CSLAN: Cross-Species Latent Alignment Network for Trauma-Related Cell-Type
Classification

Anonymous submission

Abstract

Transfer learning across domains with mismatched and non-
mappable feature spaces is a fundamental challenge in ma-
chine learning. Existing methods often rely on brittle feature-
mapping or risk catastrophic forgetting during fine-tuning. To
address this, we introduce the Cross-Species Latent Align-
ment Network (CSLAN), a novel framework for robust
knowledge transfer. CSLAN pioneers a three-pronged ap-
proach: (1) we employ a sparse regression model for princi-
pled selection of informative features in each domain, reduc-
ing noise and dimensionality. (2) We pre-train an encoder-
decoder on a comprehensive source domain (mouse). (3)
We introduce a biologically-inspired asymmetric fine-tuning
strategy, where the pre-trained decoder and latent proces-
sor—encapsulating conserved class definitions—are frozen.
A new target-specific encoder (for human) is then trained
from scratch to project its distinct feature space into this pre-
served, semantically structured latent space. On a challenging
cross-species trauma-related single-cell classification task,
CSLAN achieved 95.83% accuracy using only a few hun-
dred labeled human cells, significantly outperforming stan-
dard baselines. Our work establishes a powerful paradigm for
aligning mismatched domains, demonstrating that decoupling
feature projection from a conserved decision manifold is key
to effective transfer.

1 Introduction

The ability to transfer learned knowledge across different
domains is a cornerstone of modern artificial intelligence,
enabling models to generalize from data-rich source do-
mains to data-scarce target domains. While transfer learning
has seen tremendous success (Pan and Yang 2009; Zhuang
etal. 2020; Zhu et al. 2023), a significant and under-explored
challenge arises when the source and target domains do not
share an identical feature space (Li et al. 2023). In this sce-
nario, where the source and target domains have different
dimensions and semantics, standard fine-tuning approaches
are often inapplicable or ineffective (Saito et al. 2020). This
problem of transfer learning with mismatched feature spaces
requires novel strategies that can align representations at a
higher semantic level, rather than relying on direct feature-
level correspondence.

This challenge is acutely manifested in translational
bioinformatics, where a primary goal is to leverage vast
datasets from model organisms (e.g., mice) to understand

human biology and disease (Consortium* et al. 2022; Han
et al. 2020). The evolutionary divergence between species
means that their genetic feature spaces (i.e., gene expression
profiles) are not directly comparable; there is no perfect one-
to-one mapping for all genes. This biological reality presents
a perfect, high-impact instantiation of the mismatched fea-
ture space problem, hindering the direct application of mod-
els trained on comprehensive mouse atlases to limited hu-
man data, especially given the high dimensionality and noise
inherent in genomic dataset.

Current approaches to this cross-species problem fall
into two main categories, each with significant limitations
from a machine learning perspective. The first involves
heuristic feature mapping, where researchers attempt to find
corresponding genes (orthologs) between species to cre-
ate a shared, but often incomplete, feature space (Stumpf
et al. 2020; Theodoris et al. 2023). This approach is brit-
tle, as it discards potentially crucial information from non-
orthologous genes and is sensitive to the quality of the
mapping. The second approach is full-model fine-tuning
on the target data, which, given the typical scarcity of hu-
man samples, is highly susceptible to overfitting and catas-
trophic forgetting—erasing the robust features learned from
the large source dataset (Kirkpatrick et al. 2017; Wang et al.
2023).

To overcome these limitations, we introduce the Cross-
Species Latent Alignment Network (CSLAN), a transfer
learning framework that combines principled feature selec-
tion with a structural fine-tuning strategy designed specifi-
cally for domains with mismatched features. Our approach
begins by first tackling the high dimensionality of the data:
we employ L1-regularized regression independently on each
domain to identify a compact, highly informative subset of
features (genes) critical for classification. Then, CSLAN’s
core idea comes into play: to decouple the learning of the
input projection from that of the classification manifold. Op-
erating on these curated feature sets, CSLAN pre-trains an
encoder-decoder model on the source data (mouse cells),
where the decoder learns to map latent representations to
class labels. For transfer, we freeze the pre-trained decoder
and latent processor, preserving the learned semantic struc-
ture of the classification space. We then instantiate a new,
randomly initialized encoder to map target data (human
cells) into this fixed latent space, using the frozen decoder’s



output as a supervised signal.

Our central hypothesis is that this combination of strate-
gic feature reduction and asymmetric fine-tuning transforms
the difficult task of learning a classifier from scratch into
the much simpler and better-constrained task of learning
a projection, by preserving the robustly learned decision
boundaries. This forces the new encoder to align the tar-
get domain’s representations with the source domain’s latent
structure, effectively distilling knowledge without direct fea-
ture mapping. We demonstrate that CSLAN achieves state-
of-the-art performance on a challenging trauma-response
dataset, providing a powerful, generalizable, and computa-
tionally efficient solution for a critical class of transfer learn-
ing problems.

The main contributions of this paper are summarized as
follows:

e We propose a novel transfer learning framework,
CSLAN, featuring an asymmetric fine-tuning strategy.
This method preserves a pre-trained decision manifold
by freezing the decoder and trains only a new, domain-
specific encoder to align domains with mismatched fea-
ture spaces.

* We provide a comprehensive empirical validation of
CSLAN on a challenging, real-world cross-species bioin-
formatics task. Our results demonstrate state-of-the-art
performance in a few-shot setting, outperforming stan-
dard fine-tuning and from-scratch baselines.

* We demonstrate, both quantitatively and qualitatively
through latent space visualization, that decoupling the
input projection from a conserved decision manifold is
a powerful, efficient, and generalizable paradigm for
knowledge transfer across disparate domains.

2 Related Work
Heterogeneous Domain Adaptation (HDA)

The challenge of transferring knowledge across domains
with mismatched feature spaces is a key problem in HDA
(Li et al. 2023). While early methods focused on adver-
sarial alignment (Tzeng et al. 2017), recent advancements
have shifted towards more sophisticated strategies, partic-
ularly within the practical Source-Free Domain Adaptation
(SFDA) setting where adaptation relies only on a pre-trained
source model (Li et al. 2024).

CSLAN contributes a distinct and more direct strategy
for the supervised, few-shot setting. It operates source-
free during fine-tuning, but uses a standard supervised loss
and a structurally-modified architecture—replacing the en-
coder—to achieve a stable and powerful alignment.

Parameter-Efficient Fine-Tuning (PEFT)

PEFT has become the dominant paradigm for adapting
large pre-trained models. The state-of-the-art is dominated
by methods like Low-Rank Adaptation (LoRA) (Hu et al.
2022) and its highly efficient successors (Dettmers et al.
2023). The field continues to evolve rapidly, new explo-
rations to make these methods even more efficient, for ex-
ample, by using shared random matrices (VeRA, (Kopiczko,

Blankevoort, and Asano 2023)), or by developing new ways
to compose PEFT modules across tasks (Wu et al. 2024).

CSLAN introduces a structural PEFT perspective to this
landscape for the cross-domain challenge with feature space
mismatch. It performs a substitutive adaptation—replacing
the entire input-facing encoder. This structural change dif-
fers our approach from the additive modification methods,
offering a targeted PEFT strategy specifically for heteroge-
neous domains.

Cross-Species Transfer Learning in Genomics

Within our application domain, prior work has established
the feasibility of cross-species knowledge transfer and can
be broadly categorized as two main streams.

Ortholog-Based Transfer: The dominant paradigm re-
lies on creating a shared feature space by mapping one-to-
one orthologous genes. This has been shown to be effec-
tive with models ranging from MLPs (Stumpf et al. 2020)
to large-scale transformers like Geneformer, which learns
gene embeddings from massive corpora of sequencing data
(Theodoris et al. 2023; Ito et al. 2025). The primary limita-
tion of this approach is its reliance on incomplete and poten-
tially biased ortholog maps, forcing models to discard po-
tentially critical non-orthologous genes.

Ortholog-Free and Integration Methods: To overcome
this, other methods aim for alignment without direct gene
mapping. Semi-supervised approaches like ItClust transfer a
pre-trained encoder and use unsupervised clustering to adapt
to the target domain (Hu et al. 2020). Other frameworks
focus on data integration for building unified atlases, of-
ten using variational autoencoders or graph-based manifold
alignment to create a shared latent space (Lotfollahi, Wolf,
and Theis 2019; Tarashansky et al. 2021). While powerful,
these integration-focused methods are often not optimized
for a specific supervised task like high-fidelity classification.
CSLAN is designed to resolve this trade-off: it is ortholog-
free but uses a direct supervised signal to optimize for a spe-
cific classification task, outperforming standard fine-tuning
strategies.

3 The CSLAN Framework
Datasets and Few-Shot Setup

We validate our framework using challenging mouse
(source) and human (target) scRNA-seq datasets from a
study of systemic immune response to severe trauma (Chen
etal.2021). The complexity of these data, which capture dy-
namic cellular states post-injury, provides a rigorous test for
our method.

Source (Mouse): The source data was generated from
mice subjected to a validated model of severe traumatic in-
jury (polytrauma with hemorrhagic shock). Peripheral blood
mononuclear cells (PBMCs) were collected at multiple time
points post-injury alongside uninjured controls. The final
dataset comprises 3,597 cells across 8 PBMC types (B,
Cd4+T, Cd8+T, Mono, NK, NK-T, Neutrophils, RBC), with
expression quantified for 12,398 genes. This dataset was
split into training (80%), validation (10%), and test (10%)
sets for pre-training.



Target (Human): The target data was collected from hu-
man trauma patients at three post-injury time points (4h,
24h, 72h) and from healthy volunteers, creating four distinct
conditions. The dataset captures 6 corresponding PBMC
types (B, Cd4+T, Cd8+T, Mono, NK, NK-T) with expres-
sion quantified for 17,038 genes. For the transfer learning
phase, we construct a challenging few-shot learning sce-
nario. The fine-tuning dataset consists of only 240 cells (10
cells per type per condition), and the validation and final test
set each consists of 120 distinct cells (5 cells per type per
condition). This setup rigorously tests the model’s ability to
generalize from extremely limited target data.

During every training stage, the validation set is used to
select the model checkpoint with the best performance. This
single, chosen model is then evaluated once on the distinct
held-out test set for final, unbiased reporting of accuracy and
F1-score. This strict separation ensures that our reported re-
sults are a true measure of the model’s generalization ability.

Informative Gene Selection

To reduce dimensionality and focus the model on the most
predictive signals, we apply L1-regularized Multinomial Lo-
gistic Regression (L1-MLR) independently to the source and
target training sets. Genes are ranked by the magnitude of
their learned coefficients, and the top-k genes are selected.
Based on preliminary experiments on the source domain
(see Sec 4), we set k=100. This step provides a compact,
high-signal feature set for each domain. All selected gene
expression data is Z-score normalized using statistics com-
puted only from the respective training sets.

L1-MLR Objective: For each domain z € {m,h}
(mouse/human), let n, be the number of labeled train-
ing samples (cells) and GG, the number of available genes
(features) in that domain. Let X, € R"™:*C: be the de-
sign matrix whose ¢-th row is J;S)T € R%=, and let Yy €
{1,...,C}"= be class labels. Multinomial logistic regres-
sion with an ¢; penalty solves

1 & W, gi) +b.),0
min — 3 [~log oxp (W o)) ERLA
L Yo exp (Weas” + b))
()

where W, € RE*C= are class-by-gene weights, b, € R®
are class biases, A > 0.

We ranks genes by ¢5 norm of class coefficients. We keep
the top-k genes (same k across domains).

Normalization. For each kept gene j, zj; = “<-F4 with
J
(15,0;) computed on the training split only.

Model Architecture and Formalism

CSLAN employs an encoder-decoder architecture designed
to explicitly decouple input projection from classification.
We formalize the key components as follows:

* Source and Target Encoders (E,,, E}): For each domain
(mouse m, human h), a separate multi-layer perceptron
(MLP) encoder, E, : R* — R?, maps a k-dimensional
input gene vector to a d-dimensional latent embedding.

Both encoders share the same architecture but have inde-
pendent, domain-specific weights.

* Latent Processor (P): A shared module, P : R — R,
composed of a series of residual blocks. It processes the
initial latent embeddings to model more complex feature
interactions in a shared space.

* Decoder (Classifier) (D): A shared MLP, D : R4 — R€,
that maps the final d-dimensional representation to a C-
dimensional logit vector, where C is the number of cell
types.

Our implementation uses a latent dimension of d = 64. All
MLP modules consist of fully-connected layers followed by
Batch Normalization, ReLLU activation, and Dropout for reg-
ularization.

The CSLAN Two-Stage Training Strategy

Stage 1: Pre-training on Source Domain. In the first
stage, we train the mouse-specific components end-to-end
on the labeled mouse dataset. The objective is to minimize
the standard cross-entropy loss:

Epre—train = E(zm,ym)NData,,” [‘CCE (fm (xm)7 ym)L (2)

where the composite function fy,(z,,) is the full forward
pass of the network for the source domain, defined as

And to mitigate class imbalance, we use Class-weighted
loss:
< 1
Lep(z,y) = _ch 1y = c]log e, we m~
“4)
This stage learns a robust latent representation for cell
types and a corresponding classification manifold within the
frozen components P and D.

c=1

Stage 2: Asymmetric Fine-tuning on Target Domain.
This stage contains the core novelty of CSLAN. We freeze
the parameters 6 p and 6 learned in Stage 1. We then instan-
tiate a new, randomly initialized target encoder E}, (6, ) and
train only its parameters 6, on the few-shot human dataset.
The objective is to minimize the transfer loss:

['lransfer = E(zh,yh)NDatah ['CCE (fh (xh)v yh)]v (5)

where the human-specific forward pass
fu(@) = D(P(Ep(zp; 05, ); 0F"): 057", (6)

By freezing the decoder and latent processor, we force
the new human encoder Fj, to learn a projection that maps
human cells into the pre-existing latent manifold in a way
that is understood” by the frozen classifier. This constrains
the learning problem, prevents catastrophic forgetting, and
enables effective knowledge transfer from minimal data.

The overall architecture is illustrated in Figure 1.

The detailed inference pipeline of CSLAN is demon-
strated in Appendix A.4.
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Figure 1: The CSLAN Architecture and Transfer Learning Strategy. The model consists of two species-specific encoders
(Encoder-m for mouse, Encoder-h for human), a shared latent-space processor with residual connections, and a common de-
coder for cell type classification. The framework is utilized in a two-phase process: (a) Pre-training: The source encoder
(mouse), latent processor, and decoder are trained end-to-end on mouse scRNA-seq data to learn robust cell type definitions
and latent space representations. (b) Fine-tuning: The latent processor and decoder are frozen. A new target encoder (human)
is then exclusively trained to project its inputs into the fixed, pre-trained latent space, enabling efficient knowledge transfer.

4 Experiments and Results
Evaluation Metrics

We evaluate model performance on the multi-class cell type
classification task using several standard metrics to provide
a comprehensive assessment.

* QOverall Accuracy: The proportion of correctly classified
cells out of the total number of cells in the test set.

* Macro F1-Score: To account for potential class imbal-
ances in the test set, we report the macro-averaged F1-
score. This is the unweighted mean of the F1-scores cal-
culated for each cell type individually, providing a bal-
anced measure of performance across all classes. The F1-
score for each class c is the harmonic mean of its preci-
sion P, and recall R..

¢ Confusion Matrix: To visualize per-class performance
and identify specific error patterns (e.g., confusion be-
tween biologically similar cell types), we generate con-
fusion matrices for all test set predictions. The y-axis cor-
responds to the ground truth label while the x-axis is the
predicted label.

For qualitative assessment of the model’s learned repre-
sentations, we use Uniform Manifold Approximation and
Projection (UMAP) (Mclnnes, Healy, and Melville 2018).
UMAP plots are used to project the high-dimensional latent
embeddings of cells into a two-dimensional space, allowing
us to visually inspect the separation of cell type clusters in
the latent space. All experiments were run with a fixed ran-
dom seed of 42 for reproducibility.

Optimal Feature Selection and Source Model
Performance

A critical preliminary step in our framework is to establish
a strong source model by selecting an optimal, compact fea-
ture set. We used L1-regularized MLR to rank all 12,398
mouse genes by their predictive importance and selected
the most informative k genes. We then trained and evalu-
ated a mouse classifier for various feature subset sizes (k). A
weighted random sampler was employed during the training
process to handle the inherent class imbalance and promote
a more robust model (Appendix A.1).

As shown in Table 1, performance peaked at k=100 genes,
providing the optimal balance of accuracy and dimensional-
ity and achieving 95.82% accuracy with a 0.9577 macro F1-
score. The confusion matrix for this optimal k=100 model
(Fig. 2(a)) shows high per-class accuracy, with minor con-
fusion only between biologically related T-cell and NK-cell
subtypes.

Effect of Feature Set Size (Kk):

Table 1°s result confirms that a curated feature set is su-
perior to using either too few genes (e.g. k=50), which leads
to information loss, or too many (e.g. k=1000), which intro-
duces noise and degraded performance. The detailed confu-
sion matrices for each k is shown in Appendix B Fig. 2?.

To qualitatively compare the effect of k values on the in-
herent structure of the input data, Figure 3 shows the UMAP
projections of the mouse test set using the raw expression
data. While k=50 shows some clustering, the cell type sep-
aration becomes significantly clearer and more distinct at



Table 1: Mouse cell type classification accuracy on test set
with varying numbers of top k genes selected.

No. Genes (k) Accuracy (%) Macro F1-Score

10 86.94 0.8706
50 92.50 0.9268
100 95.82 0.9577
500 89.72 0.8971
1000 82.78 0.8163

k=100. Increasing the feature set to k=1000 introduces noise
and leads to more diffuse, less-separated clusters. This visual
evidence aligns with the quantitative findings that k=100
provides the best balance of signal and noise.

Comparison of Feature Selection Methods:

To validate our choice of Multinomial Logistic Regres-
sion, we benchmarked it against several common feature se-
lection strategies (Table 2). We used each method to select
the top 100 genes from the mouse training dataset and then
trained our classifier architecture on that subset.

The L1-MLR outperforms all other methods. As ex-
pected, Random Selection performs poorly, confirming that
an intelligent, data-driven selection strategy is essential. The
heuristic of selecting genes with High Variance also per-
forms poorly, indicating that expression variance alone is
not a reliable proxy for predictive importance in this context.
While the Random Forest and Mutual Information methods
are strong performers, they do not reach the level of L1-
MLR. This is likely due to L1-MLR’s inherent ability to
handle sparse, high-dimensional data by shrinking the coef-
ficients of redundant or irrelevant genes, resulting in a more
robust and potent feature set for classification.

Model Performance:

The value of our deep learning approach is visually
demonstrated in Figure 4. While the raw top-100 input genes
provide a reasonable initial separation of cell types (Fig.
3(b)), the 64-dimensional latent space learned by the pre-
trained CSLAN model exhibits a qualitatively superior rep-
resentation, with significantly tighter and more distinct clus-
ters, as shown in Fig. 4(a). This comparison highlights the
model’s ability to learn a powerful non-linear transformation
that enhances class separability. The UMAP visualization is
calculated and plotted based on the intermediate results of
the model, which effectively projects the high-dimensional
geometric structure of the latent space, providing direct vi-
sual evidence of this improved representation.

Overall, the high quantitative accuracy and the clear qual-
itative improvement in representation provide compelling
proof of effective source model training and ability of rep-
resentative cell identity learning, establishing a robust foun-
dation for our transfer learning experiments.

CSLAN Outperforms Baselines in Few-Shot
Transfer

We now turn to the primary evaluation: the few-shot, cross-
species transfer task. CSLAN with the proposed asymmetric

Table 2: Comparison of feature selection methods, with per-
formance evaluated on the mouse test set using the top 100
genes selected by each method.

Method Accuracy (%) Macro F1-Score
L1-MLR 95.82 0.9577
Random Selection 44 .51 0.4282
High Variance 33.24 0.2946
Random Forest 93.32 0.9303
Mutual Information 92.63 0.9209

fine-tuning strategy was compared against several key base-
lines on the human test set. The results are shown in Table 3.

CSLAN achieves a state-of-the-art accuracy of 95.83%
and a macro F1-score of 0.9591. This performance surpasses
all key baselines:

* Human-Only (all-genes): A naive baseline trained from
scratch on all 17,038 human genes performs poorly
(80.83%), highlighting the challenge of learning from
high-dimensional, low-sample data.

* Human-Only (k=100): Adding our feature selection
step substantially improves the “training-from-scratch”
performance to 92.50%, yet this still falls short of
CSLAN, demonstrating that feature selection alone is in-
sufficient.

» Zero-Shot Transfer: Directly applying the pre-trained
mouse model to the 100 selected human genes yields
an accuracy of 17.51%, which is near random chance.
This is expected, as the mouse encoder’s learned fea-
ture mapping is meaningless for the distinct human gene
space, confirming that adaptation is essential to bridge
the species gap.

* Full Fine-tuning (Full-FT): The most direct transfer
learning competitor, fine-tuning the entire model, is over-
fitting on the few-shot data and only reaches a accuracy
of 92.12% (compared with 95.83%). This accuracy is
close to that of the “training from scratch” results, as the
dataset and model size is limited in this scenario. This
highlights that CSLAN’s constrained tuning is a superior
regularization strategy, preventing catastrophic forgetting
and common overfitting for small dataset.

The validation curves in Figure 2(c) show that CSLAN
converges effectively on the small fine-tuning set with a
small batch size (see Appendix A.3 for training dynamics).
The resulting classifier demonstrates high and balanced per-
formance, as shown by the confusion matrix in Figure 2(b).
A detailed comparison with the primary baselines, Full Fine-
tuning and Human-Only (k=100), reveals the superiority of
our approach. As shown in Figure 5, both baseline models
struggle to learn the fine-grained distinctions between lym-
phocyte subtypes from the limited few-shot data, exhibiting
confusion between the Cd4+ T, Cd8+ T, and NK-T popula-
tions. In contrast, CSLAN achieves a much cleaner separa-
tion of these challenging classes.

This confirms our central hypothesis: preserving a learned
decision manifold while adapting only the input projection
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Figure 2: CSLAN Performance on Source and Target Domains. (a) Confusion matrix for the best-performing pre-trained
model on the mouse test set, achieving 95.82% accuracy. (b) Confusion matrix for the asymmetrically fine-tuned CSLAN model
on the 6-class few-shot human test set, achieving 95.83% accuracy. (c) Validation loss and accuracy curves during the human
fine-tuning phase. The final model was selected from the epoch with the highest validation accuracy (dashed line).
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Figure 3: UMAP visualization of the mouse input data for different numbers of top-k genes (k = (a)50, (b)100, (c)1000). The
clearest separation of cell type clusters is observed at k=100, validating our choice of feature subset size.

Table 3: CSLAN performance on the human few-shot test
set. Our method (CSLAN) with encoder-only tuning outper-
forms all baselines. Baselines include training from scratch
on human data (Human-Only), full-model fine-tuning (Full-
FT), and zero-shot transfer from the mouse model.

alization serves as the ultimate test of our framework’s abil-
ity to align the target domain with the structured manifold
learned from the source.

The analysis reveals that CSLAN successfully transfers
core topological features. For instance, the B-cell lineage is

Model Accuracy (%) Macro F1 clearly isolated from other lymphocytes and the Cd8+T is at
CSLAN (Ours) 95.83 0.9591 the top-right corner in both the mouse and human manifolds.
Baselines S.imilarly,. the close proximity of NK and NK-T cells is reca-
Human-Only (k=100) 92.50 0.9232 pltqlated' in the.: human space, cgrrect]y mirroring thglr bio-
Human-Only (All Genes) 80- 83 0.7989 loglca} similarity. The preservation of these key rel'atlve.ge-
Full-FT (k=100) 92.12 09181 ometries demonstrates that CSLAN has learned a inherited
Zero-Shot (k=100) 17: 51 0:1793 semantic map of cell identity. This confirms that our asym-

is a superior regularization strategy for few-shot transfer. It
effectively prevents catastrophic forgetting and preserves the
crucial feature distinctions necessary for high-fidelity clas-
sification across mismatched domains.

Visualization of Latent Space Alignment

To qualitatively validate that CSLAN achieves a meaningful
alignment, we visualized the topology of the learned latent
spaces for both the mouse and human domains (Figure 4).
While the global orientation of a UMAP projection is arbi-
trary, the relative topology of the cell type clusters provides
powerful insights into the success of the transfer. This visu-

metric fine-tuning strategy effectively bridges the species
gap by aligning the human data to a biologically meaningful
manifold. An interesting divergence feature is also captured.
While Cd4+ and Cd8+ T-cells are adjacent in the mouse
space, they are more distinctly separated in the human man-
ifold. This may reflect a genuine species-specific transcrip-
tional response to trauma that our model has successfully
learned to represent.

In summary, the preservation of these essential topologi-
cal features and the clear clustering for both species provide
strong visual evidence that our asymmetric fine-tuning strat-
egy works. CSLAN does not merely learn a new classifier;
it effectively bridges the species gap by aligning the human
data to a shared, biologically meaningful semantic map.
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Figure 4: Aligned Latent Spaces. (a) The pre-trained CSLAN model transforms the raw top-100 selected mouse genetic data
into a highly structured latent space with significantly clearer class separation than initial clustering. Significant improvement
is shown for Cd4+/8+ T cells’ separation. (b) After asymmetric fine-tuning, the CSLAN human encoder successfully projects
human cells into a topologically similar latent space, preserving key inter-class relationships with effective alignment.
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Figure 5: Confusion matrices for baseline models on the 6-class human test set. (a) The model trained from scratch achieves
92.50% accuracy but shows notable confusion between specific cell types. (b) The Full Fine-tuning model achieves 92.12%
accuracy and exhibits similar error patterns, failing to significantly improve upon the from-scratch performance. Both are

outperformed by CSLAN’s targeted approach (Figure 2(b)).

Table 4: Knowledge ablation study. Performance of CSLAN
on the 6-class human test set when the pre-trained decoder
is missing specific biological priors from the source model.
The baseline uses priors for all corresponding classes.

Missing Prior(s) in Source Model Accuracy (%)
None (Baseline) 95.83
Single Priors Removed

NK-T 95.00
Mono 95.00
Cd8+ T-cell 93.33
B-cell 90.83
Cd4+ T-cell 98.35
Multiple Priors Removed

Cd4+ T & Cd8+ T 90.83

Dissecting the Learned Manifold

To investigate the compositionality of the knowledge within
the frozen decoder and the impact of individual biological

priors, we conducted a series of knowledge ablation experi-
ments. We pre-trained source models on different subsets of
the mouse cell types and then transferred them to the full 6-
class human task. For each transfer, the human decoder was
constructed by inheriting the weights for only those classes
present in its specific pre-training run. Weights for any hu-
man class not seen during pre-training were randomly ini-
tialized and fine-tuned alongside the human encoder.

The results, summarized in Table 4, reveal a complex in-
terplay between conserved knowledge and species-specific
features. As expected, removing the pre-trained priors for
B-cells or Cd8+ T-cells reduced performance to 90.83% and
93.33% respectively, demonstrating the high value of trans-
ferring these conserved cell type definitions.

Remarkably, not all priors were beneficial. The baseline
model, using all 6 corresponding priors, achieved 95.83%
accuracy. However, when the pre-trained prior for Cd4+ T-
cells was removed, the model’s performance increased to a
new state-of-the-art of 98.35%. This fascinating result sug-
gests a case of subtle negative transfer, where the pre-trained
mouse definition of a trauma-response Cd4+ T-cell may be
a suboptimal constraint for representing its human counter-



part. By allowing the model to learn the human Cd4+ T-
cell representation from scratch, unconstrained by the mouse
prior, it discovers a more effective, human-specific solution.

These findings provide three key insights. First, the high
performance across all experiments demonstrates the robust-
ness of the CSLAN framework, showing it can successfully
learn to classify target categories even when no correspond-
ing prior exists. Second, the results suggest the learned la-
tent space is highly modular, where the semantic defini-
tions for individual cell types are largely independent. This
compositionality, allowing the model to learn "new” classes
without catastrophic interference, is a key feature of a well-
structured representation. Third, and most critically, our re-
sults highlight that while transferring conserved knowledge
is powerful, the flexibility to discard suboptimal priors and
learn species-specific features from scratch is equally vital
for achieving optimal performance.

5 Conclusion

We introduced CSLAN, a novel transfer learning frame-
work for the challenging setting of mismatched and non-
mappable feature spaces. Our core innovation is an asym-
metric fine-tuning strategy—preserving the learned biologi-
cal priors while exclusively learning a new domain-specific
projection to a fixed semantic space. CSLAN achieves state-
of-the-art, few-shot classification performance in a critical
cross-species bioinformatics task, bridging the translational
gap between mouse and human.

While our validation is on a single mouse-to-human con-
text, the core principle of CSLAN is generalizable. The de-
coupling of the domain-specific input projection from the
decision manifold learning presents a powerful, parameter-
efficient, and interpretable strategy for knowledge transfer.
We believe this paradigm holds broad implications for other
Al domains facing feature space mismatches, as well as for
accelerating discovery in the sciences.

Data Availability

The datasets and code used in this study are available upon
reasonable request. A public release is planned and will be
shared via an online repository upon publication.
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