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ABSTRACT

Efficient long-term memory is important for improving the sample efficiency of
Partially Observable Reinforcement Learning. In memory-based RL methods,
the long-term memory capacity relies on the sequence models used in agent ar-
chitecture. Two main approaches improve long-term dependency for sequence
models, using linear recurrence and using information selection mechanisms such
as gating. However, the sample efficiency of existing approaches remains low in
long-term memory tasks. In this paper, we first present a saliency-based framework
to illustrate why existing methods do not perform well on long-term memory tasks.
Specifically, they cannot effectively filter out noisy information irrelevant to the
memory task in the early stage of training. To this end, we design a novel linear
recurrent module, in which the gating is controlled by spiking neurons. Spiking
neurons output discrete values and can more effectively mask noise in the early
stages of training, thus improving sample efficiency. The effectiveness of our
proposed module is demonstrated on Passive Visual Match, a classic long-term
memory task, and several different types of partially observable tasks. The code is
attached in the supplementary material and will be made publicly available.

1 INTRODUCTION

Long-term memory is an important ability for humans to make complex decisions in environments Ku-
maran et al. (2016). Specifically, humans can recall historical information for decision-making, and
humans can prevent memory from being interfered with by other events that are not relevant to
the memory-intensive task McNab & Klingberg (2008). For Reinforcement Learning (RL) agents,
achieving efficient long-term memory will improve the sample efficiency of their training, which is
important for their practical real-life applications Dulac-Arnold et al. (2019).

The computational and memory efficiency of recurrent neural network (RNN)-based sequence
models Parisotto et al. (2020); Zhao et al. (2023); Morad et al. (2023b); Le et al. (2024) makes them
well-suited for memory-based RL, particularly in real-world applications that involve near-infinite
temporal contexts, as shown in Figure 1 (Left). These RNN-based sequence models involve two
essential mechanisms: Linear recurrence improves the long-term dependency Orvieto et al. (2023) of
the sequence model, while gating Hochreiter & Schmidhuber (1997); Chung et al. (2014) explicitly
selects relevant information for the working memory Chaudhari et al. (2021); Morad et al. (2023b).
However, neither of these mechanisms thoroughly prevents working memory from being interfered
with by irrelevant information in the early stages of the training process, leading to unstable training
and inefficiency in long-term memory tasks, as mentioned by recent studies Lu et al. (2024); Le et al.
(2024) and evidenced by the results shown in Figure 1 (Right).

In this paper, we introduce a unified framework based on the signal-to-noise ratio (SNR) of temporal
saliency Ismail et al. (2019), from the perspective of gradient analysis of backpropagation, to evaluate
the long-term memory effectiveness of sequence models. This framework not only explains the
necessity of linear and gating mechanisms but also reveals why linear and existing continuous gating
designs still fall short in supporting effective long-term memory learning (see Section 3). To overcome
this limitation, we justify the importance of discrete gating mechanism under the proposed unified
framework, designing a linear recurrent cell equipped with such discrete gating (implemented by
spiking neurons Fang et al. (2023)). Extensive experiments on long-term memry tasks demonstrate
the superiority of our approach, outperforming several SOTA methods. Moreover, in more general
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Figure 1: Left Top: Illustration of a classical long-term memory task, Passive Visual Match Hung
et al. (2019) (images extracted from Ni et al. (2023)). According to Hung et al. (2019), it can be
divided into input, noise, and output phases. The agent needs to utilize the information remembered
in input phase Pin for decision-making in output phase Pout, i.e., success in this task requires the
agent to remember the color from Pin and correctly match it to the color in Pout. Noise phase Pnoise

is an interference task and could be arbitrarily long. Left Botton: To align with the three temporal
phases described above, we unfold the RNN-based model framework. Intuitively, the contribution
from Pin to Pout must be substantially greater than that from Pnoise to Pout. This ensures that
the model effectively learns and retains as much information from Pin during training. Right: We
evaluate and compare the temporal contributions of different phases to the output phase Pout across
several existing RNN-based models, including vanilla Recurrent Neural Networks (RNNs) Elman
(1990), linear RNNs Orvieto et al. (2023)), and gated linear RNNs Morad et al. (2023b). For each
subfigure, the horizontal axis represents the temporal progression which is consistent with that in
Figure 1 (Left), while the vertical axis quantifies the contribution of each of the three phases to Pout.
The contributions are calculated based on temporal saliency Ismail et al. (2019) (or Equation 3),
which measures the influence of inputs at each time step on the final output. The results reveal several
key patterns: linear RNNs exhibit a slower decay in contribution over time compared to vanilla
RNNs, while gated RNNs display abrupt shifts of saliency across different phases, contrasting with
the smooth and gradual evolution observed in their non-gated counterparts. Critically, none of the
existing methods effectively suppress the influence of the noise phase (indicated by the notable height
of yellow regions). In contrast, the proposed approach successfully mitigates the impact of noise
phase, leading to more effective temporal credit assignment.

scenarios that rely primarily on short-term memory, our method achieves performance comparable to
existing SOTA models. Our contributions are summarized as follows:

• We propose a saliency-based metric using SNR of temporal saliency to analyze RNN-based
sequence models in long-term memory tasks, showing that their inefficiency stems from an
inability to suppress irrelevant information.

• We design a discrete gating mechanism using spiking neurons within a linear recurrent cell,
which improves noise filtering and sample efficiency in long-term memory tasks, while
maintaining parallel training capability.

• We empirically validate the framework’s insights and our model’s strong performance across
long-term and general memory scenarios.

2 BACKGROUND

2.1 PARTIALLY OBSERVABLE REINFORCEMENT LEARNING

POMDP. Partially Observable Markov Decision Process (POMDP) is a mathematical framework
that is used to model the environment that is partially observable by an agent Åström (1965). It
formally describes the problem of long-term memory. Since the agent cannot directly perceive the
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true state of the environment, it must maintain an internal memory of past observations and actions
to make optimal decisions. Thus, effectively solving a POMDP inherently requires the ability to
perform long-term memory tasks. A POMDP is defined as a tuple (S,A,O, T,O,R, γ), where S
represents the state space, which is inaccessible to agents. A represents the action space. O represents
the observation space of agents. T = P (st|st−1, at−1) is the transition function. O = P (ot|st) is
the observation function. R = P (rt+1|st, at, st+1) is the reward function. γ is the discount factor.
To obtain an optimal policy, the agent must condition the policy on all accessible information i.e.,
the trajectory τt = (o1, a1, r1, · · · , ot, at, rt) up to timestep t. The agent’s goal is to learn a policy
π(at|τt) to maximize the expected discounted return, where T is the time horizon.

Memory-Based RL. Early approaches for solving POMDPs are based on belief states Kaelbling
et al. (1998), which require a lot of computations. Recently, model-free methods have been verified
as a general and efficient approach Hausknecht & Stone (2015); Ni et al. (2021). As shown in Figure
1 (Left), the agent uses an MLP encoder and a sequence model to map the trajectory τt to a latent
Markov state ŝt. Empirical studies Morad et al. (2023a) have found that traditional RNNs Hochreiter
& Schmidhuber (1997); Chung et al. (2014) are sufficiently useful in simple POMDP environments.
Recently, increasing amounts of research have focused on the use of modern sequence models to
tackle more challenging POMDP tasks. Some methods use Transformer Ni et al. (2023), or State
Space Models (SSMs) Lu et al. (2023), or linear RNNs Lu et al. (2024). Some methods modify the
structure of linear RNNs Morad et al. (2023b) or Memory-Augmented Neural Networks (MANN) Le
et al. (2024) to make them perform better in POMDP tasks. Some studies introduce more efficient
training algorithms Morad et al. (2024); Elelimy et al. (2024) for certain types of sequence models.
In this paper, we focus on RNNs-based sequence model for Memory-Based RL.

2.2 RECURRENT NEURAL NETWORKS

RNNs capture the internal temporal dependency of sequential data. Early RNNs Elman (1990) trained
with the BPTT algorithm suffer from the gradient vanishing problem Hochreiter (1998), which will
hinder the model from learning long-term dependency.

Gated RNNs. Gating mechanisms that control the flow of information are widely found in the
human brain Gisiger & Boukadoum (2011). A similar design exists in sequence models as gated
RNNs. Gated RNNs Hochreiter & Schmidhuber (1997); Chung et al. (2014); Lei et al. (2017) use
gating to alleviate the gradient vanishing problem and thus increase the length of temporal dependency,
but their sequential nature slows down the training process with a time complexity of O(T ), making
it difficult to train effectively on tasks with a very long period of time.

Linear RNNs. Linear RNNs Orvieto et al. (2023); Feng et al. (2024) or SSMs Smith et al. (2022);
Gu & Dao (2023) reduce the vanishing gradient by removing the non-linear activation function in the
recurrence structure while keeping the other layers non-linear. The linear recurrence can be trained in
parallel using convolution with a causal mask or the associative scan operation. To preserve their
representational power when non-linearity is removed, many Linear RNNs use complex values to
extend their hidden state.

This paper provides a unified framework based on temporal saliency Ismail et al. (2019) to analyze
different variants of RNNs and shows their limitations when handling long-term memory tasks.

2.3 DISCRETE MODELS AND SELECTION MECHANISM

Discrete models. Discrete models use 0 or 1 to represent the data itself. Works related to discrete
models include Binary Neural Networks (BNNs) Qin et al. (2020) and Spiking Neural Networks
(SNNs) Roy et al. (2019), which employ the Straight-Through Estimator (STE) or Surrogate Gra-
dients (SG) to facilitate gradient-based learning. These discrete models have many applications,
such as image classification Rathi & Roy (2020); Fang et al. (2021b); Yao et al. (2022), sequence
modeling Fang et al. (2023); Li et al. (2024); Chen et al. (2024), and RL Chen et al. (2022); Zhang
et al. (2024); Qin et al. (2022; 2025). Their primary advantage lies in reducing computational costs,
and they also serve as foundational model architectures for the discrete selective mechanism.

Discrete selection mechanism. The discrete selection mechanism uses 0 or 1 to decide whether to
retain or discard certain information. While this mechanism already has many applications, there
may be additional, yet-to-be-explored benefits. Sequence models such as SkipRNN Campos et al.
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(2017) and Phased LSTM Neil et al. (2016) utilize discrete selection mechanisms, significantly
reducing network computation while achieving superior performance compared to traditional RNNs
on supervised tasks. In other domains, Spiking-NeRF Liao et al. (2024) leverages spiking neurons,
the fundamental units of SNNs, as an information selection mechanism for NeRF Mildenhall et al.
(2021), functioning similarly to a gating mechanism that forms a discontinuous representation space
and filters out irrelevant information.

However, almost no prior work has investigated whether discrete model or discrete selection mech-
anisms can effectively remove irrelevant information in RNN-based RL tasks. To the best of our
knowledge, our method is the first to explore discrete gating in memory-based RL tasks. A more
detailed comparison with existing works across different aspects is provided in Appendix B.

3 LONG-TERM MEMORY EFFICIENCY ANALYSIS

3.1 LONG-TERM MEMORY EFFICIENCY ANALYSIS FRAMEWORK

According to Hung et al. (2019), timesteps in a long-term memory task can be divided into input,
noise, and output phases. We define these phases as sets of timesteps, denoted as Pin, Pnoise, and
Pout. Pin contains the timesteps in which the agents are receiving useful information from the
environment and updating their memory, while the actions in Pin will not receive immediate reward
feedback from the environment. Pout contains the timesteps when the agent is required to recall the
information that is received from Pin to obtain the optimal policy. Timesteps in Pnoise are those
with observations that are useless for inferring actions or values in Pout, and the timesteps in Pnoise

can be arbitrarily long. Observations in Pnoise can be considered noisy inputs for the memory task.
Despite this, there may be some memory-agnostic tasks in Pnoise.

Our framework focuses on the value network since it plays a crucial role in many Deep RL algo-
rithms Schulman et al. (2017); Haarnoja et al. (2018); Fujimoto et al. (2018). Its output is denoted as
Q(ŝt, at). To obtain good performance of the model, the contribution of observation ot, t ∈ Pin to
value Q(ŝt, at), t ∈ Pout, denoted as Cin→out, should be substantially greater than that of Cnoise→out

(the contribution of observation ot, t ∈ Pnoise to Q(ŝt, at), t ∈ Pout). Based on this observation, we
define the SNR of temporal saliency for long-term memory efficiency analysis:

SNRC =
Cin→out

Cin→out + Cnoise→out
, Cin→out ≥ 0, Cnoise→out ≥ 0. (1)

The ratio of Cin→out to Cnoise→out can be reflected by SNRC , which is bounded in (0, 1). The larger
the value of SNRC , the better a memory-based RL agent can eliminate irrelevant information. To
make that happen, we could either increase Cin→out or decrease Cnoise→out. We can quantify
these two terms as the sum of the temporal saliency Ismail et al. (2019) of their respective phases:

Cin→out =
1

|Pin|
∑
t∈Pin

Rt, Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rt. (2)

Formally, we define temporal saliency Ismail et al. (2019) as the partial derivative of the output of the
value network in Pout with respect to observation ot. For timestep t, the temporal saliency Rt is:

Rt =
∣∣∣ ∑
i∈Pout

∂Q(ŝi, ai)

∂ot

∣∣∣ = ∣∣∣ ∑
i∈Pout

[∂Q(ŝi, ai)

∂ŝi

∂ŝi
∂hi

( i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂xt︸ ︷︷ ︸
Gt

∂xt

∂ot

]∣∣∣, (3)

where Q(ŝi, ai) is the output of the value network at timestep i ∈ Pout, ŝ and h are the output and
hidden state of the sequence model, respectively. xt is the encoded feature of ot. The value of Rt

reflects the contribution of the input in the timestep t to the output in Pout. Gt is the term that is
dependent on the structure of the sequence model; it can establish a connection between the structure
of the sequence model and SNRC .

Temporal saliency Ismail et al. (2019) is introduced to interpret the behavior of RNN Ismail et al.
(2019) and has recently been adapted as a memory introspection tool in POMDPs Wang et al. (2025).
However, Wang et al. (2025) only uses it for qualitative memory visualization, without distinguishing
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input, noise, and output phases. As such, it lacks the quantitative measures needed to analytically
assess the effectiveness of specific model designs. In contrast, the proposed SNRC explicitly models
this distinction, enabling the evaluation of architectural choices.

3.2 LONG-TERM MEMORY EFFICIENCY ANALYSIS FOR DIFFERENT RNN-BASED MODELS

In this section, we will show how existing sequence models with linear recurrence or gating mech-
anisms essentially devise a strategy to increase SNRC by either increasing Cin→out or decreasing
Cnoise→out with their specific gradient dynamics.

Non-linear RNNs vs Linear RNNs. A unified formulation of ht in Non-linear and Linear RNNs
can be formulated as:

ht = f(Whht−1 + Wxxt), ht, xt ∈ RNh , (4)
where xt is the input of the RNN and Nh is the hidden size.

For a Non-linear RNN such as vanilla RNN Elman (1990), f(·) is usually tanh(·). Wx ∈ RNx×Nh and
Wh ∈ RNh×Nh are matrices of learnable parameters. With these components in the recurrence, the
term

∏i
j=t+1

∂hj

∂hj−1
in Rt, Equation 3, will decay rapidly, causing the gradient to vanish Hochreiter

(1998). It means that if the timestep in Pin is in the distant past, Cin→out =
1

|Pin|
∑

t∈Pin
Rt would

be relatively small, as shown in Figure 1 (Right, 1⃝).

In contrast, Linear RNNs, such as LRU Orvieto et al. (2023); Gu et al. (2020), use identity mapping as
f(·) and replace Whht−1 in Equation 4 by ct ⊙ht−1, where ct is a vector of size Nh and ⊙ indicates
the element-wise product. With linearity, the term

∏i
j=t+1

∂hj

∂hj−1
in Equation 3 will decay slower as

|i− t| increases. Therefore, the gradient can propagate to earlier timesteps. Once timesteps in Pin

are distant from Pout in long-term memory tasks, Cin→out in Equation 2 can be higher than that in
vanilla RNNs, thus increasing the value of SNRC in Equation 1, as shown in Figure 1 (Right, 2⃝).

Non-gated RNNs vs Gated RNNs. Our analysis above indicates that linear recurrence could
increase Cin→out by slowing down the decay of temporal saliency Rt. However, both linear and
non-linear RNNs cannot decrease Cnoise→out to eliminate the impact from Pnoise. We show that
Gated RNNs such as Morad et al. (2023b) increase the long-term efficiency by decreasing Cnoise→out.

A unified formulation of ht in Non-gated and Gated RNNs can be formulated as:
ht = ct ⊙ ht−1 + (Wxxt)⊙ ϕ.

ϕ =

{
1, non-gated,
σ(Wixt), gated,

(5)

where σ(·) is the sigmoid function, defined as σ(x) = 1
1−e−x , x ∈ R. Wi ∈ RNx×Nh is the linear

layer of the input gate. The partial derivative of ht with respect to xt in Equation 3 can be written as

∂ht

∂xt
=


diag

(∂ht

∂ut

)∂ut

∂xt
, non-gated,

diag
(
σ(gt)⊙

∂ht

∂ut

)∂ut

∂xt
+ diag

(
ut ⊙

∂ht

∂σ(gt)
⊙ σ′(gt)

) ∂gt
∂xt

, gated,
(6)

where ut = Wxxt, gt = Wixt.

For non-gated case, the term ∂ht

∂xt
is numerically equal to Wx. Therefore, as long as Wx is a non-zero

matrix, Rt in Equation 3 will also be non-zero (assuming that all the other terms are non-zero). To
learn valuable information at timestep t ∈ Pin, Wx cannot be a zero matrix. This is why a non-gated
linear RNN does not have a way to reduce Cnoise→out.

For gated case, the gating function outputs a near-zero value to filter out information from the noisy
phase Pnoise. Both red terms in Equation 6 will be small, making Rt in Equation 3 sufficiently small
for t ∈ Pnoise, as evidenced by the abrupt shifts of saliency across different phases in Figure 1 (Right,
3⃝). Consequently, Cnoise→out will be decreased, and SNRC will be higher. Ideally, we can have the

following proposition.
Proposition 1. If ct is input-independent, and ∃Wi ∈ RNx×Nh so that σ(Wixt) = 0, t ∈ Pnoise in
a certain environment, SNRC can reach its maximum value 1.

A detailed proof of Proposition 1 can be found in Appendix A.1.
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Figure 2: Left: Comparison of continuous Gating and discrete Gating. Right: Visualization of the
structure of our proposed recurrent cell.

4 METHOD

4.1 SPIKING NEURON AS DISCRETE GATING

Continuous Gating vs Discrete Gating. Despite that sigmoid-based continuous gating could
increase SNRC by decreasing Cnoise→out, due to the way of parameter initialization and the softness
of the sigmoid function, saturated values, i.e., 0 and 1, cannot be taken at the beginning of training.
After sufficient training, the value of the gates may saturate, but this also causes the gradient of the
gating function to vanish. This is because sigmoid gating requires inputs to be extremely large to
reach saturated outputs, while the derivative of the sigmoid function σ′(x) = σ(x)(1 − σ(x)) at
those input values is near-zero, as shown in Figure 2 (Left). This is a dilemma that has been discussed
in Gu et al. (2020). Thus, sigmoid gating can cause vanishing gradients, which in turn diminishes
training efficiency. Furthermore, its inability to effectively filter noise early in training also reduces
the sample efficiency of memory-based RL agents.

In contrast, a discrete gating function ϕ with surrogate gradient can reach saturated outputs without
requiring inputs to be extremely large, thus preventing the problem of gradient vanishing. As
shown in Figure 2 (Left), with Heaviside step function Θ(·) as the discrete gating st = Θ(f(x,Wi)),
Wi can satisfy the conditions of Proposition 1 without having extremely large values, which in turn
allows Cnoise→out to be minimized and SNRC to be maximized at the early stage of training.

Parallel Spiking Neuron. In POMDP tasks where inputs are partially observable, the gating
function should be history-dependent so that it can control the selection mechanism based on more
information. Therefore, we could use spiking neurons with temporal dynamics as the gating function.
To maintain the benefit of linear RNN, which is parallel training, we use Parallel Spiking Neuron
(PSN) Fang et al. (2023) as our discrete gating function, which is

mt = (1− 1

τm
)mt−1 +

1

τm
ut, mt, ut ∈ RNh ,

st = Θ(mt − Vth), s ∈ {0, 1}Nh ,

(7)

where Vth is the threshold, ut = Wixt is the input current and mt is the membrane potential.
We choose the derivative of the arctan function as the surrogate gradient for Θ(·) during training.
Following Fang et al. (2021a), we have Θ′(x) ≜ 1

1+(πx)2 . To improve the expressivity of neurons, we
define 1

τm
∈ (0, 1)Nh as a learnable vector, where τm is the membrane time constant of the spiking

neuron.

Adding Stochasticity. PSN already meets the desired property of being a gating function. However,
due to the absence of stochasticity in its neuronal dynamics, if a neuron outputs 0 at some point
during training, it is likely to remain 0 for the rest of the training process. Therefore, we refer to the
trick in discrete model compression Gao et al. (2020), which uses a stochastic threshold to determine
the state of discrete gating. We add stochasticity to Vth, which is now summed by a constant and a
stochastic variable during training, and is fixed to a constant during inference based on the expectation
of the stochastic variable. Specifically, we have

Vth,i =

{
θ +Xi, parallel training,
θ + EXi, sequential inference,

(8)

where Vth,i is the threshold voltage of the i-th neuron, θ is the threshold potential of the neuron, and
Xi ∼ U(0, 1) is the random variable that has a uniform distribution.
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4.2 LINEAR RECURRENT CELL WITH DISCRETE GATING

In this section, we introduce the structure of our linear recurrent cell with discrete gating. As shown
in Figure 2 (Right), ct is constructed in an input-dependent manner. Components in the red box
indicate spiking neurons defined in Section 4.1, which are used as discrete gating. The triangle
symbol represents the highway connection controlled by the gating function. LN represents the Layer
Normalization function. The key difference between our method and existing sequence models is
that we use discrete gating implemented with spiking neurons.

We apply highway connections Srivastava et al. (2015) in both temporal and spatial dimensions,
which can control two streams with a single gating signal:

ht,i =

{
ct,i ⊙ ht−1,i + (Wxxt)i, sint,i = 1,

ht−1,i, sint,i = 0,
ht ∈ CNh ,

ŷt,i =

{
ht,i, soutt,i = 1,

(Wxxt)i, soutt,i = 0,
ŷt ∈ CNh .

(9)

Here, i refers to the i-th element of the cell. sint and soutt refer to the output of the spiking neuron
in Section 4.1, their ut in Equation 7 is calculated as Wixt and Woxt, respectively. We follow the
setting of existing linear RNNs Orvieto et al. (2023); Morad et al. (2023b) and make our recurrent
cell have complex hidden values.

Our method allows multiple ways to construct ct. An approach is to construct an input-independent ct
in the style of LRU Orvieto et al. (2023). We also propose a novel way to construct input-dependent
ct, which can be written as

ĉt = Whxt, ĉt ∈ CNh , ct = ĉt
tanh(|ĉt|)

|ĉt|
, ct ∈ CNh , (10)

where | · | is the element-wise absolute value of a complex input. In practice, to avoid the divided-by-
zero error, it is implemented as

√
| · |2 + 1. tanh(·) is used to clip the elements of ct inside the unit

disk to mitigate value explosion.

Finally, the output ŝt of our recurrent cell is

ŝt = LN(Wy · Concat(Re[ŷt], Im[ŷt])), ŝt ∈ RNout , (11)

where Nout is the output size of the sequence model, Re[·] and Im[·] are the real and imaginary
components of a complex value. LN denotes the nonparametric layer normalization.

It can be proven that the update process in Equation 9 is still parallelizable. The basic idea is to
preprocess the input of the associative scan operation, replacing ct,i with 1 and (Wxxt)i with 0 when
sint,i is 0. A detailed proof of associativity can be found in Appendix A.2.

In addition, with the highway connection defined in Equation 9, even if ct is input-dependent, the
conclusion in Proposition 1 still holds. That is, when st is a 0 vector, no gradient can propagate from
ct or (Wxxt)i back to ot, allowing Rt to be zero. A detailed discussion is provided in Appendix A.3.

5 EXPERIMENTS

We conducted our experiments on Passive Visual Match Hung et al. (2019) and POPGym Morad
et al. (2023a). Table 1 shows the sequence models used in our experiments. All settings of network
structure, RL algorithms, and hyperparameters used in the experiments are provided in Appendix D.

5.1 VERIFYING THE PROPOSED SALIENCY-BASED FRAMEWORK

We conducted experiments on Passive Visual Match with a memory length of 250. Training was
performed for a total of 1000 episodes, with temporal saliency Rc

t calculated every 50 episodes.
According to Equation 2 in Section 3, we computed both Cin→out and Cnoise→out. We performed
such experiments on methods including LSTM Hochreiter & Schmidhuber (1997), LRU Orvieto et al.
(2023), FFM Morad et al. (2023b), and ours. As shown in Figure 3 (Left), our method achieves the
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Figure 3: Left: Results of SNRC , Cin→out, and Cnoise→out. Right: Correlation between SNRC and
success rate.

L G O

LSTM Hochreiter & Schmidhuber (1997) ✓
GRU Chung et al. (2014) ✓
LRU Orvieto et al. (2023) ✓
FFM Morad et al. (2023b) ✓ ✓
SHM Le et al. (2024) ✓
LiT Katharopoulos et al. (2020) ✓

Table 1: Sequence models used in exper-
iments. “L” indicates linear recurrence.
“G” indicates gating mechanism. “O” in-
dicates Non-RNNs sequence models.

100 200 300 400 500
(Easy)  Memory length  (Hard)

0.0

0.5

1.0

su
cc

es
s

Passive Visual Match

Ours LSTM FFM LRU

Figure 4: Results of Passive Visual
Match with different memory lengths.

highest SNRC after around 500 episodes, while other methods have lower SNRC , indicating their
inability to filter out irrelevant information efficiently.

Non-linear RNNs vs Linear RNNs. The second and the third plot in Figure 3 (Left) show the
values of Cin→out and Cnoise→out during training. It can be observed that both values are very low
for LSTM due to the vanishing gradient problem of non-linear RNNs, whereas both values are high
for LRU, as it alleviates gradient vanishing through linear recurrence. However, since both values
remain high, the SNRC of LRU is still low.

Non-Gated RNNs vs Gated RNNs. We will still focus on the second and the third plot in Figure
3 (Left). For FFM, Cin→out remains at a similar level compared to LRU, because both of them are
linear RNNs. What increases FFM’s SNRC is that Cnoise→out of FFM is much lower than that of
LRU, indicating that the gating mechanism helps filter out irrelevant information.

Continuous Gating vs Discrete Gating. Nevertheless, because the gating of FFM is continuous,
the Cnoise→out value cannot reach its optimal level. In contrast, the third plot in Figure 3 (Left)
indicates that our method reduces Cnoise→out to a very low level compared to FFM, thereby effectively
increasing the value of SNRC .

Ablation Study. To further illustrate the importance of discrete gating, we perform an ablation study
by replacing our spiking neuron by a sigmoid function while retaining the same network architecture.
This method is referred to as Ours w/ sigmoid. Results in Figure 3 (Left) show that the sigmoid gate
yields a higher Cnoise→out, indicating that sigmoid gating cannot effectively filter out noise.

Correlation between SNRC and model performance. Figure 3 (Right) demonstrates the corre-
lation between SNRC and method performance. The SNRC-success pair is sampled from the last 5
evaluations of the 3 runs for each method. It can be observed that, given the same number of training
steps, a clear positive correlation exists between SNRC and the success rate. Since our method
achieves the highest SNRC , it also achieves the highest success rate under the same training steps,
fully demonstrating that using discrete gating to filter out irrelevant information can improve sample
efficiency in long-term memory tasks.

5.2 COMPARISON UNDER DIFFERENT MEMORY SETTINGS

Single Long-term Memory Task. In this section, we explore the impact of memory lengths on
model performance on Passive Visual Match. In this environment, the first 15 timesteps belong to
Pin and the last 15 timesteps belong to Pout, and the size of Pnoise, i.e., memory length, can be set to
different values. Figure 4 shows a comparison between our method and other methods under various
memory lengths of Passive Visual Match. Specifically, we train each model on tasks with memory
lengths of {60, 100, 250, 500}. It can be observed that when the memory length is short, almost all
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Table 2: Results of our proposed method compared to existing methods on RepeatPrevious. Methods
with ∗ are reported from Le et al. (2024).

Environment Level LiT∗ GRU∗ FFM∗ SHM∗ Ours

RepeatPrevious
Easy 6.0±4.0 99.9±0.0 98.4±0.3 88.9±11.1 96.2±1.0
Medium -46.8±1.1 -34.7±1.7 -24.3±0.4 48.2±7.2 96.6±0.5
Hard -48.5±0.3 -41.7±1.8 -33.9±1.0 -19.4±9.9 88.3±3.5

Table 3: Results of our proposed method compared to existing methods on general memory tasks in
POPGym Benchmarks.Methods with ∗ are reported from Le et al. (2024).

Environment Level LiT∗ GRU∗ FFM∗ SHM∗ Ours

Autoencode
Easy -44.7±1.4 -37.9±7.7 -32.7±0.6 49.5±23.3 38.7±12.5
Medium -47.8±0.2 -43.6±3.5 -32.7±0.6 -28.8±14.4 -32.9±1.1
Hard -48.1±0.1 -48.1±0.7 -47.7±0.5 -43.9±0.9 -43.9±2.5

Battleship
Easy -41.3±0.5 -41.1±1.0 -34.0±7.1 -12.3±2.4 -35.3±0.5
Medium -39.2±0.3 -39.4±0.5 -37.1±3.1 -16.8±0.6 -36.9±1.0
Hard -38.4±0.2 -38.5±0.5 -38.8±0.3 -21.2±2.3 -38.6±0.3

Concentration
Easy -18.5±0.2 -10.9±1.0 10.7±1.2 -1.9±2.4 3.4±0.9
Medium -18.6±0.2 -21.4±0.5 -24.7±0.1 -21.0±0.8 -21.3±1.1
Hard -83.0±0.1 -84.0±0.3 -87.5±0.5 -83.3±0.1 -84.5±0.4

methods except LSTM exhibit high sample efficiency. However, as the memory length increases, the
performance of all methods except ours declines significantly. The decline happens first on LRU at a
memory length of 250, followed by FFM at a memory length of 500. These results indicate that our
method is able to maintain higher sample efficiency than other methods for long-term memory tasks.

Interleaving Long-term Memory Tasks. We further conducted experiments to test our proposed
method on tasks that have interleaving phases. Following prior works Morad et al. (2023a;b); Le
et al. (2024); Morad et al. (2024), we conduct experiments on POPGym Morad et al. (2023a). We
refer to the experimental setting of Le et al. (2024) and choose the task "Repeat Previous", where the
goal at the i-th time step is to output the input from the (i-k)-th step. This can be seen as multiple
sub-tasks that are stacked together. The memory length of each sub-task is k-1. The task has three
levels: easy, medium, and hard, with the distinction being the value of k. A larger k corresponds to a
longer memory length and a higher task difficulty. As shown in Table 2, our method achieves strong
performance across all three difficulty levels and is the only method that scores above 90 on both the
medium and hard tasks. This experimental conclusion aligns with our findings on the Passive Visual
Match task, further demonstrating the effectiveness of our method in long-term memory tasks.

General Memory Tasks. To verify the general ability of our method in other discrete tasks that
require memory. We conduct experiments on tasks in POPGym following the setting of Le et al.
(2024). In these tasks, Pin is significantly larger than Pnoise (Autoencode), or the memory lengths
are not specified (Battleship, Concentration). As shown in Table 3, our method performs comparably
to SOTA methods. Although SHM achieves better results on Battleship, its memory size is 4x larger
than ours. To sum up, our method is effective across a wide range of long-term memory tasks.

Short-term Memory Tasks. We also verified whether our discrete gating method can perform well
on short-term memory tasks. Following Ni et al. (2023); Lu et al. (2024), we conduct experiments in a
standard POMDP task used in prior works Ni et al. (2021; 2023); Lu et al. (2024). The hyperparameter
settings and other training details are listed in Appendix D.2. The results are provided in Appendix
C.2. The results indicate that while our method is not designed for this type of task, it can still have
comparable performance against SOTA methods.

6 DISCUSSION

Long-term memory is an important challenge for partially observable reinforcement learning. In
this paper, we analyze why existing sequence models in memory-based RL fail to train efficiently
on such tasks and propose spiking neurons as a discrete gating mechanism to solve this problem.
Our experimental results underscore the importance of incorporating discrete gating into modern
RNN architectures. However, training models with discrete functions is challenging due to the use of
surrogate gradient. More limitations are discussed in Appendix E.

9
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A THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition 2. If ct is input-independent, and ∃Wi ∈ RNx×Nh so that σ(Wixt) = 0, t ∈ Pnoise in
a certain environment, SNRC can reach its maximum value 1.

Proof. The expression of SNRC is

SNRC =
Cin→out

Cin→out + Cnoise→out
, Cin→out ≥ 0, Cnoise→out ≥ 0, (12)

According to Equation 2 and Equation 3, Cnoise→out is

Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rc
t =

1

|Pnoise|
∑

t∈Pnoise

∣∣∣ ∑
i∈Pout

[∂Q(ŝi, ai)

∂ŝi
Gt

∂zt
∂ot

]∣∣∣ (13)

For a memory-based agent with gated linear recurrence defined in Equation 5, which is

ht = ct ⊙ ht−1 + (Wxxt)⊙ σ(Wixt), (14)

the term Gt in Equation 13 is

Gt =
∂ŝi
∂hi

( i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂zt

=
∂ŝi
∂hi

( i∏
j=t+1

∂hj

∂hj−1

)[
diag

(
σ(gt)⊙

∂ht

∂ut

)∂ut

∂zt
+

diag
(
ut ⊙

∂ht

∂σ(gt)
⊙ σ′(gt)

)∂gt
∂zt

]
,

(15)

where ut = Wxzt and gt = Wizt. diag(x) denotes the diagonal matrix formed by vector x. Note
that σ′(x) = σ(x)(1 − σ(x)). Therefore, when σ(Wizt) = 0, t ∈ Pnoise, the red terms σ(gt) and
σ′(gt) in Equation 15 are 0 vectors. We have

Rc
t = 0, t ∈ Pnoise (16)

Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rc
t = 0 (17)

SNRC =
Cin→out

Cin→out
= 1. (18)
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A.2 PROOF OF ASSOCIATIVITY OF EQUATION 9

We focus on the first equation in Equation 9, which is:

ht,i =

{
ct,i ⊙ ht−1,i + (Wxxt)i, sint,i = 1,

ht−1,i, sint,i = 0.
(19)

It can be rewritten as
ht = (ct ⊙ ht−1 + Wxxt)⊙ sint + ht−1 ⊙ (1− sint ),

= ct ⊙ ht−1 ⊙ sint + ht−1 ⊙ (1− sint ) + Wxxt ⊙ sint ,

= [ct ⊙ sint + (1− sint )]⊙ ht−1 + Wxxt ⊙ sint ,

(20)

where ⊙ is the element-wise multiplication.

Let • be the binary operator that operates on element ek, which is defined as:
ek = (ek,a, ek,b) :=

(
ct ⊙ sint + (1− sint ),Wxxt ⊙ sint

)
. (21)

And the operator • is defined as:
ei • ej = (ej,a ⊙ ei,a, ej,a ⊙ ei,b + ej,b). (22)

This can be seen as a special case of the scan operator of S5Smith et al. (2022), where the matrices
are all diagonal. Note that • is associative, which means for any element x, y, z, we have (x•y)•z =
x • (y • z). Thus, the operation can be computed in parallel with a time complexity of O(log T ),
where T is the sequence length. The associativity of S5 operator is proven in Smith et al. (2022).

A.3 DISCUSSION OF DISCRETE GATING

Following Equation 20 and the BPTT algorithm, the term Gt in Equation 3, which relates to the
structure of the sequence model is

Gt =
∂ŝi
∂hi

( i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂zt

=
∂ŝi
∂hi

( i∏
j=t+1

∂hj

∂hj−1

)[
diag

(
sint ⊙ ∂ht

∂ut

)∂ut

∂zt
+

diag
(
ht−1 ⊙ sint ⊙ ∂ht

∂ct

)∂ct
∂zt

]
,

(23)

where ct = Wczt for an input-dependent ct.

As defined in Ismail et al. (2019), saliency quantifies the contribution of each input to the output,
measuring how input perturbations affect model responses. For temporal saliency analysis, we
therefore employ the true gradient of the step function (0 almost everywhere, undefined at zero)
instead of the surrogate gradient, which is used for training spiking neurons. In this case, the gradient
will not propagate through the discrete sint , and the term ∂sint

∂zt
is omitted.

In this case, when sint is a vector filled with 0, we can still have the conclusion of Equation 18. Thus,
Proposition 1 still holds for input-dependent ct with the proposed network structure.

B COMPARISON OF RELATED WORKS

Table 4 highlights the difference between our method and other related works.

C ADDITIONAL RESULTS

C.1 LEARNING CURVES OF PASSIVE VISUAL MATCH.

In this section, we show the learning curves of success rate and return of the Passive Visual Match
task. For tasks with memory lengths of 60, 100, and 250, the training was performed on a total of
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Table 4: Comparison of Related Works. “SL” refers to Supervised Learning and “RL” refers to
Reinforcement Learning.

Method Learning
Method

Discrete Selection
Mechanism

Element-wise
Gating

Input-dependent
Discrete Gating

Diet-SNN Rathi & Roy (2020) SL
GLIF Yao et al. (2022) SL ✓
SkipRNN Campos et al. (2017) SL ✓
Phased LSTM Neil et al. (2016) SL ✓ ✓
GRSN Qin et al. (2025) RL ✓
Ours RL ✓ ✓ ✓

0.0 2.5 5.0 7.5
env_steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

0.0 0.5 1.0
env_steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

 

0 1 2
env_steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

 

0.00 0.25 0.50 0.75 1.00
env_steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

 

FFM LRU LSTM Ours

Figure 5: Learning curves of success rate of Passive Visual Match with memory length of 60, 100,
250, and 500. The shaded area indicates 95% confidence interval.

1000 episodes. For the task with a memory length of 500, the training was performed on a total of
2000 episodes. This setting is to make sure the training on each task reaches a stable stage while
allowing the evaluation of the final episode to reflect the sample efficiency of each method. The
results are shown in Figure 5 and Figure 6. While the success rate has a strong correlation to SNRC ,
the return does not seem to have that strong correlation. This is because most of the rewards in this
environment come from the apple-picking task in Phase 2. This result reflects the sample efficiency
of the agent on the memory-independent task. It can be observed that although our method has higher
upper bounds on the confidence intervals than the other methods at times during training, the overall
difference between our method and the others is marginal, reflecting that the advantage of our method
on memory-irrelevant tasks may not be significant.

C.2 SHORT-TERM MEMORY TASKS

For short-term memory tasks, we choose Pybullet-P for our verification, where the observation space
contains only position information. We compare our method with three methods: LSTM Hochreiter
& Schmidhuber (1997), LRU Orvieto et al. (2023), and Transformer Vaswani et al. (2017). The
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Figure 6: Learning curves of return of Passive Visual Match with memory length of 60, 100, 250,
and 500. The shaded area indicates 95% confidence interval.
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Figure 7: Learning curves of partially observable Pybullet tasks. The shaded area indicates 95%
confidence interval.

results of LRU and our method are averaged over 3 runs with different seeds1, while the results of
LSTM and Transformer are reported from Ni et al. (2023). As shown in Figure 7, our method has
similar performance to LRU, a linear RNN without gating, in all environments except Ant-P, but
its performance does not greatly surpass that of LRU. This is probably because the inductive bias
introduced by discrete gating is more suited for long-term memory tasks, instead of continual control
tasks that require short-term memory. Nevertheless, our method can still outperform LSTM and
Transformer in most environments. This validates the design of our linear recurrent cell in Section
4.2.

D EXPERIMENTAL DETAILS

D.1 DESCRIPTIONS AND SETUPS OF PASSIVE VISUAL MATCH

Passive Visual Match Hung et al. (2019) is divided into 3 phases, the first phase lasts for 15 time
steps, where the agent gets a color signal. In the second phase, the agent is transported to a room in
which the agent needs to perform the task of picking apples. With each apple picked up, the agent
can get a reward of 1. In the third phase, the agent needs to use the color information obtained in the
first phase to choose their action. When it reaches the correct location, it receives a reward of 10, and
the episode is marked as successful. While the environment is a 7*11 grid world, the agent can only
observe a 5*5 space around its location.

Note that the seed for creating the training and evaluation environment in the original implementation2

is not fixed. This will probably result in different color permutations for training and evaluation. As a
consequence, the evaluation result does not correctly reflect the true performance of the agent and
has a high variance. In our implementation, we manually set the seed for both training and evaluation
environments so that the permutation of the color remains the same. We conducted experiments for
all methods on this modified implementation.

D.2 TRAINING DETAILS

Hyperparameters. We use the same RL algorithms and hyperparameter configurations as in prior
works Ni et al. (2023); Lu et al. (2024); Le et al. (2024). Specifically, we use SACD Christodoulou
(2019) for Passive Visual Match, PPO Schulman et al. (2017) for POPGym and TD3 Fujimoto et al.
(2018) for Pybullet. The hyperparameters used in TD3 and SACD algorithms are shown in Table 5.
The PPO algorithms’ hyperparameters are the same as in Le et al. (2024).

In Table 6, we provide the configuration of the sequence models and network architecture in different
environments. For the results that are reported from prior works Ni et al. (2023); Le et al. (2024),
e.g., LSTM and GPT in Pybullet tasks, we copy their configurations from the original paper Ni et al.
(2023).

1We use the JAX implementation provided with Ni et al. (2023).
2https://github.com/twni2016/Memory-RL
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Table 5: Hyperparameters of SACD and TD3.

Hyperparameter Value

Network Hidden Size (256, 256)
Batch Size 64
Learning Rate 3e-4
Replay Buffer Size 1M
Smoothing Coefficient 0.05
Discount Factor 0.99

SACD Entropy Temperature 0.1

TD3
Exploration Noise 0.1
Target Noise 0.2
Target Noise Clip 0.5

Table 6: Hyperparameters of sequence models in different tasks. “o”, “a” and “r” in input rows refer
to the observation, previous action, and reward, respectively. “-” indicates the model is not used in
this experiment, or the value is not in the model configuration.

Environment Hyperparameter LSTM GRU LRU FFM GPT LiT SHM Ours

Passive Visual Match Inputs o
Embedding Size 100
Sequence Length 90, 130, 280, 530
Num Layers 1

Hidden Size 256 - 200 128 100 - - 128
Num Heads - - - - 2 - - -

POPGym Inputs o
Input Size 128
Sequence Length 1024
Num Layers 1

Recurrent State Size - 256 - 1024 - 256 16384 4096

Pybullet Inputs oa - oar - oa - - oar

Sequence Length 64

Embedding Size [32, 16] - [64, 16, 16] - [64, 64] - - [64, 16, 16]
Hidden Size 128 - 256 - 128 - - 128
Num Layers 1 - 2 - 1 - - 2
Num Heads - - - - 1 - - -

In Passive Visual Match, the implementation of LRU is directly extracted from the code of Lu et al.
(2024)3, which forces the hidden size to be the size of the embedding size multiplied by 2. We keep
this setting so the hidden size of LRU is 200 in this environment.

The “Recurrent State Size” in Table 6 refers to the size of the recurrent state of an RNN-like sequence
model, flattened to a vector and converted to the float32 data type. SHM Le et al. (2024) is a matrix-
based memory module. The matrix size of SHM used in POPGym tasks is 128*128, indicating that
the state size is 16384. To calculate the state size of our module, we treated the membrane potential
of input and output gates as a part of the hidden state, so the “actual hidden size” (similar to the
definition of LSTM and GRU) of our module for POPGym tasks is 1024. Although it is still larger
than that of GRU and FFM, the hyperparameter tuning experiment in SHM Le et al. (2024) showed
that their performance will not increase much as their state size increases.

One unique hyperparameter has been introduced in our proposed method, namely, θ, which controls
the threshold of the spiking neuron. In Passive Visual Match tasks, θ is set to 1, resulting in an
expected threshold of 1.5. In other environments, θ is set to 0, resulting in an expected threshold
of 0.5. The θ is set higher in Passive Visual Match since we want to make spiking neurons have
sparser output, the hidden state will then be changed less frequently, and the model should have better
long-term dependency.

3https://github.com/CTP314/TFPORL
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Compute Resource. We run all our experiments on NVIDIA 3090 and H100 GPUs. For the Passive
Visual Match task with a memory length of 250, when running 3 experiments in parallel on a single
H100 GPU, these experiments could be completed in approximately 7 hours. For the same task with
a memory length of 500, these 3 experiments could be completed in approximately 10 hours. For
the POPGym task, when running 2 experiments in parallel on a single 3090 GPU, both experiments
would be completed in 7 hours. For the Pybullet task, when running 4 experiments in parallel on a
single 3090 GPU, these experiments can be completed in approximately 2 days.

Passive Visual Match and Pybullet require less GPU memory and could theoretically run more
experiments in parallel, but a roughly linear increase in total run time is also observed. POPGym, on
the other hand, requires more GPU memory, and increasing the number of parallelizations may result
in CUDA out-of-memory errors.

E LIMITATIONS

While the experiments presented in the paper confirm the performance of the proposed method, there
are also some limitations.

Training Instability. Discrete gating and surrogate gradient could potentially introduce instability
during training. It also causes the divergence of the Q value in some runs of continual control tasks.
Those invalid runs are discarded in our experimental results. Stabilizing the training process is
important to enhance the practical use of discrete gating.

Long-term Temporal Credit Assignment. In early exploratory experiments, we found that our
approach did not have similar performance gains over existing methods in long-term temporal credit
assignment tasks Ni et al. (2023), such as Key-to-Door Raposo et al. (2021). Future work could
attempt to combine the proposed module with algorithms specialized for temporal credit assignment
to address this challenge.

F USE OF LLMS

The use of LLM in this paper was limited to correcting grammar, polishing the text, and translating
some sections from drafts written by the authors into English.
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