiency.

1 INTRODUCTION

Online reinforcement learning (Wei et al., 2017) addresses the problem of learning and planning in
real-time sequential decision making systems with the interacting environment partially observed or
fully observed. The decision maker tries to maximize the cumulative reward during the interaction
with the environment, which however inevitably leads to the trade-off between exploration and
exploitation. Many attempts have been made to mitigate such dilemma by improving underlying regret
bounds (Zhang et al., 2020b)(Ménard et al., 2021)(Zhang et al., 2021b)(Zhang et al., 2022)(Agrawal
et al., 2021).

Trade-off between exploration and exploitation has been studied extensively in various scenarios.
The goal of exploration is to find as much information as possible of the environment, while the
exploitation process aims to maximize the long-term total reward based on the exploited part of the
environment. To handle the trade-off problem, one popular way is to use the naive exploration method
such as adaptive ϵ-greedy exploration (Tokic, 2010). The method adjusts the exploration parameter
adaptively, depending on the temporal-difference (TD) error observed from the value function.
Optimistic initialisation methods have also been studied in factored MDPs (Szita & Lörincz, 2009;
Brafman & Tennenholtz, 2003). They encourage systematic exploration in the early stage. Another
common way is to use the optimism in the face of uncertainty (OFU) principle (Lai & Robbins, 1985),
where the agent constructs confidence sets to search for the optimistic parameters associated with
the maximum reward. Thompson sampling, as an OFU-based approach, was originally presented
for stochastic bandit scenarios (Thompson, 1933). It has been applied in various MDPs contexts
(Osband et al., 2013; Agrawal & Goyal, 2012) since it can achieve tighter bounds (Ding et al., 2021;
Oh & Iyengar, 2019; Moradipari et al., 2019) and better compatibility with other structures in both
theory and practice (Chapelle & Li, 2011; Zhang et al., 2021a; Agrawal & Goyal, 2013). It has also
achieved great performance on contextual bandit problems(Agrawal & Jia, 2017)(Osband & Van Roy,
2017)(Osband et al., 2019).The general optimistic algorithms require to solve all MDPs lying within
the confident sets, while Thompson sampling-based algorithms only need to solve the sampled MDPs

1The symbol Õ hides logarithmic factors.
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to achieve similar results (Russo & Van Roy, 2014). Thompson sampling offers speedup on one hand,
and results in biased estimates of the transition matrix on the other hand.

This paper addresses the trade-off problem between exploration and exploitation in finite MDPs. We
propose a reward-weighted posterior sampling of policy (RWPSP) algorithm that samples posterior
policy distributions rather than posterior transition distributions, which optimizes the long-term policy
probability distribution. While updating posterior policy distribution, we use the count functions of
the state-action pairs to capture the importance of each sampled episode. This way, we manage to
optimize the policy distribution in time horizon T and achieve the total regret bound of Õ(Γ

√
T/S2)

with Γ/S2 < D
√
SA, where S and A represent the sizes of the state and action spaces respectively.

D is the diameter of the finite MDP. In addition, we propose a new Bayesian method to update
transition probabilities which also achieves a state-of-art regret bound. In comparison, existing
model-based methods like Upper Confidence Stochastic Game Algorithm(UCSG) achieve a regret
bound of Õ

(
3
√
DS2AT 2

)
on stochastic MDPs (Wei et al., 2017), while model-free methods like

optimistic Q-learning achieve a regret bound of Õ
(
T 2/3

)
under infinite-horizon average reward

MDPs (Wei et al., 2020). To summarize, this work makes the following contributions:

• We propose a reward-weighted posterior sampling of policy (RWPSP) algorithm that strikes
a balance between the posterior projection of the long-term policy and the local policy.

• RWPSP is the first posterior sampling method that samples posterior policy distributions
while Bayesian updating transition probabilities. It achieves a regret bound of Õ(Γ

√
T

S2 ),
where Γ/S2 < D

√
SA. We show that the total regret bound is less than the state-of-the-art,

i.e., D
√
SAT , to the best of our knowledge.

• We conduct experimental studies to verify our theoretical results and demonstrate that our
RWPSP algorithm outperforms other online learning methods in complex MDP environ-
ments.

2 RELATED WORK

Regret Bound Analysis In the finite-horizon setting, most of the Thompson Sampling-based
algorithms follow a model-based approach (Abbasi Yadkori et al., 2013; Xu & Tewari, 2020; Auer
et al., 2008; Fruit et al., 2020; Dong et al., 2020; Agarwal et al., 2020), as model-based reinforcement
learning methods are required to approximate the optimal transition matrix of a MDP. In Xu &
Tewari (2020), non-episodic factored Markov decision processes are sampled using extreme transition
dynamics which encourages visiting new states in order to minimize regret. Although various
approaches had been used to minimize the regret bound, current methods still minimize the regret
bound by updating the transition matrix. A good comparison can be found in Zhang et al. (2021c); Wei
et al. (2020) among existing Thompson sampling based methods. In contrast to existing works with
a focus on posterior sampling over transition matrices, our work only considers posterior sampling
over policy distributions in a finite-horizon MDP. The transition probabilities will be updated based
on the real trajectory. On the other hand, while existing model-free methods have not yet achieved
the state-of-art regret bound (Jin et al., 2018; Strehl et al., 2006), some of them improved the total
regret bound (Zhang et al., 2020a).

Intrinsic Reward Shaping Intrinsic reward shaping was first introduced in 1999 (Ng et al., 1999),
which is a generic idea to guide the policy iteration with intrinsic reward. Count-based methods are
then proposed to reach nearly state-of-the-art performance on a high-dimensional environment (Tang
et al., 2017). Intrinsic reward is also used in Du et al. (2019) to compute a distinct proxy critic for
the agent to guide the update of its individual policy. In order to shape the reward during the policy
iteration, we adopt the reward-weighted update to verify the intrinsic reward. Count functions of
states and/or actions are usually used in the exploration process of an agent to help build the intrinsic
reward (Tang et al., 2017; Bellemare et al., 2016; Burda et al., 2018). In our algorithm, we consider
the count function as the posterior projection of the intrinsic reward, and then use the generated
reward to update the posterior distribution. The previous methods mainly focus on the instantaneous
rewards generated from the exploration process, while our method uses a reward-weighted count
function to generate long-term rewards which can guide the policy towards a globally optimal value.
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3 PROBLEM SETTING

3.1 MARKOV DECISION PROCESS

A finite stochastic Markov decision process (fMDP) (Ferns et al., 2004) could be defined by a
tuple M = (S,A, r, θ). Denote the sizes of the state and action spaces as S = |S| and A = |A|,
respectively. r represents the reward function defined by r : S × A → [0, 1]2. Let θ : S × A × S
represent the transition probability such that θ (s′ | s, a) = P (st+1 = s′ | st = s, at = a). The
ground-truth transition probability θ∗ is randomly generated before the game starts, which is then
fixed and unknown to the agent. For the model-based agents, the transition probability at time step t
within episode k could be defined as θtk . As for each episode, the transition probability would be
defined as θk. A stationary policy π : S → A is a deterministic function that maps a state to an action.
We could define the instantaneous policy under transition probability θtk as πθtk

. The globally optimal
policy under local optimal transition probability and global optimal transition probability could be
defined as π∗

θtk
and π∗

θ∗
respectively. For notational brevity, let πtk ≜ πθtk

, π∗
tk

≜ π∗
θtk

, π⋆ ≜ π∗
θ∗

.

In the fMDP, the average reward function per time step t under stationary policy π is defined as:

J(πθt) = lim
T→∞

1

T
E

[
t+T∑
t′=t

r (st′ , at′)

]
. (1)

Therefore, we could denote the instantaneous average reward under transition probability θtk as
J(πtk). Note that J(πtk) is a hypothetical average reward generated from θtk and πtk . The locally
optimal average reward J(π∗

tk
) could be derived from the corresponding locally optimal policy π∗

tk
.

The globally optimal average reward could be represented as J(π⋆). Define the maximum average
reward as Γ = maxJ(πθ), which is the maximum average reward that an agent could achieve during
its exploration in a fMDP. The maximum value Γ will be achieved under the optimal transition
probability with the optimal stationary policy, i.e., Γ = J(π⋆).

In the online learning setting, total regret is defined to be the difference between the optimal total
game value and the actual game value as follows:

Reg = max
a

T∑
t=1

r(st, a)−
T∑

t=1

r(st, at). (2)

It is used to measure the performance of a decision maker. Since this metric is hard to calculate in
general, we define the following bias vector b(θ, π, s) (Wei et al., 2017) as the relative advantage of
each state to help us measure the total regret.

b(θ, π, s) ≜ E

[ ∞∑
t=1

r (st, at)− J(π) | s1 = s, at ∼ π(·|st)

]
. (3)

Under stationary policy π, the advantage of one state s over another state s′ is defined as the difference
between their accumulated rewards with initial states as s and s′, respectively, which will eventually
converge to the difference of their bias vectors, i.e., b(θ, π, s) − b(θ, π, s′). Denote the expected
total reward under stationary policy π by r(s, π) = Ea∼π(·|s)[

∑
r(s, a)], and the expected transition

probability by pθ (s
′ | s, π) = Ea∼π(·|s)[pθ(s

′|s, a)]. The bias vector then satisfies the Bellman
equation below:

J(πθ) + b(θ, π, s) = r(s, π) +
∑
s′

pθ (s
′ | s, π) b(θ, π, s′). (4)

Define the span of a vector x as sp(x) = max
i

xi −min
i

xi. The regret is strongly connected to the

span of bias vector b(θ∗, π⋆, ·), i.e., sp(b(θ∗, π⋆, ·)). The span of any b(θ, π, ·) is upper bounded
by D ≜ maxT

πtk

s→s′(θtk), i.e., the maximum expected time to reach to state s′ from state s under
transition probability θtk and policy πtk .

2In a finite MDP, the reward in each episode should be confined within [0, 1].
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3.2 ASSUMPTIONS

The globally optimal policy is hard to learn for MDPs under online settings. As they often get stuck
in locally optimal results. The ϵ-tolerance is then introduced to help measure the performance of the
algorithm. When the difference between the current average reward and the optimal average reward
is less than constant ϵ, the current policy is said to be ϵ-optimal.

Assumption 3.1. (ϵ-Optimal policy) (Hartman, 1975) Under sub-optimal and optimal transition
probability, if policy πtk satisfies

Jπ∗(θtk)− Jπtk
(θtk) ≤ ϵ.

Then, policy πtk is ϵ-optimal.

Assumption 3.2 implies that under all circumstances, all the states could be visited in D steps on
average. When the agent conducts the optimal policy under the optimal transition probability, the
transition time Tπ⋆

s→s′(θ∗) should be the shortest, because the agent tends to explore the fewest non-

related states under the optimal stationary policy. In a similar fashion, the transition time T
π∗
tk

s→s′(θtk)
for agent conducting optimal policy under sub-optimal transition probability is assumed to be less
than the maximum transition time D = maxs,s′ T

πtk

s→s′(θtk) in normal settings.

Assumption 3.2. (Expected transition time) When conducting stationary policy π, we assume that
the maximum expected time to reach to state s′ from state s under sub-optimal transition probability
and optimal transition probability is less than constant D:

maxTπ⋆

s→s′(θ∗) ≤ maxT
π∗
tk

s→s′(θtk) ≤ maxT
πtk

s→s′(θtk) = D.

Let e(t) ≜ k be the episode where time instant t belongs. When conducting stationary policy π,
we could define the count function for the episode number e(t) as N(πe(t)). DefineHs1,s2(k, π) as
the set of all the time instants that the state transition s1 → s2 occurs in the first k episodes with
stationary policy π used:

H(s1,s2)(k, π) ≜
∞∑
t=1

1
{
πe(t) = π, (St, St+1) = (s1, s2) , N(πe(t)) ≤ k

}
. (5)

Under transition probability θtk , the expected transition time from state s to state s′ with stationary
policy πtk could be denoted as τ̃πtk

, i.e., τ̃πtk
≜ T

πtk
s→s(θtk). Therefore, the posterior probability of

the stationary policy π can be assumed as the difference between the empirical state pair frequency
H(s1,s2)(k,π)

k and the corresponding expected value τ̃πtk
.

Assumption 3.3. (Posterior distribution under sub-optimal trajectories) (Gopalan & Mannor, 2015)
For any given e1, e2 ≥ 0, there exists p ≜ p(e1, e2) > 0 satisfying θtk(π

∗
tk
) ≥ p for any episode

index k at which sub-optimal transition frequencies have been observed:∣∣∣∣H(s1,s2) (k, π)

k
− τ̃πtk

θ (s1|s2)
∣∣∣∣ ≤

√
e1 log (e2 log k)

k
, ∀s1, s2 ∈ S, k ≥ 1.

4 PROPOSED ALGORITHMS

In this section, we propose a new algorithm to tackle the trade-off between exploration and ex-
ploitation. One parameter that we need under the posterior sampling setting is the prior distribution,
denoted as µ0. Note that we generate prior distributions for both transition probabilities and stationary
policies, but only do posterior sampling over stationary policy distributions. While the transition
probabilities will be Bayesian updated by the trajectory generated from the posterior policy. In each
episode k, at each time step t, the action would be sampled from the posterior policy distribution.
And such policy distribution µtk(π) will be updated based on the previous history htk . Let Nt(s, a)
be the number of visits to any state-action pair (s, a) during a period of time t:

Nt(s, a) = |{τ < t : (sτ , aτ ) = (s, a)}| . (6)

4
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Algorithm 1 Reward-Weighted Posterior Sampling of Policy (RWPSP)
Input: Game environment, prior distribution for stationary policy µπ0

, transition probability θ0,
initial state s0 ∈ S, time step t = 0.
Output: Stationary policy πK

1: for Episode k = 0, 1, 2 . . .K do
2: Tk−1 ← t− tk
3: tk ← t
4: Generate µk(πk) based on prior distribution
5: Update θk using θk =

θk−1(s1|s2,a2)+Hs1,s2 (Nπt (k),π)

Nπt (k)

6: for t ≤ tk + Tk−1 and Nt(s, a) ≤ 2Ntk(s, a) do
7: Sample πtk ∼ µtk(π) and apply action at ∼ πtk
8: Observe new state st+1, reward rt+1

9: Update posterior distribution µ(t+1)k(π) using RWPI
10: t← t+ 1
11: end for
12: end for

We then have our algorithm called the Reward-Weighted Posterior Sampling of Policy, RWPSP for
short, described in Algorithm 1.

At the beginning of each episode k, the RWPSP algorithm, i.e., Algorithm 1, samples a policy
distribution from the prior distribution µ(t−1)k(πk−1) (Line 4), which equals the updated posterior
policy distribution from the last episode (Line 9). Then, the transition probability distribution will
be generated from the history transition matrix θk−1 and count function Hs1,s2(Nπt(k), π) and
Nπt(k)(will be defined in Section 4.1) (Line 5). We use two stopping criteria to limit agent’s
exploration direction. The first stopping criterion aims to stop meaningless exploration, while the
second stopping criterion ensures that any state-action pair (s, a) will not be encountered twice during
the same episode (Line 6). At each time step tk, actions are generated from the instantaneous policy
πtk (Line 7) which follows a posterior distribution µtk(π). These actions are then be used by the
agent to interact with the environment to observe the next state st+1 and the reward rt+1 (Line 8).
The observation results are then be used to find the optimal posterior distribution for policy π(t+1)k
(Line 9).

4.1 UPDATE RULE

In previous Bayesian methods, the transition matrix is updated with Thompson/posterior sampling.
But in our case, we apply posterior sampling over the policy distributions. Based on the Bayes’ rule,
the posterior distribution of policy can be written as :

µt+1(π) =
θ (st+1 | st, at)µtk(π)∑

π′

θ′ (st+1 | st, at)µt (π
′)
. (7)

The way we update stationary policy resembles how Thompson sampling updates transition proba-
bilities, as our algorithm uses the prior policy to guide the current policy. The key difference is that
our Reward-Weighted Policy Iteration (RWPI) algorithm shown in Algorithm 2 is able to balance
between the instantaneous action and the history actions. This will help our method approximate the
long-term maximum reward, which is the globally optimal value in this scenario. We could define
Wtk as the posterior weight in episode k at time t (Line 2 in Algorithm 2). Let Jπtk

and Jπ∗
tk

denote
the instantaneous average reward and the locally optimal value. This locally optimal value is induced
by adopting the greedy policy on the transition probabilities θt. The value of Wtk is proportional to
the log difference between the average reward of the locally optimal policy and the current policy.
At last, we could generate the policy distribution µt(π) based on the previous policy distribution
µt−1(π) and the current locally optimal policy π∗

t (s, θt) (Line 3 in Algorithm 2).

We measure the distance between the history optimal policy and the instantaneous policy using the
Marginal Kullback-Leibler Divergence (Marginal KL Divergence) which is a widely used metric
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Algorithm 2 Reward-Weighted Policy Iteration(RWPI)
Input: Game environment, prior distribution for stationary policy µt(π)
Output: Stationary policy πi

1: repeat
2: Wtk(π) = exp{

∑
π,sHs(Nπ(k), π) log

Jπt

Jπ∗ (s)}
3: µt(π) = Wtµt−1(π) + (1−Wt)π

∗
t (s, θt)

4: until Dπ(µ∗(π)||µtk(π)) ≤ ϵ

for characterizing the difference between two probability distributions. The distance then could be
written as follows:

Dπ(µ∗(π)||µtk(π)) ≜
∑
s1∈S

θπs1

∑
s2∈S

µ∗(π) log
µ∗(π)

µtk(π)

=
∑
s1∈S

θπs1KL (µ∗(π)∥µtk(π)) .

Parameter ϵ in Algorithm 2 represents the tolerance between the optimal policy and the instantaneous
policy. RWPI updates the policy dynamically with the posterior weight. The policy will converge
to an ϵ-optimal value after certain number of iterations under this update method. In the following
section, we will analyze the convergence of this posterior update method and the total regret bound
of our method.

5 MATHEMATICAL ANALYSIS

5.1 CONVERGENCE OF THE UPDATE RULE

We show the convergence of our posterior policy update method to demonstrate its superiority. To
this end, we need the following three Lemmas. Lemma 5.1 shows that RWPI enjoys asymptotic
convergence. We then demonstrate in Lemma 5.2 that the output policy of such policy iteration
method updates monotonically towards the optimal direction, which is vital evidence for the global
optimality of our update method. At last, Lemma 5.3 proves that under MDP M , the output policy
generated from the RWPI method would reach ϵ-optimality after a constant number of iterations.
Lemma 5.1. Suppose Assumption 3.2 holds for some stochastic MDP M , then the policy iteration
algorithm on M converges asymptotically.

Proof. If Assumption 3.2 holds, by Theorem 4 in Wal, van der (1977), the successive policy approxi-
mation process yields an ϵ-band and stationary ϵ-optimal strategies for the agent. This results match
Assumption 3.1. Therefore, the convergence of the policy could be proved.

Lemma 5.2. The average reward deducted by Algorithm 2 will be monotonically increasing.

Proof. From Algorithm 2, we can write the update rule of the average reward as follows:

Jπt
(θ)− Jπt−1

(θ) = (Wt − 1)Jt−1(θ) + (1−Wt)Jπ∗(s, θ)

= (1−Wt)(Jπ∗(s, θ)− Jπt−1
(θ)).

(8)

If Jπt−1
(θ) ≤ Jπ∗(s, θ), then Wt ≤ 1 since log

Jπt (θ)

Jπ∗ (s,θ) ≤ 0, otherwise Wt ≥ 1. Thus,

Jπt(θ)− Jπt−1(θ) = (1−Wt)(Jπ∗(s, θ)− Jπt−1(θ)) ≥ 0. (9)

That is, the sequence Jπt
(θ) is monotonically increasing with time step t.

Lemma 5.3. Suppose Assumptions 3.1-3.2 hold for some stochastic MDP M . Let ui be the state
value in iteration i. Define N as the maximum iteration number of the algorithm. Then πtk is
ϵ-optimal after N iterations.

Proof. The detailed proof is shown in Appendix A.2

6
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5.2 REGRET BOUND ANALYSIS

In the proof of the regret bound, we always consider for the worst case. The randomness of the
algorithm is reduced the minimum level in order to get fair measurement of the performance of the
algorithms. After proving the convergence of the RWPI method, we now turn to the proof of the total
regret bound. The regret in time horizon T can be written as:

RegT = TJπK
(θK)−

T∑
t=1

rπt(st, at)

≈ TJπK
(θK)−

T∑
t=1

Jπt
(θK) +

T∑
t=1

Jπt
(θK)−

T∑
t=1

Jπt
(θt)

= Reg1T +Reg2T .

(10)

Let the episode number be K in time horizon T . The regret are defined separately as Reg1T =

TJπK
(θK) −

∑T
t=1 Jπt

(θK) and Reg2T =
∑T

t=1 Jπt
(θK) −

∑T
t=1 Jπt

(θt). The final average
reward under the final policy πk and final transition matrix θK is defined as JπK

(θK). Reg1T
represents the posterior policy regret and Reg2T represents the posterior transition probability regret.
For any measurable function f and any htk -measurable random variable X , E [f (θ∗, X) | htk ] =
E [f (θk, X) | htk ] (Osband et al., 2013).

In order to bound the first regret Reg1T , we first bound the ratio between the expected optimal average
reward and the instantaneous reward. Based on Assumptions 3.1-3.3, the expected optimal reward
that an agent could achieve in the fMDP could be bounded by parameter Γ and ϵ.

Lemma 5.4. log
Jπ∗ (θ)
Jπt (θ)

≤ ϵ
Γ .

Proof. The detailed proof is shown in Appendix A.2

After bounding the log ratio between the expected optimal average reward and the instantaneous
reward, we now bound the instantaneous posterior weight Wtk , which is important to our proof. At
each time step, the posterior weight will be updated based on the previous policy and the observed
data. First, we define the counter function Nπ(t) :=

∑t−1
t=0

∑
π 1
{
πe(t) = π

}
as the total number

of the time instants during the period of t when policy π was conducted. When Assumption 3.3
holds, we could bound the posterior weight based on the count function in episode k and the average
transition time τ̃ .
Lemma 5.5. Under Assumption 3.3, for each stationary near-optimal policy π and episode k ≥ 1.
The following upper bound holds for negative log-density:

− logWtk(π) ≤
ϵ

Γ
|S|2(ρ(kπ)

√
kπ + kπ τ̃tk,kπ

).

The real reward is expected to get close to the expected reward by certain optimization method. A
large number of iterations would be needed for this purpose. Therefore, from the convergence proof
we proposed in section 5.1, we could derive the bound on the expected convergence time during the
optimization process. In Lemma 5.6, we give the bound on the instantaneous difference between the
real reward and the expected reward with

√
T . This bound is inversely proportional to

√
T , since our

update method updates towards the optimal direction (see Lemma 5.2). For brevity, the full proof
will be given in Appendix A.5
Lemma 5.6. The difference between the local optimal average reward and the instantaneous average
reward can be bounded as |Jπt

− J∗| ≤ Õ( Γ
S2

√
T
).

We then could combine the previous Lemmas together to get the final regret bound of RegT .

Theorem 5.7. The first part of the regret in time horizon T is bounded by: RegT ≤ Õ(Γ
√
T

S2 ).

It is not clear if the above result improves over the state-of-art methods. We further give a tighter
bound for our method below, which shows that under the fMDP our method has a lower regret bound
compared to the current state-of-art method Õ(D

√
SAT ).
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Lemma 5.8. Γ
S2 < D

√
SA when |S| ≥ 2 or |A| ≥ 2.

The second regret Reg2T represents the posterior difference generated by the update method of the
transition probability. First, we use the definition of the Bellman iterator of the average reward
to transmit the one-step posterior transition difference into the difference between the transition
probability. Then we apply the Assumption 3.3 to help bound such difference. At last, the regret
could be bounded by summing all the one-step posterior transition difference.
Theorem 5.9. The regret caused by transition matrix update could be bounded by:

Reg2T ≤ Õ(D(SAT )
1
4 ).

6 EXPERIMENT

In this section, we compare our method with various state-of-the-art methods: SACL (Fruit et al.,
2018a), UCRL2 (Auer et al., 2008), UCRL2B (Fruit et al., 2020), UCRL3 (Bourel et al., 2020),
and KL-UCRL (Talebi & Maillard, 2018). SACL is an exploartion-based method that uses a proper
exploration bonus to solve any discrete unknown weakly-communicating MDP. It admits a regret
bound O

(
D
√∑

s,a Ks,aT log(T/δ)
)

(Fruit et al., 2018b). UCRL2, UCRL2B, and UCRL3 are
three optimistic methods that used certain confidence bounds to minimize the total regret. The
UCRL2 algorithm performs the regret minimization in unknown discrete MDPs under average-reward
criterion. UCRL2B refines the previous UCRL2 method by exploiting empirical Bernstein inequalities
to prove a regret bound of Õ(D

√
ΓSAT ) where maxs,a Γ(s, a) ≤ S. UCRL3 modifies the previous

algorithms by using time-uniform concentration inequalities to compute confidence sets on the reward
and transition distributions for each state-action pair. Finally, the KL-UCRL studied the ergodic MDPs
and proposed a high-probability regret bound Õ

(√
S
∑

s,a V
⋆
s,aT

)
, where V⋆

s,a is the variance of
the bias function with respect to the next-state distribution following action a in state s.
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Figure 2: RiverSwimErgo50
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Figure 3: Three-States
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Figure 4: Four-Rooms

In order to measure the performance of our method empirically, we consider several traditional
game environments: RiverSwim, 4-room, and three-state. RiverSwim is one of the most important

8
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metrics for online learning algorithms. It was first proposed in Strehl & Littman (2008) by Michael L.
Littman in 2008. The basic RiverSwim consists of six states. The agent starts from a random state
and the two actions available to the agent are to swim left or right. But the current will push the agent
to the left side. The agent will receive a much larger reward for swimming upstream and reaching
the rightmost state. In our experiment, we use its enhanced version: RiverSwim25-Biclass and
RiverSwimErgo50. The RiverSwim25-Biclass is a 25-state communicating riverSwim environment
with transition probability for the middle states cut in two subsets. And the RiverSwimErgo50 is a
50-states ergodic RiverSwim environment. For the three-state environment, it was first proposed in
Fruit et al. (2018b) as the metric for the SACL. It is an environment with random reward that contains
three states and two actions. 4-room is a classic reinforcement learning environment, where the agent
must navigate in a maze composed of four rooms interconnected by 4 gaps in the walls. To obtain a
reward, the agent must reach the green goal square.

In the experiment, we use the cumulative reward as the metric. We can see from Figure 1 and Figure
2 that the RWPSP method tends to perform better in the high-dimensional games like RiverSwim25-
biclass and RiverSwim-Ergo50 than other state-of-the-art methods, which matches our theoretical
analysis since RWPSP is designed to discover the long-term average reward in finite-horizon MDPs.
Also, our algorithm performs well in three-state case and surpasses the performance of SCAL. We
observe that our method RWPSP shows significant improvements over other methods in RiverSwim25-
Biclass, RiverSwimErgo50 and 4-room. That is because the total regret bound Õ(Γ

√
T

S2 ) of our method
indicates that the regret bound will decrease when the number of states of the environment increases.
Thus, our method RWPSP performs pretty well on complex online learning environments.

7 CONCLUSION

In this work, we propose a policy-based posterior sampling method that can achieve the best total
regret bound Õ(Γ

√
T/S2) in finite-horizon stochastic MDPs. This algorithm provides a new way

to trade-off between exploration and exploitation by sampling from the posterior distributions of
policy. The posterior policy can be updated to balance between the long-term policy and the current
greedy policy. Our study shows that this posterior sampling method outperforms other optimization
algorithms both theoretically and empirically.

Despite that the sampling method is known to be efficient in discrete environments, our work shows
that it could be further improved with count functions and reward re-weighting for posterior updates.
However, it remains unknown in this work if similar ideas are applicable to continuous environments
as well, which we leave to our future work. For example, we may use some metric to accommodate the
difference between states of a continuous space, and then apply our algorithm to such environments.
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A DETAILS OF PROOFS

The appendix aims to introduce the complete proof of the previous lemmas and theorems.

A.1 THE CONVERGENCE OF PI

Lemma A.1. Under update algorithm RWPI, the average reward should be monotonically increased.

Proof. From Algorithm 2, we could deduce the update rule of the average reward:

Jπt(θ)− Jπt−1(θ) = (Wt − 1)Jt−1(θ) + (1−Wt)Jπ∗(s, θ)

= (1−Wt)(Jπ∗(s, θ)− Jπt−1(θ)).
(11)

When Jπ∗(s, θ) ≥ Jπt−1
(θ), we could deduce that log Jπt (θ)

Jπ∗ (s,θ) ≤ 1. So the posterior weight Wt is
less than 1. This result holds vice versa. The first term 1 −Wt ≤ 0 when Jπ∗(s, θ) ≤ Jπt−1

(θ).
Therefore, we could prove that:

Jπt
(θ)− Jπt−1

(θ) = (1−Wt)(Jπ∗(s, θ)− Jπt−1
(θ)) ≥ 0. (12)

The sequence Jπt
(θ) is monotonically increased with time step t.

Lemma A.2. Suppose Assumption 1 and Assumption 2 hold for some stochastic MDP M . Let ui be
the state value in iteration i. Define N as the maximum iteration number of the algorithm. Then πtk
is ϵ-optimal after N iterations.

Proof. Define D = mins{µi+1(π)−µπ} and U = maxs{µi+1(π)−µi(π)}. Then we could deduce:

D + µN (π) ≤ µN+1

≤WiµN + (1−Wi)π
∗
i (s, θ)

≤WiµN + (1−Wi)(rN + θuN ).

(13)

Since 0 < Wi ≤ 1, the upper equation could be turned to:

D ≤ (1−Wi)Jπi
(θ). (14)

Based on the definition in Preliminaries, let π⋆ be the optimal policy under all states that satisfies
π⋆ :=

∑
s∈S π⋆

i (s, θ). Then

D ≤ (1−Wi)Jπi
(θ) ≤ (1−Wi)Jπ⋆(θ). (15)

In a similar way, we could also prove U ≥ (1 −Wi)Jπ⋆(θ). From the definition of the stopping
criterion of the Policy Iteration algorithm, we could assume U −D ≤ (1 −Wi)ϵ. Therefore, we
have

U ≤ D + (1−Wi)

≤ (1−Wi)Jπi(θ) + (1−Wi)ϵ

≤ (1−Wi)(Jπi
(θ) + ϵ)

(1−Wi)Jπ⋆ ≤ (1−Wi)(Jπi
(θ) + ϵ)

Jπ⋆ ≤ Jπi(θ) + ϵ.

(16)

We could deduce that stationary policy π is ϵ-optimal after N iterations.

A.2 REGRET BOUND ANALYSIS

Lemma A.3.
log

Jπ∗(θ)

Jπt(θ)
≤ ϵ

Γ

Proof. First, we could multiply Jπt(θ) in order to construct the inequality. Let Jπt(θ) = n, ϵ = x

lim
n→+∞

(
1 +

x

n

)n
= lim

n→+∞
en ln(1+ x

n )

= e
limn→+∞

ln(1+ x
n )

1
n .

(17)
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Apply the L’Hopital’s Rule:

lim
n→+∞

(
1 +

x

n

)n
= e

limn→+∞
(−x

n2 ) 1
1+ x

n
− 1

n2

= e
limn→+∞

x
1+ x

n = ex.

(18)

Then, we could prove that
(
1 + x

n

)n
is monotonically increased with n:

(1 +
x

n
)2 = 1 ·

(
1 +

x

n

)
·
(
1 +

x

n

)
· · · · · ·

(
1 +

x

n

)
︸ ︷︷ ︸

n

≤
[
1 + (1 + x

n ) + · · ·+ (1 + x
n )

n+ 1

]n+1

=

[
1 + n(1 + x

n )

n+ 1

]n+1

=

[
1 +

x

n(n+ 1)

]n+1

≤
[
1 +

x

n+ 1

]n+1

.

(19)

The first inequality holds for the arithmetic mean equality. We could deduce that (1 + x
n )

n ≤ ex.
Therefore, we have:

Jπt
(θ) log

Jπ∗(θ)

Jπt
(θ)
≤ ϵ. (20)

Based on the definition of Γ, we could deduce the upper bound of average reward. Then the lemma
could be proved.

Lemma A.4. Under Assumption 3, for each stationary near-optimal policy π and epoch counter
k ≥ 1. Let ρ(x) satisfies ρ(x) := O(

√
log(log(x))). The following upper bound holds for negative

log-density.

− logWtk(π) ≤
ϵ

Γ
|S|2(ρ(kπ)

√
kπ + kπ τ̃tk,kπ )

Proof. When Wtk ≤ 1, we could have:

Wtk(θ) := exp
∑

π,s1,s2

H (Nπ(k), π) log
Jπt

(θ)

Jπ∗(θ)
. (21)

Based on the definition of the counter H, we could deduce the value of the posterior weight in a
single epoch:

Wtk(θ) = exp

( ∞∑
t=1

1
{
πe(t) = π, (St, St+1) = (s1, s2) , N(e(t)) ≤ k

}
log

Jπt
(θ)

Jπ∗(θ)

)

= exp

∑
π∈Π

∑
(s1,s2)∈S2

T∑
t=1

1
{
πe(i) = π, (St, St+1) = (s1, s2)

}
log

Jπt
(θ)

Jπ∗(θ)


= exp

Nπ(t)
∑

(s1,s2)∈S2

t−1∑
t=0

1
{
πe(t) = π, (St, St+1) = (s1, s2)

}
Nπ(t)

log
Jπt

(θ)

Jπ∗(θ)

 .

(22)

Where Nπ(t) :=
∑t−1

t=0

∑
π∈Π 1

{
πe(t) = π

}
represents the total number of the time instants during

the period of t when policy π was conducted.
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When Assumption 3 holds, we could know that Nπ(t) = τ̃πtk
,Nπ(k), where Nπ(k) :=∑K

k=0

∑
π∈Π 1

{
πe(k) = π

}
holds for the number of the epochs where policy π was chosen(The

notation of τ will be represented as Nπ(k) = kπ , τ̃πtk
,Nπ(k) = τ̃tk,kπ

). Therefore, we could have:

− logWtk(π)

= −Nπ(t)
∑

(s1,s2)∈S2

t−1∑
t=0

1
{
πe(t) = π, (St, St+1) = (s1, s2)

}
Nπ(t)

log
Jπt

(θ)

Jπ∗(θ)

= −
∑

(s1,s2)∈S2

τ̃tk,kπH(s1,s2) (τ̃tk,kπ , π) log
Jπt

(θ)

Jπ∗(θ)

=
∑

(s1,s2)∈S2

[
τ̃tk,kπH(s1,s2) (τ̃tk,kπ , π)− kπ τ̃tk,kπθπ(s1|s2)

]
log

Jπ∗(θ)

Jπt(θ)
+

∑
(s1,s2)∈S2

kπ τ̃tk,kπθ(s1|s2) log
Jπ∗(θ)

Jπt(θ)

(23)
The last equation is based on the logarithmic property log A

B = − log B
A . Based on the Assumption 3,

define ρ(x) := O(
√
log(log(x))).

− logWtk(π) ≤
∑

(s1,s2)∈S2

ρ(kπ)
√
kπ log

Jπ∗(θ)

Jπt
(θ)

+ kπ τ̃tk,kπ

∑
(s1,s2)∈S2

θ(s1|s2) log
Jπ∗(θ)

Jπt
(θ)

≤ ϵ

Γ
|S|2(ρ(kπ)

√
kπ + kπ τ̃tk,kπ

).

(24)

Lemma A.5. The difference between the local optimal average reward and the instantaneous average
reward could be bounded by:

|J∗ − Jπt | ≤ Õ(
1√
T
).

Proof. We could know that the current policy probability distribution is updated based on the previous
distribution and the current local optimal policy distribution:

µt(π) = Wtµt−1(π) + (1−Wt)π
∗
t (s, θtk). (25)

We could extend this result to reward function:
Jπt

= WtJπt−1
+ (1−Wt) J

∗ (θt)

J2
πt

= W 2
t J

2
πt−1 + (1−Wt)

2
J∗2

+ 2Wt (1−Wt) J
∗Jπt−1

≤W 2
t J

2
πt + (1−Wt)

2
J∗2 + 2Wt (1−Wt) J

∗Jπt
.

(26)

The inequality is based on the monotonicity of the algorithm. We could simplify Equation 26:(
1−W 2

t

)
J2
πt
≤ (1−Wt)

2
J∗2

+ 2Wt (1−Wt) J
∗Jπt

(1 +Wt) J
2
πt ≤ (1−Wt) J

∗2

+ 2WtJ
∗Jπt

J2
πt

+WtJ
2
πt
≤ J∗2

−WtJ
∗2

+ 2WtJ
∗Jπt

Wt

(
J2
πt

+ J∗2
)
≤ J∗2

− J2
πt

+ 2WtJ
∗Jπt

J2
πt

+ J∗2

≤ 1

Wt

(
J∗2

− J2
πt

)
+ 2J∗Jπt

.

(27)

Based on the definition of the regret of each time step, we could deduce the bound of the instantaneous
regret:

(Jπt − J∗)
2
= J2

πt
+ J∗2

− 2JπtJ
∗

≤ 1

Wt

(
J∗2

− J2
πt

)
+ 2J∗Jπt − 2JπtJ

∗

=
1

Wt

(
J∗2

− J2
πt

)
=

1

Wt
(J∗ − Jπt) (J

∗ + Jπt) .

(28)
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Therefore, we could deduce that:

|Jπt
− J∗| ≤ 1

Wt
|Jπt

+ J∗|. (29)

From Lemma A.4, we could know that− logWtk(π) is bounded by B, with B = ϵ
Γ |S|

2(ρ(kπ)
√
kπ+

kπ τ̃tk,kπ
). Therefore, we could construct the following inequalities.

Wtk − 1 ≥ logWtk ≥ −B
1

Wtk

≤ 1

1−B
.

(30)

Factor B is proportional to parameter kπ which could be bounded by the total number of episode of
under total time T . Therefore, we could bound 1

Wt
by T (Ignoring the constants):

1

Wt
≤ 1

1− ϵ
Γ |S|2(ρ(kπ)

√
kπ + kπ τ̃tk,kπ

)

≤ 1

1−
√√

T −
√
T
.

(31)

Based on the definition of Γ, the average reward function is bounded by Γ. So the difference between
the local optimal average reward and the instantaneous average reward could be bounded by:

|J∗ − Jπt
| = |Jπt

− J∗|

≤ 1

Wt
|J∗ + Jπt

|

≤ 2

1− ϵ
Γ |S|2(ρ(kπ)

√
kπ + kπ τ̃tk,kπ

)

≤ Õ( 2Γ

S2
√
T
).

(32)

Lemma A.6.
Γ

S2
< D
√
SA

when |S| ≥ 2 or |A| ≥ 2

Proof. We could know that Γ is defined as the upper bound of the average reward. So we could
deduct:

Γ ≥ Jπ∗ (θ∗)

D ≥ maxTπtk
s→s′ (θtk)

Γ ≤ maxTπ∗
s→s′ (θ∗) ≤ maxTπtk

s→s′ (θtk) ≤ D.

(33)

Assuming Lemma A.6 is established, we could get:

Γ

S2
≤ D

S2
≤ D
√
SA

D ≤ DS2
√
SA

S2
√
SA ≥ 1.

(34)

Therefore the Lemma could be proved when the fMDP process has more than one state and one
action.

Theorem A.7. The first part of the regret in time step T is bounded by:

Reg1T ≤ Õ(
√
T

S2
).
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Proof. From the definition before, we could know that Reg1T could be represented as:

Reg1T = TJπk
(θK)−

T∑
t=1

Jπt
(θK). (35)

Since this theorem won’t involve the transformation of the transition probability. So let Jπ(θ) = Jπ .
Based on the update rule of the posterior distribution µt+1(π) of policy π. We could divide the
average reward into several parts:
At time step t = T , we could assume the instantaneous regret equals to zero:

Reg1tT = Jπk
− JπT

= 0. (36)

At time step t = T − 1, define the local optimal average reward as J∗
π . Note that this local optimal

value is virtual. The instantaneous regret could be represented as:

Reg1tT−1
= Jπk

− JπT−1

= Wt−1JπT−1
+ (1−Wt−1)J

∗
π − JπT−1

= (Wt−1 − 1)JπT−1
+ (1−Wt−1)J

∗
π

= (1−Wt−1)(J
∗
π − JπT−1

).

(37)

In a similar fashion, at time step t = T − 2, the instantaneous regret could be represented as:

Reg1tT−2
= Jπk

− JπT−2

= Jπk
− JπT−1

+ JπT−1
− JπT−2

= (1−Wt−1)(J
∗
π − JπT−1

) + (1−Wt−2)(J
∗
π − JπT−1

).

(38)

Based on Lemma A.5, the difference between the local optimal value and the current average reward
could be bounded by:

|J∗
π − Jπt | ≤ Õ(

1√
T
). (39)

The sub-optimal models are sampled when their posterior probability is larger than 1
T . This ensures

the time complexity of the Thompson sampling process is no more than O(1). So we could deduce
the total regret in time step T .

Reg1T =
1

T
(Reg1tT−1

+Reg1tT−2
+ · · ·+Reg1t1)

≤ Õ( 2Γ

S2
√
T
)(
T − 1

T
+

T − 2

T
+ · · · 1

T
)

≤ Õ(2Γ
√
T

S2
).

(40)

In order to deduce the second regret bound generated by the transition probability, we should
analyze our algorithm’s performance over T time step. We define the number of macro episodes
M = 1{tk ≤ T}. An episode is defined as the set of the time steps under stopping criterions.
Therefore, we could deduce the bound of the number of episode.

Lemma A.8. Under the stopping criterion, the number of episodes M could be bounded by:

M ≤ SA log(T ).

Wei et al. (2017)

Proof. The stopping criterion is triggered whenever the visits number of the initial state-action pair
is doubled. So M could be represented as:

M(s,a) =
{
k ≤ KT : Ntk(s, a) > 2Ntk−1

(s, a)
}
. (41)
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Since the number of the visit to state-action pair (s, a) is doubled at the beginning of every epoch k.
The size ofM(s,a) should be no larger than O(log(T )). Assume

∣∣M(s,a)

∣∣ ≥ log (NT+1(s, a)) + 1.
We could have:

NtKT
(s, a) =

∏
k≤KT ,Ntk−1

(s,a)≥1

Ntk(s, a)

Ntk−1
(s, a)

>
∏

k∈M(s,a),Ntk−1
(s,a)≥1

2

≥ NT+1(s, a).

(42)

This contradicts the fact that NtKT
(s, a) ≤ NT+1(s, a). This leads to

∣∣M(s,a)

∣∣ ≤ log (NT+1(s, a)).
Therefore, we could obtain the bound of the number of the episodes:

M ≤ 1 +
∑
(s,a)

∣∣M(s,a)

∣∣
≤ 1 +

∑
(s,a)

log (NT+1(s, a))

≤ 1 + SA log

∑
(s,a)

NT+1(s, a)/SA


= 1 + SA log(T/SA).

(43)

Since the logarithmic function is concave, we could simplify the inequality to:

M ≤ SA log(T ). (44)

Lemma A.9. The total number of episodes of total time step T could be bounded by:

KT ≤
√
2SAT log(T ).

Wei et al. (2017)

Proof. Define macro episodes with start times tni
, i = 1, 2, · · · where tn1

= t1,we could have

tni+1
= min

{
tk > tni

: Ntk(s, a) > 2Ntk−1
(s, a)

}
.

Let T̃i =
∑ni+1−1

k=ni
Tk be the length of the ith episode. Therefore, within the ith macro episode,

Tk = Tk−1 + 1 for all k = ni, ni + 1, · · · , ni+1 − 2.

T̃i =

ni+1−1∑
k=ni

Tk

=

ni+1−ni−1∑
j=1

(Tni−1 + j) + Tni+1−1

≥
ni+1−ni−1∑

j=1

(j + 1) + 1 = 0.5 (ni+1 − ni) (ni+1 − ni + 1) .

(45)

Consequently,ni+1 − ni ≤
√
2T̃i, for all i = 1, · · · ,M . From this property, we could obtain:

KT = nM+1 − 1 =

M∑
i=1

(ni+1 − ni) ≤
M∑
i=1

√
2T̃i. (46)

Based on Equation 46 and
∑M

i=1 T̃i = T , we could get:

KT ≤
M∑
i=1

√
2T̃i ≤

√√√√M

M∑
i=1

2T̃i =
√
2MT. (47)
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Where the second inequality is based on Cauchy-Schwarz inequality. From Lemma A.8, we could
know that the number of the macro episodes until time T is bounded by M ≤ SA log(T ). Therefore,
the lemma could be proved.

Theorem A.10. The regret caused by transition matrix sampling could be bounded by:

Reg2T ≤ Õ(D(2SAT )
1
4 ).

Proof. In this theorem, we mainly focus on the difference between transition probability. From the
previous definition of the Bellman iterator of the average reward, we could have:

J(θK) + b(θK , π, s) = r(s, π) +
∑
s′

θK (s′ | s, π) b (θK , π, s′)

J (θt) + b (θt, π, s) = r(s, π) +
∑
s′

θt (s
′ | s, π) b (θt, π, s′) .

(48)

The difference between the average reward under near-optimal transition probability and instantaneous
transition probability could be represented as:

J(θK)− J (θt) = b (θt, π)− b(θK , π)

+
∑
s′,s

(θK (s′ | s, π) b (θK , π, s′)− θt (s
′ | s, π) b (θt, π, s′)) . (49)

We could bound the first term with the largest difference between each state:

0 ≤ b(θK , π, s)− b (θt, π, s) ≤ sp(b(θ)) ≤ D

0 ≥ b (θt, π, s)− b(θK , π, s) ≥ −D.
(50)

Based on Equation 50, we could bound the second term in a similar way:∑
s′

θK (s′ | s, π) b (θK , π, s′)− θt (s
′ | s, π) b (θt, π, s′)

≤ D
∑
s′

(θK (s′ | s, π)− θt (s
′ | s, π)) .

(51)

Then, we define the total transition difference as:

θ∗(s
′|s, π)− θt(s

′|s, π) = θK(s′|s, π)− θt(s
′|s, π)

θk(s
′|s, π)− θt(s

′|s, π) = θK(s′|s, π)− θK−1(s
′|s, π) + θK−1(s

′|s, π)− · · · − θt(s
′|s, π).

(52)
From Equation 52, we could deduct the one-step transition difference to be:

θt(s
′|s, π)− θt−1(s

′|s, π) = θt−1(s
′|s, π) +H (Nπ(k), π)

Nπ(k)
− θt−1(s

′|s, π). (53)

Based on Assumption 3, we could bound the one-step transition difference:∑
s1,s2

(θt − θt−1) =
∑
s1,s2

[
θt−1 +Hs1,s2

N
− θt−1

]
=
∑
s1,s2

θt−1 +Hs1,s2

N
−
∑
s1,s2

θt−1

=
∑
s1,s2

θt−1 +Hs1,s2

N
− Tπ

s1→s2(θt−1)

=
∑
s1,s2

θt−1 +Hs1,s2

N
− τ̃t−1.

(54)
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where ∑
s1,s2

θt−1 +Hs1,s2

N
≥

Hs1,s2(k,π)

N
. (55)

When we use stationary policy π in epoch k, we could know that the count function of the policy π
should be less or equal to the total number of epochs. Therefore, we could deduct that:∑

s1,s2

θt−1 +Hs1,s2

N
≥

Hs1,s2(k,π)

N
≥

Hs1,s2(k,π)

k
. (56)

Based on Assumption 3, we could deduct the bound for
∑

s1,s2
(θt − θt−1):

∑
s1,s2

(θt − θt−1) ≤
√

e1 log (e2 log k)

k
. (57)

Combining Equation 57 with Equation 52. Since the update of the transition matrix only happens
once in each epoch, we could deduct the difference between the periodic transition matrix and
instantaneous transition matrix based on A.9:

θK (s′ | s, π)− θ1 (s
′ | s, π) ≤ K

√
e1 log (e2 log k)

k

≤
√
ke1 log (e2 log k)

≤
√√

2SAT log Te1 log (e2 log k).

(58)

Therefore, we could combine Equation 58 with Equation 51:

T∑
t=1

J(θK)−
T∑

t=1

J (θt) ≤ D

√√
2SAT log Te1 log (e2 log k)

≤ Õ(D

√√
2SAT ).

(59)
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