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Abstract Finding the set of nearest neighbors for a query point of interest appears in a
variety of algorithms for machine learning and pattern recognition. Examples include
k nearest neighbor classification, information retrieval, case-based reasoning, mani-
fold learning, and nonlinear dimensionality reduction. In this work, we propose a new
approach for determining a distance metric from the data for finding such neighboring
points. For a query point of interest, our approach learns a generalized quadratic dis-
tance (GQD) metric based on the statistical properties in a “small” neighborhood for
the point of interest. The locally learned GQDmetric captures information such as the
density, curvature, and the intrinsic dimensionality for the points falling in this par-
ticular neighborhood. Unfortunately, learning the GQD parameters under such a local
learning mechanism is a challenging problem with a high computational overhead.
To address these challenges, we estimate the GQD parameters using the minimum
volume covering ellipsoid (MVCE) for a set of points. The advantage of the MVCE
is two-fold. First, the MVCE together with the local learning approach approximate
the functionality of a well known robust estimator for covariance matrices. Second,
computing the MVCE is a convex optimization problem which, in addition to having
a unique global solution, can be efficiently solved using a first order optimization
algorithm. We validate our metric learning approach on a large variety of datasets
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and show that the proposed metric has promising results when compared with five
algorithms from the literature for supervised metric learning.

Keywords Query-based operations · k Nearest neighbors · Distance metric learning ·
Minimum volume covering ellipsoid · Minimum volume ellipsoid estimator

Mathematics Subject Classification 62H30 · 68T10

1 Introduction

There are various algorithms in machine learning, data mining, and signal processing,
that implicitly or explicitly require finding a small set of nearest neighbors (or similar
points) for a query point of interest xq ∈ R

d from a finite set of points with high-
dimensionality d. For instance, finding such a set of nearest neighbors (NNs) appears
in k-NN classifiers, information and multimedia retrieval, case-based reasoning, man-
ifold learning, spectral clustering, and nonlinear dimensionality reduction algorithms
(Cover andHart 1967; Fukunaga 1972; Short and Fukunaga 1981;Macleod et al. 1987;
Hu et al. 2011; Belkin and Niyogi 2003; Coifman and Lafon 2006; Dornaika and El
Traboulsi 2015). The input data points for these algorithm can be high-dimensional
feature vectors describing text documents, video clips (or frames), speech frames,
image patches, proteins or peptides, etc. Such algorithms rely on a notion of distance
tomeasure the similarity between the high-dimensional points. These distances or sim-
ilarity measures are usually imposed on the data under the assumption that the data is
embedded in a space that is already endowed with a distance metric. For instance, the
k-NN classifier and neural networks consider the embedding space to be R

d , while
support vector machines (SVMs) and kernel methods consider the embedding space
to be a reproducing kernel Hilbert space (RKHS) that is obtained through some kernel
operations.

In this paper, we depart from this assumption and propose to learn a data dependent
distancemetric for finding theNNs of a query point xq , without being overly dependent
on class labels or side information in the dataset.While theEuclidean distance ‖x−y‖2,
Minkowski type distance, and other off-the-shelf distance (and similarity) measures,
are the conventional measures used for this type of distance operation, there are a
few reasons to doubt the appropriateness of these distances when dealing with high-
dimensional real-world data. One reason is the curse of dimensionality; that is, the
structure of high-dimensional spaces defies our visualization for three dimensional
geometry since such spaces are extremely sparse and the distance between every pair
of points is almost the same for a wide variety of data distributions and distance
functions (Ding and Li 2007). A second reason stems from the complex nature of real-
world data: (i) highly structured and nonlinear (e.g. images, text documents, proteins,
etc.); (ii) measured from various sources at different scales and with various degrees of
variability and correlation; and (iii) prone to various sources of noise that may largely
deviate measurements and raise outliers in the data. The third reason is that most
off-the-shelf distance and similarity measures are unaware of the data’s underlying
structure and distribution, and assume implicitly a constant density over the entire
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input space—a situation that is hardly attained in real-world data. In real-world finite
datasets, regionswith lowprobability distribution are poorly sampled and hence poorly
represented in the data; a phenomenon known as the uneven sample distribution in the
input space.

Distance metric learning has emerged as an important research topic to address
some of the aforementioned limitations (Yang 2006; Kulis 2013). Although the idea
is not new for supervised learning—in particular for the k-NN classifier (Short and
Fukunaga 1981)—recent work on metric learning tries to find suitable embeddings
for the data that can reveal more about its structure. Examples include manifold learn-
ing algorithms, spectral embedding methods, algorithms for direct metric learning in
the input space, and their various extensions (Shepard 1962; Kruskal 1964; Tenen-
baum et al. 2000; Roweis and Saul 2000; Belkin and Niyogi 2003; Xing et al. 2003;
Schultz and Joachims 2004). Unfortunately for our context, the existing metric learn-
ing approaches are still inadequate for two reasons. First, metric learning algorithms
are either supervised or semi-supervised and hence they do not meet our objective that
tries to be less dependent on class labels and side information in the data. Second,
metric learning algorithms do not take into consideration the varying sample density
in the input space. To see this, note that these algorithms usually learn a generalized
quadratic distance (GQD) metric: ‖x − y‖A = √

(x − y)�A(x − y), where A is a
symmetric positive definite (PD) matrix. We observe here that A is defined over the
entire input space and does not vary according to the data distribution.

In this paper we propose an unsupervised approach that defines adaptive distance
metric functions for finding accurate nearest neighbors of a query point of interest
xq . Our approach assumes that the data lie on a low dimensional manifold that varies
smoothly around xq , and hence we expect that the points falling in a small neighbor-
hood of xq will share similar properties. This suggests that in order to find better NNs
for xq , one can rely on the local properties for the neighborhood of xq rather than
the global properties of the entire dataset. To this end, we propose to define a GQD
metric for each query point of interest xq based only on the structure information in
the neighborhood of xq , such as density, correlations, curvature, and intrinsic dimen-
sionality. Note that this is different from learning a global GQD metric parameterized
by A under some constraints from class labels and/or side–information.

In our approach, each point xi , for i = 1, . . . , n, defines its own symmetric PD
matrix Ai based on the m nearest neighbors falling in the neighborhood of xi . This
neighborhood is denoted by N (xi ). Since in most applications m � d, computing
an estimate for the covariance matrix Ai entails two difficulties: (i) an appropriate
estimator for Ai , and (ii) an efficient algorithm for computing this estimate. For esti-
mation, it is desirable to obtain a reliable estimate for Ai given the few m samples
in N (xi ). For computation, a fast and efficient algorithm is required to compute this
estimate since it will be used in a query-based setting with large datasets. To this end,
we propose to estimateAi using Titterington’s first order algorithm for computing the
minimum volume covering ellipsoid for a set of points (Titterington 1978). Finally,
we validate our metric learning approach on a variety of datasets, and compare it to
well known algorithms for supervised distance metric learning.

The organization of this paper is as follows. Section2 briefly overviews the literature
on supervised local distance metric learning. Section3 introduces our main approach
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for defining distance metrics based on the set of nearest neighbors falling in the local
neighborhood for the point of interest xq . Section4 considers the internal details for
our proposed method for distance metric learning. In particular, Sect. 4 addresses
the motivation for choosing the minimum volume covering ellipsoid (MVCE) as an
estimator for thematrixAi , theMVCE formulation, and a first order efficient algorithm
for computing the MVCE estimate for Ai (Titterington 1978). Section5 presents our
experimental results, and closing remarks with extensions to other research work are
given in Sect. 6.

Notations and setup:Lower case letters x,m, i denote scalars and indexes. Bold small
letters x, y are vectors. Bold capital letters A,B are matrices. I is the identity matrix
of suitable dimensions. Distributions are denoted in script: P,G . Calligraphic and
double bold capital letters X , Y , X, Y denote sets and/or special spaces. Symmetric
positive definite (PD) and positive semi–definite (PSD)matrices are denoted byA � 0
and A � 0, respectively. tr(·) is the matrix trace and det(·) is the matrix determinant.
The space of d × d symmetric PD matrices is denoted by S

d×d++ . We assume that
X = {x1, . . . , xn} is a set of n independent and identically distributed (i.i.d) points
sampled from the unknown distribution Px; this is denoted by X ∼ Px.

2 Literature review

The literature on metric learning can be categorized according to four dimensions
(Yang 2006): (i) supervised, unsupervised or semi–supervised, (ii) local, or global,
(iii) linear or nonlinear, and (iv) using embedding or not. The supervised approach
can be further categorized based on the type of labels associated with each data point,
which can be in the form of class labels, pairwise distances, or pairwise constraints.
The latter constraints are also known as equivalent/inequivalent constraints,+ve/−ve
constraints, or side information. If the class membership of the data is partially known
(partial labeling), then the algorithm that identifies the distance metric from the data
is considered to be a semi–supervised learning algorithm. For our context, we give a
brief literature review on supervised local distance metric learning.

The earliest work on supervised local distance metric learning dates back to Short
and Fukunaga (1981) with an attempt to minimize the difference between the finite
sample nearest neighbor (NN) classification error and the asymptotic NN error (or the
twice Bayes error bound). Assuming a smooth posterior and smooth conditional den-
sities around points, the distance between a query point and its neighbors is weighted
by the gradient of the posterior probability with respect to the query point, given the
class labels of the nearest neighbors. This should give a larger weight to features that
are relevant to the classification task (a.k.a. local feature relevance). Friedman (1994)
reuses this idea of local feature relevance combined with recursive partitioning of the
space, in a similar spirit to decision trees, to achieve a flexible nearest neighbor metric
that is adapted to each point and its neighborhood. Hastie and Tibshirani (1996) gen-
eralize the work of Short and Fukunaga (1981) by defining local linear discriminant
analysis (LDA) for each query point in a neighborhood around it. Their neighborhoods
are ellipsoids stretched along decision boundaries between classes. Domeniconi and
Gunopulos (2002) use SVMs to compute locally flexible metrics where the maxi-
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mum margin of SVMs decides the most discriminating features (or directions) over
the query point’s neighborhood, and hence provides weights for each feature. In a
similar vein, Domeniconi et al. (2002) and Peng et al. (2004) replace SVMs by the
Chi–squared distance analysis and quasi-conformal kernels, respectively, to achieve
the same objective. By changing class labels to partial side–information, Chang and
Yeung (2007) learn a metric through local linear transformations of neighborhoods.
The metric is learned independently for each point and its neighborhood through a
regularized moving least squares framework with closed form solutions.

Our proposed distance metric learning algorithm, although developed indepen-
dently in (Abou-Moustafa and Ferrie 2007), is in the same spirit of (Chang and Yeung
2007) since our algorithm defines a distance metric for each point from the local
density information surrounding it. However, our work is also different from (Chang
and Yeung 2007) in two aspects. First, we consider an unsupervised setting where no
class labels nor side information are available for the training data, while Chang and
Yeung (2007) assume a semi–supervised setting where such information is available
for training. Second, for a query point xq , our approach uses a first order optimiza-
tion algorithm that runs only on the samples falling the in the neighborhood of xq .
By contrast, Chang and Yeung (2007) use a second order optimization algorithm that
requires a pseudo-inverse for a d×d matrix, and to define the distance metric for each
data point, the optimization algorithm runs on the remaining n − 1 data points.

3 The minimum volume ellipsoid metric

The GQD metric: ‖x − y‖A = √
(x − y)�A(x − y), is a generalization of the Maha-

lanobis distance which is known as an outlier detector in the robust statistics literature.
The Mahalanobis distance exposes outliers by assigning them large distances. This,
however, depends on an accurate estimate for the covariance matrixA. To obtain such
an estimate, our approach relies on approximating a robust estimator for the covari-
ancematrixA known as theMinimumVolumeEllipsoid (MVE) estimator (Rousseeuw
and Leroy 1987). Our approximation has some desirable properties such as the intu-
itive geometric meaning, and its formulation as a convex optimization problem with
a global unique solution. The MVE estimator and our proposed approximation will
be discussed in the following section. The resulting distance metric from the MVE
estimator will be called the MVE Metric, or MVEM.

The basic idea underlying the MVEM is that the distance metric is determined
independently for each point, should it be a training point, a test point, or a query point,
labeled or unlabeled. For X n ∼ Px, and for 1 ≤ i ≤ n, each point xi ∈ X defines its
own GQD metric: ‖xi − y‖Ai , where y ∈ R

d . Since the coordinates of xi define its
location in the input space, the MVEM by definition adapts to this particular location
in the input space through the estimate of the covariance matrix Ai . Each matrix Ai

is estimated from the samples falling in the neighborhood of xi denoted by N (xi ).
The covariance matrixAi captures the local density information inN (xi ) through the
variances of the variables and their correlations among each other. Further, it captures
the local curvature of the underling manifold inN (xi ) and its intrinsic dimensionality;
the leading eigenvectors of Ai are tangent to the underlying data manifold in N (xi ),
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Algorithm 1 Learn MVEM: Learns a GQD metric for point xq using an approximation to the MVE
covariance matrix estimator.
Require: The query point of interest xq ; a dataset with n d-dimensional points X ; and the size of the

neighborhood m.
1: Define the neighborhoodN (xq ) by finding the m NN points to xq from X using any of the following:

– A suitable p–norm ||xi − xq ||p ,
– Kernel function K (xi , xq ), or
– A similarity measure based on a priori domain knowledge.

2: Compute the estimate Â(xq ) ∈ S
d×d++ from the points inN (xq ) using amodified version of Titterington’s

MVCE algorithm (for a fixedmean vector) shown in Algorithm 2. This algorithmwill be discussed in the
following section. Optionally, compute an eigen decomposition for Â(xq ) to obtain a low rank estimate
ÂLR(xq ) ∈ R

d×r , where r � d.
3: return Â(xq ) or ÂLR(xq ).

and the number of leading eigenvectors is an estimate for the intrinsic dimensionality
of points inN (xi ) (Fukunaga 1972). The MVEM does not depend on class labels nor
side–information. However, if such information is available, it can be incorporated to
define the metric. For instance, one can define neighborhoods using points with the
same class label, or using equivalence links.

Algorithm 1 depicts the steps for learning the MVEM for xq . The algorithm starts
by defining the neighborhood N (xq), and in Step 2 it estimates the symmetric PD
matrix A(xq) using a modified version of Titterington’s Minimum Volume Covering
Ellipsoid (MVCE) algorithm (with a fixed mean vector) from the points in N (xq)
only. This will be explained in the following section. Step 2 in Algorithm 1 includes
an optional step that can provide significant memory savings, as well as speedup in
computations. If the dataset is assumed to lie on a low dimensional manifold, then the
estimate Â(xq) will be low rank. Considering an eigen decomposition for Â(xq), its
r � d leading eigenvectors–eigenvalues yield a low rank approximation to Â(xq),
denoted by ÂLR(xq). Any matrix–vector or matrix–matrix operations with ÂLR(xq)
can be done in O(rd) and O(rd2) instead of O(d2) and O(d3), respectively.

3.1 The neighborhood size and the initial distance metric

Our approach assumes that the input space is locally smooth and hence it can be
considered a smooth differentiable manifold that is locally Euclidean. Under this
assumption, Euclidean geometry only holds in a neighborhood around each point in
the dataset. Here the neighborhood size is defined in terms of the number of NNs for
xq and denoted by m. In principle, the neighborhood size should slowly grow until it
circumscribes the region where Euclidean geometry holds. Beyond this size, the local
Euclidean assumption will break due to the manifold curvature. If m is too small, the
estimate for the local Euclidean subspace will be inaccurate, while if m is too large,
the local linear structure will be smoothed out by the influence of distant points.

Note that defining N (xq) using any similarity measure or a priori information is
considered to be bootstrapping the MVEM since the NNs depend on the choice of the
initial similarity measure used. In our experiments in Sect. 5, using the Euclidean dis-
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tance to infer the GQD, although this might seem to be a naïve choice, it showed to be
a reasonable strategy based upon the performance on various datasets. Alternatively,
in high dimensions, N (xq) can be defined using fractional distances to leverage the
curse of dimensionality effect (Aggarwal et al. 2001; François et al. 2007). In prac-
tice, since most learning algorithms entail minimizing an objective function of the
data, optimizing m (and optionally r in Algorithm 1) can be done using a grid search
evaluated by the loss values. The objective of optimizing m in this way is to obtain
a consistent neighborhood size for the finite dataset that is aligned with the learning
task under consideration (through its objective function). Note that different objec-
tive functions can result in different optimal values for m. For instance, as shown in
the Experimental Results section, optimizing m for the k-NN classifier is based on
minimizing the error rate for the k-NN classifier.

The presented local distance metric approach can encourage the reader to question
the relation between two covariance matrices Ai and A j for two nearby points xi and
x j in terms of shared information, overlap, and distance. In this setting, the ellipsoids
defined byAi andA j might overlap with each other, and might be aligned in the same
orientation as well. The amount of overlap and the degree of alignment will depend on
the closeness of xi and x j , the neighborhood size, and the local distribution of points in
each neighborhood. In particular, the leading eigenvectors for Ai and A j will tend to
be aligned to each other depending on these factors. The amount of information shared
between Ai and A j can be quantified using suitable metrics for covariance matrices
(Abou-Moustafa and Ferrie 2012). While in this work we do not address this aspect
since our concern here is the query-based setting, this aspect is thoroughly discussed
in an extension of this research work (Abou-Moustafa et al. 2013).

In the following section, we consider the details for estimating A(xq) from the
points in N (xq) using the minimum volume covering ellipsoid algorithm.

4 A reliable estimate for covariance matrices

TheMinimumVolume Ellipsoid (MVE) estimator is a well known robust estimator for
location (mean) and scatter (covariance matrix) (Rousseeuw and Leroy 1987). It is the
generalization of the least median of squares (LMS) estimator in high dimensions with
the extra property of being equivariant to translation, scaling, orthogonal projection
and affine transformations.

The MVE estimator assumes that points are not necessarily normally distributed
and may contain a proportion α = k/n of outliers, where 0 < α ≤ 0.5, n is the sample
size, and k < n is the number of outliers in the sample. The MVE estimator finds the
minimum volume ellipsoid that covers (at least) h < n points of the set X , where
[n/2] + 1 ≤ h < n. Note that for any fixed h, the possible number of such sets is Cn

h ,
where Cn

h denotes n choose h and [·] is the rounding operator. The center and shape
of the ellipsoid are defined by the robust estimates for the mean and the covariance
matrix respectively.

The MVE estimation procedure (or algorithm), known as MINIVOL (Rousseeuw
and Leroy 1987), entails an implicit combinatorial problemwith cardinalityCn

h , which
is prohibitive even for small experimental datasets encountered in machine learning
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and pattern recognition applications. Therefore, MINOVOL relies on a repeated sam-
pling procedure to find a subset of h samples out of n for which there exists a minimal
covering ellipsoid. Observe here the two objectives implicit in the MINIVOL proce-
dure: (i) Find all the subsets of at least h samples (i.e. in terms of cardinality) and, (ii)
Select the subset which has theminimal volume covering ellipsoid. Thus, the objective
of MINIVOL is to find the smallest and most compact ellipsoid that encloses a set of
h points. The caveat when using MINVOL, however, is that the proportion of outliers
α should be known in a priori. If α is not known, one can guess a reasonable value for
α or assume a worst case scenario and set α = 49%.

Unfortunately, this approach for estimating the MVE is not feasible in our context
for a few reasons. First, the proportion of outliers α is usually unknown, and assum-
ing a predefined value such as 49% has no justification. Second, there is a practical
inefficiency in running a sampling–based procedure such as MINIVOL for each data
point. Third, considering our local learning context, large deviating samples might not
necessarily be outliers; for instance samples from other classes or clusters cannot be
considered as outliers. Therefore, a different approach is needed for computing the
MVE estimate for A.

4.1 Approximating the MVE estimate

The objective of MINIVOL is to find the smallest and most compact ellipsoid that
encloses a set of h points. In our context, the sampling procedure for selecting h out of
n samples can be avoided since estimatingAq only requires the points inN (xq). Recall
that N (xq) contains a small number of points that are close (in terms of the initial
distance) or similar to xq . This is known as “locality”, since in the neighborhood
N (xq), the underlying distribution is assumed to smoothly vary around xq . In this
setting, and assuming that d is large, it is expected that m � d. If Aq is estimated for
N (xq) using a maximum likelihood estimation (MLE) procedure then the result will
be a crude low rank estimate for Aq . In the same spirit of MINIVOL, and to avoid an
unreliable estimate for Aq , we propose to estimate Aq using the Minimum Volume
Covering Ellipsoid (MVCE) for the set N (xq) (Atwood 1969; Titterington 1978). In
other words, we approximate the functionality of the MINIVOL estimation procedure
using (i) locality (Bottou and Vapnik 1992) and (ii) the MVCE ofN (xq). The MVCE
of N (xq) has interesting properties and will be explained in the following section.

4.2 Formulation of the MVCE

Let N = N (xq) = {x1, . . . , xm} be the set of NNs for xq . The MVCE of N , known
as the Löwner–John Ellipsoid, is denoted by ELJ and parameterized by A ∈ S

d×d++ and
u ∈ R

d as follows (Boyd and Vandenberghe 2004):

ELJ = {x | (x − u)�A−1(x − u) ≤ d,∀x ∈ N }, (1)

where u is the center of the ellipsoid. The problem of computing the MVCE ofN can
be expressed as:

123



Local generalized quadratic distance metrics…

(Â∗, û∗) = argmin
A,u

log det(A) (2)

s.t. ‖A− 1
2 x j − b‖22 ≤ d, 1 ≤ j ≤ m, (3)

where b = A− 1
2 u, and A ∈ S

d×d++ . The optimization problem in (2) is a convex
optimization problem since the objective function is convex in A, and the squared
norm constraints are convex quadratic inequalities in A and b.

4.3 An algorithm for computing the MVCE

Computing the MVCE was studied in various research disciplines such as optimal
experimental design (Atwood 1969; Titterington 1978), operations research (Sun and
Freund 2004; Damla et al. 2008), numerical optimization (Boyd and Vandenberghe
2004), and computer science (Kumar and Yildirim 2005). The resulting algorithms
fall into two main categories: (i) first order gradient based methods (Atwood 1969;
Titterington 1978; Kumar and Yildirim 2005), and (ii) second order methods that
rely on convex optimization and interior point methods (Boyd and Vandenberghe
2004; Sun and Freund 2004). Although interior point methods are considered to be an
important advancement in optimization, their computational complexity per iteration
is usually high (Todd 2006). In addition, in terms of convergence, Damla et al. (2008)
showed the linear convergence of simple first order algorithms (Atwood 1969; Kumar
and Yildirim 2005), thereby favoring first order algorithms over second order interior
point methods.

For the purpose of MVEM, we use a first order method that was proposed by
Titterington (1978). In particular, Titterington (1978) showed that the problem of
computing theMVCE for a dataset can be regarded as the dual of a problem in optimal
design for parameter estimation in linear regression, with the dataset as the design
space. Consider again the set N (xq) = {x1, . . . , xm}, and let w = [w1, . . . , wm]�.
Following Titterington (1978) and Dolia et al. (2006), a regularized version of dual
problem in (2) can be expressed as:

w∗ = argmax
w

log det(A(w)) (4)

s.t.
m∑

j=1

w j = 1, andw j ≥ 0,

where

A(w) =
m∑

j=1

w j (x j − u(w))(x j − u(w))� + εI , u(w) =
m∑

j=1

w jx j ,

from which A was eliminated to yield an optimization problem in the dual variable
w. The term εI, 0 < ε � 1, is a regularization term that prevents the ellipsoid from
collapsing to zero volume in high-dimensional spaces. The dual of problem (4) in
terms of A and u is thus given by:
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Algorithm 2 Modified Titterington’s MVCE algorithm (for a fixed center xq ).

Require: The query point: xq ; the set of NNs for xq : N (xq ) = {x1, . . . , xm }; maximum number of
iterations: tmax; a stopping threshold for the normof difference inw vectors: τ > 0; and the regularization
parameter ε to keep a minimum volume for the ellipsoid.

1: t = 0
2: For 1 ≤ j ≤ m, set w j (t) = 1/m
3: w(t) = [w1(t) · · · wm (t)]
4: for t = 0 to tmax do
5: A(t) = ∑m

j=1 w j (t)(x j − xq )(x j − xq )� + εI
6: for j = 1 to m do
7: δ j = (x j − xq )A−1(t)(x j − xq )�

8: w j (t + 1) = w j (t)δ j
d

9: end for
10: if ‖w(t) − w(t + 1)‖ ≤ τ then break
11: end for
12: return Â∗ = A(t)

(Â∗, û∗) = argmin
A,u

log det(A) + d + εtr(A−1) (5)

s.t. ‖A− 1
2 x j − b‖22 ≤ d, 1 ≤ j ≤ m ,

where b = A− 1
2 u, and A ∈ S

d×d++ . To see how problem (5) is different from the MLE
for A, consider the following optimization problem:

ÂMLE = argmin
A

log det(A) + tr(A−1R) (6)

s.t. A ∈ S
d×d++ ,

which estimates the covariance matrix A for a set of points {x1, . . . , xm} with zero
mean, and R = ∑m

j=1 x jx�
j is the sample covariance matrix. With no further

constraints on A, ÂMLE = R. Thus the difference between (5) and (6) is in the regu-
larization term, and the m linear matrix inequality constraints that define the MVCE.

Fromproblem (4), it canbe seen that Â∗ is aweighted averageof rankone covariance
matrices where the weights are restricted to form a convex combination. Setting all
the weightsw j = 1/m for 1 ≤ j ≤ m, yields the maximum likelihood estimate of the
mean of u and covariance matrix A. Note that w j ’s are estimated from the samples
such that outer samples are assigned larger weights than inner ones.

Titterington’s first order algorithm for solving problem (4) was proposed in (Tit-
terington 1978). Algorithm 2 depicts a modified version of this algorithm in which
the ellipsoid center is given as an input to the algorithm. Note that in our context, we
only need to estimate the covariance matrixA and not the mean vector, or the ellipsoid
center u. In our context, the mean vector is the point of interest, xq , which is fixed
and does not change. The implementation includes the inversion of a symmetric PD
matrix which can be efficiently done using Cholesky factorization. The computational
complexity per iteration is O(d3+4m(d2+d))flops and is dominated by theCholesky
factorization with a complexity of O(d3) flops. This factorization is independent from
the number of points since it is computed in the outer t loop of Algorithm 2. Accuracy
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Fig. 1 a The effect of the dataset size (m) on the average time for computing the MVCE using our
implementation of Titterington’s algorithm. The average time is computed over 100 randomly sampled
points from the training set of the USPS dataset (d = 256). For each random sample, the neighborhood
size m varied from 150 to 1000 NNs. b The effect of the dataset dimensionality (d) on the average time per
point for computing the MVCE using our implementation of Titterington’s algorithm. The average time
is computed over 100 samples picked randomly from the following UCI datasets: iris, new-thyroid, bupa,
pima, glass, pageblocks, vowel, wine, housevotes, lymphography, german, WDBC, Ionosphere, satimages,
and optdigits. The experiments were carried on a Dell compute server with two Intel Xeon quad-core
processors (E5345 @ 2.33GHz) with 16GB RAM

and speed of convergence, depicted in Fig. 1a, b respectively, depend on parameter τ

which in turn is affected by the size and dimensionality of the dataset. Note that when
t = 0, the initial weights for w in step 2 lead to the regularized sample covariance
matrix in step 5.
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Table 1 Attributes of the twenty UCI datasets used in our experiments; number of classes (c), size (n) and
number of features (d)

Dataset c n d Dataset c n d

Balance 3 625 4 Monks-3 2 554 6

Bupa 2 345 6 NewThyroid 3 215 5

German 2 1000 24 Pageblocks 5 5473 10

Glass 7 214 9 Pima 2 768 8

HouseVotes 2 341 16 SatImage 6 6435 36

Ionosphere 2 350 33 Segment 7 2086 18

Iris 3 150 4 Spam 2 4601 57

Lymphography 4 148 18 WDBC 2 569 30

Monks-1 2 556 6 Wine 3 168 13

Monks-2 2 601 6 Yeast 10 1484 6

Table 2 Attributes of the
MNIST and USPS datasets

Dataset c Train Test d PCA

MNIST 10 19997 10000 (24×24) 576 Yes (120)

USPS 10 7291 2007 (16×16) 256 No

5 Experimental results

We validated the performance of the MVEM by running experiments on standard
benchmark datasets with different size (n) and number of features (d). Our experi-
ments were conducted on twenty datasets from the UCI machine learning repository
(Newman et al. 1998), shown in Table1, and two handwritten digits datasets, MNIST
(LeCun 1998) and USPS (Keysers 1998), shown in Table2. The performance on the
twenty UCI datasets was evaluated in terms of the average error rate (with standard
deviation) on the test sets from a 10–folds double cross validation. The performance
on MNIST and USPS was evaluated using the classifier’s error rate on the test set of
both datasets.

5.1 Experimental setup

Due to the large size and the high-dimensionality of MNIST, it was preprocessed with
some basic operations as follows. First, since the digits are relatively well centered
with respect to the image boundaries, the imageswere cropped by two pixels from each
side to form new images of 24 × 24 pixels. Next, similar to DeCoste and Schölkopf
(2002), all images were smoothed with a 2D Gaussian kernel of width σ = 0.75.
Finally, principal component analysis (PCA) was used to reduce the dimensionality of
the dataset to 120 dimensions, retaining 99% of the total variance. To reduce the size of
the training set, only one third of the samples in each digit classwere randomly selected
and used as the training set, resulting in a training set size of 19997 samples. Principal
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components were obtained from the new training set of MNIST. No preprocessing
was applied to all other dataset.

The MVEM—denoted here by RMVEM due to its internal regularization taking
place—was compared with the Euclidean distance (EUC), the large margin nearest
neighbor classifier (LMNN) (Weinberger et al. 2006), relevant component analysis
(RCA) (Bar-Hillel et al. 2005), Xing’s metric learning algorithm (XING) (Xing et al.
2003), k–Local Hyperplanes classifier (Vincent and Bengio 2002) (KLHP) and a local
GQD distance metric based on regularized MLE estimate for A (RMLE) (see (6)).
That is, RMLE and RMVEM are both GQD metrics but with different estimates
for the covariance matrix. Note that RMVEM is unsupervised when defining the
neighborhood for each point, while LMNN,RCA,XING, andKLHP are all supervised
learning algorithms.

LMNN is a supervised and discriminative metric learning algorithm that is specifi-
cally designed tominimize the k-NN error, while RCA andXING are semi–supervised
metric learning algorithms that use pairwise constraints or similarity information dur-
ing their training. While XING’s algorithm uses +ve and −ve constraints, RCA uses
only +ve constraints. In our experiments, both XING and RCA were provided with
full pairwise constraints, i.e. they were used in a supervised setting. Note that XING
and RCA are global metric learning algorithms with global constraints on the data
while LMNN is a global metric learning algorithm with only local constraints. KLHP
(Vincent and Bengio 2002), on the other hand, is a supervised local learning algorithm
for classification tasks. Assuming a c-class problem, and for a query point, KLHP
finds the k-NN from each class and constructs c local hyperplanes for the k neighbor-
ing samples from each class. The correct class of the query point is the one with the
minimum distance between the query point and the c hyperplanes. Since k is a crucial
parameter for KLHP, we do not restrict its value to {1, 3, 5}; rather, it is optimized to
minimize the training error of each split of the dataset.

5.2 Training and testing procedures for the k-NN classifier using the MVEM

The test error in our context is based on a k-NN classifier with different values of k.
Note that we do not optimize k to obtain the best error rate, rather the k-NN classifier
is run on each dataset with the following k values: {1, 3, 5}. Our hypothesis is that
under a “good” distance metric, for any value of k, the k-NN error rate should be
consistently as good as or smaller than the error rate under the Euclidean distance for
the same value of k.

The MVEM was applied on all datasets using the k-NN classifier as follows. For
each split of the data into training and test sets, the training phase searches for m∗
(and optionally r∗) that minimizes the k-NN error rate on the training set using the
following procedure.
For a fixed k for the k-NN classifier do:

1. For each value of m in the range [m1, . . . ,mν] do:
(a) For each point xi in the training set, 1 ≤ i ≤ n, find itsm NNs from the training

set to form the set N (xi ) and apply Algorithm 2 to obtain the estimate Âi .
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(b) For each point xi , use the GQD parameterized by xi and Âi to find the k-NN
samples for xi from the given training set.

(c) Compute the error rate for the k-NN classifier on the training set.
2. Return m∗ that yields the lowest k-NN error rate on the training set.

Oncem∗ is obtained for a training set, a new point xq from the test set can be classified
using the MVEM as follows:

1. Find the m∗ NNs for xq from the given training set to form the set N (xq), and
apply Algorithm 2 to obtain the estimate Âq .

2. Use the GQD parametrized by xq and Âq to find the k-NN for xq from the given
training set.

3. Classify xq according to the k-NN rule using the NNs obtained in the previous
step.

Note that in this procedure,m is larger than k, and optimizingm is done in a supervised
manner since it is selected to minimize the k-NN error on the training set.

Titterington’s MVCE algorithm requires two parameters: τ and ε. The algorithm
is not sensitive to ε and it was fixed in all our experiments to 0.0001. Convergence
to an accurate estimate of the robust covariance matrix, however, is affected by τ ,
especially in high dimensions. Therefore, τ needs to be small to obtain an accurate
convergence for the covariance matrix. Convergence is also affected by the size and
the dimensionality of the dataset as shown in Fig. 1a, b respectively. We found that τ
values of 0.01, 0.001 or 0.0001 worked well for our experiments.

5.3 Results on the UCI datasets

Consider Figs. 2, 3, 4, 5, 6, 7 and 8 which compare the average test error (with standard
deviation) for the k-NNclassifier on all the datasets using the sevenmetrics/algorithms.
For the UCI datasets, MVEM is consistently better than the Euclidean metric, and in
most of the cases, it is consistently better than RCA, XING and KLHP.

Out of 60 cases, and using a z–test (for two proportions) with 0.05% significance
level, MVEM was significantly better than EUC, LMNN, RCA, XING, KLHP and
RMLE in 42, 30, 44, 38, 46, and 22 cases, respectively.1 On the other hand, EUC,
LMNN, RCA, XING, KLHP and RMLE were significantly better than MVEM in 11,
23, 14, 15, 13, and 16 cases, respectively. In the remaining cases, all algorithms are
similar. The overall performance on the twenty UCI datasets is summarized in Fig. 7.
It can be seen that RMVEM, on average, has the lowest average test error across all
datasets and all k values.

5.4 Results on MNIST and USPS datasets

In theMNIST and USPS experiments, different observations can be made from Fig. 8.
KLHP was the best performer on MNIST while not competitive with EUC, LMNN,

1 The 60 cases are: 20 (datasets) × 3 (k values).
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Fig. 2 Average test error for the k-NN classifiers the sevenmetrics/algorithms (EUC, LMNN, RCA,XING,
KLHP, RMLE, RMVEM) on Balance, Bupa, German and Glass datasets. The y-axis shows the error rate

XING, RCA and RMVEM on USPS. By contrast, LMNN was the best performer
on the USPS dataset, but not competitive with EUC, RCA, XING and RMVEM in
the MNIST case. RMVEM and XING performed similarly to EUC on both datasets.
Before running any experiments, we expected that the performance of all metrics
would be close to EUC in the MNIST case since it is an uncorrelated space (due to the
preprocessing step using PCA). This hypothesis proved to be true for RMVEM and
XING and false for all other metrics on MNIST and USPS datasets. This shows that
both RMVEM and XING were able to learn a metric that is close to the Euclidean
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Fig. 3 Average test error for the k-NN classifiers using the seven metrics/algorithms (EUC, LMNN, RCA,
XING, KLHP, RMLE, RMVEM) on HouseVotes, Ionosphere, Iris and Lymphography datasets. The y-axis
shows the error rate

distance from the data. On the other hand, LMNN, RCA and RMLE were not able to
detect the uncorrelated space of MNIST and performed worse than EUC.

5.5 General remarks

Comparing the performance of each metric learning algorithm against the Euclidean
metric, we note the following. Only RMVEM, LMNN and XING showed a consistent
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Fig. 4 Average test error for the k-NN classifiers using the seven metrics/algorithms (EUC, LMNN, RCA,
XING, KLHP, RMLE, RMVEM) on Monks-1, Monks-2, Monks-3 and New-thyroid datasets. The y-axis
shows the error rate

improvement over the Euclidean metric. Moreover, we noticed from all datasets that
the MVEM is more likely to be consistently better than, or at least as good as, the
Euclidean distance. While KLHP was on average better than the Euclidean distance,
it did not demonstrate such consistent behavior. This might be further improved by
using better regularization in its implementation. RCA had less satisfactory behavior
in that regard which suggests that it might be more useful in a semi–supervised setting
for clustering as reported in (Bar-Hillel et al. 2005).
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Fig. 5 Average test error for the k-NN classifiers using the seven metrics/algorithms (EUC, LMNN, RCA,
XING, KLHP, RMLE, RMVEM) on Page blocks, Pima, SatImage and Segment datasets. The y-axis shows
the error rate

In general, for the k-NN classification setting, global metric learning with +ve and
−ve constraints seems to perform better than global metric learning with +ve con-
straints only. The former type (e.g. XING’s algorithm) has a more difficult and slower
learning since the two types of global constraints can work against each other. By
exchanging global constraints with local ones, as with LMNN, performance improves
significantly. RMVEM depends more on locality by first learning a metric for each
point from the neighborhood information surrounding it and then fine tuning it with
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Fig. 6 Average test error for the k-NN classifiers using the seven metrics/algorithms (EUC, LMNN, RCA,
XING, KLHP, RMLE, RMVEM) for Spam, WDBC, Wine and Yeast datasets. The y-axis shows the error
rate

parameters m and r that have to be consistent across the dataset. This resulted in a
promising performance for RMVEM when compared to supervised learning algo-
rithms that rely on class labels and side information. Our results suggest that while
various supervised learning algorithms have been proposed for learning distance met-
rics to improve subsequent analysis, a simple unsupervised local learning approach
for a distance metric can yield results that are as good as, or better than supervised
and sophisticated techniques.
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Fig. 7 The average test error for each metric/algorithm on all UCI datasets. The y-axis shows the error
rate
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Fig. 8 Error rates on the test sets of MNIST and USPS for the k-NN classifier using the seven met-
rics/algorithms (EUC, LMNN, RCA, XING, KLHP, RMLE, RMVEM). The y-axis shows the error rate

6 Concluding remarks

In this work, we propose a new approach for learning a data-dependent distance met-
ric function that can find accurate nearest neighbors for a query point of interest. Our
approach defines local distance functions based only on the set of nearest neighbors
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falling in the neighborhood for the query point of interest. Such local distance metrics
are modeled as quadratic distance functions parameterized by symmetric PDmatrices.
The proposed local based distance model allows the generalized quadratic distance
function to change slowly, so that nearby query points generally have distance metrics
that are similar. To obtain reliable estimates for the symmetric PD matrices, the local
learningmechanism togetherwith theMinimumVolumeCovering Ellipsoid algorithm
allowed us to approximate the functionality of theMinimumVolume Ellipsoid estima-
tor, which is known as a robust estimator for covariance matrices. Our experimental
results show that the MVEM is a promising direction for defining suitable metrics for
such query-based operations. Further, the distance function is flexible enough to be
adapted and optimized according to the learning task under consideration through its
objective function.

Future research directions can address the algorithmic aspects of our approach, as
well as new application domains. On the algorithmic side, faster and more efficient
computation of the minimum volume covering ellipsoid is an important direction
especially for high-dimensional data. On the applications side, the MVEM can be
applied to image retrieval, object recognition, and appearance–based matching. The
proposed local distance functions can be also used as inputs for other distance-based
algorithms. For instance, this approachwas used for constructing neighborhood graphs
for spectral clustering and manifold learning algorithms for nonlinear dimensionality
reduction (Abou-Moustafa et al. 2013).
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