
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKING NEURON AS DISCRETE GATING FOR
LONG-TERM MEMORY TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient long-term memory is important for improving the sample efficiency of
Partially Observable Reinforcement Learning. In memory-based RL methods,
the long-term memory capacity relies on the sequence models used in agent ar-
chitecture. Two main approaches improve long-term dependency for sequence
models, using linear recurrence and using information selection mechanisms such
as gating. However, the sample efficiency of existing approaches remains low in
long-term memory tasks. In this paper, we first present a saliency-based framework
to illustrate why existing methods do not perform well on long-term memory tasks.
Specifically, they cannot effectively filter out noisy information irrelevant to the
memory task in the early stage of training. To this end, we design a novel linear
recurrent module, in which the gating is controlled by spiking neurons. Spiking
neurons output discrete values and can more effectively mask noise in the early
stages of training, thus improving sample efficiency. The effectiveness of our
proposed module is demonstrated on Passive Visual Match, a classic long-term
memory task, and several different types of partially observable tasks. The code is
attached in the supplementary material and will be made publicly available.

1 INTRODUCTION

Long-term memory is an important ability for humans to make complex decisions in environments Ku-
maran et al. (2016). Specifically, humans can recall historical information for decision-making, and
humans can prevent memory from being interfered with by other events that are not relevant to
the memory-intensive task McNab & Klingberg (2008). For Reinforcement Learning (RL) agents,
achieving efficient long-term memory will improve the sample efficiency of their training, which is
important for their practical real-life applications Dulac-Arnold et al. (2019).

The computational and memory efficiency of recurrent neural network (RNN)-based sequence
models Parisotto et al. (2020); Zhao et al. (2023); Morad et al. (2023b); Le et al. (2024) makes them
well-suited for memory-based RL, particularly in real-world applications that involve near-infinite
temporal contexts, as shown in Figure 1 (Left). These RNN-based sequence models involve two
essential mechanisms: Linear recurrence improves the long-term dependency Orvieto et al. (2023) of
the sequence model, while gating Hochreiter & Schmidhuber (1997); Chung et al. (2014) explicitly
selects relevant information for the working memory Chaudhari et al. (2021); Morad et al. (2023b).
However, neither of these mechanisms thoroughly prevents working memory from being interfered
with by irrelevant information in the early stages of the training process, leading to unstable training
and inefficiency in long-term memory tasks, as mentioned by recent studies Lu et al. (2024); Le et al.
(2024) and evidenced by the results shown in Figure 1 (Right).

In this paper, we introduce a unified framework based on the signal-to-noise ratio (SNR) of temporal
saliency Ismail et al. (2019), from the perspective of gradient analysis of backpropagation, to evaluate
the long-term memory effectiveness of sequence models. This framework not only explains the
necessity of linear and gating mechanisms but also reveals why linear and existing continuous gating
designs still fall short in supporting effective long-term memory learning (see Section 3). To overcome
this limitation, we justify the importance of discrete gating mechanism under the proposed unified
framework, designing a linear recurrent cell equipped with such discrete gating (implemented by
spiking neurons Fang et al. (2023)). Extensive experiments on long-term memry tasks demonstrate
the superiority of our approach, outperforming several SOTA methods. Moreover, in more general

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

①Vanilla RNNs ②Linear RNNs

③Gated Linear RNNs ④Ours

𝑃𝑖𝑛 𝑃𝑛𝑜𝑖𝑠𝑒 𝑃𝑜𝑢𝑡

𝑃𝑖𝑛 𝑃𝑛𝑜𝑖𝑠𝑒 𝑃𝑜𝑢𝑡 𝑃𝑖𝑛 𝑃𝑛𝑜𝑖𝑠𝑒 𝑃𝑜𝑢𝑡

𝑃𝑖𝑛 𝑃𝑛𝑜𝑖𝑠𝑒 𝑃𝑜𝑢𝑡

U
n

ro
ll

in
g

Input Phase 𝑷𝒊𝒏 Noise Phase 𝑷𝒏𝒐𝒊𝒔𝒆Output Phase 𝑷𝒐𝒖𝒕

RNN-based

Model

Action

Network

Embedding

Network

Value

Network

action observation

actionvalue

𝑃𝑖𝑛 𝑃𝑛𝑜𝑖𝑠𝑒 𝑃𝑜𝑢𝑡

Figure 1: Left Top: Illustration of a classical long-term memory task, Passive Visual Match Hung
et al. (2019) (images extracted from Ni et al. (2023)). According to Hung et al. (2019), it can be
divided into input, noise, and output phases. The agent needs to utilize the information remembered
in input phase Pin for decision-making in output phase Pout, i.e., success in this task requires the
agent to remember the color from Pin and correctly match it to the color in Pout. Noise phase Pnoise

is an interference task and could be arbitrarily long. Left Botton: To align with the three temporal
phases described above, we unfold the RNN-based model framework. Intuitively, the contribution
from Pin to Pout must be substantially greater than that from Pnoise to Pout. This ensures that
the model effectively learns and retains as much information from Pin during training. Right: We
evaluate and compare the temporal contributions of different phases to the output phase Pout across
several existing RNN-based models, including vanilla Recurrent Neural Networks (RNNs) Elman
(1990), linear RNNs Orvieto et al. (2023)), and gated linear RNNs Morad et al. (2023b). For each
subfigure, the horizontal axis represents the temporal progression which is consistent with that in
Figure 1 (Left), while the vertical axis quantifies the contribution of each of the three phases to Pout.
The contributions are calculated based on temporal saliency Ismail et al. (2019) (or Equation 3),
which measures the influence of inputs at each time step on the final output. The results reveal several
key patterns: linear RNNs exhibit a slower decay in contribution over time compared to vanilla
RNNs, while gated RNNs display abrupt shifts of saliency across different phases, contrasting with
the smooth and gradual evolution observed in their non-gated counterparts. Critically, none of the
existing methods effectively suppress the influence of the noise phase (indicated by the notable height
of yellow regions). In contrast, the proposed approach successfully mitigates the impact of noise
phase, leading to more effective temporal credit assignment.

scenarios that rely primarily on short-term memory, our method achieves performance comparable to
existing SOTA models. Our contributions are summarized as follows:

• We propose a saliency-based metric using SNR of temporal saliency to analyze RNN-based
sequence models in long-term memory tasks, showing that their inefficiency stems from an
inability to suppress irrelevant information.

• We design a discrete gating mechanism using spiking neurons within a linear recurrent cell,
which improves noise filtering and sample efficiency in long-term memory tasks, while
maintaining parallel training capability.

• We empirically validate the framework’s insights and our model’s strong performance across
long-term and general memory scenarios.

2 BACKGROUND

2.1 PARTIALLY OBSERVABLE REINFORCEMENT LEARNING

POMDP. Partially Observable Markov Decision Process (POMDP) is a mathematical framework
that is used to model the environment that is partially observable by an agent Åström (1965). It
formally describes the problem of long-term memory. Since the agent cannot directly perceive the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

true state of the environment, it must maintain an internal memory of past observations and actions
to make optimal decisions. Thus, effectively solving a POMDP inherently requires the ability to
perform long-term memory tasks. A POMDP is defined as a tuple (S,A,O, T,O,R, γ), where S
represents the state space, which is inaccessible to agents. A represents the action space. O represents
the observation space of agents. T = P (st|st−1, at−1) is the transition function. O = P (ot|st) is
the observation function. R = P (rt+1|st, at, st+1) is the reward function. γ is the discount factor.
To obtain an optimal policy, the agent must condition the policy on all accessible information i.e.,
the trajectory τt = (o1, a1, r1, · · · , ot, at, rt) up to timestep t. The agent’s goal is to learn a policy
π(at|τt) to maximize the expected discounted return, where T is the time horizon.

Memory-Based RL. Early approaches for solving POMDPs are based on belief states Kaelbling
et al. (1998), which require a lot of computations. Recently, model-free methods have been verified
as a general and efficient approach Hausknecht & Stone (2015); Ni et al. (2021). As shown in Figure
1 (Left), the agent uses an MLP encoder and a sequence model to map the trajectory τt to a latent
Markov state ŝt. Empirical studies Morad et al. (2023a) have found that traditional RNNs Hochreiter
& Schmidhuber (1997); Chung et al. (2014) are sufficiently useful in simple POMDP environments.
Recently, increasing amounts of research have focused on the use of modern sequence models to
tackle more challenging POMDP tasks. Some methods use Transformer Ni et al. (2023), or State
Space Models (SSMs) Lu et al. (2023), or linear RNNs Lu et al. (2024). Some methods modify the
structure of linear RNNs Morad et al. (2023b) or Memory-Augmented Neural Networks (MANN) Le
et al. (2024) to make them perform better in POMDP tasks. Some studies introduce more efficient
training algorithms Morad et al. (2024); Elelimy et al. (2024) for certain types of sequence models.
In this paper, we focus on RNNs-based sequence model for Memory-Based RL.

2.2 RECURRENT NEURAL NETWORKS

RNNs capture the internal temporal dependency of sequential data. Early RNNs Elman (1990) trained
with the BPTT algorithm suffer from the gradient vanishing problem Hochreiter (1998), which will
hinder the model from learning long-term dependency.

Gated RNNs. Gating mechanisms that control the flow of information are widely found in the
human brain Gisiger & Boukadoum (2011). A similar design exists in sequence models as gated
RNNs. Gated RNNs Hochreiter & Schmidhuber (1997); Chung et al. (2014); Lei et al. (2017) use
gating to alleviate the gradient vanishing problem and thus increase the length of temporal dependency,
but their sequential nature slows down the training process with a time complexity of O(T), making
it difficult to train effectively on tasks with a very long period of time.

Linear RNNs. Linear RNNs Orvieto et al. (2023); Feng et al. (2024) or SSMs Smith et al. (2022);
Gu & Dao (2023) reduce the vanishing gradient by removing the non-linear activation function in the
recurrence structure while keeping the other layers non-linear. The linear recurrence can be trained in
parallel using convolution with a causal mask or the associative scan operation. To preserve their
representational power when non-linearity is removed, many Linear RNNs use complex values to
extend their hidden state.

This paper provides a unified framework based on temporal saliency Ismail et al. (2019) to analyze
different variants of RNNs and shows their limitations when handling long-term memory tasks.

2.3 DISCRETE MODELS AND SELECTION MECHANISM

Discrete models. Discrete models use 0 or 1 to represent the data itself. Works related to discrete
models include Binary Neural Networks (BNNs) Qin et al. (2020) and Spiking Neural Networks
(SNNs) Roy et al. (2019), which employ the Straight-Through Estimator (STE) or Surrogate Gra-
dients (SG) to facilitate gradient-based learning. These discrete models have many applications,
such as image classification Rathi & Roy (2020); Fang et al. (2021b); Yao et al. (2022), sequence
modeling Fang et al. (2023); Li et al. (2024); Chen et al. (2024), and RL Chen et al. (2022); Zhang
et al. (2024); Qin et al. (2022; 2025). Their primary advantage lies in reducing computational costs,
and they also serve as foundational model architectures for the discrete selective mechanism.

Discrete selection mechanism. The discrete selection mechanism uses 0 or 1 to decide whether to
retain or discard certain information. While this mechanism already has many applications, there
may be additional, yet-to-be-explored benefits. Sequence models such as SkipRNN Campos et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(2017) and Phased LSTM Neil et al. (2016) utilize discrete selection mechanisms, significantly
reducing network computation while achieving superior performance compared to traditional RNNs
on supervised tasks. In other domains, Spiking-NeRF Liao et al. (2024) leverages spiking neurons,
the fundamental units of SNNs, as an information selection mechanism for NeRF Mildenhall et al.
(2021), functioning similarly to a gating mechanism that forms a discontinuous representation space
and filters out irrelevant information.

However, almost no prior work has investigated whether discrete model or discrete selection mech-
anisms can effectively remove irrelevant information in RNN-based RL tasks. To the best of our
knowledge, our method is the first to explore discrete gating in memory-based RL tasks. A more
detailed comparison with existing works across different aspects is provided in Appendix B.

3 LONG-TERM MEMORY EFFICIENCY ANALYSIS

3.1 LONG-TERM MEMORY EFFICIENCY ANALYSIS FRAMEWORK

According to Hung et al. (2019), timesteps in a long-term memory task can be divided into input,
noise, and output phases. We define these phases as sets of timesteps, denoted as Pin, Pnoise, and
Pout. Pin contains the timesteps in which the agents are receiving useful information from the
environment and updating their memory, while the actions in Pin will not receive immediate reward
feedback from the environment. Pout contains the timesteps when the agent is required to recall the
information that is received from Pin to obtain the optimal policy. Timesteps in Pnoise are those
with observations that are useless for inferring actions or values in Pout, and the timesteps in Pnoise

can be arbitrarily long. Observations in Pnoise can be considered noisy inputs for the memory task.
Despite this, there may be some memory-agnostic tasks in Pnoise.

Our framework focuses on the value network since it plays a crucial role in many Deep RL algo-
rithms Schulman et al. (2017); Haarnoja et al. (2018); Fujimoto et al. (2018). Its output is denoted as
Q(ŝt, at). To obtain good performance of the model, the contribution of observation ot, t ∈ Pin to
value Q(ŝt, at), t ∈ Pout, denoted as Cin→out, should be substantially greater than that of Cnoise→out

(the contribution of observation ot, t ∈ Pnoise to Q(ŝt, at), t ∈ Pout). Based on this observation, we
define the SNR of temporal saliency for long-term memory efficiency analysis:

SNRC =
Cin→out

Cin→out + Cnoise→out
, Cin→out ≥ 0, Cnoise→out ≥ 0. (1)

The ratio of Cin→out to Cnoise→out can be reflected by SNRC , which is bounded in (0, 1). The larger
the value of SNRC , the better a memory-based RL agent can eliminate irrelevant information. To
make that happen, we could either increase Cin→out or decrease Cnoise→out. We can quantify
these two terms as the sum of the temporal saliency Ismail et al. (2019) of their respective phases:

Cin→out =
1

|Pin|
∑
t∈Pin

Rt, Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rt. (2)

Formally, we define temporal saliency Ismail et al. (2019) as the partial derivative of the output of the
value network in Pout with respect to observation ot. For timestep t, the temporal saliency Rt is:

Rt =
∣∣∣ ∑
i∈Pout

∂Q(ŝi, ai)

∂ot

∣∣∣ = ∣∣∣ ∑
i∈Pout

[∂Q(ŝi, ai)

∂ŝi

∂ŝi
∂hi

(i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂xt︸ ︷︷ ︸
Gt

∂xt

∂ot

]∣∣∣, (3)

where Q(ŝi, ai) is the output of the value network at timestep i ∈ Pout, ŝ and h are the output and
hidden state of the sequence model, respectively. xt is the encoded feature of ot. The value of Rt

reflects the contribution of the input in the timestep t to the output in Pout. Gt is the term that is
dependent on the structure of the sequence model; it can establish a connection between the structure
of the sequence model and SNRC .

Temporal saliency Ismail et al. (2019) is introduced to interpret the behavior of RNN Ismail et al.
(2019) and has recently been adapted as a memory introspection tool in POMDPs Wang et al. (2025).
However, Wang et al. (2025) only uses it for qualitative memory visualization, without distinguishing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

input, noise, and output phases. As such, it lacks the quantitative measures needed to analytically
assess the effectiveness of specific model designs. In contrast, the proposed SNRC explicitly models
this distinction, enabling the evaluation of architectural choices.

3.2 LONG-TERM MEMORY EFFICIENCY ANALYSIS FOR DIFFERENT RNN-BASED MODELS

In this section, we will show how existing sequence models with linear recurrence or gating mech-
anisms essentially devise a strategy to increase SNRC by either increasing Cin→out or decreasing
Cnoise→out with their specific gradient dynamics.

Non-linear RNNs vs Linear RNNs. A unified formulation of ht in Non-linear and Linear RNNs
can be formulated as:

ht = f(Whht−1 + Wxxt), ht, xt ∈ RNh , (4)
where xt is the input of the RNN and Nh is the hidden size.

For a Non-linear RNN such as vanilla RNN Elman (1990), f(·) is usually tanh(·). Wx ∈ RNx×Nh and
Wh ∈ RNh×Nh are matrices of learnable parameters. With these components in the recurrence, the
term

∏i
j=t+1

∂hj

∂hj−1
in Rt, Equation 3, will decay rapidly, causing the gradient to vanish Hochreiter

(1998). It means that if the timestep in Pin is in the distant past, Cin→out =
1

|Pin|
∑

t∈Pin
Rt would

be relatively small, as shown in Figure 1 (Right, 1⃝).

In contrast, Linear RNNs, such as LRU Orvieto et al. (2023); Gu et al. (2020), use identity mapping as
f(·) and replace Whht−1 in Equation 4 by ct ⊙ht−1, where ct is a vector of size Nh and ⊙ indicates
the element-wise product. With linearity, the term

∏i
j=t+1

∂hj

∂hj−1
in Equation 3 will decay slower as

|i− t| increases. Therefore, the gradient can propagate to earlier timesteps. Once timesteps in Pin

are distant from Pout in long-term memory tasks, Cin→out in Equation 2 can be higher than that in
vanilla RNNs, thus increasing the value of SNRC in Equation 1, as shown in Figure 1 (Right, 2⃝).

Non-gated RNNs vs Gated RNNs. Our analysis above indicates that linear recurrence could
increase Cin→out by slowing down the decay of temporal saliency Rt. However, both linear and
non-linear RNNs cannot decrease Cnoise→out to eliminate the impact from Pnoise. We show that
Gated RNNs such as Morad et al. (2023b) increase the long-term efficiency by decreasing Cnoise→out.

A unified formulation of ht in Non-gated and Gated RNNs can be formulated as:
ht = ct ⊙ ht−1 + (Wxxt)⊙ ϕ.

ϕ =

{
1, non-gated,
σ(Wixt), gated,

(5)

where σ(·) is the sigmoid function, defined as σ(x) = 1
1−e−x , x ∈ R. Wi ∈ RNx×Nh is the linear

layer of the input gate. The partial derivative of ht with respect to xt in Equation 3 can be written as

∂ht

∂xt
=


diag

(∂ht

∂ut

)∂ut

∂xt
, non-gated,

diag
(
σ(gt)⊙

∂ht

∂ut

)∂ut

∂xt
+ diag

(
ut ⊙

∂ht

∂σ(gt)
⊙ σ′(gt)

) ∂gt
∂xt

, gated,
(6)

where ut = Wxxt, gt = Wixt.

For non-gated case, the term ∂ht

∂xt
is numerically equal to Wx. Therefore, as long as Wx is a non-zero

matrix, Rt in Equation 3 will also be non-zero (assuming that all the other terms are non-zero). To
learn valuable information at timestep t ∈ Pin, Wx cannot be a zero matrix. This is why a non-gated
linear RNN does not have a way to reduce Cnoise→out.

For gated case, the gating function outputs a near-zero value to filter out information from the noisy
phase Pnoise. Both red terms in Equation 6 will be small, making Rt in Equation 3 sufficiently small
for t ∈ Pnoise, as evidenced by the abrupt shifts of saliency across different phases in Figure 1 (Right,
3⃝). Consequently, Cnoise→out will be decreased, and SNRC will be higher. Ideally, we can have the

following proposition.
Proposition 1. If ct is input-independent, and ∃Wi ∈ RNx×Nh so that σ(Wixt) = 0, t ∈ Pnoise in
a certain environment, SNRC can reach its maximum value 1.

A detailed proof of Proposition 1 can be found in Appendix A.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Distribution of 𝑔𝑡 Discrete GatingContinuous Gating

𝑔𝑡

𝜙

𝑔𝑡

𝜎The gradient
of 𝜎 for 𝑔𝑡
from red
interval is
always small

The surrogate
gradient of 𝛷
for 𝑔𝑡 from
green interval
is always large

Figure 2: Left: Comparison of continuous Gating and discrete Gating. Right: Visualization of the
structure of our proposed recurrent cell.

4 METHOD

4.1 SPIKING NEURON AS DISCRETE GATING

Continuous Gating vs Discrete Gating. Despite that sigmoid-based continuous gating could
increase SNRC by decreasing Cnoise→out, due to the way of parameter initialization and the softness
of the sigmoid function, saturated values, i.e., 0 and 1, cannot be taken at the beginning of training.
After sufficient training, the value of the gates may saturate, but this also causes the gradient of the
gating function to vanish. This is because sigmoid gating requires inputs to be extremely large to
reach saturated outputs, while the derivative of the sigmoid function σ′(x) = σ(x)(1 − σ(x)) at
those input values is near-zero, as shown in Figure 2 (Left). This is a dilemma that has been discussed
in Gu et al. (2020). Thus, sigmoid gating can cause vanishing gradients, which in turn diminishes
training efficiency. Furthermore, its inability to effectively filter noise early in training also reduces
the sample efficiency of memory-based RL agents.

In contrast, a discrete gating function ϕ with surrogate gradient can reach saturated outputs without
requiring inputs to be extremely large, thus preventing the problem of gradient vanishing. As
shown in Figure 2 (Left), with Heaviside step function Θ(·) as the discrete gating st = Θ(f(x,Wi)),
Wi can satisfy the conditions of Proposition 1 without having extremely large values, which in turn
allows Cnoise→out to be minimized and SNRC to be maximized at the early stage of training.

Parallel Spiking Neuron. In POMDP tasks where inputs are partially observable, the gating
function should be history-dependent so that it can control the selection mechanism based on more
information. Therefore, we could use spiking neurons with temporal dynamics as the gating function.
To maintain the benefit of linear RNN, which is parallel training, we use Parallel Spiking Neuron
(PSN) Fang et al. (2023) as our discrete gating function, which is

mt = (1− 1

τm
)mt−1 +

1

τm
ut, mt, ut ∈ RNh ,

st = Θ(mt − Vth), s ∈ {0, 1}Nh ,

(7)

where Vth is the threshold, ut = Wixt is the input current and mt is the membrane potential.
We choose the derivative of the arctan function as the surrogate gradient for Θ(·) during training.
Following Fang et al. (2021a), we have Θ′(x) ≜ 1

1+(πx)2 . To improve the expressivity of neurons, we
define 1

τm
∈ (0, 1)Nh as a learnable vector, where τm is the membrane time constant of the spiking

neuron.

Adding Stochasticity. PSN already meets the desired property of being a gating function. However,
due to the absence of stochasticity in its neuronal dynamics, if a neuron outputs 0 at some point
during training, it is likely to remain 0 for the rest of the training process. Therefore, we refer to the
trick in discrete model compression Gao et al. (2020), which uses a stochastic threshold to determine
the state of discrete gating. We add stochasticity to Vth, which is now summed by a constant and a
stochastic variable during training, and is fixed to a constant during inference based on the expectation
of the stochastic variable. Specifically, we have

Vth,i =

{
θ +Xi, parallel training,
θ + EXi, sequential inference,

(8)

where Vth,i is the threshold voltage of the i-th neuron, θ is the threshold potential of the neuron, and
Xi ∼ U(0, 1) is the random variable that has a uniform distribution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 LINEAR RECURRENT CELL WITH DISCRETE GATING

In this section, we introduce the structure of our linear recurrent cell with discrete gating. As shown
in Figure 2 (Right), ct is constructed in an input-dependent manner. Components in the red box
indicate spiking neurons defined in Section 4.1, which are used as discrete gating. The triangle
symbol represents the highway connection controlled by the gating function. LN represents the Layer
Normalization function. The key difference between our method and existing sequence models is
that we use discrete gating implemented with spiking neurons.

We apply highway connections Srivastava et al. (2015) in both temporal and spatial dimensions,
which can control two streams with a single gating signal:

ht,i =

{
ct,i ⊙ ht−1,i + (Wxxt)i, sint,i = 1,

ht−1,i, sint,i = 0,
ht ∈ CNh ,

ŷt,i =

{
ht,i, soutt,i = 1,

(Wxxt)i, soutt,i = 0,
ŷt ∈ CNh .

(9)

Here, i refers to the i-th element of the cell. sint and soutt refer to the output of the spiking neuron
in Section 4.1, their ut in Equation 7 is calculated as Wixt and Woxt, respectively. We follow the
setting of existing linear RNNs Orvieto et al. (2023); Morad et al. (2023b) and make our recurrent
cell have complex hidden values.

Our method allows multiple ways to construct ct. An approach is to construct an input-independent ct
in the style of LRU Orvieto et al. (2023). We also propose a novel way to construct input-dependent
ct, which can be written as

ĉt = Whxt, ĉt ∈ CNh , ct = ĉt
tanh(|ĉt|)

|ĉt|
, ct ∈ CNh , (10)

where | · | is the element-wise absolute value of a complex input. In practice, to avoid the divided-by-
zero error, it is implemented as

√
| · |2 + 1. tanh(·) is used to clip the elements of ct inside the unit

disk to mitigate value explosion.

Finally, the output ŝt of our recurrent cell is

ŝt = LN(Wy · Concat(Re[ŷt], Im[ŷt])), ŝt ∈ RNout , (11)

where Nout is the output size of the sequence model, Re[·] and Im[·] are the real and imaginary
components of a complex value. LN denotes the nonparametric layer normalization.

It can be proven that the update process in Equation 9 is still parallelizable. The basic idea is to
preprocess the input of the associative scan operation, replacing ct,i with 1 and (Wxxt)i with 0 when
sint,i is 0. A detailed proof of associativity can be found in Appendix A.2.

In addition, with the highway connection defined in Equation 9, even if ct is input-dependent, the
conclusion in Proposition 1 still holds. That is, when st is a 0 vector, no gradient can propagate from
ct or (Wxxt)i back to ot, allowing Rt to be zero. A detailed discussion is provided in Appendix A.3.

5 EXPERIMENTS

We conducted our experiments on Passive Visual Match Hung et al. (2019) and POPGym Morad
et al. (2023a). Table 1 shows the sequence models used in our experiments. All settings of network
structure, RL algorithms, and hyperparameters used in the experiments are provided in Appendix D.

5.1 VERIFYING THE PROPOSED SALIENCY-BASED FRAMEWORK

We conducted experiments on Passive Visual Match with a memory length of 250. Training was
performed for a total of 1000 episodes, with temporal saliency Rc

t calculated every 50 episodes.
According to Equation 2 in Section 3, we computed both Cin→out and Cnoise→out. We performed
such experiments on methods including LSTM Hochreiter & Schmidhuber (1997), LRU Orvieto et al.
(2023), FFM Morad et al. (2023b), and ours. As shown in Figure 3 (Left), our method achieves the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Left: Results of SNRC , Cin→out, and Cnoise→out. Right: Correlation between SNRC and
success rate.

L G O

LSTM Hochreiter & Schmidhuber (1997) ✓
GRU Chung et al. (2014) ✓
LRU Orvieto et al. (2023) ✓
FFM Morad et al. (2023b) ✓ ✓
SHM Le et al. (2024) ✓
LiT Katharopoulos et al. (2020) ✓

Table 1: Sequence models used in exper-
iments. “L” indicates linear recurrence.
“G” indicates gating mechanism. “O” in-
dicates Non-RNNs sequence models.

100 200 300 400 500
(Easy) Memory length (Hard)

0.0

0.5

1.0

su
cc

es
s

Passive Visual Match

Ours LSTM FFM LRU

Figure 4: Results of Passive Visual
Match with different memory lengths.

highest SNRC after around 500 episodes, while other methods have lower SNRC , indicating their
inability to filter out irrelevant information efficiently.

Non-linear RNNs vs Linear RNNs. The second and the third plot in Figure 3 (Left) show the
values of Cin→out and Cnoise→out during training. It can be observed that both values are very low
for LSTM due to the vanishing gradient problem of non-linear RNNs, whereas both values are high
for LRU, as it alleviates gradient vanishing through linear recurrence. However, since both values
remain high, the SNRC of LRU is still low.

Non-Gated RNNs vs Gated RNNs. We will still focus on the second and the third plot in Figure
3 (Left). For FFM, Cin→out remains at a similar level compared to LRU, because both of them are
linear RNNs. What increases FFM’s SNRC is that Cnoise→out of FFM is much lower than that of
LRU, indicating that the gating mechanism helps filter out irrelevant information.

Continuous Gating vs Discrete Gating. Nevertheless, because the gating of FFM is continuous,
the Cnoise→out value cannot reach its optimal level. In contrast, the third plot in Figure 3 (Left)
indicates that our method reduces Cnoise→out to a very low level compared to FFM, thereby effectively
increasing the value of SNRC .

Ablation Study. To further illustrate the importance of discrete gating, we perform an ablation study
by replacing our spiking neuron by a sigmoid function while retaining the same network architecture.
This method is referred to as Ours w/ sigmoid. Results in Figure 3 (Left) show that the sigmoid gate
yields a higher Cnoise→out, indicating that sigmoid gating cannot effectively filter out noise.

Correlation between SNRC and model performance. Figure 3 (Right) demonstrates the corre-
lation between SNRC and method performance. The SNRC-success pair is sampled from the last 5
evaluations of the 3 runs for each method. It can be observed that, given the same number of training
steps, a clear positive correlation exists between SNRC and the success rate. Since our method
achieves the highest SNRC , it also achieves the highest success rate under the same training steps,
fully demonstrating that using discrete gating to filter out irrelevant information can improve sample
efficiency in long-term memory tasks.

5.2 COMPARISON UNDER DIFFERENT MEMORY SETTINGS

Single Long-term Memory Task. In this section, we explore the impact of memory lengths on
model performance on Passive Visual Match. In this environment, the first 15 timesteps belong to
Pin and the last 15 timesteps belong to Pout, and the size of Pnoise, i.e., memory length, can be set to
different values. Figure 4 shows a comparison between our method and other methods under various
memory lengths of Passive Visual Match. Specifically, we train each model on tasks with memory
lengths of {60, 100, 250, 500}. It can be observed that when the memory length is short, almost all

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results of our proposed method compared to existing methods on RepeatPrevious. Methods
with ∗ are reported from Le et al. (2024).

Environment Level LiT∗ GRU∗ FFM∗ SHM∗ Ours

RepeatPrevious
Easy 6.0±4.0 99.9±0.0 98.4±0.3 88.9±11.1 96.2±1.0
Medium -46.8±1.1 -34.7±1.7 -24.3±0.4 48.2±7.2 96.6±0.5
Hard -48.5±0.3 -41.7±1.8 -33.9±1.0 -19.4±9.9 88.3±3.5

Table 3: Results of our proposed method compared to existing methods on general memory tasks in
POPGym Benchmarks.Methods with ∗ are reported from Le et al. (2024).

Environment Level LiT∗ GRU∗ FFM∗ SHM∗ Ours

Autoencode
Easy -44.7±1.4 -37.9±7.7 -32.7±0.6 49.5±23.3 38.7±12.5
Medium -47.8±0.2 -43.6±3.5 -32.7±0.6 -28.8±14.4 -32.9±1.1
Hard -48.1±0.1 -48.1±0.7 -47.7±0.5 -43.9±0.9 -43.9±2.5

Battleship
Easy -41.3±0.5 -41.1±1.0 -34.0±7.1 -12.3±2.4 -35.3±0.5
Medium -39.2±0.3 -39.4±0.5 -37.1±3.1 -16.8±0.6 -36.9±1.0
Hard -38.4±0.2 -38.5±0.5 -38.8±0.3 -21.2±2.3 -38.6±0.3

Concentration
Easy -18.5±0.2 -10.9±1.0 10.7±1.2 -1.9±2.4 3.4±0.9
Medium -18.6±0.2 -21.4±0.5 -24.7±0.1 -21.0±0.8 -21.3±1.1
Hard -83.0±0.1 -84.0±0.3 -87.5±0.5 -83.3±0.1 -84.5±0.4

methods except LSTM exhibit high sample efficiency. However, as the memory length increases, the
performance of all methods except ours declines significantly. The decline happens first on LRU at a
memory length of 250, followed by FFM at a memory length of 500. These results indicate that our
method is able to maintain higher sample efficiency than other methods for long-term memory tasks.

Interleaving Long-term Memory Tasks. We further conducted experiments to test our proposed
method on tasks that have interleaving phases. Following prior works Morad et al. (2023a;b); Le
et al. (2024); Morad et al. (2024), we conduct experiments on POPGym Morad et al. (2023a). We
refer to the experimental setting of Le et al. (2024) and choose the task "Repeat Previous", where the
goal at the i-th time step is to output the input from the (i-k)-th step. This can be seen as multiple
sub-tasks that are stacked together. The memory length of each sub-task is k-1. The task has three
levels: easy, medium, and hard, with the distinction being the value of k. A larger k corresponds to a
longer memory length and a higher task difficulty. As shown in Table 2, our method achieves strong
performance across all three difficulty levels and is the only method that scores above 90 on both the
medium and hard tasks. This experimental conclusion aligns with our findings on the Passive Visual
Match task, further demonstrating the effectiveness of our method in long-term memory tasks.

General Memory Tasks. To verify the general ability of our method in other discrete tasks that
require memory. We conduct experiments on tasks in POPGym following the setting of Le et al.
(2024). In these tasks, Pin is significantly larger than Pnoise (Autoencode), or the memory lengths
are not specified (Battleship, Concentration). As shown in Table 3, our method performs comparably
to SOTA methods. Although SHM achieves better results on Battleship, its memory size is 4x larger
than ours. To sum up, our method is effective across a wide range of long-term memory tasks.

Short-term Memory Tasks. We also verified whether our discrete gating method can perform well
on short-term memory tasks. Following Ni et al. (2023); Lu et al. (2024), we conduct experiments in a
standard POMDP task used in prior works Ni et al. (2021; 2023); Lu et al. (2024). The hyperparameter
settings and other training details are listed in Appendix D.2. The results are provided in Appendix
C.2. The results indicate that while our method is not designed for this type of task, it can still have
comparable performance against SOTA methods.

6 DISCUSSION

Long-term memory is an important challenge for partially observable reinforcement learning. In
this paper, we analyze why existing sequence models in memory-based RL fail to train efficiently
on such tasks and propose spiking neurons as a discrete gating mechanism to solve this problem.
Our experimental results underscore the importance of incorporating discrete gating into modern
RNN architectures. However, training models with discrete functions is challenging due to the use of
surrogate gradient. More limitations are discussed in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Karl Johan Åström. Optimal control of markov processes with incomplete state information i. Journal
of mathematical analysis and applications, 10:174–205, 1965.

Víctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang. Skip rnn:
Learning to skip state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834,
2017.

Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath. An attentive survey of
attention models. ACM Transactions on Intelligent Systems and Technology (TIST), 12(5):1–32,
2021.

Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Deep reinforcement learning with spiking
q-learning. arXiv preprint arXiv:2201.09754, 2022.

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, and Kay Chen Tan. Pmsn: A
parallel multi-compartment spiking neuron for multi-scale temporal processing. arXiv preprint
arXiv:2408.14917, 2024.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Esraa Elelimy, Adam White, Michael Bowling, and Martha White. Real-time recurrent learning
using trace units in reinforcement learning. arXiv preprint arXiv:2409.01449, 2024.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36:53674–53687, 2023.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimirsadeghi.
Were rnns all we needed? arXiv preprint arXiv:2410.01201, 2024.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with resource
constraint for deep neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1899–1908, 2020.

Thomas Gisiger and Mounir Boukadoum. Mechanisms gating the flow of information in the cortex:
what they might look like and what their uses may be. Frontiers in computational neuroscience, 5:
1, 2011.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. In International conference on machine learning,
pp. 3800–3809. PMLR, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI fall symposia, volume 45, pp. 141, 2015.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):
107–116, 1998.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):5223, 2019.

Aya Abdelsalam Ismail, Mohamed Gunady, Luiz Pessoa, Hector Corrada Bravo, and Soheil Feizi.
Input-cell attention reduces vanishing saliency of recurrent neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20(7):
512–534, 2016.

Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, and Svetha Venkatesh. Stable hadamard memory: Re-
vitalizing memory-augmented agents for reinforcement learning. arXiv preprint arXiv:2410.10132,
2024.

Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. arXiv preprint arXiv:1709.02755, 2017.

Yang Li, Yinqian Sun, Xiang He, Yiting Dong, Dongcheng Zhao, and Yi Zeng. Parallel spiking unit
for efficient training of spiking neural networks. In 2024 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2024.

Zhanfeng Liao, Yan Liu, Qian Zheng, and Gang Pan. Spiking nerf: Representing the real-world
geometry by a discontinuous representation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 13790–13798, 2024.

Chenhao Lu, Ruizhe Shi, Yuyao Liu, Kaizhe Hu, Simon S Du, and Huazhe Xu. Rethinking
transformers in solving pomdps. arXiv preprint arXiv:2405.17358, 2024.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36:47016–47031, 2023.

Fiona McNab and Torkel Klingberg. Prefrontal cortex and basal ganglia control access to working
memory. Nature neuroscience, 11(1):103–107, 2008.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
Benchmarking partially observable reinforcement learning. arXiv preprint arXiv:2303.01859,
2023a.

Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement learning with
fast and forgetful memory. Advances in Neural Information Processing Systems, 36:72008–72029,
2023b.

Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Foerster, and Amanda Prorok.
Revisiting recurrent reinforcement learning with memory monoids. arXiv e-prints, pp. arXiv–2402,
2024.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. Advances in neural information processing systems,
29, 2016.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a strong
baseline for many pomdps. arXiv preprint arXiv:2110.05038, 2021.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

Lang Qin, Rui Yan, and Huajin Tang. A low latency adaptive coding spiking framework for deep
reinforcement learning. arXiv preprint arXiv:2211.11760, 2022.

Lang Qin, Ziming Wang, Runhao Jiang, Rui Yan, and Huajin Tang. Grsn: Gated recurrent spiking
neurons for pomdps and marl. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 1483–1491, 2025.

David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado
van Hasselt, and Francis Song. Synthetic returns for long-term credit assignment. arXiv preprint
arXiv:2102.12425, 2021.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimization
in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zekang Wang, Zhe He, Edan Toledo, and Steven Morad. Popgym arcade: Parallel pixelated pomdps.
arXiv preprint arXiv:2503.01450, 2025.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Duzhen Zhang, Qingyu Wang, Tielin Zhang, and Bo Xu. Biologically-plausible topology improved
spiking actor network for efficient deep reinforcement learning. arXiv preprint arXiv:2403.20163,
2024.

Xuanle Zhao, Duzhen Zhang, Han Liyuan, Tielin Zhang, and Bo Xu. Ode-based recurrent model-free
reinforcement learning for pomdps. Advances in Neural Information Processing Systems, 36:
65801–65817, 2023.

A THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition 2. If ct is input-independent, and ∃Wi ∈ RNx×Nh so that σ(Wixt) = 0, t ∈ Pnoise in
a certain environment, SNRC can reach its maximum value 1.

Proof. The expression of SNRC is

SNRC =
Cin→out

Cin→out + Cnoise→out
, Cin→out ≥ 0, Cnoise→out ≥ 0, (12)

According to Equation 2 and Equation 3, Cnoise→out is

Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rc
t =

1

|Pnoise|
∑

t∈Pnoise

∣∣∣ ∑
i∈Pout

[∂Q(ŝi, ai)

∂ŝi
Gt

∂zt
∂ot

]∣∣∣ (13)

For a memory-based agent with gated linear recurrence defined in Equation 5, which is

ht = ct ⊙ ht−1 + (Wxxt)⊙ σ(Wixt), (14)

the term Gt in Equation 13 is

Gt =
∂ŝi
∂hi

(i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂zt

=
∂ŝi
∂hi

(i∏
j=t+1

∂hj

∂hj−1

)[
diag

(
σ(gt)⊙

∂ht

∂ut

)∂ut

∂zt
+

diag
(
ut ⊙

∂ht

∂σ(gt)
⊙ σ′(gt)

)∂gt
∂zt

]
,

(15)

where ut = Wxzt and gt = Wizt. diag(x) denotes the diagonal matrix formed by vector x. Note
that σ′(x) = σ(x)(1 − σ(x)). Therefore, when σ(Wizt) = 0, t ∈ Pnoise, the red terms σ(gt) and
σ′(gt) in Equation 15 are 0 vectors. We have

Rc
t = 0, t ∈ Pnoise (16)

Cnoise→out =
1

|Pnoise|
∑

t∈Pnoise

Rc
t = 0 (17)

SNRC =
Cin→out

Cin→out
= 1. (18)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 PROOF OF ASSOCIATIVITY OF EQUATION 9

We focus on the first equation in Equation 9, which is:

ht,i =

{
ct,i ⊙ ht−1,i + (Wxxt)i, sint,i = 1,

ht−1,i, sint,i = 0.
(19)

It can be rewritten as
ht = (ct ⊙ ht−1 + Wxxt)⊙ sint + ht−1 ⊙ (1− sint),

= ct ⊙ ht−1 ⊙ sint + ht−1 ⊙ (1− sint) + Wxxt ⊙ sint ,

= [ct ⊙ sint + (1− sint)]⊙ ht−1 + Wxxt ⊙ sint ,

(20)

where ⊙ is the element-wise multiplication.

Let • be the binary operator that operates on element ek, which is defined as:
ek = (ek,a, ek,b) :=

(
ct ⊙ sint + (1− sint),Wxxt ⊙ sint

)
. (21)

And the operator • is defined as:
ei • ej = (ej,a ⊙ ei,a, ej,a ⊙ ei,b + ej,b). (22)

This can be seen as a special case of the scan operator of S5Smith et al. (2022), where the matrices
are all diagonal. Note that • is associative, which means for any element x, y, z, we have (x•y)•z =
x • (y • z). Thus, the operation can be computed in parallel with a time complexity of O(log T),
where T is the sequence length. The associativity of S5 operator is proven in Smith et al. (2022).

A.3 DISCUSSION OF DISCRETE GATING

Following Equation 20 and the BPTT algorithm, the term Gt in Equation 3, which relates to the
structure of the sequence model is

Gt =
∂ŝi
∂hi

(i∏
j=t+1

∂hj

∂hj−1

)∂ht

∂zt

=
∂ŝi
∂hi

(i∏
j=t+1

∂hj

∂hj−1

)[
diag

(
sint ⊙ ∂ht

∂ut

)∂ut

∂zt
+

diag
(
ht−1 ⊙ sint ⊙ ∂ht

∂ct

)∂ct
∂zt

]
,

(23)

where ct = Wczt for an input-dependent ct.

As defined in Ismail et al. (2019), saliency quantifies the contribution of each input to the output,
measuring how input perturbations affect model responses. For temporal saliency analysis, we
therefore employ the true gradient of the step function (0 almost everywhere, undefined at zero)
instead of the surrogate gradient, which is used for training spiking neurons. In this case, the gradient
will not propagate through the discrete sint , and the term ∂sint

∂zt
is omitted.

In this case, when sint is a vector filled with 0, we can still have the conclusion of Equation 18. Thus,
Proposition 1 still holds for input-dependent ct with the proposed network structure.

B COMPARISON OF RELATED WORKS

Table 4 highlights the difference between our method and other related works.

C ADDITIONAL RESULTS

C.1 LEARNING CURVES OF PASSIVE VISUAL MATCH.

In this section, we show the learning curves of success rate and return of the Passive Visual Match
task. For tasks with memory lengths of 60, 100, and 250, the training was performed on a total of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Related Works. “SL” refers to Supervised Learning and “RL” refers to
Reinforcement Learning.

Method Learning
Method

Discrete Selection
Mechanism

Element-wise
Gating

Input-dependent
Discrete Gating

Diet-SNN Rathi & Roy (2020) SL
GLIF Yao et al. (2022) SL ✓
SkipRNN Campos et al. (2017) SL ✓
Phased LSTM Neil et al. (2016) SL ✓ ✓
GRSN Qin et al. (2025) RL ✓
Ours RL ✓ ✓ ✓

0.0 2.5 5.0 7.5
env_steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

0.0 0.5 1.0
env_steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2
env_steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
env_steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

FFM LRU LSTM Ours

Figure 5: Learning curves of success rate of Passive Visual Match with memory length of 60, 100,
250, and 500. The shaded area indicates 95% confidence interval.

1000 episodes. For the task with a memory length of 500, the training was performed on a total of
2000 episodes. This setting is to make sure the training on each task reaches a stable stage while
allowing the evaluation of the final episode to reflect the sample efficiency of each method. The
results are shown in Figure 5 and Figure 6. While the success rate has a strong correlation to SNRC ,
the return does not seem to have that strong correlation. This is because most of the rewards in this
environment come from the apple-picking task in Phase 2. This result reflects the sample efficiency
of the agent on the memory-independent task. It can be observed that although our method has higher
upper bounds on the confidence intervals than the other methods at times during training, the overall
difference between our method and the others is marginal, reflecting that the advantage of our method
on memory-irrelevant tasks may not be significant.

C.2 SHORT-TERM MEMORY TASKS

For short-term memory tasks, we choose Pybullet-P for our verification, where the observation space
contains only position information. We compare our method with three methods: LSTM Hochreiter
& Schmidhuber (1997), LRU Orvieto et al. (2023), and Transformer Vaswani et al. (2017). The

0.0 2.5 5.0 7.5
env_steps 1e4

5

10

15

20

25

30

re
tu

rn

0.0 0.5 1.0
env_steps 1e5

25

30

35

40

45

0 1 2
env_steps 1e5

75

80

85

90

95

100

0.00 0.25 0.50 0.75 1.00
env_steps 1e6

50

75

100

125

150

175

200

FFM LRU LSTM Ours

Figure 6: Learning curves of return of Passive Visual Match with memory length of 60, 100, 250,
and 500. The shaded area indicates 95% confidence interval.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5
env_steps 1e6

0

1

2

3
re

tu
rn

1e3 Ant-P

0.0 0.5 1.0 1.5
env_steps 1e6

0

2

1e3 Cheetah-P

0.0 0.5 1.0 1.5
env_steps 1e6

0

1

2

3
1e3 Hopper-P

0.0 0.5 1.0 1.5
env_steps 1e6

0.0

0.5

1.0

1.5

2.0

1e3 Walker-P

GPT LRU LSTM Ours

Figure 7: Learning curves of partially observable Pybullet tasks. The shaded area indicates 95%
confidence interval.

results of LRU and our method are averaged over 3 runs with different seeds1, while the results of
LSTM and Transformer are reported from Ni et al. (2023). As shown in Figure 7, our method has
similar performance to LRU, a linear RNN without gating, in all environments except Ant-P, but
its performance does not greatly surpass that of LRU. This is probably because the inductive bias
introduced by discrete gating is more suited for long-term memory tasks, instead of continual control
tasks that require short-term memory. Nevertheless, our method can still outperform LSTM and
Transformer in most environments. This validates the design of our linear recurrent cell in Section
4.2.

D EXPERIMENTAL DETAILS

D.1 DESCRIPTIONS AND SETUPS OF PASSIVE VISUAL MATCH

Passive Visual Match Hung et al. (2019) is divided into 3 phases, the first phase lasts for 15 time
steps, where the agent gets a color signal. In the second phase, the agent is transported to a room in
which the agent needs to perform the task of picking apples. With each apple picked up, the agent
can get a reward of 1. In the third phase, the agent needs to use the color information obtained in the
first phase to choose their action. When it reaches the correct location, it receives a reward of 10, and
the episode is marked as successful. While the environment is a 7*11 grid world, the agent can only
observe a 5*5 space around its location.

Note that the seed for creating the training and evaluation environment in the original implementation2

is not fixed. This will probably result in different color permutations for training and evaluation. As a
consequence, the evaluation result does not correctly reflect the true performance of the agent and
has a high variance. In our implementation, we manually set the seed for both training and evaluation
environments so that the permutation of the color remains the same. We conducted experiments for
all methods on this modified implementation.

D.2 TRAINING DETAILS

Hyperparameters. We use the same RL algorithms and hyperparameter configurations as in prior
works Ni et al. (2023); Lu et al. (2024); Le et al. (2024). Specifically, we use SACD Christodoulou
(2019) for Passive Visual Match, PPO Schulman et al. (2017) for POPGym and TD3 Fujimoto et al.
(2018) for Pybullet. The hyperparameters used in TD3 and SACD algorithms are shown in Table 5.
The PPO algorithms’ hyperparameters are the same as in Le et al. (2024).

In Table 6, we provide the configuration of the sequence models and network architecture in different
environments. For the results that are reported from prior works Ni et al. (2023); Le et al. (2024),
e.g., LSTM and GPT in Pybullet tasks, we copy their configurations from the original paper Ni et al.
(2023).

1We use the JAX implementation provided with Ni et al. (2023).
2https://github.com/twni2016/Memory-RL

16

https://github.com/twni2016/Memory-RL

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters of SACD and TD3.

Hyperparameter Value

Network Hidden Size (256, 256)
Batch Size 64
Learning Rate 3e-4
Replay Buffer Size 1M
Smoothing Coefficient 0.05
Discount Factor 0.99

SACD Entropy Temperature 0.1

TD3
Exploration Noise 0.1
Target Noise 0.2
Target Noise Clip 0.5

Table 6: Hyperparameters of sequence models in different tasks. “o”, “a” and “r” in input rows refer
to the observation, previous action, and reward, respectively. “-” indicates the model is not used in
this experiment, or the value is not in the model configuration.

Environment Hyperparameter LSTM GRU LRU FFM GPT LiT SHM Ours

Passive Visual Match Inputs o
Embedding Size 100
Sequence Length 90, 130, 280, 530
Num Layers 1

Hidden Size 256 - 200 128 100 - - 128
Num Heads - - - - 2 - - -

POPGym Inputs o
Input Size 128
Sequence Length 1024
Num Layers 1

Recurrent State Size - 256 - 1024 - 256 16384 4096

Pybullet Inputs oa - oar - oa - - oar

Sequence Length 64

Embedding Size [32, 16] - [64, 16, 16] - [64, 64] - - [64, 16, 16]
Hidden Size 128 - 256 - 128 - - 128
Num Layers 1 - 2 - 1 - - 2
Num Heads - - - - 1 - - -

In Passive Visual Match, the implementation of LRU is directly extracted from the code of Lu et al.
(2024)3, which forces the hidden size to be the size of the embedding size multiplied by 2. We keep
this setting so the hidden size of LRU is 200 in this environment.

The “Recurrent State Size” in Table 6 refers to the size of the recurrent state of an RNN-like sequence
model, flattened to a vector and converted to the float32 data type. SHM Le et al. (2024) is a matrix-
based memory module. The matrix size of SHM used in POPGym tasks is 128*128, indicating that
the state size is 16384. To calculate the state size of our module, we treated the membrane potential
of input and output gates as a part of the hidden state, so the “actual hidden size” (similar to the
definition of LSTM and GRU) of our module for POPGym tasks is 1024. Although it is still larger
than that of GRU and FFM, the hyperparameter tuning experiment in SHM Le et al. (2024) showed
that their performance will not increase much as their state size increases.

One unique hyperparameter has been introduced in our proposed method, namely, θ, which controls
the threshold of the spiking neuron. In Passive Visual Match tasks, θ is set to 1, resulting in an
expected threshold of 1.5. In other environments, θ is set to 0, resulting in an expected threshold
of 0.5. The θ is set higher in Passive Visual Match since we want to make spiking neurons have
sparser output, the hidden state will then be changed less frequently, and the model should have better
long-term dependency.

3https://github.com/CTP314/TFPORL

17

https://github.com/CTP314/TFPORL

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Compute Resource. We run all our experiments on NVIDIA 3090 and H100 GPUs. For the Passive
Visual Match task with a memory length of 250, when running 3 experiments in parallel on a single
H100 GPU, these experiments could be completed in approximately 7 hours. For the same task with
a memory length of 500, these 3 experiments could be completed in approximately 10 hours. For
the POPGym task, when running 2 experiments in parallel on a single 3090 GPU, both experiments
would be completed in 7 hours. For the Pybullet task, when running 4 experiments in parallel on a
single 3090 GPU, these experiments can be completed in approximately 2 days.

Passive Visual Match and Pybullet require less GPU memory and could theoretically run more
experiments in parallel, but a roughly linear increase in total run time is also observed. POPGym, on
the other hand, requires more GPU memory, and increasing the number of parallelizations may result
in CUDA out-of-memory errors.

E LIMITATIONS

While the experiments presented in the paper confirm the performance of the proposed method, there
are also some limitations.

Training Instability. Discrete gating and surrogate gradient could potentially introduce instability
during training. It also causes the divergence of the Q value in some runs of continual control tasks.
Those invalid runs are discarded in our experimental results. Stabilizing the training process is
important to enhance the practical use of discrete gating.

Long-term Temporal Credit Assignment. In early exploratory experiments, we found that our
approach did not have similar performance gains over existing methods in long-term temporal credit
assignment tasks Ni et al. (2023), such as Key-to-Door Raposo et al. (2021). Future work could
attempt to combine the proposed module with algorithms specialized for temporal credit assignment
to address this challenge.

F USE OF LLMS

The use of LLM in this paper was limited to correcting grammar, polishing the text, and translating
some sections from drafts written by the authors into English.

18

	Introduction
	Background
	Partially Observable Reinforcement Learning
	Recurrent Neural Networks
	Discrete models and selection mechanism

	Long-term Memory Efficiency Analysis
	Long-term Memory Efficiency Analysis Framework
	Long-Term Memory Efficiency Analysis for Different RNN-based Models

	Method
	Spiking Neuron as Discrete Gating
	Linear Recurrent Cell with Discrete Gating

	Experiments
	Verifying the Proposed Saliency-Based Framework
	Comparison Under Different Memory Settings

	Discussion
	Theoretical results
	Proof of Proposition 1
	Proof of Associativity of Equation 9
	Discussion of Discrete Gating

	Comparison of Related Works
	Additional Results
	Learning Curves of Passive Visual Match.
	Short-term Memory Tasks

	Experimental Details
	Descriptions and Setups of Passive Visual Match
	Training Details

	Limitations
	Use of LLMs

