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Abstract

Numerical validation is at the core of machine learning research as it allows to
assess the actual impact of new methods, and to confirm the agreement between
theory and practice. Yet, the rapid development of the field poses several challenges:
researchers are confronted with a profusion of methods to compare, limited trans-
parency and consensus on best practices, as well as tedious re-implementation work.
As a result, validation is often very partial, which can lead to wrong conclusions that
slow down the progress of research. We propose Benchopt, a collaborative frame-
work to automate, reproduce and publish optimization benchmarks in machine
learning across programming languages and hardware architectures. Benchopt
simplifies benchmarking for the community by providing an off-the-shelf tool for
running, sharing and extending experiments. To demonstrate its broad usability, we
showcase benchmarks on three standard learning tasks: ℓ2-regularized logistic re-
gression, Lasso, and ResNet18 training for image classification. These benchmarks
highlight key practical findings that give a more nuanced view of the state-of-the-art
for these problems, showing that for practical evaluation, the devil is in the details.
We hope that Benchopt will foster collaborative work in the community hence
improving the reproducibility of research findings.

1 Introduction

Numerical experiments have become an essential part of statistics and machine learning (ML). It
is now commonly accepted that every new method needs to be validated through comparisons with
existing approaches on standard problems. Such validation provides insight into the method’s benefits
and limitations and thus adds depth to the results. While research aims at advancing knowledge
and not just improving the state of the art, experiments ensure that results are reliable and support
theoretical claims (Sculley et al., 2018). Practical validation also helps the ever-increasing number
of ML users in applied sciences to choose the right method for their task. Performing rigorous and
extensive experiments is, however, time-consuming (Raff, 2019), particularly because comparisons

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



.PDF

.HTML

.CSV

Figure 1: A visual summary of Benchopt. Each Solver is run (in parallel) on each Dataset and
each variant of the Objective. Results are exported as a CSV file that is easily shared and can be
automatically plotted as interactive HTML visualizations or PDF figures.

against existing methods in new settings often requires reimplementing baseline methods from the
literature. In addition, ingredients necessary for a proper reimplementation may be missing, such as
important algorithmic details, hyperparameter choices, and preprocessing steps (Pineau et al., 2019).

In the past years, the ML community has actively sought to overcome this “reproducibility crisis”
(Hutson, 2018) through collaborative initiatives such as open datasets (OpenML, Vanschoren et al.
2013), standardized code sharing (Forde et al., 2018), benchmarks (MLPerf, Mattson et al. 2020),
the NeurIPS and ICLR reproducibility challenges (Pineau et al., 2019; Pineau et al., 2021) and new
journals (e.g., Rougier and Hinsen 2018). As useful as these endeavors may be, they do not, however,
fully address the problems in optimization for ML since, in this area, there are no clear community
guidelines on how to perform, share, and publish benchmarks.

Optimization algorithms pervade almost every area of ML, from empirical risk minimization, varia-
tional inference to reinforcement learning (Sra et al., 2012). It is thus crucial to know which methods
to use depending on the task and setting (Bartz-Beielstein et al., 2020). While some papers in
optimization for ML provide extensive validations (Lueckmann et al., 2021), many others fall short
in this regard due to lack of time and resources, and in turn feature results that are hard to reproduce
by other researchers. In addition, both performance and hardware evolve over time, which eventually
makes static benchmarks obsolete. An illustration of this is the recent work by Schmidt et al. (2021),
which extensively evaluates the performances of 15 optimizers across 8 deep-learning tasks. While
their benchmark gives an overall assessment of the considered solvers, this assessment is bound
to become out-of-date if it is not updated with new solvers and new architectures. Moreover, the
benchmark does not reproduce state-of-the-art results on the different datasets, potentially indicating
that the considered architectures and optimizers could be improved.

We firmly believe that this critical task of maintaining an up-to-date benchmark in a field
cannot be solved without a collective effort. We want to empower the community to take up
this challenge and build a living, reproducible and standardized state of the art that can
serve as a foundation for future research.

Benchopt provides the tools to structure the optimization for machine learning (Opt-ML) community
around standardized benchmarks, and to aggregate individual efforts for reproducibility and results
sharing. Benchopt can handle algorithms written in Python, R, Julia or C/C++ via binaries. It offers
built-in functionalities to ease the execution of benchmarks: parallel runs, caching, and automatic
results archiving. Benchmarks are meant to evolve over time, which is why Benchopt offers a
modular structure through which a benchmark can be easily extended with new objective functions,
datasets, and solvers by the addition of a single file of code.

The paper is organized as follows. We first detail the design and usage of Benchopt, before presenting
results on three canonical problems:

• ℓ2-regularized logistic regression: a convex and smooth problem which is central to the evaluation
of many algorithms in the Opt-ML community, and remains of high relevance for practitioners;

• the Lasso: the prototypical example of non-smooth convex problem in ML;

• training of ResNet18 architecture for image classification: a large scale non-convex deep learning
problem central in the field of computer vision.

2



The reported benchmarks, involving dozens of implementations and datasets, shed light on the
current state-of-the-art solvers for each problem, across various settings, highlighting that the best
algorithm largely depends on the dataset properties (e.g., size, sparsity), the hyperparameters, as well
as hardware. A variety of other benchmarks (e.g., MCP, TV1D, etc.) are also presented in Appendix,
with the goal to facilitate contributions from the community.

By the open source and collaborative design of Benchopt (BSD 3-clause license), we aim to open
the way towards community-endorsed and peer-reviewed benchmarks that will improve the tracking
of progress in optimization for ML.

2 The Benchopt library

The Benchopt library aims to provide a standard toolset and structure to implement benchmarks for
optimization in ML, where the problems depend on some input dataset D. The considered problems
are of the form

θ∗ ∈ argmin
θ∈Θ

f(θ;D,Λ) , (1)

where f is the objective function, Λ are its hyperparameters, and Θ is the feasible set for θ. The
scope of the library is to evaluate optimization methods in their wide sense by considering the
sequence {θt}t produced to approximate θ∗. We emphasize than Benchopt does not provide a fixed
set of benchmarks, but a framework to create, extend and share benchmarks on any problem of
the form (1). To provide a flexible and extendable coding standard, benchmarks are defined as the
association of three types of object classes:

benchmark/
objective.py
datasets/

dataset1.py
dataset2.py

solvers/
solver1.py
solver2.py

Figure 2: Standard
benchmark structure

Objective: It defines the function f to be minimized as well as the hy-
perparameters Λ or the set Θ, and the metrics to track along the iterations
(e.g., objective value, gradient norm for smooth problems, or validation
loss). Multiple metrics can be registered for each θt.

Datasets: The Dataset objects provide the data D to be passed to the
Objective class. They control how data is loaded and preprocessed.
Datasets are separated from the Objective, making it easy to add new
ones, provided they are coherent with the Objective.

Solvers: The Solver objects define how to run the algorithm. They are
provided with the Objective and Dataset objects and output a sequence
{θt}t. This sequence can be obtained using a single run of the method,
or with multiple runs in case the method only returns its final iterate.

Each of these objects can have parameters that change their behavior, e.g., the regularization
parameters for the Objective, the choice of preprocessing for the Datasets, or the step size for
the Solvers. By exposing these parameters in the different objects, Benchopt can evaluate their
influence on the benchmark results. The Benchopt library defines an application programming
interface (API) for each of these concepts and provides a command line interface (CLI) to make
them work together. A benchmark is defined as a folder that contains an Objective as well as
subfolders containing the Solvers and Datasets. Appendix B presents a concrete example on
Ridge regression of how to construct a Benchopt benchmark while additional design design choices
of Benchopt are discussed in Appendix C.

For each Dataset and Solver, and for each set of parameters, Benchopt retrieves a sequence {θt}t
and evaluates the metrics defined in the Objective for each θt. To ensure fair evaluation, the
computation of these metrics is done off-line. The metrics are gathered in a CSV file that can be used
to display the benchmark results, either locally or as HTML files published on a website that reference
the benchmarks run with Benchopt. This workflow is described in Figure 1.

This modular and standardized organization for benchmarks empowers the optimization community
by making numerical experiments easily reproducible, shareable, flexible and extendable. The
benchmark can be shared as a git repository or a folder containing the different definitions for the
Objective, Datasets and Solvers and it can be run with the Benchopt CLI, hence becoming a
convenient reference for future comparisons. This ensures fair evaluation of baselines in follow-up
experiments, as implementations validated by the community are available. Moreover, benchmarks
can be extended easily as one can add a Dataset or a Solver to the comparison by adding a single
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file. Finally, by supporting multiple metrics – e.g., training and testing losses, error on parameter
estimates, sparsity of the estimate – the Objective class offers the flexibility to define the concurrent
evaluation, which can be extended to track extra metrics on a per benchmark basis, depending on the
problem at hand.

As one of the goal of Benchopt is to make benchmarks as simple as possible, it also provides a set
of features to make them easy to develop and run. Benchopt is written in Python, but Solvers run
with implementations in different languages (e.g., R and Julia, as in Section 4) and frameworks
(e.g., PyTorch and TensorFlow, as in Section 5). Moreover, benchmarks can be run in parallel with
checkpointing of the results, enabling large scale evaluations on many CPU or GPU nodes. Benchopt
also makes it possible to run solvers with many different hyperparameters’ values , allowing to assess
their sensitivity on the method performance. Benchmark results are also automatically exported as
interactive visualizations, helping with the exploration of the many different settings.

Benchmarks All presented benchmarks are run on 10 cores of an Intel Xeon Gold 6248 CPUs @
2.50GHz and NVIDIA V100 GPUs (16GB). The results’ interactive plots and data are available at
https://benchopt.github.io/results/preprint_results.html.

3 First example: ℓ2-regularized logistic regression

Logistic regression is a very popular method for binary classification. From a design matrix
X ∈ Rn×p with rows Xi and a vector of labels y ∈ {−1, 1}n with corresponding element yi,
ℓ2-regularized logistic regression provides a generalized linear model indexed by θ∗ ∈ Rp to discrim-
inate the classes by solving

θ∗ = argmin
θ∈Rp

n∑
i=1

log
(
1 + exp(−yiX

⊤
i θ)

)
+

λ

2
∥θ∥22 , (2)

where λ > 0 is the regularization hyperparameter. Thanks to the regularization part, Problem (2) is
strongly convex with a Lipschitz gradient, and thus its solution can be estimated efficiently using
many iterative optimization schemes.

The most classical methods to solve this problem take inspiration from Newton’s method (Wright
and Nocedal, 1999). On the one hand, quasi-Newton methods aim at approximating the Hessian
of the cost function with cheap to compute operators. Among these methods, L-BFGS (Liu and
Nocedal, 1989) stands out for its small memory footprint, its robustness and fast convergence in a
variety of settings. On the other hand, truncated Newton methods (Dembo et al., 1982) try to directly
approximate Newton’s direction by using e.g., the conjugate gradient method (Fletcher and Reeves,
1964) and Hessian-vector products to solve the associated linear system. Yet, these methods suffer
when n is large: each iteration requires a pass on the whole dataset.

In this context, methods based on stochastic estimates of the gradient have become standard (Bottou,
2010), with Stochastic Gradient Descent (SGD) as a main instance. The core idea is to use cheap and
noisy estimates of the gradient (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952). While SGD
generally converges either slowly due to decreasing step sizes, or to a neighborhood of the solution
for constant step sizes, variance-reduced adaptations such as SAG (Schmidt et al., 2017), SAGA
(Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013) make it possible to solve the problem
more efficiently and are often considered to be state-of-the-art for large scale problems.

Finally, methods based on coordinate descent (Bertsekas, 1999) have also been proposed to solve
Problem (2). While these methods are usually less popular, they can be efficient in the context of
sparse datasets, where only few samples have non-zero values for a given feature, or when accelerated
on distributed systems or GPU (Dünner et al., 2018).

The code for the benchmark is available at https://github.com/benchopt/benchmark_logreg_
l2/. To reflect the diversity of solvers available, we showcase a Benchopt benchmark with 3 datasets,
10 optimization strategies implemented in 5 packages, leveraging GPU hardware when possible.
We also consider different scenarios for the objective function: (i) scaling (or not) the features, a
recommended data preprocessing step, crucial in practice to have comparable regularization strength
on all variables; (ii) fitting (or not) an unregularized intercept term, important in practice and making
optimization harder when omitted from the regularization term (Koh et al., 2007); (iii) working (or
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Figure 3: Benchmark for the ℓ2-regularized logistic regression, on 13 solvers, 4 datasets (rows),
and 3 variants of the Objective (columns) with λ = 1. The curves display the suboptimality of the
iterates, f(θt)− f(θ∗), as a function of time. The first column corresponds to the objective function
detailed in Problem (2). In the second column, datasets were preprocessed by normalizing each
feature to unit standard deviation. The third column is for an objective function which includes an
unregularized intercept.

not) with sparse features, which prevent explicit centering during preprocessing to keep memory
usage limited. Details on packages, datasets and additional scenarios are available in Appendix D.

Results Figure D.1 presents the results of the benchmarks, in terms of suboptimality of the iterates,
f(θt) − f(θ∗), for three datasets and three scenarios. Here, because the problem is convex, θ∗ is
approximated by the best iterate across all runs (see Section C.1). Overall, the benchmark shows the
benefit of using GPU solvers (cuML and snapML), even for small scale tasks such as ijcnn1. Note that
these two accelerated solvers converge to a higher suboptimality level compared to other solvers, due
to operating with 32-bit float precision. Another observation is that data scaling can drastically change
the picture. In the case of madelon, most solvers have a hard time converging for the scaled data. For
the solvers that converge, we note that the convergence time is one order of magnitude smaller with
the scaled dataset compared to the raw one. This stems from the fact that in this case, the scaling
improves the conditioning of the dataset.1 For news20.binary, the stochastic solvers such as SAG
and SAGA have degraded performances on scaled data. Here, the scaling makes the problem harder.2

1The condition number of the dataset is divided by 5.9 after scaling.
2The condition number is multiplied by 407 after scaling.
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On CPU, quasi-Newton solvers are often the most efficient ones, and provide a reasonable choice in
most situations. For large scale news20.binary, stochastic solvers such as SAG, SAGA or SVRG –that
are often considered as state of the art for such problem– have worst performances for the presented
datasets. While this dataset is often used as a test bed for benchmarking new stochastic solvers, we
fail to see an improvement over non-stochastic ones for this experimental setup. In contrast, the last
row in Figure D.1 displays an experiment with the larger scale criteo dataset, which demonstrates a
regime where variance-reduced stochastic gradient methods outperform quasi-Newton methods. For
future benchmarking of stochastic solvers, we therefore recommend using such a large dataset.

Finally, the third column in Figure D.1 illustrates a classical problem when benchmarking different
solvers: their specific (and incompatible) definition and resolution of the corresponding optimization
problem. Here, the objective function is modified to account for an intercept (bias) in the linear
model. In most situations, this intercept is not regularized when it is fitted. However, snapML and
liblinear solvers do regularize it, leading to incomparable losses.

4 Second example: The Lasso

The Lasso, (Tibshirani, 1996; Chen et al., 1998), is an archetype of non-smooth ML problems,
whose impact on ML, statistics and signal processing in the last three decades has been considerable
(Bühlmann and van de Geer, 2011; Hastie et al., 2015). It consists of solving

θ∗ ∈ argmin
θ∈Rp

1
2 ∥y −Xθ∥2 + λ ∥θ∥1 , (3)

where X ∈ Rn×p is a design matrix containing p features as columns, y ∈ Rn is the target vector,
and λ > 0 is a regularization hyperparameter. The Lasso estimator was popularized for variable
selection: when λ is high enough, many entries in θ∗ are exactly equal to 0. This leads to more
interpretable models and reduces overfitting compared to the least-squares estimator.

Solvers for Problem (3) have evolved since its introduction by Tibshirani (1996). After generic
quadratic program solvers, new dedicated solvers were proposed based on iterative reweighted least-
squares (IRLS) (Grandvalet, 1998), followed by LARS (Efron et al., 2004), a homotopy method
computing the full Lasso path3. The LARS solver helped popularize the Lasso, yet the algorithm
suffers from stability issues and can be very slow for worst case situations (Mairal and Yu, 2012).
General purpose solvers became popular for Lasso-type problems with the introduction of the iterative
soft thresholding algorithm (ISTA, Daubechies et al. 2004), an instance of forward-backward splitting
(Combettes and Wajs, 2005). These algorithms became standard in signal and image processing,
especially when accelerated (FISTA, Beck and Teboulle 2009).

In parallel, proximal coordinate descent has proven particularly relevant for the Lasso in statistics.
Early theoretical results were proved by Tseng (1993) and Sardy et al. (2000), before it became the
standard solver of the widely distributed packages glmnet in R and scikit-learn in Python. For
further improvements, some solvers exploit the sparsity of θ∗, trying to identify its support to reduce
the problem size. Best performing variants of this scheme are screening rules (e.g., El Ghaoui et al.,
2012; Bonnefoy et al., 2015; Ndiaye et al., 2017) and working/active sets (e.g., Johnson and Guestrin
2015; Massias et al. 2018), including strong rules (Tibshirani et al., 2012).

While reviews of Lasso solvers have already been performed (Bach et al., 2012, Sec. 8.1), they are
limited to certain implementation and design choices, but also naturally lack comparisons with more
recent solvers and modern hardware, hence drawing biased conclusions.

The code for the benchmark is available at https://github.com/benchopt/benchmark_lasso/.
Results obtained on 4 datasets, with 9 standard packages and some custom reimplementations, possi-
bly leveraging GPU hardware, and 17 different solvers written in Python/numba/Cython, R, Julia or
C++ (Table E.1) are presented in Figure 4. All solvers use efficient numerical implementations, pos-
sibly leveraging calls to BLAS, precompiled code in Cython or just-in-time compilation with numba.

The different parameters influencing the setup are

• the regularization strength λ, controlling the sparsity of the solution, parameterized as a fraction
of λmax =

∥∥X⊤y
∥∥
∞ (the minimal hyperparameter such that θ∗ = 0),

3The Lasso path is the set of solutions of Problem (3) as λ varies in (0,∞).
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• the dataset dimensions: MEG has small n and medium p; rcv1.binary has medium n and p;
news20.binary has medium n and very large p while MillionSong has very large n and small p
(Table E.2).
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Figure 4: Benchmark for the Lasso, on 17 solvers, 4 datasets (rows), and 3 variants of the Objective
(columns) with decreasing regularization λ. The curves display the suboptimality of the objective
function, f(θt)− f(θ∗), as a function of time.

Results Figure 4 presents the result of the benchmark on the Lasso, in terms of objective subopti-
mality f(θt)− f(θ∗) as a function of time.

Similarly to Section 3, the GPU solvers obtain good performances in most settings, but their advantage
is less clear. A consistent finding across all settings is that coordinate descent-based methods
outperform full gradient ones (ISTA and FISTA, even restarted), and are improved by the use of
working set strategies (blitz, celer, skglm, glmnet). This observation is even more pronounced
when the regularization parameter is large, as the solution is sparser.

When observing the influence of the dataset dimensions, we observe 3 regimes. When n is small
(MEG), the support of the solution is small and coordinate descent, LARS and noncvx-pro perform
the best. When n is much larger than p (MillionSong), noncvx-pro clearly outperforms other solvers,
and working set methods prove useless. Finally, when n and p are large (rcv1.binary, news20.binary),
CD and working sets vastly outperforms the rest while noncvx-pro fails, as it requires solving a
linear system of size min(n, p). We note that this setting was not tested in the original experiment of
Poon and Peyré (2021), which highlights the need for extensive, standard experimental setups.
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When the support of the solution is small (either small λ, either small n since the Lasso solution has
at most n nonzero coefficients), LARS is a competitive algorithm. We expect this to degrade when
n increases, but as the LARS solver in scikit-learn does not support sparse design matrices we
could not include it for news20.binary and rcv1.binary.

This benchmark is the first to evaluate solvers across languages, showing the competitive behavior
of lasso.jl and glmnet compared to Python solvers. Both solvers have a large initialization time,
and then converge very fast. To ensure that the benchmark is fair, even though the Benchopt library
is implemented in Python, we made sure to ignore conversion overhead, as well as just-in-time
compilation cost. We also checked the timing’s consistency with native calls to the libraries.

Since the Lasso is massively used for it feature selection properties, the speed at which the solvers
identify the support of the solution is also an important performance measure. Monitoring this with
Benchopt is straightforward, and a figure reporting this benchmark is in Appendix E.

5 Third example: How standard is a benchmark on ResNet18?

As early successes of deep learning have been focused on computer vision tasks (Krizhevsky et al.,
2012), image classification has become a de facto standard to validate novel methods in the field.
Among the different network architectures, ResNets (He et al., 2016) are extensively used in the
community as they provide strong and versatile baselines (Xie et al., 2017; Tan and Le, 2019;
Dosovitskiy et al., 2021; Brock et al., 2021; Liu et al., 2022). While many papers present results
with such model on classical datasets, with sometimes extensive ablation studies (He et al., 2019;
Wightman et al., 2021; Bello et al., 2021; Schmidt et al., 2021), the lack of standardized codebase
and missing implementation details makes it hard to replicate their results.

The code for the benchmark is available at https://github.com/benchopt/benchmark_resnet_
classif/. We provide a cross-dataset –SVHN, Netzer et al. (2011); MNIST, LeCun et al. (2010) and
CIFAR-10, Krizhevsky (2009)– and cross-framework –TensorFlow/Keras, Abadi et al. (2015) and
Chollet et al. (2015); PyTorch, Paszke et al. (2019)– evaluation of the training strategies for image
classification with ResNet18 (see Appendix F for details on architecture and datasets). We train the
network by minimizing the cross entropy loss relatively to the weights θ of the model. Contrary to
logistic regression and the Lasso, this problem is non-convex due to the non-linearity of the model fθ.
Another notable difference is that we report the evolution of the test error rather than the training loss.

Because we chose to monitor the test loss, the Solvers are defined as the combination of an
optimization algorithm, its hyperparameters, the learning rate (LR) and weight decay schedules, and
the data augmentation strategy. This is in contrast to a case where we would monitor the train loss,
and therefore make the LR and weight decay schedules, as well as the data augmentation policy, part
of the objective. We focus on 2 standard methods: stochastic gradient descent (SGD) with momentum
and Adam (Kingma and Ba, 2015), as well as a more recently published one: Lookahead (Zhang et al.,
2019). The LR schedules are chosen among fixed LR, step LR4, and cosine annealing (Loshchilov
and Hutter, 2017). We also consider decoupled weight decay for Adam (Loshchilov and Hutter,
2019), and coupled weight decay (i.e., ℓ2-regularization) for SGD. Regarding data augmentation, we
use random cropping for all datasets and add horizontal flipping only for CIFAR-10, as the digits
datasets do not exhibit a mirror symmetry. We detail the remaining hyperparameters in Table F.2, and
discuss their selection as well as their sensitivity in Appendix F.

Aligning cross-framework implementations Due to some design choices, components with the
same name in the different frameworks do not have the same behavior. For instance, when it comes
to applying weight decay, PyTorch’s SGD uses coupled weight decay, while in TensorFlow/Keras
weight decay always refers to decoupled weight decay. These two methods lead to significantly
different performance and it is not straightforward to apply coupled weight decay in a post-hoc
manner in TensorFlow/Keras (see further details in Section F.3). We conducted an extensive effort to
align the networks implementation in different frameworks using unit testing to make the conclusions
of our benchmarks independent of the chosen framework. We found additional significant differences
(reported in Table F.3) in the initialization, the batch normalization, the convolutional layers and the
weight decay scaling.

4decreasing the learning rate by a factor 10 at mid-training, and again at 3/4 of the training
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Figure 5: ResNet18 image classification benchmark with PyTorch Solvers. The best SGD
configuration features data augmentation, momentum, cosine learning rate schedule and weight decay.
In dashed black is the state of the art for the corresponding datasets with a ResNet18 measured by
Zhang et al. (2019) for CIFAR-10, by Zheng et al. (2021) for SVHN with a PreAct ResNet18, by
PapersWithCode for MNIST with all networks considered. Off-the-shelf ResNet implementations in
TensorFlow/Keras do not support images smaller than 32× 32 and is hence not shown for MNIST.
Curves are exponentially smoothed.

Results The results of the benchmark are reported in Figure 5. Each graph reports the test error
relative to time, with an ablation study on the solvers’ parameters. Note that we only report selected
settings for clarity but that we run every possible combination.5

Firstly, reaching the state of the art for a vanilla ResNet18 is not straightforward. On the popular
website Papers with code it has been so far underestimated. It can achieve 4.45% and 2.65% test error
rates on CIFAR-10 and SVHN respectively (compared to 4.73% and 2.95% – for a PreAct ResNet18 –
before that). Our ablation study shows that a variety of techniques is required to reach it. The most
significant one is an appropriate data augmentation strategy, which lowers the error rate on CIFAR-10
from about 18% to about 8%. The second most important one is weight decay, but it has to be used in
combination with a proper LR schedule, as well as momentum. While these techniques are not novel,
they are regularly overlooked in baselines, resulting in underestimation of their performance level.

This reproducible benchmark not only allows a researcher to get a clear understanding of how to
achieve the best performances for this model and datasets, but also provides a way to reproduce and
extend these performances. In particular, we also include in this benchmark the original implementa-
tion of Lookahead (Zhang et al., 2019). We confirm that it slightly accelerates the convergence of the
Best SGD, even with a cosine LR schedule – a setting that had not been studied in the original paper.

Our benchmark also evaluates the relative computational performances of the different frameworks.
We observe that PyTorch-Lightning is significantly slower than the other frameworks we tested,
in large part due to their callbacks API. We also notice that our TensorFlow/Keras implementation
is significantly slower (≈ 28%) than the PyTorch ones, despite following the best practices and our
profiling efforts. Note that we do not imply that TensorFlow is intrinsically slower than PyTorch,
but a community effort is needed to ensure that the benchmark performances are framework-agnostic.

A recurrent criticism of such benchmarks is that only the best test error is reported. In Figure 6, we
measure the effect of using a train-validation-test split, by keeping a fraction of the training set as
a validation set. The splits we use are detailed in Table F.1. Our finding is that the results of the
ablation study do not change significantly when using such procedure, even though their validity is
reinforced by the use of multiple trainings. Yet, a possible limitation of our findings is that some of
the hyperparameters we used for our study, coming from the PyTorch-CIFAR GitHub repository,
may have been tuned while looking at the test set.

5The results are available online as a user-friendly interactive HTML file.
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Figure 6: ResNet18 image classification benchmark with a validation split. In dashed black is the
state of the art (see caption of Figure 5 for more details). In addition, we show in colored horizontal
dashed lines, the test results for early stopping on the validation and on the test set for the different
solvers, the square mark indicating the moment this stopping would happen. The curves for the
train-val splits show the exponentially smoothed median results for five different random seeds.

6 Conclusion and future work

We have introduced Benchopt, a library that makes it easy to collaboratively develop fair and extensive
benchmarks of optimization algorithms, which can then be seamlessly published, reproduced, and
extended. In the future, we plan on supporting the creation of new benchmarks, that could become
the standards the community builds on. This work is part of a wider effort to improve reproducibility
of machine learning results. It aims to contribute to raising the standard of numerical validation for
optimization, which is pervasive in the statistics and ML community as well as for the experimental
sciences that rely more and more on these tools for research.
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